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CHAPTER 1

EXACT CONTROLLABILITY
OF PARABOLIC EQUATIONS

Introduction

Let (z,t) € Q = 2x]0,T], where 2 C R™ is a connected bounded domain
with boundary 9Q C C?, v(z) - the external normal to 9, T € (0, +00) is
an arbitrary moment of time. We consider the semilinear parabolic equation

Oy "9
G(y) = o —”221 B (am (t,x 8%) + ;lb
+c(t,a:)y+f(t,x,y):u+g, ueUw), (1)

(1t 2) 22 ot 2 = ((12) 3 gt avi s+ 1a(t,2)y) =0,

ova Lj
y(0,2) = vo(z), (2)

1,j=1

where vy and g are given, and u(t, x) is a control in the space
Uw) = {u(t,z) € L*(Q)|supp u C [0,T] x w}.

Here w is an arbitrary fixed subdomain of €2 and ¥ =]0, T[x0€2.
By the problem of exact controllability we mean finding a control u € U(w)
such that

y(T,z) = Ul(x)v (3)

where vy (z) is a given function.
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In this paper we also consider the problem of exact boundary controlla-
bility, by which we mean finding a control u(¢, z) such that

Gly)=g9 in Q, y(0,2)=uvo(z), y(T z)=uvi(z), (4)
dy oy
(L, x)%HQ(t’x)y)}]OvT[xFo - (ll(t’w)%HQ(t’ x)y)‘]O,T[X(aﬁ\Fo) =0,

(5)
where I'g is an arbitrary fixed subdomain of 9€2, and vy, v1, g are given func-
tions.

In the above problems we assume
aij € CY3(Q), ayy = aji, b€ C¥(Q), ceL™(Q), (6)

where 7,7 = 1,---,n and the uniform ellipticity: There exists § > 0 such
that

n

G(t,ﬂl’, Ca C) = Z alj(th)ClC] Z ﬁ‘<|2 VC € Rna (th) S Qv (7>

i,j=1
Suppose functions I, 1, € C*1(X) and
either [;(¢t,z) > 0 V(t,z) € ¥, or l1(t,x) =0 and l2(t,z) = 1. (8)
and compartibility condition of the first order holds
if 11(t,x) =0, then vg|gn = 0. (9)

Firstly exact boundary controllability problem was studied in the work of
Yu. V. Egorov [11] for the case of one dimensional equation. For the control-
lability of the linear heat equation with time independent coefficients there
are many developments due to H. Fattorini [15], D. Russel [56] and T. Seid-
man [58]. Most of the results obtained till 1991 are for parabolic equations in
one space dimension and for the heat equation with the control distributed
on part of the boundary such that some non-trapping conditions are fulfilled,
or in the case of domains of special forms (ball, square,..). In the end of 80’s
essential progress was made in the theory of exact boundary controllability
of hyperbolic equations. Automatically the method introduced by Russel in
[57] gives the possibility to prove null controllability for wide class of the
linear parabolic equations under non-trapping conditions [33],[34].
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For approximate boundary controllability of the semilinear heat equa-
tion where the nonlinear term satisfies the sublinear growth condition see C.
Fabre, J. P. Puel and E. Zuazua [12]- [14].

The case of exact controllability of semilinear heat equation with Dirichlet
boundary conditions was studied in works of O.Yu. Imanuvilov [29]-[32].
The case of Neumann boundary conditions was studied in [9]. For the one
dimensional case with analytical nonlinear term there is a result due to W.
Littman and Guo [66]. They introduced the method completely different
from ours. We should also mention the work of G. Lebeau and L. Robbiano
[46] for linear heat equation which used a combination of Russels method,
integral transform, and the Carleman inequality for elliptic equations.

Local exact controllabilty results for the Burgers equation were obtained
by A.V. Fursikov and O.Yu. Imanuvilov in [16]. In the case when the non-
linear term satisfies the superlinear growth condition there is an estimate
for the Burgers equation due to A. V. Fursikov and O. Yu. Imanuvilov [11]
which shows that the equation is not approximately controllable with respect
to boundary control.

This chapter is organized as follows. In the first section we prove the
Carleman estimate for adjoint parabolic equation. In the second section we
apply this estimate to solve problems (1)-(3) and (4), (5) for the case of linear
parabolic equation. We use a variant of the penalization method.

In section 3 in the case where f(t,x, () satisfies the global Lipschitz con-
dition in ¢ variable with f(¢,z,0) = 0 we obtain the necessary and sufficient
conditions for the global exact controllability, while where f(¢,z, () satisfies
the superlinear growth condition in ( we prove in section 4 the local exact
controllability. The exact controllability of the nonlinear problem follows by
means of Schauder’s fixed point theorem for the global exact controllability
and by means of the implicit function theorem for the local exact controlla-
bility respectively. Also in section 4 global exact controllability results are
proved. In section 5 for some class of parabolic equations we prove an a
priori estimates which imply uncontrollability of these equations. Finally in
section 6 controllability of Burgers equation is studied.

For more details on the technical assumptions and the results please see
the main theorems in following sections.

1. Carleman estimate.
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Let us introduce the following spaces:

sz(Q) = {w(:v)‘ HU)HWI;C(Q) Z / |Daw\pd:v % },

|| <k
a=(a,...,an), la| =a1 + -+ a,, D¥ =0% /0% xy...0% [0 x,,
ow ow O*w
1,2 _ p A
Wp (Q) {w(th)} w, ot 6.117;7 61’161'1 €L (Q) W) 17"'7”}7
oy Gy 0%y — ..
1,2 —1....
C (Q) { (t ./17)‘ y? 8[_,; 8./171 833 8%3 C(Q) 7’7] 17 7”} .

We have

LEMMA 1.1. Let wy € w be an arbitrary fived subdomain of (). Then there
exists a function 1 € C%(Q) such that

Y(x)>0Vz e, Yloga=0, |VY(z)] >0 Vze\w. (1.1)
The proof of Lemma 1.1 will be given later.
We set

p(t,z) = V(T = 1), @t x) = e MO (HT — 1)), (1.2)

aft, z) = (M = PMle@) /(T — 1)),
a(t,7) = (¢ — Wle@) /(T — 1), (1.3)
where A > 0 and function ¢ from Lemma 1.1. Note that
a(t,z) > a(t,z) V(t,z) e Q.
We also set
V= 21 llaijlloreg) + Z 1bill o1 gy + el (@) 7 = 21 llaijllor2@)-
ij i.J

Let us consider the boundary value problem

0z "9 0z " 0z )
S (w,x)a—%) 3 ohit g el z=g i Q
(1.4)
0z

(11.(t, x)ﬁ— + lo(t, x)2 )‘E 0, 2(0,-) = 2. (1.5)

We have the following;:
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LEMMA 1.2. Let (6)- (9) be fulfilled and functions ¢, a, ¢ and & be defined
as in (1.2) and (1.8). Then there exists a number A\ > 0 such that for an
arbitrary A\ > X\ there exists so(\) such that for each s > so(\) the solutions
of problem (1.4) - (1.5) satisfy the following inequality:

[

Q
S Cl</‘g‘2(€2sa—f—€2$&)dl‘dt—|—/ 839032'2( 2$a+625&)d$dt),
[0,T]xw

9z 2

ot

+ ]Az\z) + 50| V2|2 + 33903z2> (e 4 e25%)dx dt

(1.6)

where constant c; depends continuously on v, A and constant A depends con-
tinuously on 7.

Since the proof of Lemma 1.2 technically looks very awkward firstly we
demonstrate it’s main ideas considering the more simple case of the heat
equation:

Oz + Az = f(t,z) in Q, (1.7)
0z
Z’X} —0, % . =0. (18)

We have

LEMMA 1.3. There exists such so > 0 that for any s > sg the solution
z(t,z) of (1.7), (1.8) satisfies the Carleman estimate:

/Q (sp)~"

Z ’ ox; 6333

+53g0322 s (o) dmdtﬁc;;/ fA(t, x)e*dxdt, (1.9)
Q

where the functions o(t, z), a(t,z) are defined in (1.2), (1.8), A =1, (z) =
x1 and cg > 0 does not depend on s.

Proof. We make the change of variables

w(t,x) = e**2(t, x) (1.10)
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in (1.7), (1.8). As a result in virtue of (1.10) we get

Lyw(t,z) + Low(t, ) = fs(t, ) (t,z) € Q, (1.11)
wly = 2—7”: § =0, (1.12)
where
Liw = Aw + s2¢*w — s(0;0)w, (1.13)
Low = Oyw — 2500, w, (1.14)
fs =e* f + spw. (1.15)

Besides, by virtue of (1.3) and properties of a we have
’LU‘t:O = ’w’t:T =0. (116)
Equation (1.11) implies
IL1wl?,q) + 1L2wl7, @) + 2(Liw, Low) @) = | fsl17.(0)- (1.17)

In virtue of (1.13), (1.14) we get

(Llw,ng)LQ(Q) =1+ I, + I3, (1.18)
where

I = / (Aw + s20*w — s(0ya)w)dsw dx dt, (1.19)
Q
I, = —/ Aw(2sp0,, w) dz dt, (1.20)

Q
I3 = —/ (s2p? — 5(0r) ) (25pw0,, w) dix dt. (1.21)
Q

Let us transform Iy, I, I3. Integration by parts in (1.19) with help of (1.12),
(1.16) yields

I = / (—%@]Vw\z + %(82902 — 5(0,0)) 0 |w|?) da dt =
Q

—/(32906tg0—g@fta)\w\2dxdt. (1.22)
Q
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Analogously, integration by parts with respect to x in (1.21) with help of
(1.12) yields

Is = —/ (52p? — 80;0) 500, w* dx dt = / (3% pPw?
Q Q
— 5%(0rp)pw? — s%(0r)pw?) dx dt.  (1.23)

Finally, let us estimate term (1.20). Integrating by parts and (1.10) imply

I = (Vw, V(2500,,0)) (1,(Q))» = / (250(8z, w)?
Q

+ 500, |Vw|?) dx dt = / (25%0(0p,w)* — s@|Vw|?) dz dt. (1.24)
Q

We substitute (1.22), (1.23), (1.24) into (1.18) and after that substitute the
obtained equality into (1.17). As a result we have

1w, o) + [ Lawll?, o) +2 /Q (3533 w|? — s Vuw)?
+ (0p, w)*250) dx dt = Hsziz(Q) + X1, (1.25)

where

X, = 2/ (5200 — g@fta + 520(0sp) + 52p(0r)) |w|? da dt. (1.26)
Q

We get with help of simple estimation of (1.15)
Iy <2 | (211 + a2l (1.27)

where ¢y > 0 does not depend on s, t, x.
Definition (1.2), (1.3) of ¢ and « imply the inequalities

0] < c19”, 0] < e29®, |00l < e3¢, (1.28)

where ¢y, ¢o c3 does not depend on s, t, x. The estimation of (1.26) with help
of (1.28) yields

| X1] < 64/ (1 + s%)p%|w|* dx dt. (1.29)
Q



8 I. EXACT CONTROLLABILITY OF PARABOLIC EQUATIONS

Scaling (1.11) by s¢pw in Lo(Q) and taking into account (1.13) we get after
integration by parts

/ fssow dx dt = / (Low)spw dx dt + / (8303 |w|?—
Q Q Q
1
s0(0p)|w|? — sp|Vw|? + isAgo\wP) dx dt.
We can rewrite this equality by the form
/ 5| Vw|? dx dt = / s30% | w|? dx dt — X, (1.30)
Q Q
where
1
Xy = / (f2spw — (Low)spw + s@(da)|w|* — §sgo\w\2) dedt.  (1.31)
Q
We estimate X7 taking into account (1.27), (1.28):
1
| Xo| < Z||L2w||%2(Q)+C5/ (€25 f12 + (520 +5%0% +s¢0) |w|?) d dt. (1.32)
Q
The estimation of (1.25) by means of (1.29), (1.30) yields:

S/ era\f\2dxdt+c6/((1+52)g03+52902)|w|2dxdt. (1.33)
Q Q

We express the terms fQ sp|Vw|? dx dt in (1.33) by means of (1.30) and
after that use estimation (1.32). As a result we get the upper bound

IL1w]2, i) + 12wl + 2/62283¢3|w|2dx dt
1
< §||L2U)H%2(Q)+09/(625a\f\2+82g02w2)d1‘dt. (1.34)
Q

By (1.34) there exists a parameter sp such that the following inequality
holds:

IL1wl2, o) + [ Eow]?, ) + /Q 3 |w|? da dt

< 010/ e f|?drdt ¥ s > s9, (1.35)
Q
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where c19 does not depend on s. After the estimation of right side of (1.30)
with help of (1.32), (1.35) we get

/ so|Vw|? dr dt < 011/ e fPdxdt ¥ s > so. (1.36)
Q Q

Multiplying (1.13) on (sp)~2 and doing estimate with help of (1.35), (1.28)
we get

/ (sg0)71|Aw\2d:U dt < 012/ ((sgp)71|Llw|2 + 53903w2
Q Q

+ (sp) "t osal*w?) dx dt < 013/ 2| f)Pdrdt Vs> so. (1.37)
Q

Analogously, multiplying (1.14) on (sgo)*% we obtain the following inequality
by means of (1.35), (1.36):

/ (sp) " HOuw|* dx dt < 014/ XY fIPdxdt Y s> sp. (1.38)
Q Q

After substitution w = e**z into (1.35) - (1.38) we obtain (1.9).
|

Proor orF LEMMA 1.2. We give the proof of our lemma for the case
l1(t,x) > 0 for all (t,z) € ¥. The proof in the case of Dirichlet boundary
conditions is more simpler (see [32]). Set I5(t,x) = la(t, x)/l1(t, ). Then we
can rewrite the boundary condition (1.5) as follows

(aa_z +13(t,)2)[s = 0. (1.39)
VA

We can assume without loosing of generality that l5(¢,z) > 0 for all (t,z) € &
otherwise we made the change z(t,2) — e "¥(®)z(t, 2) where parameter &
sufficiently large.

Let us consider the operator

A 0z " 0%z

1,j=1
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We set

g(t,z) =g(t,x) — Zb»(t ) 0z c(t,z)z + Z day;(t,z) 821. (1.41)

p— 0x; 52 Ox; Oz
We denote w(t,z) = e5®z(t, z), W(t,z) = e**2(t, ).
By (1.3) we have
w(T, ) =w(T,-) =w(0,)=w(0,)=0 in Q. (1.42)
We define operators P, P as the following;:
Pw = e**Le **w, Pw = e**Le *%w. (1.43)
It follows from (1.4) and (1.40), (1.41) that
Pw = e**Le™*w =¢°*§ in Q, (1.44)
P =e**Le %) =¢e*%§ in Q. (1.45)

Operator P can be written explicitly as follows

Pw _ow _ i P -+ 25\ Z a;; +s)\ a(t, z, Vi, Vi) )w
- ot b 238 8 ¥ = ] $z ¥
— $2X2%a(t, x, Vb, V) w + shpw Z AijPp,z; — SOGW. (1.46)

1,j=1

We recall that quadratic form a(t, x,£,n) was defined in (7). We introduce
the operators L1, Ly, L1 and Ly as follows

0w
Liyw = Z aij 2.0, — Ms2p?%a(t, 2, Vi, V)w — saw, (1.47)

2,7=1

Low = %— + 25X\ Z azﬂ/}m Ow + 25}‘290a(t z, Vi), Vip)w, (1.48)
i,5=1

2
Liw = Z aij 66 ;Ux — Ms2@2%a(t, z, Vi, V)w — sdpw, (1.49)

2,7=1
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EQU) = 88—1;) — 28)\@ Z aij¢$i§711; + 25)\295a(t,x, V¢, VI/J)U) (150)

,j=1

It follows from (1.41), (1.46), (1.47) and (1.48) that
Liw+ Low=f, in Q, (1.51)
where

fs(t,z) = ge** — shpw Z @ije,z; + sXpal(t, z, Vip, Vih)w.

ij=1
Taking Lo-norm of both sides of (1.51), we obtain
1 fsll72 () = 1Lawl|72(g) + [L2w]|72(g) + 2(L1, w, Low) 2(gy.  (1.52)

By (1.47) and (1.48) we have the following equality:

. 0%w
(Llw, LQU))LQ(Q) = ( - ijZ:1 A5 8%18.%] - )\252902a(t7 €z, Viﬁ; VI/J)U)
— sapw, 88—1;) + 25\%¢a(t, x, Vi, Vw)w)LQ(Q) - /(2)\38390361(75, x, Vi, Vi) w

Q
+ 25 \payw)a(t, z, Vi, Vw)dzdt

n 2
_/ Za”% 2sApa(t, z, Vip, Vw)dxdt. (1.53)
o \bi=1 ¢

Integrating by parts in the first term of the right-hand-side of (1.53), we
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obtain

n 2 6
Ao=(—2%67w N2520%a(t, z, Vb, Vib)w — saqw, —

e O0x;0x; ot
Oda;; Ow = Ow Ow
) B ij et
+ 25\ pa(t, z, v¢7v¢)w)L2(Q) N /( Jz Ox; Ox; Jz: " dz; Oz
Q “I= wI=
)\232902 ow?  say Ow? 3 344 2,2
-5 a(t,w,VQﬁ,V@b)W ~ 3 o — 280" N a(t, x, Vi, Vi) “w
" da;; Ow
22 2 2 Y
25" N aypa(t, z, Vb, Vih)w” + 2As¢a(t, , V%V?ﬁ)w”z::l 3xj O0x;
+25\%a(t, x, Vap, V)a(t, z, Vu, Vw)
+ 25\ 2w Z 0 20 0 = (pa(t, z, Vip, Vo)) ) dadt
Pyt T Ox; ; 0z;
—/(%—t+28/\2w(ta$v v¢,v¢)w) g—wdE (1.54)
b

Integrating by parts in the second term of the right-hand-side of (1.53),
we have

—/(2)\333wg03a(t, x, Vih, V)a(t, z, Vi, Vw)+2s* Aawepalt, 2, Vi, Vw))dadt
Q

= —/(AgsggpSa(t,x,Vzﬁ,Vw)a(t,a:, Vi, Vw?)+s2agpdalt, z, Vip, Vw?))dzdt

Q
— / (3Ms3p3al(t, 2, Vb, Vi ) 2w +w? 3 \3s? Z a”w% a(t, z, Vi, Vb))
Q =0
. n 8 32)\2atg0a” 8¢ w2)dxdt
i1 6.11j 2 K 6.112

- /(Agsggo?’a(t,m,Vlﬁ,V@ZJ) + s2apoN)a(t, z, Vb, v)w?dE.  (1.55)
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Finally, integrating by parts for the third term of right-hand-side of (1.53),
and taking into account (1.12) we have

= 0w ow
Al = — Z awm 28)\@ Z CLkeQﬁxka dxdt

0 i,j=1 k=1

/ Z 8@7,] ow 23)\90 Z akgﬁ}mk@ +23)\2g0a(t T V¢ VUJ)

ox;: Ox;
i,j=1 J v k=1

- ow <~ 0 ow
+25hp > ij o > 8—%(%@%)8—”
k4=

i,j=1 =
+ 25\ Z Z by, 28 da:dt+/25)\ V| LUNS
AP = 16‘”3 Vo gy Oz, AR o
i bD
Z Oai; 8w2 A Z akfka +2$)\2g0a(t z, Vip, Vw)?
— 6.113 xI; 6
. ow ~~ 0 ow
+ 2sA\p Z ij 5 Z %(akﬂbxk)%
ij=1 Vke=1 " ¢
Oa;j Ow Ow
— s Z Ut Pz Z Oxp Ox; Ox:
k=1 i,j=1 L
- ow Ow
+ sh\p Z akéwwka Z Qijp o dxdt + QSALp\Vw\ dZ
k=1 ing=1 IO & (1.56)

Integrating by parts once again, we obtain

Z day; Ow 25\ Z akg¢xk8 + 25\%a(t, x, Vi, Vw)

) Ox; Ox; oy
= ow <~ 0 ow Oa;; Ow Ow
2s\p Z Cbijﬁ—wi Z 8—%(ake¢xk)@—w —SA\p Z ko Pa,, Z Oz, 01 8x]
i,j=1 k=1 k=1 ij=1
— s\%a(t, z, Vi, V)a(t, z, Vw, Vw) — s Z ake Z dai; Ow Jw
2 ) Ly ’ 2 kLW xy 6$g 63}'1 6$J

k(=1
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—a(t, z, Vw, Vw)s\p Z i(akgka) dxdt

8%@
+/ <28A¢\V@/J\ '6—w
3I/A
b3

k=1
Now, let us transform integrals on X in (1.54) and (1.57). By virtue of
(1.39) for the integral on ¥ in (1.54) we have

2
— sAp|V|a(t, z, Vw, Vw)a(t, z, v, 1/)) dx. (1.57)

/(8—w+23A2¢a(t,w,V¢,V¢)w) a(t,z,v, Vw)dx

ot
>
:/ (%—t} + 2sX?ga(t, z, Vip, Vo )w) (a(t, z, v, V2)e* + sha(t, z, v, V@/J)w) >
>
:/ (66—7;} + 25\ *pa(t, z, V), V@/J)w) (sAa(t, z,v, Vi) — I3(t, x))wdX;

(1.58)

On the other hand, for the integrals on ¥ in (1.57) we have

0
/ (mww '%
>

= /(28)\90|Vw|a(t,a:, v, Vw)? — s\p|V|a(t, 2, Vw, Vw)a(t, z, v, v))dS
p>

2
— s p|Vla(t, z, Vw, Vw)a(t, z, v, y)) dx

= /(QSAQO\V@ZJ\(—lg(t,m)w + shpal(t, z, v, Vip)w)?
by
— sAp|Vla(t, z,e**(Vz + sApVz), e**(Vz + sApViz))a(t, z, v, v))dE

- / (25° N0 Vila(t, z, v, Vi) *w® + 25 )| Vi |l5w?
b
+ 482 X2 VY2l (t, x)a(t, z, v, v)w? — 282 X232 |V |1s(t, 2)a(t, x, v, v)w?

— |Vy|e***(shpa(t, z,Vz, Vz) + s°X3p3a(t, x, Vb, V) 22)a(t, z, v, v))dE.
(1.59)
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By virtue of (1.54), (1.55) and (1.57) - (1.59) one can rewrite (1.53) as follows.

(Lyw, Low) r2(q) = /()\433@3a(t,x,vw, Vi) ?w?

Q
Oa;j Ow
Ox; Ox;

+ s\%al(t, z, Vi, Vi)a(t, z, Vw, Vw) + Lyw Z

i,j=1

+ 25X 2pal(t, z, Vip, Vw)?)dxdt + /(233)\3g03w2\v¢\a(t,m, v, Vi))?
5
+ 25| Vap|I3(t, 2)w? + 252 N2 Q% 15(t, ) |[VY alt, z, v, v)w?
— s\p|Vp|e**Y(a(t, x,Vz, Vz) + s°X2p2a(t, z, Vi, Vi) 22)a(t, z, v, v))dS

‘}/(%g+a&vwmumVWaV¢WJ<&wm@ﬂzuvw)—bﬂwwwﬂ2
2

—/O%%%w%vmvw+ﬁ%wm%w%vmm@+xb(um
b

where we put

ow 0
X, :/ (23)\2w Z Aij— oz, pr (pa(t,z, Vi, Vip))

Q hi=1
+ %%(AQ alt, z, Vb, Vi) )w? — SO‘;“’Q
+ 25 i (aijgi i 8(agilfx’°) g;:) — s\ i kP,
ij=1 kyf=1 k=1
Z 636;1; S;i g;l; a(t, z, Vw, Vw)sAp k;18i etz )

1 aa”@w@w BEIEICE
DI RSP D S TS A )

i,j=1 Q5= 1 i

n 2 2
-y aij (S O‘;@ ai) §Z> w2) ddt.
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One can easily prove the following estimate:

| X1 < 02/((83)\3g03 + 32)\4903)102 + (sAp + 1)]Vw\2)dxdt
Q
s>1, A=>1, (1.61)

where the constant cs is independent on s and A.
Similarly to (1.51) we have

L+ Low = f, in Q, (1.62)
where

fs(t,z) = §e*® + shpw Z @ije,z; + X Gwalt, z, Vb, V).
ij=1
Thus,
H]FSH%Q(Q) == ‘lf/lw‘|%2(Q) + ||I~/2U~JH%2(Q) + 2(I~/11D,EQID)L2(Q). (163)
Since ¥ (x)|an = 0 we have
wly =wlg; @ls =¢ls; als =als. (1.64)
By similar arguments one can obtain the analog of equality (1.60) for the
scalar product (L1w, Low)2(q), and transform it using (1.64).
8aij ow
Ga:j 6.112

(Elﬁj, EQ/II))LZ(Q) = /()\483@?’&(75, Z, Vw, Vw)ﬂ)2 + L2U~J Z
Q 1,7=1

+ 5N @a(t, z, Vb, V)a(t, x, Viv, Vb) + 25N> @a(t, z, Vip, Vi) *)dadt
- / (25 Xp®w?|Vla(t, z, v, Vip)? + 2sXpl3 (t, )| Vi w®
b
— 252 X\2 0%V 2l3(t, 2)alt, z, v, v)w? 4+ sAp|Vy|e***(a(t, z, V2, Vz)
+ 2X2¢%a(t, z, Vi, Vp)22)a(t, z, v, v))dE

+/ (aa_lf + 25X ga(t, z, Vi), W)w) (sApa(t, @, v, Vi) = l3(t, x))wdX:

+ /()\353903&(75, x, Vi, Vi) + s*Aagp)w?a(t, z, Vb, v)dE + X,  (1.65)
b
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where | X3| satisfies the estimate

| X,| < 03/[(33)\%3 + 2N w02 + (sA@ + 1) |V |dzdt Vs > 1,\ > 1.
Q

(1.66)
Constant c3 is independent of s and .

Hence by virtue of (1.52), (1.59), (1.63) and (1.65) we have
||sz%2(Q) + HfSH%Q(Q) = ||E1U~)||i2(Q) + ||L1w||%2(Q) + Hff?wH%Q(Q)

+ ||L2w||%2(Q) + 2/()\4s3go3a(t,w, Vi, Vi) 2w? + Ms2@3a(t, z, Vi, Vi) w?
Q
+ s\2pa(t, z, Vi, Vip)a(t, z, Vw, Vw) + sA?@a(t, x, Vip, Vip)a(t, z, Vi, Vi)

- Oda;; OW da;; Ow
+ (Low) Z 8x]] oz, + (Low) Z 8x]] oz, + 25X\ %pa(t, 2, Vip, Vw)?

7]_ 7]_
+ 2s\%@a(t, x, Vb, Vab)?)dxdt + / (85 N2 % |V |l3(t, 2)a(t, z, v, V)
>
ol
+ 28—3 + 8s\2plsa(t, z, Vi, Vi) ) w?dS + X1 + Xo. (1.67)
Applying the Cauchy-Bunyakovskii inequality in (1.67), we get

o 1= 1
||L1w||%2(Q) + ||L1w||%2(Q) + §‘|L2w”%2(Q) + 5”[/2@0”%2(@)

+ 2/()\453g03a(t, z, Vp, Vi) 2w? + A\s3@p3a(t, z, Vb, Vi) +

Q
s\2pa(t, z, Vi, Vi)a(t, z, Vw, Vw) + sA>@a(t, z, Vib, Vap)a(t, z, Vi, Vi)
2 2
Oa;j OW Oa;j Ow
—4 le oz, o7 | 4 le 9z, 9, )dzdt + X1 + Xo

+ / 852 \2 2 V|2 1s(t, z)a(t, 2, v, v) + 2% + 85 2plza(t, z, Vb, Vip) )w?dS
b5

< fsllZ2q) + ||fs‘|%2(Q)' (1.68)
We recall that by Lemma 1.1

IV(z)| > >0 VreQ\wp.
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Hence, taking parameter A > 0 sufficiently large in (1.68), by virtue of
(1.61) and (1.66) we obtain: There exists so(A) > 0 such that

- 1 1.~
HLle%Q(Q) + ||L1w‘|%2(Q) + §||L2w||%2(Q) + §||L2w||%2(Q)

+ /()\453903102 + X 520302 + sA2|Vw|? + sA2@| Vi |?)dadt

Q
< ey / (Ms3p3w? + A3 322 4 sA2p|Vw|? + sA23| V| ?)dadt
[0, T]xw
+119e*(1 7200y + 113¢°%[72(0)) Vs = s0. (1.69)

Thus, from (1.47) - (1.50), (1.69) we have

[ S LS () A5 ()

’L]_

+ s\ 20| Vw|? + sA?@| Va|* + MNs3pdw? + )\483903w2}da:dt
< C5(/ (Ms33w? + M3 G3w? + sA2p|Vw|? + sA?@|Viw|?)dadt
Q
+113e° 720y + 117> 172(0)) Vs = so. (1.70)

Replacing w by e**z and w by e*®z respectively in (1.70), we get

n 2
i - _ 2 2 3y4,.3.2\ 25
/{(sgD( ) Z (8968 ) + sA%p|Vz|* + s° A 2% )e
Q

1 /0:\2 1 & 92z \°
el Bhdied i )\2~v 2 3)\4~3 2\ 2sa drdt
+5(5) +55 2 (aasy) +o v NN far

S CG()\)[ / ()\483903Z2628a—|—)\483g032’2628a—|—8)\2g0‘v2’2628a
[0, T]xw

+ sA2p|Vz|?e?*Y)dxdt + ngsa||%2(Q) + ngSdH2L2(Q)] Vs > 5.

(1.71)

Let us consider the function p(x) € C3°(w), p(x) = 1 in wy. We multiply
the equation (1.44) by sA?pze?*® scalarly in L?(Q). Integrating by parts
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with respect to t and z, applying the Cauchy-Bunyakovskii inequality, we

obtain

/ sA2p| V2|26 dadt < e / s NP2 dudt + |5 |2 ) ),

[0,T] xwo [0, T]xw
(1.72)

where a constant c7 is independent of s.

Similarly

/ 3)\295‘VZ’2€286‘d37dt < e / 83)\495322628ddxdt + ngsdH%z(Q)),

[0, T]Xwo [0,T]xw
(1.73)

where a constant cg is independent of s.
By virtue of (1.41), (1.71), (1.72) and (1.73) we have

2

1 [92\? 1 - 0%z
((— (—) + — + 5X2p| V2|2 + s2A1p322) e
/ ot sp \ /2 0x;0x;

2
1 SR R 2 ;
n (_ (%) L 8 z —}—8)\295’VZ‘2 —}—33)\4@322)628(])6&36&

S ;0T ;
? \ = Oz

S Cg[ / ()\483@322628& +)\483§53Z2€28d)d$dt
[0,T]xw
+ llge®(1320) + l9e°%172(0)] Vs > so. (1.74)

We observe that for all A > 0 there exist constants c19(A) > 0, c11(A), c12(A) >
0, c13(\) such that the following inequalities hold

1
|l

é <en(V)= V(ta) € Q.

<
- ||
(1.75)

cio(N)]e] < 18] < cri(N)|el, ci2(N)

By (1.74), (1.75) we finally obtain (1.6).H

Remark 1.1. Careful examination of the proof of Lemma 1.3 shows, that
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parameter A can be defined by formula

n

« 10 0
A= — sup —(CLZ@Z}%a(t,I,VQﬁ,VIZJ))
g (t,z)eqQ m'zz1 Ow;
+ — sup Z ape) Z Ga” sup 10 Z ajw
T ij¥Yx; )|
B (t,x)eQ kt=1 i,j=1 Oy (t r)eqQ i,j=1

where constant ( defined in (7).
Remark 1.2. In the case of the Dirichlet boundary conditions z|y, = 0

instead of (1.6) we can prove the more sharp estimate

1 -
/ (— ( + |Az\2> + 50|Vz|? + 83903z2> (€25 4 €259 dx dt

sp

Q

+/ 0z 2( 2sa+ 28d)d2

s =] (e e

» v ov

< Cl</‘g‘2(€2sa—|—€2$&)d$dt—|—/ 8390322( 25 +€25d)d$dt).
[0,T]xw

9z 2

ot

Proof of the Lemma 1.1. Let us consider a function §(z) € C?(R") such
that
Q={z| 6(z) <0}, |VO(x)#0 V zeofN. (1.76)

By virtue of the Theorem on density of Morse functions (see [3]) there exist
a sequence of Morse functions {6y (z)}72, such that

6, — 0 in C*Q) as k— +oo. (1.77)
Let us construct a Morse function u € C?(Q) such that
wx)lon =0, |Vu(z)|>0 V ze . (1.78)

We denote by B = {z € R"|Vf(x) = 0} the set of critical points of
functions 6. Since |V } 5o > 0 there exists an open set © C R"™ such that

eonB={0}, o0ce. (1.79)
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Let e(x) € C§°(©), elon = 1. Set ug(x) = 0 + e(0 — 0;). It is obvious that
pik|oq = 0. (1.80)
By definition of the function e(z) we have
Vur(z) = VO(x) YreQ)\o. (1.81)
For all  from the set © N
Vug(z) = VO +e(VO — VO) + Ve(6 — 6y). (1.82)
By virtue of (1.77) and (1.82) we have: Ve > 0 3 ko(¢) such that

Vig| > [VO| — ||€Hcl(ﬁ)’V9 — V|
— ||e||01(§)|9 — 0k > |Vl — e YxeONQ,

where k& > kg.
It follows from (1.77), (1.79), (1.81) and this inequality that there exists

such € > 0 and k that
\V,ufc\ >0 in NN (1.83)

Set pu(x) = pi(x). By (1.80), (1.81) and (1.83) the Morse function p;(x)
satisfies (1.78).
We denote by 9 the set of critical points of function p(z):
m:{fz eR" i= 1,...7“}.
Let us consider the sequence of functions {/;}7_; C C*°([0,1];R™) such that

lz(t) ceQVite [0,1], lz(tl) %lz(tg) th,tg € [0, 1] & 1 %tg t=1,---,7;

(1.84)
lz(l) = 2, lz(O) Ewpt=1,---,1; (185)
Lt) £1i(t) Yit] ¥t e 01] (1.56)

By (1.84) - (1.86) there exists a sequence of functions {w("}7_, c C?(R", R")
and {e;}i_; C C§°(Q) such that

dl;(t)
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suppe; CQ i=1,---,r; (1.88)
suppe; Nsuppe; = {0} Vi # j; (1.89)
ei(li(t))=1 Vitel0,1], i=1,---,r (1.90)

We set ' '
V(l)(a:) = ei(x)w(l)(x).

Let us consider the system of the ordinary differential equations

dx i B
= V() x(0) = . (1.91)

We denote by Slfi) : R” — R"™ the operator such that Slfi) (xo) = z(t), where

x(t) is the solution of problem (1.91).
By (1.85), (1.87) and (1.90) we have

SOW0) =a; i=1,---,r

We set
V(@) = puge(x), go(@)=8" 08P o008 (x).  (1.92)

By (1.88) there exists a domain & C R” such that 92 C & and

Sfi)(x):a: VeeS, i=1,---,r (1.93)

By (1.93) the mappings S{i)(x) - are diffeomorfisms on the domain 2. So
gr(x) is a diffeomorfism on the domain Q. By (1.93) ¢(z) = pu(z) Vz € 6.
Hence

P(x)]oq = 0. (1.94)

We denote by WU the set of critical points of function . Since the mapping
gr : 2 — Q is a diffeomorfism we have

U ={ze€Q g-(x) € M}. (1.95)
By (1.89) and (1.93)
gr(;(0)=2; i=1,---,m (1.96)
It follows from (1.95) and (1.96) that

VU C wy.l
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2. Exact controllability of linear parabolic equations

In this section we will prove an existence theorem for the problem of exact
controllability for linear parabolic equations.
Let us introduce function n(t, z, \) as follows:

n(t,z,\) = (MPle@ — ) /(T - 1)i(1)), (2.1)

where A > X. The function Y (x) and the parameter A were defined in Lemmas
1.1, 1.2. We assume that [(¢) is a fixed function, which satisfies the following
conditions

1) € CYO. T, 1(t) =t vm(%,ﬂ, (t)>0 VteloT].

To formulate our results we need to introduce the following function
spaces:

Y@ = {uie.a)| v L2O.TWHD), 5 e Q).

X2(Q) = {y(t.x)| ey € L*(Q)},

e’y

Z3(Q) = {y(t7x)|m € L2(Q)} ;

=2(Q) = {y(t,z) € Z2(Q)| [Vyle* /(T — 1),

— [ |0y - 0%y

1,5=1

e e 2(Q))

equipped with the norms

2
HZ/H%/(Q) = Hy||2L2(O,T;W22(Q)) + ||6y/6tHL2(Q)’

yllxx @) = eyl L2(q)»

e"
z2Q) — (T — 73)3/2y

Iyl

Y

L2(Q)
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= (112> @) + IIVyle*" /(T 1) H2L2<Q)
+ V(T 1) \ \+

1
2

De[72q))?-

i,j=1

Let us consider the problem of exact controllability for linear parabolic
equations

0 9
Ly = 3? Z oz (aw (t,x) ) +Zb 63:1

ij=1
+cet,z)y=u+gin Q, (2.2)

dy
uweld(w), (li(t, x)% + lg(t,w)y)}z =0, y(0,2)=1vo(x), (2.3)
y(T,x) = v1(x). (2.4)

We have

THEOREM 2.1. Let A > X and vy € W(Q), v; =0, and let conditions (6)
-(9) be fulfilled. Then there exist a constant so(\) such that if g € X2(Q)
with s > so(\), then problem (2.2) - (2.4) has a solution (y,u) € (Y(Q) N
ZMQ)) x U(w) N XX(Q)) which satisfies the following estimate:

). (2.5)

||(y,U)\|(Y(Q)ng(Q))x(u(w)mxg(Q)) <eci(A, 3)(HU0||W21

PrROOF. We recall that parameter A was defined in the Lemma 1.2.
Let us consider the extremal problem

1 PRy’ 1 2 .
Te(y,u) = 5/(T — t)3dxdt + E/pkmku dzxdt — inf, (2.6)
Q Q

: 0
Ly=u+g in Q, (I1(t,2) —85{4 + lg(t,m)y)}z =0,
y(oaw) = Vo, y(Ta .I‘) =0, (27)
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where
28n(t,2,7\) (T —t) 1,2z € w,
pk(t,x) =e T-t+1/k) | mk(x) = o
k,x e Q\w,

and parameters s > so()\), A > X are fixed. Here so()) is defined in Lemma
1.2 and function (¢, z, A) defined in (2.1) .

It is easy to prove (see [47], [51]) that problem (2.6) - (2.7) has a unique
solution, which we denote as (Jx, x) € Y(Q) x L?(Q).

Applying the Lagrange principle to the problem (2.6) - (2.7) (see [1], [47]
and [22]) we obtain

R .. 07 X R
Ljx = g+, in Q, (h(t@%ﬂz(tw)y)\x =0, gx(T,) =0, Gx(0,-) = o,
(2.8)
Lpr = =2 g in Q,  (Lu(t x)% + lo(t, x)pr) |5, = 0
(T — t)g ’ ’ 67/A ’ ) )

pr +miprir =0in Q, (2.9)

where
. Oy "9 - oy "L Obi(t, )y
o % () S

is an operator formally conjugate to the operator L.
By (1.6) and a priori estimates for linear parabolic equations we have

/6_25"\pk\2dazdt+/|pk(0,x)\2dx
Q Q

2
< ca(A, s)(/(Tp_ikt)Se_%”g}idxdt—f— / e 2N p2 dadt).

Q [0,7] xw
We observe that |pg(t, 2)e 25762 | <1V () € Q.

Thus, we have

/\pk(o,x)\zd:v+ /!pk\26_2s’7da:dt
Q Q

52
< ca(A, s)(/%dxdt%— / e 25 o202 dadt). (2.10)
Q 0,T] xw
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Multiplying (2.91) by g scalarly in L?(Q), and integrating by parts with
respect to t and x, we have

0= (L*pk — pkJk: Uk)L2(Q)

—/pk?)zdxdt + (P, L) 2(0) + (P (0, ), 7%(0, ) L2(0)

Q
Pkyk ~2
/ sdxdt — /Pkmkukdl‘dt + /gpkzdxdt + (Pr(0, ), v0) L2(02)-
Q Q Q

Hence

Tl i) = & [ (20 02 ) dedt
ke (Grs W) = 2 (T — t)3 + prmyuy | AT
Q

/ gprdadt + (0, ) v) ey | . (2.11)
Q

By (2.10) and (2.11) we obtain

1
2

Tk (U, W) < cs(

It follows that

x2(Q) + [[voll L2 ) v/ Tr(9r, @)

T (Gny i) < 3 (llgllxx (@) + [vollL2(). (2.12)

By virtue of (2.12) we have a subsequence {(J, tx)} 7, such that

(Gk, @) — (y,u) weakly in Y (Q) x L*(Q),
ar — 0 in L*((0,7) x (2\w)),
VortE — e¥Mu weakly in - L?((0,T) x w),
VPE__ ” in L%(Q). (2.13)

7(T e U — 7(11 — t)3/2y weakly in

Using (2.13), we pass to the limit in (2.8) to obtain that pair (y,u) is a
solution of problem (2.2) - (2.4). Estimate (2.5) follows from (2.12), (2.13).
|

Now, we will prove that solutions of controllability problem (2.2) - (2.4)
from the Theorem 2.1 have further regularity as described in the following
theorem.
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THEOREM 2.2. Let A > A, and vg € W(Q), vy = 0, and let conditions (6)
- (9) be fulfilled. Then there exist a constant so()\) such that if g € X2(Q),
with s > so(\) then problem (2.2) - (2.4) has a solution (y,u) € EX(Q) x
(U(w) N XNQ)) which satisfies the following estimate

[y, w)l=2 ). (2.14)

(A, 8)([lvollwz e

PROOF. By Theorem 2.1 for vg € W2 (Q), g € X2(Q) we have a solution
(y,u) € (Y(Q)NZMQ)) x U(w)NXNQ)) of problem (2.2) - (2.4) which sat-
isfies the estimate (2.5). Let us prove that this solution satisfies the estimate
(2.14).

Multiplying (2.2) by (‘;—jt)y scalarly in L?(Q), and integrating by parts
with respect to ¢ and x, we have

n

1 oy Oy o251 1 " Oy 0e?n
/ T—t,z aij(t, @ )63:13% +T—zﬁ Za”@a:jy ox;

0 i,j=1 i,j=1
1,0 [ e
_ 129 b =Y dadt
2" 6t(T—t) —t(z +Cy> ) ’
1
- ﬁ/ 2022 (0, 2)dx = / (u+ g)e*Mydxdt. (2.15)
Q Q

By (6), (2.15) the following equality holds.

Oy Oy o 1
/ _tzwx@w St dadt < e [ (eI Vul
? J

7]_ Q
2

1
+ (Ty_ t)?)dwdt + 57 / 2 10rA)y2(0, 2)d = / (u+ g)e**ydxdt. (2.16)
Q Q

By (2.16) and (7) we have the inequality:

Tyl e 2 2
/ﬂd:ﬂdt <cs md:ﬂdt + ||UHX3(Q) + HgHX?(Q) . (2.17)
Q
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Let us denote w(t, xz) = e’y/T —t. By (2.3) we have

- dy des"
= sn —t) — _ g T
Lw = yL(e*"/T — t) — 2J/T tijzzjl i s B,
s . 6w
+ e\ (T —t)(u+g) in Q, (ll(t7x>6— +l2(t, v)w)|s = 0,
va (2.18)
w(0, ) = vo(2)e* TN VT. (2.19)
We also denote
n sn
q=yL("VT —t)—2VT —t Z aij%%i: +e¥VT — t(u+ g).
j 0Ty

ij=1
Hence, by (2.18), (2.19) function w satisfy

0
Lu=g i Q (h(ta)s+h(t.a)y)ly =0, w(0,a) = upe =T,

(2.20)
By (2.5), (2.17) we have

lallz2 @) < cs(llyllza@) + llullxx@ + ll9llxa@)- (2.21)

Then, using well-known a priori estimates for linear parabolic equations,
we have

lwlly @) < er(llallzz@) + 1lw(0, )|[wi@))- (2.22)
By (2.5), (2.17), (2.21) and (2.22) we obtain

2

yl” | %y Vyl* | o
T —¢ ZJ AYIlL sn(62,0) Jop dt
/ @ =015 * 2 |amor, -1 )¢ v
Q 1,7=1
+yllzx @) + llullxx @) < es(llgllxr@) + lvollwa ) (2.23)

The inequality (2.23) prove Theorem 2.2. B
Let us consider the problem of exact boundary controllability for linear
parabolic equation

. 8y
Ly=g in Q, (ll(t,fﬁ@ + (6 2)9) o 71 0y = O

(1306, 2) o 4 b, 20 gy, =0 (224)
y(O, I) = UO(x)a y(T,z) = U1($)~ (2.25)

The following theorem is a corollary of Theorem 2.2.
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THEOREM 2.3. Let vg € W2(2), v1 = 0, and let conditions (6) - (9) be
fulfilled. Then there exists a constant A\ > 0 such that for A\ > X there exists a
constant so(\) such that if g € X2(Q) where A > \, s > s0()\), then problem

(2.24) - (2.25) has a solution (y,u) € Z)(Q) x L?(0, T; Wé (092)).

PROOF. Let us consider a connected domain € such that
Q=QUw, 9QeC? wN(O\TIy) = {0},

where w is a connected domain in R”. Denote by Q =10, T[XQ. Set g(t,z) =
0 Y(t,z) € [0,7] x w. We extend the function vy on € such that vy €
Wy (Q). We also extend coefficients of operator L keepl ng properties (6

) -
(9). Applying Theorem 2.1, we get a solution (y,u) € Z2(Q)x (U (w)NXMQ))
of the following problem of exact controllability

Ly=g+u in Q, suppu C [0,T]X w,
(ll(t7x) aayy (t7x)y)’[O,T]><8Q = 07 y(oa *T) - UO(x)a y(T7 .13) = 0.

It is easily seen that the pair (y, ;1 (¢, ) ;Vy
of problem (2.24), (2.25). B

(t,2)y)|[0,11x1,) is a solution

To prove local controllability theorem in the case of superlinear growth of
nonlinear term we need to prove existence of solution of problem (1) - (3) in
the space L>®(Q).

We have

THEOREM 2.4. Let p > max{2, (n+2)/2}, A > X\, vy € WL(Q), v; =0,
and conditions (6)- (9) be fulfilled. Then there exists a constant so(A\) such
that if g € XMQ) N LP(Q) with s > so(\), and X > X, then problem (2.2) -
(2.4) has a solution (y,u) € (W32(Q) NEX(Q)) x (U(w) N XNQ) N LP(Q)

which satisfies the following estimate

1 Wllwr2@)nz2@)x(xa@nre@) < 10(A; 8)([[vollw @)
). (2.26)

PROOF. To construct solution (y,u) of the problem (2.2) -

(2.4) firstly we
consider boundary value problem (2.2) (2.3) when u(t,z) = 0:

=g Q. (hltn) g+ bty =0, §00) = wlo). (220)
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It is well known (see [51],[38]), that under assumptions of Theorem 2.4 for
arbitrary g € LP(Q) and vy € WL (Q) there exists a unique solution of this
problem g € WI}’Q(Q).

Let I(t) = exp(—t/(T —t)3). We set y(t,z) = I(t)j(t,x) . By (2.27) the
function ¥ satisfies the following:

Ly = gﬂ(t) + El(t)ga (ll(ta x)% + ZQ(tvx)y)}z =0, ?(O,I) = UO(.I),
y(T,z) =0. (2.28)

Let us consider the problem of exact controllability

Lz=—gl(t) =l ({t)g+g+v, velUlw), (2.29)
(11 (¢, x);TZA + bt 2)y)|g =0, 2(0,2) =0, 2(T,x)=0, (2.30)

where wg € w. By virtue of definition of function ¢(¢) we have
CtjgezZMNQ) Y A>0, s>0.

By Theorem 2.2 problem (2.29) - (2.30) has a solution (z,v) € ZX}(Q) X
(U(wo) N X2(Q)) which satisfies the estimate (2.13). Let wy € w; € w,

p(z) € C®(Q), p(r) =1Ve € Q\wi, p(x) =0V 2 € w. We set z1(t,x) =
p(x)z(t, ), wi(t,x) = —237, 8%1- (aij(t,x)%p) — a(t,z,Vz,Vp)

+p 2y bilt2) §2 4+ put (p = 1)g + (1 = p)(gl(t) + £'()7). By (2.28) the
pair (z1 (¢, x),u;1(t, z)) satisfies the equations

Lzy = —gl(t) =0 (t)g+g+u, u €Uw), (2.31)
(ll(t,x)% +htz)y)|g =0, 2(0,2) =0, =z(T,z)=0. (2.32)

Using well known results on the regularity of solutions of parabolic equations,
we get that pair

(21,u1) € (WpA(Q)NEL(Q)) X Uw) N XNQ) N LP(Q))

and satisfies the inequality (2.26). Then the pair (y,u) = (§ — z1,v — uq) is
a solution of problem (2.2) - (2.4) which also satisfies the estimate (2.26). W
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3. Exact controllability of semilinear parabolic equation.
Let us assume that
f(t,z,0)=0 V (t,x) € Q, (3.1)
and function f(¢,x,y) satisfies the Lipschitz condition

[f(ta,G) = [t 2, &) S K[G— G| (e, () e QxR (3.2)

Let us consider the boundary value problem for parabolic equation

Gly) =g, x)aa—im(t DWls =0, y(0,)=vw.  (33)

The following theorem proved in [38]

THEOREM 3.1. Let (6)-(9), (3.2) be fulfilled. Then for every (vo,g) €
W4 (Q) x L?(Q) there exists a unique solution of problem (3.3) y € Y(Q)
which satisfy inequality

lylly @) < er(lvollwy ) + l9llz2(@))- (3.4)

We have

THEOREM 3.2. Let vg € Wa (), v1 =0, and let the conditions (6)- (9).
(3.1) and (3.2) be fulfilled. Then there exists A > 0 such that Jor A > X\ there
exists such constant so(\) such that if g € X)Q), with X > X\, s > s0()\)
then there exists a solution pair (y,u) € Y (Q) x U(w) of the problem (1) -

(3).

PROOF. Let us consider the following family of problems of exact control-
lability

Ge(y):Ly"f‘fs(tvwvy)_fs(taxao):u+g in Q, wellw), (3.5)
Jy

(11(¢, x)a— +l(t,z)y)|s =0, y(0,z)=vo(x), (3.6)
VA

where f.(t,z,y) = 1fw<|T y')f(t,a:,T)dT, w(x) > 0 Ve € R w(z) =

w(|z|), suppw C {a:||x\ <1}, [wdz =1 and operator L was defined in (2.2).
R1
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We have
(fs(th?C)_fa(taxvo))‘CZOZO (t,l‘) € Q (37>
Moreover
‘fs(tawagl) - fs(t7w7C2)| < é}/w (@) f(tVT?T)dT
Rl

R/( 1) st 0,myar ]R/( (D) stz

W <|€ﬂ) flt,x,m—(G))dr| < ggw <@) dria =Gl Vo) e C(23'.8)

By (3.7) and (3.8) we obtain

fs(t7w7C) - fs(taxao) = fs(t7w7C)C7
fe(t 2, Q) <KV (t,2,¢) € Q xR (3.9)

where the constant K is from (3.2).
It follows from (3.9) that for linear parabolic operator R.(y)z = Lz +
fe(t,z,y)z the parameter v(y) defined

@) = D MNaillerzg + D billcor ) + et z) + f=(t 2, y)l L~ (q)
ij=1 i=1
for every y € L?(Q) satisfies the inequality

Y(y) < ca. (3.10)

where ¢ is a constant independent of y and ¢.
Let us consider the problem of exact controllability of parabolic equations

Re(y)z=u+g In@Q, uwellw),

(zl(t,x)a% +la(t,2)2)|5 =0, 2(0,2) = z0(2), 2(T,2)=0. (3.11)

By (3.10) and Theorem 2.2 we obtain that there exists A > 0 such that
for A > X there exists so(\) that if A > A the problem of exact controllability
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(3.11) has solutions in the space ZX(Q) x (U(w) N X2 (Q)) for all initial data
(vo,9) € W3(Q) x X2(Q), moreover, these solutions satisfy (2.14) with c;()\)
independent of y € L?(Q) and € € (0,1).

Let us introduce the mappings ¥ : y — 2. and \Ilga) ty — (2, Ue) as
follows: For y € L*(Q) a pair (2., 4.) is a solution of the extremal problem:

e2sv7(t,w,)\)
J(z,u) = /Wfdxdt + /eQSn(t’m’A)Udedt — inf, (3.12)
Q Q

Ro(y)z=g+u in Q wuel(w),

(ll(t,x)% + l2(t,w)z)‘z =0, 2(0,2) =w(2), 2(Tz)=0. (3.13)

By virtue of Theorem 2.2 for y € L?(Q) there exists the unique solution
(2.,10:) € (Y(Q)N ZX(Q)) x (U(w) N X2(Q)) of the problem (3.12) - (3.13).
So mappings ¥(¢) and \11§€> are well defined on the whole space L?(Q).

Let us prove that U() € C(Ly(Q), L2(Q)) is a continuous mapping. Let
e > 0 be fixed. Assume the contrary. Then there exists a function y € L?(Q)
and a sequence {(y;, Z;, U;)} such that

Yy, — 1y in LQ(Q), \If(s)(yi) = Z%; — z weakly in Y/(Q) N ZS’\(Q),
G; — v weakly in  U(w) N XNQ), (3.14)
U () = (2,0) # (z,0), 2€Z2Q), (3.15)

the triple (y;, 2;, 4;) satisfies (3.13) and
T a) < po < TG, is) Vi€ Zy. (3.16)
By (3.14) and (3.15)
2(fe(t,w,y:) — folt,z,y)) = 0 in Z(Q) as i — +oo. (3.17)

By (3.17) and Theorem 2.1 there exists a subsequence {(d;,¢;)}52; € (Y(Q)N
ZMQ)) x U(w) N X2(Q)) such that

Léz + fs(tvwv y)az = 2(f(ta x, yz) - f(ta x, y)) + qi in Qa (318)
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090;
(ll(t,w) Y + lg(t, $)5Z)|2 = 0, 6Z(O,I) = 5Z(T, CC) = 0, (319)
A
10illy (@)nz> @) + laillxr@) — 0 as i — +oo. (3.20)
We set
52' :2—(51', fLZ :ﬂ—qi. (321)

By (3.15), (3.18) and (3.19) the following holds:

Lii+ fo(t,xy)Zi=g+ 0 in Q, @ €UWw), (3.22)
0z; . . -

(lh(t,z)=— + lgzi)‘ =0, 2z(0,z)=wvy(x), Z(T,x)=0. (3.23)
Ova z

Moreover, by (3.20)
By (3.16), (3.22) and (3.23) the pair (Z;,4;) is an admissible element of

extremal problem (3.12) - (3.13). So by definition of the mapping W5 the
following inequality holds

T (Zis ;) < T (Zi, U5). (3.25)

Now (3.24) and (3.25) contradict to (3.15). We reached to contradiction.
Denote by B, a ball in L?(Q) with the center at zero, and having as a
radius r. By (2.5) and (3.10) for all sufficiently large r we obtain

v©)(B,) C B,.

where 7 is independent on e. Moreover, if G is a bounded set in L?(Q), then
by (2.14) the set ¥()(&) is bounded in Y (Q). Since imbedding Y (Q) C
L?(Q) is compact, the mapping U(®) i a compact mapping.

Applying the Schauder fixed point theorem, we find that there exists a
fixed point y. of the mapping W(®):

U (ye) = ye

and
198 () 1y (@) xta(w) < €25 (3.26)

where cs is a constant independent of €.
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Obviously a pair \Ilgs)(ys) = (Ye, ue) is a solution of the exact controllabil-
ity problem:

Ly. + f-(t,z,y.) — fe(t,2,0) =u.+¢g in Q, wu.cl(w), (3.27)

Oye
% T Z2(t7x)ys)’2 =0, ya(ov *T) = Uo(x), ys(T7 aj) = 0. (328>

By (3.26) taking, if necessary, a subsequence, we can pass to the limit in
(3.27) and (3.28). This limit is a solution of the problem (1) - (3). W

By similar procedure leading to Theorem 2.3 we obtain the following the-
orem from Theorem 3.1.

THEOREM 3.3. Let vg € W3 () and v1 = 0 and conditions (6)- (9) (3.1)
and (8.2) be fulfilled. Then there exists A > 0 such that for all X > \ there
exists a constant so(N) such that if g € X)(Q) where A > X, and s > so()\)
then there erists a solution pair (y,u) € Z2(Q) x L2(0,T; WQ% (092)) of the
problem (4) - (5).

Now, let us consider the case, v; # 0. Let us assume

(ll (tv *T)

Condition 3.1. There exists a constant 7 > 0 and function @ € U(w) such
that the boundary value problem

Ly+ f(t,z,g)=u+gin [T —7,T] xQ,

oy -
(L (t, x)ﬁ— + (62D i o0 =00 9(T5) = vt

has a solution g € Y (Q).
We have

THEOREM 3.4. Let vy € W3 (Q) and g € L*(Q) and let (6)- (9), (3.1) and
(3.2) be fulfilled, and the finally let functions v1 and g satisfy the condition
3.1. Then there exists a solution (y,u) € Y (Q) x U(w) of problem (1) - (3).

PROOF. We denote pair (y,u) € Y(Q) x U(w) which is a solution of the
problem (1.1) - (1.3). We set u(t,z) = 0V (t,z) € [0, — 7] x Q. For
(t,z) € [0,T — 7] x Q we define the function y(¢,x) as a solution of boundary
value problem

: 0
Ly—f—f(t?w?y) =gm [O,T—T]XQ, (ll(tvw)%"HQ(tax)y)‘[O,T—T]XBQ =0,
y(0, ) = vo(x).
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In the cylinder [T'— 7,T] x Q we are looking for solution of the problem (1)
- (3) in the following form

(y,u) = (9,4) + (9, w), (3.30)

where (g, 4) is the pair from condition 3.1, and a pair (¢, %) satisfies the
equations

Ly+ f(t,x,y+9)— f(t,xz,y) =u—u in [T-—7,T|xQ, uel(w), (3.31)

0 . .
(1 (1) 5+ 1ot 2)i)|ir—ririxon = 0, (T = 7.2) = y(T ~ 7,2). (3:32)
By virtue of (3.6), (3.7) and condition 3.1 the function fo(t,z,() =
f(t,z,(+ ) — f(t,z,7) satisfies (3.1) and (3.2). So applying Theorem 3.1,
we obtain a solution of (3.31) and (3.32). Hence, the solution of (1) - (3)
defined by formula (3.30) is obtained for t € [T'— 7,7]. B

Condition 3.2. ) There exists a constant 7 > (0 and a function
€ L*(T —7,T; W2 (Q)) such that the following boundary value problem

Ly+ fit,z,9) =g in [T—7,T]xQ, y(T,z)=mv (),

9y _ _
(ll(t7 x)% + l2(t7 x)y)‘[TfT,T]XFO =u,
Yy _
(ll(tﬁ)% + 12 (t, 2)9) 7 - 1) x (00\1) = 0 (3.33)

has a solution g € Y (Q).
From Theorem 3.3, using the similar methods used in the proof of Theorem
2.3, we can obtain

THEOREM 3.5. Let vg € WH(Q) and g € L?(Q) and let (6)- (9), (3.1)
and (8.2) be fulfilled, and finally let function v and g satisfy the condition

3.2. Then there exists a solution pair (y,u) € Y (Q) x L?(0,T; WQ% (Q)) of
problem (4) - (5).

Note that conditions 3.1 and 3.2 are not only sufficient, but also necessary.
Indeed if the problems (1)-(3) or (4)-(5) has a solution (y,u) then functions
v1, g satisfy condition 3.1 or 3.2 with (g,4) = (y,u) and 7 = T.

Example. Let us assume that there exist 79 > 0 such that g(¢,z) = 0 for
all (t,z) € [T —7,T] x Q. Then by (3.1) functions v; = 0 and g = 0 satisfy
condition 3.1 or 3.2 with (g, a) = (0,0).
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If the coefficients of operator G and function g are independent of ¢, and
v is a steady-state solution of equation (1):G(v1(z)) = g(z) in Q, v1|sq =0
then the pair (vq, g) satisfy condition 3.1 or 3.2.

Numerous results on solvability of (3.33) for the linear parabolic operators
with analytic coefficients were obtained in [10].

Let us consider parabolic equation of the form

0 —~ 0 9 :
8_?7? — Z 87(%](3:)8%) +c(x)y=0in Q, (3.34)
igj=1 """ J

where a;;, ¢ satisfy (6),(7).
The following theorem due to E. Landis and O. Oleinik [40].

THEOREM 3.6. Let y(t,x) be a solution of equation (3.34) in (0,T] x
B.(0). Suppose |xg| < R and that as © — x¢ the function y(T,x) de-
cays faster than any polynomial, that is, for each k there exists ¢ such that
ly(T, )| < el — xo|k. Then y(T,x) = 0.

To find a function vy (z) which satisfy condition 3.1 one should solve the
problem (3.33) for parabolic equation. It is well known (see [45]) that this
problem is ill posed. If operator G is a linear operator there is the following
result due to J.L. Lions.

THEOREM 3.7. Let f = 0 and conditions (6)-(9) be fulfilled. Then set
of initial dates (v1, g) for which exists solution y € Y (Q) dense in the space
W3 (Q) x L*(Q).

Now we prove approximate boundary controllability of the parabolic equa-
tion (41)

THEOREM 3.8. Let vi,v9 € Wa (), g € L*(Q) and let (6)- (9), (3.1) and
(3.2) be fulfilled. Then for every e > 0 there exists a control u. € U(w) such
that solution of problem (1),(2) y. € Y (Q) satisfy the inequality

lye(T, ) —villwa) < e (3.35)

Proof. By Theorem 3.1 for every € > 0 one can find § > 0 such that the
solution of boundary value problem

G(ze) =g (t,x)e (T —46,T)xQ, (11(15,33)8872; + I5(t, x)ze)| o = 0,
2e(T' —0,-) =wvi(x) (3.36)
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satisfy the inequality
[2e(T ) = villwa) < e (3.37)

By (3.36) functions z.,g satisfy Condition 3.1. So the initial datum (v,
2e(T, ), g) satisfy to all assumptions of Theorem 3.5. Thus applying this
theorem we get a solution of the problem (1)-(3) which satisfy (3.35) by
virtue of (3.37). W

Remark 3.1. We can consider analog of the problem (1)-(3)

0 oy
7 +Ay+ZBk— Y COy+ ftay) =u+tg, ueUw)"
ot oxy,
(3.38)
oy
(ll(t7x)6 v + l2(t ‘T) )’Z 07 y(()?x) = UO($)7 (339>
y(T7 .13) = Ul(a:)? (34())
and problem (4)-(5)
% L4 +ZB 6—+C +f(t,z,y) n Q (3.41)
ot Y k ) T,Yy)=9 ) .
oy
(ll(t .I‘)% + ZQ(t ,T )}]O,T[XFO =u,
Jy
(I1(t, x)% + Io(t, x) )}]OyT[X(m\FO) =0, (3.42)
y(oa ) = Yo, y(T7 ) = (343)

for the system of parabolic equations. Here y(t,z) = (y1(t, z), ..., yn(t, x)),
yo(x) = (11(2), - yn(@)),1(2) = (Y1 (2), s yp(@)),ult, ) = (wi(t, @), ..
n(t,2)), 9(t,2) = (916, 2), s gt 2)), F(E 2, ) = (f1(6s 25 9), s Fulls 7)),

A== Z 8.1’1 (az](t w)ax]) B - {b )}ivj::[?C {ng t x }’LJ 1

,j=1

We assume that

ai; € COYQ), aij = aji, b§;?> e C¥YQ), ¢;; € L®(Q) kyi,j=1,...,n
(3.44)
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and initial datum (v, g) satisfy to the
Condition 3.3. There exists a constant 7 > 0 and function @ € (U(w))"
such that the boundary value problem

0 - x~p O | - o
E+Ay+;3k8—%+0y+ﬂt,w,y)=u+gm [T —7,T] x Q,

Y N .
(la(t, I)% + ZQ(tVI)y)}[T_T’T]XaQ =0, y(T,) =n

has a solution § € (Y(Q))™.
or to the

Condition 3.4. ) There exists a constant 7 > 0 and a function
@€ L*(T —7,T; (W4 (£2))") such that the following boundary value problem

01 .~ =, O y 3 .
—~ 4+ A Bi.—= t = T —7.T Q
i y+k§::1 kaxk+0y+f<,w,y) g in [T-7,T]xQ,

_ 0 _ _
HT.2) = vi(@),  (h(t,2) 5 +1a(t,2))|r—rrxr, = T
VA
%y :
(lu(t, ) DA + la(t, ) )| (77,1 (9\1) = O

has a solution § € (Y(Q))™.
We have

THEOREM 3.9. Let vg € (WH(Q))™ and g € (L?(Q))™ and let (3.44), (7)-
(9), (3.1) and (3.2) be fulfilled, and the finally let functions vy and g satisfy
the condition 3.3. Then there exists a solution (y,u) € (Y(Q))" x (U(w))"™
of problem (3.38) - (3.40).

THEOREM 3.10. Let vg € (W3(Q)"™ and g € (L*(Q))"™ and let (3.44),
(7)-(9), (3-1) and (3.2) be fulfilled, and finally let function vy and g satisfy
the condition 3.4. Then there exists a solution pair (y,u) € (Y(Q))™ x

L2(0,T; (W2 (2))") of problem (3.41) - (3.43).
4. Local exact controllability of semilinear parabolic equations
In §3 we proved the global existence theorem for the problem of exact

boundary controllability (1) - (3) in the case of sublinear growth of nonlinear
term. When nonlinear term has a superlinear growth (for example f (¢, z,y) =
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ly|Py, where p > 0 ) in general case the statement of the Theorem 3.3 and 3.4
isn’t true. We will discuss this situation in details in the next section. Below
in the case of superlinear growth we can prove only a theorem on local exact
controllability of the parabolic equation.

Let (g,0) € W,2(Q) x (U(w) N LP(Q)) satisfy (1) - (2) :

. a7 )
G =ity i Q. (hlt:)y -+ ba(t2)i)

=0, (41)

Definition 4.1. Let X, Z are the Banach spaces. A linear continous
operator A : X — Z is called epimorphism if it maps the space X onto the
whole space Z.

We recall theorem on right inverse operator

THEOREM 4.1. Let X, Z are the Banach spaces and
A: X -7 (4.2)

1$ a continuously differentiated mapping. Let us assume that for some xg €
X, and zg € Z equality holds

A(zo) = 20, (4.3)

and derivative
Alzg): X — Z (4.4)

of the operator A at xg is a epimorphism. Then for sufficiently small € > 0
exists mapping M (z2) : Be(z0) — X, defined on the ball

B.(20) ={z€ Z: ||z — 20|z < &},
which satisfy conditions
AM(2) =2 2 € Bu(o), (4.5)

| M(2) — zol| x < k||A(x0) — 2|, for all z € Be(20), (4.6)
where k > 0 some number.

This theorem is a simple corollary of the generalized implicit function
theorem which has been proved in V. M. Aleksev, V. M. Tikhomirov and S.
V. Fomin [1].

We have



I. EXACT CONTROLLABILITY OF PARABOLIC EQUATIONS 41

THEOREM 4.2. Let p > max{2, (n + 2)/2}, and f(t,z,y) € C*(Q x RY),
conditions (6) - (9) be fulfilled, and vo € WL (Q) and vi(z) = §(T,z), and
let (§,0) € Wp2(Q) x (U(w) N LP(Q)) be a solution of (4.1). Then there
exist € > 0 such that if |[vo — 9(0,)|lw1 (@) < € the problem (1) - (3) has a
solution (y(t,z),u(t,z)) € W,*(Q) x (U(w) N LP(Q)).

PrROOF. We are looking for solution in the form
y(t,x) = §(t,2) +w(t,2), u(t,z) =alt,z)+qtz). (A7)

The substitution of (4.2) into equation (1) and (2) and subtraction from them
of the same equation as (4.1) for (y,u) yields

N(w,q) = Lw+ f(t,z, g+ w) — f(t,z,9) —¢=0in Q, q € U(w), (4.8)
0
((t2) 5+ ot 0)w)] =0, w(0,2) =wole) = §(02),  (4.9)
w(T,z) = 0. (4.10)
We introduce the mapping A(w, q) by:
A(w7 Q) = (N(U), Q)a w(oa ))

Let us consider the space
V@) = {(w(t,x), q(t, 7)) € EX(Q) x UW) N XN(Q) N LP()), |Lw €
LP(Q)NXNQ), y(0,2) € WL(Q), 110w/0vs +1low =0V (t,z) € X },

where operator L was defined in (1.40). We note (see [38], [51]) VMQ) C
L>(Q). It is obvious that for all A > 0 and s > 0 we have

A€ CHVNQ), (XNQ) N Ly(Q)) x WL (). (4.11)
By Theorem 2.4 there exist § > 0 and A > 0 such that
A'(0,00V2(Q) = (XNQ) N Ly(Q)) x WL(9). (4.12)

We set X = V2Q), Z = (X2(Q) N Ly(Q)) x WL(Q), zo = (0,0) and
20 = (0, 0)

By (4.11) and (4.12) all assumptions of theorem on a right inverse operator
are fulfilled. So, applying this theorem, we complete the proof of Theorem
4.1. &

Let § € W2(Q) satisfy equation

A~

0
G@) =g in @ (h(ta)5~+b(t2)i)

We have

0.7]% (9\Ty) — 0. (4.13)
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THEOREM 4.3. Let p > max{2, (n +2)/2}, f(t,z,y) € CY(Q x RY), and
let conditions (6) - (9) be fulfilled, vo € WL () and vi(z) = §(T,x) where
g(t,x) € Wp2(Q) is a solution of (4.18). Then there exist € > 0 such that if
[lvo = 9(0, ) |[w (@) < € the problem (4), (5) has a solution (y(t,x),u(t,r)) €

WL2(Q) x L2(0, T; Wi (99)).

PROOF. Let us consider a connected domain € such that

Q=QUuw, 00eC? wn(ON\Ty) = {0},

where w is a nonempty set in R™. Set Qo = (0,7T) X Q. We extend function
g from W,-2(Q) up to W,3(Qo), function f(t,z,y) from C'(Q x R') up to
C1(Q, x R) and coefficients of the operator L on Qo keeping the properties

(6)-(9)-

Let us consider the problem of exact controllability

Gly+9)=u+g in Qp, ueclU®), (4.14)

(ll(t,x)ﬁ + lg(t,x)y)}Z =0, y(0,2)=wvo(z), y(T,z)=0.

Ova (4.15)
By Theorem 4.2 there exist € > 0 such that for all

Jvollw () <€

the problem (4.14) - (4.15) has a solution

(y(t, ), ult, ) € Wy*(Qo) x (U@) NLP(Q)).

Restricting function y(t,x) on @ we find that the pair (y + g, ({10y/0va +
loy +1109/0va + 127)|x) is a solution of problem (4) - (5). B

One of the possible applications of this theorem is as follows. Let g(¢,-) is
a smooth periodical solution of problem (4)

Gi)=g in R'xQ, §(t+1z)=g(te).
By Theorem 4.2 there exists a neighborhood & of this curve g(t, ) in the

space W1 (Q) such that an arbitrary point vy from & can be transferred on
this curve by means of boundary control.
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Let us consider the problem (4) - (5) for one-dimensional semilinear par-
abolic equation

2
Gily) = ‘0 —alw) 5 Y +b(a) g+ ey + f(,) = gla) i [0,1], (416
y(t,0) =ui(t), y(t,1) =ua(t), (4.17)
y(0,2) = vo(z), y(T,z)=vi(z), (4.18)
where
a(z),b(z), c(x) € C1(Q), a(z) > 0. (4.19)

Let us assume that function f(z,y) € C?([0,1] x R!) satisfy the following
inequality
—f@,y)y > alyl’ —c2 Y(z,y) €[0,1] xR, (4.20)

where
c1 >0, ¢c2>0, p>1.

We have

THEOREM 4.4. Let conditions (4.19) and (4.20) be fulfilled and, let vy, vy €
CL(Q) be the steady-state solutions of the equation (4.16). Then there ex-

ists T' > 0 such that for arbitrary T > T the problem (4.16) - (4.18) has a
solution.

PROOF. Let £(t) € C%(]0,1]; R?) such that

0) = (w0, 520). 1) = (.5 0).

By (4.19) and (4.20) there exist a function v(t,z) € C%%([0,1] x [0,1])
such that

a(x)% + b(z) %gf) Fe(@)o(t z) + f(@,v(t,2)) = gla),

(v(t,O),%(t,O)) = 0(t).

By Theorem 4.3 there exist finite number of points

to=0<t1---<tp1 <tp=1
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such that there exist a solution of the following problem of exact controlla-
bility

Gl(yz) = g(l’) in [07 1] X [07 1]7 yz(()?x) = U(ti—lwx)v yz(lv ‘T) = U(tia ‘T)
Set 7' = k. We define the solution of problem (4.16) - (4.18) by the formula :
tei—1,i implies y(t,z)=y;(t+i—1,z).

The control functions u;(¢) and ug(t) are well defined by the formulas (4.17).
|

From now we assume that nonlinear term of parabolic equation function
f is independent on ¢, x and satisfy the following growth condition: There
exists a constant p > 1 such that

calyP™ = < fFy <co(lyPTt +1); f(y) = er VyeR',  (4.21)

where ¢4 > 0, c5, cg, c7 are independent constants.
Let © = [0, L]. We consider the dynamical system

oy 0%y dy(t,0)  0Oy(t,L)

The evolution dynamical system (4.22) described by a family of operators
S(t), t > 0, that map L?(0,L) (W4(0,L)) into itself and enjoy the usual
semigroup properties

St—l—s = StSs Vs,t Z 0,
So =1 (I —identity in L*(0,L) (W;(0,L))),
y(t, ) = Srvp.

We need to remind some facts of the theory of infinite-dimensional dynamical
systems (see [5],[64]). Let E be a Banach space. Set

distg(X,Y) = sup inf ||z —y| g.
reX YEY

Definition 4.1. Let S; : F — E be a semigroup in a Banach space E.
The set X is called point-attracting in E if distg(Siu, X) — 0 as t — +00
for any point u € FE.

Definition 4.2. A functional ® : £ — R is called a Lyapunov function
of semigroup {S;} on E if first for any u € E the function ®(S¢(u)) of the
variable t is a monotonously decreasing in ¢ and, the second, if the equality
®(u) = ®(Spu) for some ¢ > 0 implies that v = S;u = 2z is an equilibrium
point of the semigroup {S;}, that is S;z = z Vt > 0.

The following theorem proved in [5].
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THEOREM 4.5. Let E be a Banach space and let a semigroup {S¢}, Sy :
E — FE have a point-attracting set X compact in E. Let {S;} be continuous
on E and have the Lyapunov function defined, continuous and bounded from
below in a neighborhood of X in E. Let M be the set of all equilibrium points
of {St}. Then

dist(Siu, M) — 0 as — +oo Vu € E.

Denote by B the collection of all bounded subset in L2(O L).

Definition 4.3. A set X C W}(0,L) is called (L?(0,L),W3(0,L))-
attracting if for any B C B 3T > 0 such that S, ¢ W}(0,L) for t > T
and S;B — X in W4 (0, L) as t — +o0.

Definition 4.4. A set &4 C W4 (0, L) is called a maximal (L2(0, L), W} (0, L))
attractor of the semigroup S; if it has a following properties:

1. 4 is compact in W3 (0, L).

2. is an (L?(0, L), W3 (0, L)) - attracting set.

3. 4 is strictly invariant, i.e. Syl = U Vt > 0.

Now let us return again to the dynamical system (4.22). It is well known
that under assumptions (4.21) there exists an attractor of dynamical system

(4.22). The following theorem is a special case of the general theorem proved
in [5, pp.127].

THEOREM 4.6. Let (4.21) be fulfilled. The semigroup S(t) : L*(0,L) —
L?(0, L) possesses an (L?(0,L),W}(0,L))- maximal attractor $k which is
bounded in W3 (0, L), compact and connected in L?(0, L).

We introduce the Lyapunov function of dynamical system (4.22) by the

formula
L 1 2 u
B(u) = /O (5 +F(u)> dv, F(u)= /0 F(v)dv

Let us check the properties of the Lyapunov function. Firstly we show that
function ®(y(¢,-)) decrease in ¢ on the trajectories of dynamical system.
Differentiation of ®(y(t,-)) respect to variable ¢ gives

B Loy 02y dy
o) = [ (%&%w(y)a) dr =

L 82 o L 82 2
[ (5 s0) Ghae = [ (544 ) e <0

@
ox
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Now we assume that for some to > t; ®(y(to,)) = ®(y(t1,-)). Multiplying
equation (4.22) on y scalarly in L?(0, L) and integrating it on the segment
[to, 1] we obtain

t1 L t1 L
o= [ [Cvpdwarr el = [ [ sidnar
to 0 to 0

This equality in turn imply

y(t,2) = y(@).

So the functional ® posses all properties necessary to be Lyapunov function
of dynamical system (4.22). Note that by (4.21) there exists a constant c;
such that

d(v) > ¢y Yo e WH(0,L).

Set E = W4(0,L). As a point-attracting set X C E we consider the maximal
(L?(0, L), W4(0, L)) attractor, which existence was establish in the Theorem
4.6. Thus all conditions necessary to apply the Theorem 4.5 are fulfilled.

Let M be the set of equilibrium points of dynamical system (4.22) i.e M
is a collection of all functions z(x) € WZ(0, L) such that

d*z B 0z(0)  0z(L)
_7—}_]0(2)_0336(07[/)7 O - O

= 0. (4.23)

By Theorem 4.5 we have

THEOREM 4.7. Let (4.21) be fulfilled and y(t, z) be solution of the problem
(4.22) with initial datum vy € W4 (0,L). Then

disty(o,)(y(t, ), M) — 0 as t — +oo. (4.24)

Now we consider the problem of exact controllability for the equation
(4.221) when control concentrated on the part of the boundary

0 9?

5~ 75— ) =0, z€0,L] (4.25)
y oy

S2(50) =0, SU(t,L) = u(t), (4.26)

y(O, I) = UO(x)a y(T,z) = Ul(aj)a (4.27)
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where ( we remind) u(t) is a control, function vy is a initial state, and vy is
a target function.
We introduce numbers m and M by formulas

m= inf a, M= sup a.
a€{f(a)=0} a€{f(a)=0}

Denote by PR(vg) the set of reachability of the function vy. i.e.

R(vg) = {v(z)|there exists a pair (y(t,z),u(t)) which satisfy (4.25), (4.26)
such that y(0,-) = vo,y(T, ) = v.}

We would like to investigate the following problem: Is the set M belong to
R(vg) for an arbitrary vy or not?

Let us consider the Cauchy problem for the second order differential equa-
tion

d*z
——— +1(2) =0, 2(0) = 20, 2(0) =0. (4.28)

We have

THEOREM 4.8. Let (4.21) be fulfilled. Then there exist 0 < L < oo that
for L < L for an arbitrary vy € W (0,L) M C R(vo) and for L > L there
exists a open set O C Wy (0,L) such that for every vg € O M & R(vp).
Moreover L # +o0o if and only if for some L; > 0 there exists zg € (m, M)
such that there is not solution of the problem (4.28) on segment [0, L1].

Proof. Multiplying the (4.23) by z scalarly in L?(0, L) and integrating
by parts we have

L
/0 (IV2* + |27 ) dz < es(L), (4.29)

where constant cg dependes continuously on L. The estimate (4.29) and the
Sobolev imbedding theorem imply

|zllco,n) < co(L), (4.30)

Let us show that constant c9 dependes continuously on L. Our proof by
contradiction. Let us assume

|zllco,z) — +o0 as L — +0. (4.31)
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By (4.29), (4.31)

inf
z€(0,L*)

z(x)| = +o0  as L — 40, (4.32)

where L* € (0, L) the first point, such %i*) =0.
Integrating (4.23;) on [0, L*], bearing in mind boundary conditions, we
obtain

/0 F(y)dz = 0. (4.33)

From (4.21), (4.33) we get the contradiction to (4.32). But (4.30) in turn
imply
12]lc20,21 < c10, (4.34)

where constant c1¢ also dependes continuously on L.

Now let vg € W3(0, L) be an arbitrary function. By Theorem 4.7 we get
for any € > 0 there exists a function z. € M such that for some t. € R}r we
have inequality

2 = S(te)vollwa(o,) < e

By (4.34) the set M bounded in C?[0, L]. So applying the Theorem 4.2 for
suitable €, we can reach some target function 2 € M at some moment £.
Thus we prove that for any vg € W (0, L) there exists 2 € M N R(vo).

Let Z be an arbitrary function from M. Now we assume that for any 2y €
(m(L), M(L)) there exist a solution of the problem (4.28) z(z) € C?[0, L].
Thus one can find a function z(7, x) for any fixed 7 € [0, 1], 2(7, ) is a solution
of the following problem:

o d2Z(T, )
dz?

0z(T,0)
ox

—f—f(Z(T,)) :07 2(7_70) = (1_7)2(0)+72(0)7 =0.
Thanks to local existence and uniqueness theorem for O.D.E. (see [2]) the
mapping 7 — z(7, -) is continuous in the space W3 (0, L). By uniqueness the-
orem for ordinary differential equations z(0,-) = 2, 2(1,-) = Z. By arguments
similar to the proof of Theorem 4.3 we obtain that the function z belong to
the set of reachability of the function Z.

On the other hand if there exists zo € (m(L), M (L)) such that the solution
of the problem (4.28) z(z) blow up at the moment zy < L. Then by (4.21)
there are only two possibilities

either  lim OE(QU) = 400, or lim OE(QE) = —00. (4.35)
T—To— T—To—
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Assume that first one holds. Set O = {v(x) € W3 (0,L)|v(z) < z(z) = €
[0, z0]}. Obviously that interiority of this set in W3 (0, L) is not empty. Let
y(t,z) is a solution of the problem (4.25)-(4.27) with some control u(t) and
initial condition vy € O. Let us continue the functions y(¢,x),vo(x) on the
segment [—L,0] by formula y(¢t,z) = y(t, —z),vo(x) = vo(—x). Evidently
function y(t, x) satisfy the equations

2
W Oy ) =0, v e [-L L] (4.36)
y(0,z) = vo(x). (4.38)

Applying to (4.36)-(4.38) the maximum principle ,bearing in mind (4.35),
we have

y(t,x) < zZ(x). (4.39)

By definition of m(L), M (L) there exist a function Z € M such that Z(0) >
Z(0). Thus if we consider the problem (4.25)-(4.27) with initial datum vy € O
and v; = Z the inequality (4.39) imply that there is no solution of this
problem. Wl

5. Some results on uncontrollability of semilinear parabolic
equations

Let us consider the problem of exact controllability (1)-(3) under the fol-
lowing assumptions on nonlinear term of parabolic equation (1): There exist
constants ¢; > 0, co,p > 1 such that

flt,x,y)y > cl|y\p+1 —cy V(t,x) € Quo,y € R', (5.1)

where Q» = R} x Q.
We also assume that functions a;;, b;, c satisfy conditions (6), (7) where @
replaced by Q. Let w’ C Q be subdomain of 2 such that w C w’, O’ € C*°.

Denote by p € C*°(2) a function such that
ploa =0, plor=0, plx)>0Vere\o. (5.2)

Firstly we prove the a priori estimate for solutions of problem (1)-(3). We
have
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THEOREM 5.1. Letk >2(p+1)/(p—1), 11 =0,(6)- (9), (5.1) be fulfilled,
function p satisfy (5.2) and (y,u) € Y(Q) x U(w) be a solution of problem
(1)-(3). Then the estimate holds

C
G | Areadns S [ Hyrtn < allo e + 1. 63

Proof. Multiplying equation (1) by p*y scalarly in L?(Q2) and integrating
by parts respect to variable x we have

L pan [ 35 (gt 22, 2
2 dt pr dz + Z( ze -+ ”63:Z ij dx

2,7=1

+ [ D bipty=—+p ey’ o f(t x y)ytde = | (utg)pfyde = | gptyd.
ox;
& =1 ¢ @ & (5.4)

Integrating by parts in the left hand side of (5.4) again and carry out some
terms from the left part of this equality to right part we obtain

1d " oy 3y
o kadewwL/Q p’“z agj -+ P f(t, @, y)y | do =

2dt Or; 6
/Lh]
/ 3 2 ( )y+z y — pFey® dlE—F/pkgydx
E Qg .
Q|2 ij=1 dz; O Oz; € (5.5)
Note that
62pk(a:) o 3,0k($)
< - <
w07, | = ca(k)p™ " (x), ' T cs(k)p" M) Ve e Q. (5.6)

Hence by (5.1), (5.5) we get from (5.4)

1d

5%/,0%26537—#/ 61Pk\y|p+1d:cSC?\!g(t,-)]\%z(Q)+c(§/pk_2y2dx, (5.7)
Q O Q

where cg, c7 are independent constants.
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By Holder inequality one can estimate the last integral in the right hand
side of (5.7) as follows

/kade:v (/ ‘y|p+1 (p+1)(k— 2)/2dx)? (/ 1dx)
Q
< cs (/ ‘y|p+1 (p+1)(k— 2)/2d33) (/ |y‘p+1 kda:)

Applying the inequality ab < %ap + %bq to the right side of (5.8) we have

/ pkiQdeIE
Q

Replacing in (5.6) the last term by right part of (5.8) we get (5.2). W
We have

THEOREM 5.2. Let (5.1), (6)-(9) be fulfilled, I = 0, vg € L*(Q), g €
L?(Q). Then there exists a function v; € C®(Q) such that for any T > 0
the problem. (1)-(3) has not solution y € Wy *(Q).

-

p—

H‘

C
= 51/ ly[P* ptda + e (5.9)
Q

Proof. Let us introduce function m(t) by formula m(t) = [, p*y*(t, z)dx
where k£ > (p+1)/(p — 1) and function p defined in (5. 2) By (5.3) we have

1d c
__m_|__1/pk|y‘p+1dx§C4(”9”2L2(Q)—|-1) vt € (0,+00).  (5.10)
24t 4 Jg

By Holder inequality there exists some g > 0 such that

pmP Tt < %/ p*lylPH da.
Q

Thus (5.10) imply the inequality

1d
Sam et gt < en(lglag) +1) e (0,400).  (5.11)

It follows from this inequality that

1

c12(llgl1 72y + 1) s
m(t) < A= max / prodde, ( L@ +1 vt € [0,T].
Q

W
(5.12)
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So, if for given (vg(z), g(z)) one choose a function vy (x) such that
/ prv?de > A
Q

the inequality (5.12) imply that there is no solution of problem (1)- (3).H
Note that nonexistence results of such type were proved in [25] for partic-
ular case of semilinear parabolic equations.
We assume that nonlinear term of equation (1) satisfies the relation

Cl2|y‘p+1 — C13 S f(ta x, y)7 (513)

where p > 0,c12 > 0.

It is known (see [48]) that in this case for some initial datum vy, g the
problem does not have a global solution in f. For similar equations J.L.
Lions posed in [51] the following ”stabilization” problem: by choice of the
control u arrange that the solution of the problem (1), (2) exists on a given
time interval [0,7]. We have

THEOREM 5.3. Suppose, that (6)-(9),(5.13) be fulfilled and g(t,z) = 0,
l1(t,x) = 0. Then there exists a constant Ty > 0 such that for T > Ty the
boundary value problem has no solution in the space L?(0,T; LPT1(Q)) for
any control u € U(w).

Proof. Multiply (1) by p*, where
1
k> 2(1+-). (5.14)
p

By integrating the resulting equation over 2 we get

d i 0 dpk
= d 7 (a2
i ot [\ 2o (w0 )

=1

"0
- Z O (p"bi)y + ptey + f(t, =, y)pk> dx =0. (5.15)
i=1 "

It follows from (5.15) by (5.13) and by the inequality

lapk(w)

Ry < cupt () Yz eq,

9°p* ()
axiaxj
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that

d

T prydx > 012/ pPyPHde — 615/ pk_Q\y|d:1: — C16. (5.16)
tJa Q Q

Application of Hélder’s inequality to the last integral in right part of (5.16)
yield

1

d P
,Okydﬂf > C12/ ,Ok‘y|p+1dﬂlj — C17 (/ P(k_2)(p+1)|y‘p+1dﬂf) — Ci6-
Q Q

_EQ

It follows from (5.13) and this inequality that

d p+1
—— | prydx > 01—2/ PFlylPtde — e17 > ers / pryda —c19, (5.17)
dt Jo 2 Ja Q
where constants c1g > 0, ¢ are independent on vg. Setting 3(t) = — [, pFy(t, v)dx
we deduce that by (5.17) the function () satisfies the differential inequality

d

d_f > 1837 — cao.
It is known that this differential inequality does not have a global solution
in ¢ if B(0) = — [, p"yodz is sufficiently large.l

§6. Exact controllability of Burgers equation

From now we start studying the problems of exact controllability of evo-
lution equations which describe the fluid flow. The simplest of them is the
Burgers equation. In this section we show that steady state solutions of
Burgers equation with zero right hand side belongs to the set of reachability
of any initial condition vy. On the other hand we prove that the Burgers
equation is not approximately controllable on the arbitrary bounded time
intervals. Let us consider the Burgers equation

_dylt,x) y(t)

y(t, )
oz

=u(t,z) (t,x) € [0,T]x][0,L],

(6.1)
where co > L > 0 and T > 0 are arbitrary fixed numbers. We suppose that
y(t, x) satisfies zero boundary and initial conditions

y(t, 0) = y(ta L)=0, y(0, ) = Vo, y(Ta ) = v, (6.2)
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where vg is a given initial data, vy is a target function. Assume that control
u(t,x) € Ly([0,T] x [0, L]) and that for any ¢ € [0, T]

supp u(t,x) C [b,e], 0<b<e<L. (6.3)

We also consider the problem of exact boundary controllability for Burgers
equation

R(y) =02 € [0, L], y(t,0) = us(t), y(t, L) = us(t), y(0,) = vo, y(T>) = v1.

(6.4)
It is well-known that for an arbitrary u(t,x) € La(]0,T] x [0, L]) there exists
a unique solution y(t,x) € Lo(0,T;WZ(0, L)) of problem (6.1)-(6.2). It is
possible to see, that dy/dt € Ly([0,T] x [0, L]). The following Lemma de-
scribes the set of steady state solutions of Burgers equation with zero right
hand side i.e. the set of functions z(x) such that

0%z 022
—@4—8—% =0, IG(O,L), (6.5)
2(0) = a1, 2(L) = as. (6.6)

LEMMA 6.1. For an arbitrary finite ay < ag there exists the unique solu-
tion of the problem (6.4),(6.5). Moreover

if ag — a1 > Lagag then z(x) = /ctg(y/e(x + d));
if ag — a; = Lajag then z(x) = —1/(x 4+ d); (6.7)
if ag — a1 < Lagag then z(xz) = /ccth(y/c(x + d)).

For aq > ag problem (6.5), (6.6) has a solution
z2(x) = a1, if o = ag; (6.8)
2(x) = —Veceth(Ve(x +d)), if ar > as. (6.9)

The constants c,d are determinatead uniquely by aq, as.

Proof. Integrating (6.5) in x we obtain

%

T y? +c. (6.10)
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If ¢ > 0 then integrating (6.10) we obtain the equality

1
%arctg% =x+d (6.11)

which implies (6.7). Let us show that the constants ¢ > 0, d in this inequality
is determinatead by aq, ay. It follows from (6.11), (6.6) that

a a
L\ = artg—2 — artg—=.
c c

Ve Ve

Applying to the both parts of this equality the operator tg we obtain that

tg(Lv'c) = Ve(ag — ar)/(c+ aras).

Solving this equation by the graphics method we obtain that if oy, oo satisfy
condition (6.71) then the unique positive solution ¢ of this equation exists.

If ¢ = 0 then we obtain (6.72) after integrating (6.10) . Equation (6.10)
with ¢ < 0 implies the equality

z — \/a — 62\/a(£+d)’ (612)
z+/c1

where ¢; = c. It follows from (6.12) (6.6) that

e _ (a2 =) (a1 +7)

(2 + ) (a1 —7)

where v = /c1. Solving this equation by graphics method, one can easily
to show that this equation has a unique positive solution if aq, as satisfy
condition (6.73), (6.9). The case (6.8) is evident.The proof of the theorem is
complete.ll

LEMMA 6.2. Let aj,as € R satisfy condition ag > oy and z(z) is a
solution of problem (6.5), (6.6) and y(t,z) is a solution of the problem (6.4)
with u(t) = a1 and u(t) = ay. Then there exists X > 0 such that

1z =yt 20,0y < e Mllvo = 21720, (6.13)

dt < ||z —wollF2(0.1)- (6.14)
L2(0,L)
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Proof. Set w(t,z) = y(t,x) — z(z). By virtue of (6.4)-(6.6) w(t,z) is a
solution of the problem

ow 0w 28(102) ow?

5 oz T2, ta, =0 relI] (6.15)

w(t,0) =w(t,L) =0, w(0,x)=2z(x)— vo(x). (6.16)

Scaling in L?(0, L) both parts of (6.15) by the w(¢, z) and taking into account
(6.16) we obtain after simple transformations, that

1d 9 dw||?
5 0y + | 5

L
0z
+/ (—) w?(t,z)dz =0. (6.17)
L llL2(0,L) o \Oz

Let A1 be the minimal eigenvalue of the spectral problem

0%v(x ov(x
_ 6;2>+ 6;):)\1)(33)366[0,[/], 0(0) = v(L) = 0.

Since by Lemma 6.1 the inequality 82—(;") > 0 holds, then A\; > 0. It follows
from (6.17) that

| &

lw(t, 1720,y + Allw(t, )lIZzg,L) < 0.

N~
QU

t

This inequality imply (6.13). Integrating (6.17) on segment (0, c0) bearing
in mind (6.13) we get (6.14).1

THEOREM 6.1. Let §(t,z) € W, > (Q) be a solution of problem (6.1). Then

there exists € > 0 such that for every

lvo — 9(0, ) lwao,y < €

there exists a solution of the problem (6.4) with initial datum (v, y(T,")).
The constant € dependes on T, HZ)HW;Q(Q) continuously and monotonicaly.

The proof of this theorem similar to the proof of Theorem 4.2. We leave
it to readers as exercise.
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THEOREM 6.2. Let function vy satisfy (6.5). Then for an arbitrary vy €
Wy (0, L) one can find Ty(vo,v1) such that for T > Ty there exist a solution
of the problem (6.4) (y,u) € L?(0,T; W4(0, L)) x L?(0,T).

Proof. Let Z(x) be an arbitrary function which satisfy (6.5), (6.6) and let
vo(x) be an arbitrary function from the space W4 (0, L) . Denote by y(t, x)
the solution of (6.41) — (6.44) with the zero boundary conditions wuy(t) =
uz(t) = 0. Thanks to Lemma 6.2 y(t,-) — 0 in L?(0,L) as t — 400 and

inequality holds
/ oo 6y(t7 )
0 6.1:
This inequality imply that for every ¢ > 0 there exists ¢. such that ||zo —

Y(1z, )llwz(o,L) < €. Then thanks Theorem 6.1 there exists € > 0 and ¢. such
that the following problem has a solution

2

dt < oo.
L2(0,L)

aygt’ @) _ 82?3(;;“3) +2y(t,x)% =0 () in[te, te+7]x[0, L], (6.18)
y(t,0) = wi(t), y(t, L) = ua(t), (6.19)
ylte,)) = lim y(t,-), ylte+1,)=0. (6.20)

Let t. be fixed. Now we construct the solution of problem 6.4 in following
manner. For ¢ € [0, t.] we set uq(t) = ua(t) = 0. For t € [t.,t- + 1] we choose
(y,u1,u2) as a solution of problem (6.18)-(6.20).

Note that the problem (6.5), (6.6) has a unique solution. Really existence
of solution was proved in Lemma 6.1. Let us assume that this problem has
two solutions z(x),u(z). Set 6 = z—wu. This function should satisfy equations

0%6 o) ou
_@4_ %_}_(56 =0, z€[0,L], §(0)=46(L)=0. (6.21)

The integration of (6.21) gives —a— % 4 ud = const. By the second integration,
bearing in mind the boundary conditions (6.21;) we get that 6 = 0. We
introduce function z(7, z) (r,z) € [0, 1] x [0, L] as follows: for every 7 € [0, 1]
function z(7,-) is a solution of (6.5) with boundary conditions z(7,0) =
(1—7)2(0), 2(7, L) = (1 —7)Z(L). Since we proved the uniqueness of solution
of problem (6.5), (6.6) this function correctly defined.
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Now let us prove that the mapping ¢ — z(t,-) is continuous in the space
W3 (0, L). If this mapping is discontinuous than there exists a point 7 € [0, 1]
and sequence {7;} such that

2(15,+) — 2(%,-) in W5(0,L) as 7 - 7. (6.22)
Note that (6.5), (6.6) imply inequality

12(7i; Mlwio.n) < c2s

where c¢ is independent on i. This inequality in turn imply

12(7i; Mlwzo.r) < cs-

By (6.22) and this inequality and Rellix-Kondrashov theorem one can find a
subsequence 7;, such that

2(Tip, ) — u# 2(7,-) in W21(0, L)asT, —T.

Evidently u is a solution of (6.5) with boundary conditions u(0) = (1 —
7)2(0),u(L) = (1 — 7)2(L). Since above uniqueness of solution of problem
(6.5),(6.5) was proved we have contradiction.

By Theorem 6.1 there exist finite number of points

O<m< <75 <1 =1

such that the following problems of exact boundary controllability have a
solution

R(yz) =0 (t,l‘) € [07 1] X [OaL]a yz(oam) = Z(tifla'r)a y(lvw) = Z(tz,l‘)
(6.23)
No we finish construction of control uq(t), us(t). Set Ty =t +k + 1,

ui(t) = yi(t +e+1,0) for t € [te +i,te + i+ 1],

ug(t) = yi(t +te +1i,L) for t € [te +i,te + 1+ 1],

where ¢ € {1,...,k} and y;(¢,x) is a solution of problem (6.23). Since
z(tg, ) = z(1,-) = Z the theorem is proved. B

We proof one estimate for solution y(¢,z) of problem (6.1), (6.2) which
simply implies the uncontrollability of this problem.
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LEMMA 6.2. Let u(t,z) € Lo([0,T] x [0,L]) satisfy (6.3) and y(t,x) be
the solution of the problem (6.1), (6.2). Denote y4(t,z) = max(y(t,x),0).
Then for arbitrary N > 5 the estimate

b
czf (b—2)Vyi(t, x)dr < a(N)N 2 (6.24)
holds where b is the constant from (6.3) and a(N) > 0 is a constant, depend-
ing on N only.

Proof. We multiply both sides of (6.1) by (b — )V y? (¢, z) and integrate
them with respect to x from 0 to b. Integrating by parts in the second term
of the left hand side of the obtained identity we shall have

b b
/ (b — ) () (¢, 2)dz + / (b— )N3y2 (B ) (D) de
/ N(b—z)N? 3(ﬁxy)dx+/b2(b—x)Nyi(amy)d:U:O. (6.25)

0

It follows from the theorem on the smoothness of a solution of the Burgers
equation that y(t,z) € C*°((0,7) x (0, L)). Denote y_ = min(y,0). Then

3 i =
Y+ Y+ oz oz Y+ ox 4 Ox

dy 3(%+3L)_33y+ 10y
ox

The following identities are proved in an analogous way

2 v 0vs o (O ’ g L oyt
t 0r Or or Tt T k+1 o

Using these equalities and integrating by parts in last two terms of equation
(6.25), we obtain

b

b
/(b—a:)N Oy (t, a:)da:+/ (b— 2)N3y3 (04 ) dx
0

N baN
/ N-1)(b—z)N2 4da:+/ ?(b—x)N Yyidr =0. (6.26)
0
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By the Holder inequality

/b(b )N 72y (t, 2)de <
0

(/Ob(b—m)N_6dx> - (/Ob(b—x)N LS (1, 2)da )4/5 _

p(N=5)/5 b s 4/5
:m /O(b—x) Y, dx . (6.27)

Using the Young inequality, we shall have

4/5
N b N(N 1) b
- b— N—-1,5 t dr— b(N 5)/5 / h— N 1 5d >

— (N5, (6.28)

where o(N) is a positive constant, depending on N > 5 only. Substituting
(6.27)-(6.28) into (6.26) we obtain (6.24).1
We have

THEOREM 6.3. Let T > 0 be an arbitrary finite number. Then problem

(6.1)-(6.2) is not Lo(0, L) - approximately controllable with respect to set of
controls u € Ly((0,T) x (0, L)) satisfying (6.3).

0
Proof. Let g(z) € L2(0,a), g(z) > 0, y be a solution of problem (6.1)-
(6.2). Then

1/2 b/2
(/ 9(@) — (T, dﬂ«“) 2(/ \@(x)—y+<T,x>|2dx>
0

> 9l Lac0,6/2) = 1Y+ (Ts M Lac0,5/2)-  (6.29)

1/2

By the Cauchy-Bunyakovskii inequality, we have:

b 1/2 . 1/2
2
19T M a0z < ( / <b—x>Nda:> ( / <b—x>N\y+|4dx>

1-N(oN—1 _ 1/2 b 1/2
g(b e ”) (/ <b—x>N\y+\4dx) . (6:30)
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In virtue of (6.24) for any 7" > 0 the inequality
b
| =)yl < TavpY?
0
holds. Let 7' > 0 be fixed and g(x) € L2(0, L) satisfies condition

bl—N(QN—l —1) N 1/2
HQHLQ(O,b/z) > ( N 1 Ta(N)N _5) +1. (6.31)

Then it follows from (6.30) - (6.31) that for any control u € Lo((0,7) % (0, L))
satisfying (6.3), the solution y of problem (6.1)-(6.2) satisfies inequality

19— y(T, )l L0,y > 1.

The inequality implies the approximate uncontrollability of problem (6.1)-
(6.2). &
Now we consider the Burgers equation with boundary control w:

oy 9%y oy
E - @ + QQ% =0 (t,x) S [O,T] X [O,L], (632)
y(t,0) =0, y(t,b)=u(t), y(0,2)=0, wue Ly(0,T). (6.33)
We have

THEOREM 6.4. Problem (6.32)-(6.33) is not Lo(0, L)-approzimately con-
trollable with respect to the control space Ly(0,T) for an arbitrary T > 0.

Proof. Estimate (6.24) holds for solution y of problem (6.32)-(6.33) and
its proof does not differ from the proof of Lemma 6.2. We obtain the assertion

of the theorem by means of this estimate after repeating the proof of Theorem
6.3 word by word.H



CHAPTER 1II

EXACT CONTROLLABILITY OF BOUSSINESQ SYSTEM

Introduction

We study the local controllability problem for the Boussinesq equation
that describe the incompressible fluid flow coupled to thermal dynamics.
The control function is the Dirichlet boundary condition of the velocity and
temperature vector field of the fluid flow. More precisely, the investigated
problem is as follows: Suppose that

oy(t,x) + Aly) = f(t,z), te (0,7, x e (1)

is a symbolic writing of the Boussinesq equations defined in a bounded do-
main  C R™ n=2,3, where y(t, x) is a velocity and temperature vector field
and f(t,z) is an external forces vector field, t € (0,7) is a time. We assume
that a solution (¢, z) of (1)

6tg(t7x> + A(Q) = f(t7x>

as well as an initial condition yo(z) are given and they satisfy the proximity
condition

19(0,-) =9 ()l < e, (2)

where || - || is the norm of corresponding initial conditions space and € > 0 is
sufficiently small magnitude. One has to find such control u defined on the
lateral surface ¥ = (0,7") x 99 of the cylinder (0,7") x €:

Yz =u (3)

that the solution y(¢,z) of (1), (3) supplied by the initial condition
Yle=0 = yo (4)

62
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coincides with the given solution (¢, ) at instant ¢t = T'

Yli=r = Gli=7- (5)

One useful application of local exact controllability problem is as follows. Let
f(t,x) = f(x) be independent on t and §(z) be a steady-state solution of (1)
with zero boundary condition which, by definition, is an unstable point in the
phase space of the dynamical system generated by equation (1) supplied by
zero boundary conditions. Then the problem (1), (3), (5) solvability implies
that one can transfer an arbitrary point yg belonging to a small neighborhood
of ¢ to g a solution of (1) by means of boundary control.

We are intrested in the Boussinesq equations because the investigation of
a fluid flow stability in the free convection problem is one of the basic area
in the theory of hydrodynamical stability (See D.Joseph [37]). Besides as
we understand, the local exact controllability problem connected with area
outlined by J.L. Lions [49], [50] which contains in particular, certain prob-
lems about climate. It, in particular, explains our interest to the Boussinesq
equations. The first step of the controllability property proof is the reduction
of nonlinear problem (1),(2)-(5) to the solvability of the analogous problem
for the linearization of (1). We do it with help of one variant of implicit
function theorem. To establish the solvability of controllability problem we
prove the density of data set for which the linear controllabilty problem is
solvable (§3) and closure of this set (§5). The main difficulties of proof con-
nected with the pressure term in the Boussinesq equations. To overcome this
difficulty we introduce some nonstandard functional spaces for investigation
of our problem and construct in these spaces a decomposition of a vector field
on solenoidal and potential component (§4). This is based on the Carleman
estimate for Laplace operator (L. Hormander [27], [28]) and for heat equation
(chapter I §6).

1. Statement of problem and formulation of the main result.

In a bounded domain 2 C R™ (n=2 or 3) with C*°-boundary 0f2 we
consider the Boussinesq system

O(t,x) — Av + (v, V)v + 0(t,x)ep + Vp(t,x) = f(t,x), (1.1)

divo =Y 0,0, =0, (1.2)

Jj=1
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0i0(t, ) — A0 + (v, V) + (v, e0) = h(t, x), (1.3)
v(t, x)|t=0 = vo(x), 0(t, x)|t=0 = o(x), (1.4)
U|EZUU, 9|2=U9. (15)

Here (t,z) € Q@ = (0,T) x Q, v(t,x) = (n1(t,z),...,v,(t,x)) is a fluid
velocity at point = at instant ¢, (¢, x) is a fluid temperature, p is a pressure
gradient, f(t,x) is the density of external forces, h(t, z) is the density of ex-
ternal heat sources, ey € R™ is the vector of the gravity force direction, u,,, ug
are Dirichlet boundary conditions (in our case they are control functions), vy,
fp are initial conditions. Besides, ¥ = (0,T) x 92, 0; = 0/0t, O, = 0/0,,,
A is the Laplace operator, (v, V)v = 3 v;0,,v, (v,V0) = 3°7_ v;0,,0. We
investigate the local exact controllability problem for Boussinesq equations
which is as follows. Let 9(t, ), Vi(t, z), 0(t, ) be sufficiently smooth* solu-
tion of Boussinesq equations (1.1)-(1.3):

By 0(t, ) — AD 4 (0, V)0 + 0(t, x)eg + Vp(t, ) = f(t,z),
divd =0,
D,0(t, x) — AO(t, ) + (0, VO) + (0, e0) = h(t, x),

and initial conditions wvg(z), 0y(x) are sufficiently closed to ©(0,x), 6(0,z)
with respect to an appropriate norm. One has to find such boundary control
(uy,ug) defined on the lateral surface ¥ of the cylinder ), that the com-
ponents (v(t,z),0(t,x)) of solution of boundary value problem (1.1)-(1.5)
coincide at instant ¢ = 7" with the given solutions components (7, é)

o(T,z) =o(T,z),  O(T,z)=0(T,z). (1.6)

Let us introduce the functional spaces to set precisely the controllability
problem and to formulate the main result. Besides the Sobolev spaces
Wf(Q), 1 < p < oo introduced in chapter I we define the functional space
VE(Q) of solenoidal vector fields

VEQ) = {v(z) € (WFQ)™: divu(z) = 0}. (1.7)
We need the following spaces of functions defined in the cylinder Q:
W20 (Q) = {6(t,z) € Ly(0, T; Wrt2(Q)) : 8,0 € Lo (0, T; WE(Q))}, (1.8)
VE2E(Q) = {u(t,z) € (WH2F(Q)" : dive = 0}. (1.9)
The main result of this chapter is as follows

*The precise smoothness conditions are formulated below
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THEOREM 1.1. Suppose that f(t,z) € (WH22(Q)", h(t,z) € WH22)(Q)
are given data and (0(t, ), p(t, x),0(t, z)) € VI22(Q) x Lo(0, T; W3 (Q)) x
W12@2)(Q) are a solution of equations (1.1)-(1.3), satisfying the property

/ (0(t,z),v(z))do =0, j=1,...,m tel0,7) (1.10)
L
where I'j are components of 0§2: OS2 = U;_oI'; ,I';NIy = {0}, if j # k, v(x)
is the vector field of outside normals to OQ . Suppose that (vo(x),0p(z)) €
V(Q) x W3 (Q) is a given initial datum satisfying conditions

/F(vo(a:),l/(x))da:(J, =1 (1.11)

which is closed to (6(0,x),0(0,x)):
lvo = 20, )31 0y + 160 — 0(0, Wivao) <e (1.12)

where 0 < € < €y and €y is sufficiently small magnitude depending on (0, é)
Then there exists such boundary control (u,,up) € (L2(X))™ X La(X) that
there exists the solution (v, p,0) € V120)(Q) x Ly (0, T; W3 () x W20 (Q)
of problem (1.1)-(1.5) and this solution satisfies condition (1.6). Moreover,
there exist constants k > 0, ¢; > 0 that

lo(t, ) = 6t ) + 100t ) = 0t Wiz < cre” ™D ast—T.
(1.13)

The remaining part of this chapter is devoted to prove this theorem.

Remark 1.1. The condition (9,p,60) € V122(Q) x Ly (0, T; W3(Q)) x
W122)(Q) of Theorem 1.1 can be weakened. Namely, the assertion of The-
orem 1.1 remains true when instead of above assumption we suppose that

i(t,z) € VIEID(Q)N (Loo(@Q)™, 0 WH/D(Q). (1.14)
In the case of assumption (1.14) we would have to add the Theorem 1.1 proof

in several points by some complicated applications of the Sobolev imbedding
theorem and also by one technical method mentioned below in Remark 5.1.
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2. Reduction to a linear controllability problem.

2.1. We begin with certain simply but useful remarks about the in-
vestigated problem. First of all, note that we will not construct specially
the boundary control (v,,6,) but study the solvability of problem (1.1)-
(1.4),(1.6) without boundary conditions (1.5). We will find a boundary con-
trol (v, 0,) at the very end of proof with help of restriction of constructed
solution (v,0) at the boundary ¥. Besides, we show that it is possible to
reduce the controllability problem mentioned above to the case of simply
connected bounded domain €2. Indeed , let I'y be the external component of
the boundary 0€2. By G we denote the bounded domain with the boundary
I'y. Evidently

where €2; is the bounded domain with the boundary I';. To reduce the
proof of Theorem 1.1 to the case of simply connected domain G we have
to extend continuously functions (4, p,0) € V122(Q) x Ly(0,T; W3(Q)) x
Wh2@)(Q) up to (@, p,0) € VIH2R)(Q) x Ly (0, T; W3(G)) x Wh2(2)(Q) where
Q = (0, T) x G and initial conditions (vg,8y) € V(Q) x W1 (Q) up to (,0) €
VI(G) x W3(G). After this extension we substitute (7, p, ) into (1.1), (1.3)
and calculate the right side (f,h) of these equations. Naturally, (f,h) will
be an extension of (f,h). When we will prove Theorem 1.1 in the case of
simply connected domain G, we will restrict the solution of controllability

problem at 92 = U;_,I';. Then the constructed function (vy, ¢,) will be the
control which solves the controllability problem in the case of multiconnected
domain €.

PROPOSITION 2.1. For an arbitrary natural number [ there exists the ex-
tension operator L : LO(x)|q = 6(x) such that the maps

L:WFQ) — WHG)

are bounded for k =0, ..,1.

Although the proof of this proposition is well-known we remind briefly the
extension construction, taking into account our future goals. After applica-
tion of a partition unity and restrictifying the boundary we obtain the prob-
lem of extension of a function u(x) defined in R} = {z = (z1,...,2,), zn >
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0} up to a function on R™ . The extension operator L is now defined by the
formula

u(@', zn), when z,, > 0,
Lu(x',x,) = l
ijl Nju(z', —x,/k), when x, <0,
where A1, ..., \, are the solution of system
l 1 j
Z(_E) A =1 (j=0,1,...,1—1).

k=1

This construction allows to prove estimates declared in Proposition 2.2 (see
[4], [59]) This construction and Proposition 2.1 imply

PROPOSITION 2.2. For an arbitrary natural k there exists a bounded ezx-
tension operator

~

L:WHH(Q) - wh™(@Q),  Q=(0,T)xG,
L : Ly(0,T; WE(Q)) — Ly(0, T; WH¥(Q)).

Let us consider functional spaces of solenoidal vector fields. We define the
space
VF(Q) = {vg € VF(Q) : vy satisfies (1.11)}.

Remark 2.1. In the case of dim{) = 2 we define the operator rot by
formula
rotu = 0y, ug — Oz, U1

We have

PROPOSITION 2.3. i) For an arbitrary natural number k there exists the
extension operator L such that the maps

A

L:VkQ) - VFG)

are bounded for k=0,1,...,1.
it) For an arbitrary natural number k there exist bounded extension oper-
ators

~

Loyt (@) = vi2hQ),  Q=(0T)xG
L:Ly(0,T; VF(Q)) — Ly(0, T;: VF(@)).
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Proof. Denote H, = {v € V°(Q) : (v,v)|spq = 0}, where (v,v) under-
stands in W™1/2(Q) (See details in R. Temam [63]). For u € V*(Q) we
consider the boundary value problem

rotv=u x € ),
diveo =0 x €,

(v,v)]aq = 0.

In R. Temam [63] it was shown that there exists a solution v € V¥(Q) N H,
of this problem, which satisfies the estimate

[0l @) < calllullvr@) + vl za@)n)-

Moreover if we will take v from orthogonal complement to Ker rot V() in
the space H, then (see R. Temam [63])

[l (La@n < callull La@)n-
Hence, for such v we have the estimate
[v][vrsiqy < esllullveia)-
Now, for u € V*(2) we define the restriction operator L by formula
Lu = rot Lo,
where L is a extension operator from Proposition 2.1 and v is the solenoidal

vector field constructed above by u. Evidently, estimate for v written above
and Propositions 2.1, 2.2 imply assertions i) and ii) of Proposition 2.3.

|

2.2. Now we reduce the proof of Theorem 1.1 to the case of a linear con-
trollability problem. Applying the well-known formula of vectorial analysis

(v, V)v = —v x rot v + V(|v[*/2),

where x is the operation of vectorial multiplication we can rewrite equation
(1.1) in the form

Ov(t,r) — Av —v x rotv + 0(t, z)eg + Vp'(t,x) = f(t, x) (2.1)
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if we denote Vp' = V(p + |v]?/2). We write the solution (v, ) which we are
looking in the form

v(t,z) = 0(t, x) + w(t, z), 0(t,z) = 0(t, x) + 7(t, x). (2.2)

The substitution of (2.2) into equation (2.1), (1.2), (1.3) and subtraction
from them of the same equations for (v, p, 6) yields the equations

N(w,q,7) = 0yw(t,x) —Aw—1 xrot w—wXxrot V —wxrot w+Vg+1ey = 0,
(2.3)
divw = 0, (2.4)

H(w7 T) = atT(tv ‘T) — AT + (@7 VT> + (w7 Vé) + (w7 VT) + (w7 60) = 07 (25>
where Vg = Vp’ — Vp. The functions w, 7 satisfy the initial conditions:

w(0, z) = wp(x), 7(0,2) = 10(2), (2.6)

where wo(z) = vo(x) — 9(0, ), 7o(z) = Oo(x) — 0(0, ). Evidently we have
reduced our problem to construction of solution (w(t, z), 7(t,x)) of problem
(2.3)-(2.6) which satisfies the equalities

w(T,z) =0, (T, x) =0. (2.7)

Remark 2.2. In the two dimensional case we will rewrite the nonlinear
term (v, V)v as follows

(v, V)v = (—va rot v, vy rot v) + V(|v]?/2).

Despite of the system (2.3)-(2.7) is different the proof of Theorem 1.1 is same.
We will solve problem (2.3)-(2.7) with help of the variant of the implicit
function theorem formulated in the section 4 of chapter I.
In our case X will be a space of triplets z = (w, ¢, T)

.A(.IZ) = (N(w7Q7T)7H(w77—)7w|t2077—|t:()> (28)

and the space Z be defined by collection of components in (2.8). We mark
that we will guarantee of (2.7) by introduction of special weights in the norm
of X. We take as z¢ and zy the zero elements: g = (0,0,0), zo = (0,0,0).
Then equation (1.4.3) for operator (2.8), (2.3), (2.5) is fulfilled. Thus, the
main condition which we have to verify applying the right inverse operator
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theorem, is the assertion on solvability of equation .A4’(0)z = z for any z € Z.
This equation in our case has the following form:

N'(0)(v,p,0) = Opw(t,x) — Av— D x rot v —v X rot © + eg + Vp = f, (2.9)
dive =0, (2.10)

H'(0)(v,0) = D,0(t, ) — AO + (0, V0) + (v,0) + (v, e0) = h, (2.11)
V|t=0 = vo, 0)i=0 = o, (2.12)

Ver =0, Olr = 0. (2.13)

2.3. We define now the functional spaces X, Z corresponding to the
problem (2.3)-(2.7). Let

n(t, ) = n°(t, ) = s(e™ — &™) /(T - )i(t)) (2.14)

be the weight function where s > 0 is a parameter which will be chosen
below, &1 = maxX,—(5,..2,)eq 71| and [(t) is a fixed function which satisfies
the following conditions

I(t) € C0,T], I(t)=t vm(%,ﬂ, I(t)>0 VYtelo,T].

Denote

LQ(Qan) = LQ(QJ?S) = {y(tvw) : ||yH%2(Q,7)) = \/Q €2n5|y‘2dl‘dt < OO}

(2.15)
Below we will use also the space Lo(Q, 3) with weights of different form. We
define the space O(Q,n) of components 0(t, z) in (2.9) - (2.13):

O(Qm) = Q1) = {0(t,2), (t,2) € Q : 0]3(q.e) = 0:0-20]3,0.e)
+ 1T = )72013 ey + 1T = )2V, (e

+ (T =) 2001170y + D T —=8)202, 0lI7 ey < o0} (2.16)
i,j=1
The space of right components f in (2.9)-(2.13) is as follows

F(Q,n) =F(Q,n°) ={f € (L2(Q)" = 3 f1 € (L2(Q,m)",
3 fo € Ly(0,T; W (Q)) such that f = f1 + Vfo}. (2.17)
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The norm of the space F(Q,n) is defined by the relation

1l F@me) = fi%ff Aoy + HVfQH%Lg(Q))n)l/2' (2.18)
FEhAY

Remark 2.3. Note that F(Q,n®) is a Hilbert space. Really, since the func-

tional J(f1, f2) = (1f1llfL,@umeyn + ||V]"2||%L2(Q))n)1/2 is the strictly convex

for any f € F(Q,n®) there exists only one pair (fl,@fg) € (La(Q,n*))™ x
(L2(Q))™ such that [|fllpqume) = J(f1, f2).

We define operator B by formula Bf = (f1, V f2). Obviously B € C(F(Q,n®),
(L2(Q,n*))" x (L2(@))™). One can easily check that B is the linear operator.
Thus we can introduce scalar product in F'(Q,n*) by formula

(f, F)r@msy = (B, Bf)(L2(Q.ne)) x (L2(Q))")-

The space V(Q,n) of components v in (2.9)-(2.13) we define with the help
of inequality

V(Q,n)=V(Q,n°) ={v(t,z): dive =0, [[v[l} g, =
|00 — AUH%‘(Q,US) + (T - 75)71U||%L2(Q,n8))n + ||VUH%L2(QJ7$))”+

(T = 0wy @meyn + 2 T =12, vl @ueyn <0} (2.19)
i,5=1

Now we can define the spaces X and Z in the case of problems (2.3)-(2.7) or
(2.9)-(2.13):

X = X°(Q) = V(Q. ) x La(0, T; WE(Q) x ©(Q, ), (2.20)

Z=2°(Q) = F(Q,n°) x L2(Q, %) x V}(Q) x W5 (). (2.21)

Since the weight n°(¢,z) increases exponentially as ¢ — T, the functions
v e V(Q,n%), 0 € O(Q,n°) decrease exponentially as ¢ — T and therefore
equalities (2.13) are true.

2.4. Let us show that for an arbitrary parameter s > 0 the operator
(I.4.2) and its derivative

A(0): X3(Q) — Z°(Q), (2.22)

are continuous, where A(z) is defined in (2.8), (2.3), (2.5).
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LEMMA 2.1. Suppose that o € V22(Q), § € W2 (Q)
A,(O) (U7p7 9) = (Nl(()) (U7p7 9)7 H,(()) (U7 0)7 v’t=07 9’1&20) (223>

where N'(0), H'(0) are defined by (2.9), (2.11). Then for s > 0 the operator
(2.22) is continuous.

Proof. Evidently the embeddings V(Q,n) c V120(Q), 6(Q,n) C
W120)(Q) are continuous. Since the restriction operator yoy = y|—o acts
continuously from W12 (Q) to W} (Q) and from V120 (Q) to V1(Q) (see
[52]), the inequalities

[vovllvie) < callvllvigm, v00llwz) < csllflle@.n) (2.24)

holds. Let us prove the continuity of the operator
H'(0) : V(Q,n) x ©(Q,n) — L2(Q,n) (2.25)
defined in (2.11). Since the embeddings
vi2R(Q) c (C(o,T;CH (@), WHE(Q) c C(0,T;CHQ))  (2.26)
are continuous, for n < 3 we obtain taking into account (2.11), (2.15), (2.16)

[H'(0) (v, )| Loc@.m) < 11040 — AB| Loy + 9]l (@) VO (La(@um)
VOl (conm vl La@mym < A+[0]lvrze @) I0lle@.n+IVOll @y lIvllvg.mn-
(2.27)
The relations (2.9),(2.15)-(2.19) yields

IN'(0)(v, 0, )| F(@,m < |0:v — Av — 0 X rot v — v X rot ¥ + Oeg|| (£, (Q,n))n
+IVPl(za@)n < 10:v + Avll (1 @umy» + 10lleo, 70 @) vl za@um)n
+ IVl za@umyn) + csllOll Lac@.my + IVl (La@))n
< 1+ [[olvree @) lvlvigm + crllfllew@mn + IPllLy0mwi@y-  (2:28)

The inequalities (2.24), (2.27), (2.28) imply the desired assertion. W
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LEMMA 2.2. Suppose that © € V122(Q), § € Wh2@)(Q), and A is
operator (2.8). Then for arbitrary s > 0 the operator

A X°(Q) — 2°(Q)

18 continuous.

Proof. To prove this Lemma we need only to complete the proof of
Lemma 2.1 by the estimate of the terms w x rot w and (w, V7). The Cauchy-
Bouniakovskii inequality and the Sobolev embedding theorem yield

T
n n
e (w, VT L) S/O le2w(t, )l a@yn e VTl i) dt

T
n n
< [ letult )l g
n n
< C9H€2wHC(O,T;Vl(Q))He2THLQ(O,T;WQQ(Q))
n n
< collezwllyr20@)lle2 T, 0,mwz@)-  (2:29)

By definition of the norms of spaces V20 (Q), Lo (0, T; W#(Q)) in the right
side of (2.28), taking into account (2.14) and evident inequality

(T — )% < c(k)e/?
we get the estimate

n n n _
le2 wHVLQ(O)(Q) e THLQ(O,T;W;(Q)) < cii(|lez (T - 2) 2w||(L2(Q))”

n _ n n _
e (T—) 7Vl za@yr + D, €202, wllza@e (e (T—1) 27| 1,0
i,5=1

e (T =) VTl + D 11€2 02,4, 7lla@) < clewHwQ,n)HvHe(@,n))-
i,j=1 2.30

One can estimate the term (w, V)w analogously. B

Thus, to have the possibility to apply the theorem on right inverse operator
we must prove that the operator A’'(0) : X*(Q) — Z°(Q) is epimorphism.
To prove this assertion we will show that the image of this operator is dense
in Z%(Q) and besides, it is a closed subset of Z°(Q) for s sufficiently large.
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These assertions imply that the image of A’(0) coincides with the whole space

Z°(Q).

3. The solvability of the linear controllability
problem for dense set of data.

3.1. To prove the controllabilty problem for a dense set of data we need
the Carleman estimate for elliptic and inverse parabolic equations.
We consider the Cauchy problem for the Laplace operator

Az(z) = f(x), x €, z|oq = % =0, (3.1)
o

where © C R is a bounded domain with C'* boundary, 0/0v is the deriva-
tive along outside normal v to 0f).

LEMMA 3.1. Let f(z) € Lao(R). There exists such so > 0 that for any
s > sq the solution z(x) € WZ(Q) of (3.1) satisfies the Carleman estimate:
1 & | 9%2(2) 2
/ — Z ' + 5|Vz|? + 5222 | exp(se™) da
o\ s,/ 2 0x;0z;

Scl/Qf (z)exp(se™)dx, (3.2)

where xy is the first component of x = (x1,...,x,) € Q and ¢; > 0 does not
depend on s.

For the proof of Lemma 3.1 refer to L. Hérmander [27], [28].
We introduce function

(1)
by formula
~v(t) = (T — t)t. (3.3)
We define ¢(t, x), a(t, z) by relations:

et

y(t)’

where ; = max |1
x=(Z1,...,2n)EN

alt,z) = (™ — e*™) /y(t), (3.4)

Qp(t7 x) =
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COROLLARY 3.1. Let f(z) € L2(Q2) and s is just the same as in Lemma
3.1. Then for any t € (0,T) the following estimate is true

n

L

4,j=1

83

v(t)?

§02/f2(x)es¢(t’w)d:v. (3.5)
Q

0?z(x) ?
63:16373-

- v(t)

IV 2|? + 122 | es°(t) dg

Proof. We substitute s = (s17y(t))™! into (3.2) and obtain (3.5) where
instead of s; we write s. In virtue of Lemma 3.1 the estimate (3.5) is true
when s > spy(t). Since 0 < v(t) < 1 for ¢t € (0,T) this inequality is also true
when s > 5. W

3.2. Firstly instead of problem (2.9)-(2.13) we consider an auxiliary
problem. Let €y C R"™ be a bounded domain with C°° -boundary 0¢)

which contains the closure 2 of @ : Q C €y and satisfies the condition
SUP,eq, |71| < 2 sup,eq |71]. Therefore function the 7 from (2.14) is posi-
tive and the function o from (3.4) is negative. We denote

QO = (O,T) X Qo, EO = (O,T) X 690, w = QO \ Q

In )y we consider the linearized Boussinesq equation with the distributed
control concentrated in (0,7") X w:

./(/'(w,p, T,u) = Oyw(t,r) — Aw — ¥ X rotw + w X rotd
+Vp+1(t,z)eq +u'(t,x) = f(t,z), (3.6)

divw = 0, (3.7)

H (w, 7,u) = 0y (t, ©) — AT+ (w, VO)+ (0, V7) +(w, e0) +uny1(t, ) = h(?,w)),
3.8

w(0, ) = wp(x), 7(0,2) = 10(2), (3.9)

w(T,z) =0, (T, z) =0, (3.10)

where u(t,z) = (' (t,z),up+1(t,z)) = (U1, .., Un, Up41) is the distributed
control concentrated in @, = (0,T) X w: suppu C Q. The functional space
for data (f, h,wo, 79) of problem (3.6)-(3.10) are as follows:

(f, hywo,70) € ©°(Qo) = (L2(Qo,1°))™ X L2(Qo,n°) x V() x Wzl((Qo)a)
3.11
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where s > 0 is arbitrary fixed number. We define the functional space of
problem (3.6)-(3.10) by formula

(w, Vp,7,u) € U*(Qo) = V(Qo,1%) x L2(Qo,n°) x O(Qo,n*)
X (La(Qu,n*))" L, (3.12)

where f)g(Qw, n®) is the set of functions which belong to La(Qo, n°) and equal
zero on the set Qo \ Qu; the constant s, in (3.12) is just the same as in (3.11).
We suppose that the functions 0,6 in (3.6), (3.8) satisfy the condition

b e VI2A/2(Q), 0 e W2/2(Q,). (3.13)
As in Lemma 2.1 one can prove easily that the operator
A" U*(Qo) — ©°(Qo) (3.14)
is continuous, where ®*(Q), U®(Q) are defined in (3.11), (3.12) and
A (w, Vp, 7, u) = (N (w, Vp, 7, u), H (w, 7, 1), Yow, YoT) (3.15)

with N, H' defined in (3.6), (3.8).
LEMMA 3.2. The image of the operator (3.14), (3.15) is dense in the space
D5(Qo).

Proof. Suppose that the assertion of Lemma 3.2 is not true. Then there
exists not zero collection ¢ = (m(t,x),((t, x), zo(x), Yo(z)) € P*(Qp), that

(A,(wa VP, T u>7 ¢)<I>S(Q0) =0, v (’LU, Vp? T, U) € Us(QO) (316>

One can rewrite equality (3.16) in the form

/ (Opw(t,x) — Aw — 0 X rot w —w X rot v + Vp(t,z) + 7(t, x)eg

0

+ (¢, ), m(t, z))e® B dy dt +/ (87 (t, ) — AT + (w, V) + (0, V7)
+(wa 60) +un+1)C(t7 I)GQHS dx dt+(w(07 ')7 ZO)Vl(QO) +(9(07 ')7 I/JO)W21 (Q0) = 0.
(3.17)
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We set in (3.17)
2(t 1) = m(t, 2)?T (e, x) = C(t, 2R ), (3.18)

Vp(tv ‘T) = 07 u(t,x) = 07 w € V(QO? n)m(CSO(QO))n,T € @(Q()a U)QCSO(QO)
Then the integrating by parts in (3.17) yields the equations

Oz + Az =rot (0 X 2) + z x rot d + (VA + ¢g) + Vp in Q, (3.19)

8t¢ + AI/J = —V(I/HAJ) + (60, Z) in Qo. (320)
If one set in (3.17) u € (L2(Qu, 1)), Vp =0, w = 0, 7 = 0, he will obtain

the equalities

z(t,z) =0, P(t,x) =0, (t,z) € Quw = Qo \ Q. (3.21)

In particularly (3.21) means that z and ¢ equal zero in a neighborhood of
Yo =(0,T) x 0Qp. After setting in (3.17) Vp € (L2(Qo,n))", w =0, 7 = 0,
u = 0 and taking into account (3.21) we get

divz = 0 in Q. (3.22)
Equalities (3.19), (3.21) yields that
Vp(t,z) =0 (t,x) € Q. (3.23)

Applying to both parts of (3.19) the operator div and taking into account
(3.22) and the formula divroty = 0 we obtain

—Ap = div(z x rot §) + div((V0 + eg)1p). (3.24)

Our main goal now is to deduce from relations (3.19)-(3.24) that z = 0,
1 = 0. We will make it with help of Carleman estimates (3.5), (I1.1.9). We
can suppose that sg in Lemma 3.1 and in Lemma 1.1.3 are equal. Otherwise,
we can interchange them in both Lemmas on their maximum.
Let
o > max(s, sg), (3.25)

where s is the constant from Z°(Q) in Lemma 3.2 formulation. We take
magnitude o instead of s in (I.1.9) and apply estimate (1.1.9) to the equations
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(3.19), (3.20). Note that boundary conditions (I.1.8) are fulfilled in our case
in virtue of (3.21). We have

/ (0| V2|2 + (0¢)3|2]?)e” ) dz dt

0

+/ (00| VY2 + (0p)?[Y|*)e”® dx dt

Qo
gcl/Q 7 ([0]2|Vz|? + |V |22 + |02 (1 + |VO]?) + |Vp|?
+ | 2IV8]? + V| 2[0]% + |2?) dadt.  (3.26)

In the right side (3.26) we need to estimate Vp. We do it by means of
(3.24),(3.23). Note that p is defined to within an arbitrary constant. We fix
it by the condition

pt,x) =0,  (t,z) € Qo. (3.27)
Taking into account (3.23), (3.27) we apply to (3.24) estimate (3.5). Af-

ter multiplication of inequality (3.5) on (vy(t)/o)exp(—e?®1 /y(t)) scalarly in
Ly(£2) and integration respect to t we get

t
/ \Vﬁ]Qemdazdtécz)/ M(\vzﬂw\%\z\2|vrot@\2
0 0

ag
+ VY14 10]) + )2 AG?)e” da di

X 5 7(t) -
gc6(HvH%m,T;(cl@))n)+HGH?;(O,T;Cl(Q)ﬁl)/Q 7(‘VZ’2—HV¢’2)6 da dt-+
0]

T 2 3
112 200 (1) 4
67(”r0tUHLOO(O,T;(WQ(Qo))“)/O (/Q (e (—U ) 2| )da:) dt
1
T 2 3
) () ca
+ 18012 o 7000 | (/ () e dx> ). (229)

We estimate the right side of (3.28) using the continuity of embedding
W2@(Q,) < C(0,T;C*(Q)), WH2D(Qy) C Loo(0,T;WE(Q)),
W3 (Qo) C Ls(Q) when dim Qg < 3 and taking into account that in virtue
of (3.4)

9, (7 2)” < cs(0%?]f? + [V2)e.
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As a result we obtain the inequality

[ 19 dodt < o610

0
A vy e oo
+||9||€V1,2<2)(Q0)+1)/Q (Q(\VZF + Vo2 + W(\Z\Q + \¢|2)) e’ dz dt.
0]

4 ) (3.29)

The substitution of (3.29) into (3.26) and simple transformations give us the
upper bound:

oe” 2 2 @ 2;2 2 e’ dr
(S wett 901+ Sl oty )
()

< (1l snan + W + 1) [ (B2 +1) 0V + 90
0

+ (U ¢ + 1) (2% + ]¢\2)) e?“dxdt. (3.30)
V(1)

Note that (3.30) is true for arbitrary o satisfying (3.25). We choose ¢ so
large that estimates

oe®1 . - ,y(t)
W > ClO(||UHV1,2(2)(QO) + HHHWLQ(Z)(QO) + 1) (7 41,

0.363331 9 N 0.62331
— O|71,2¢2 o 2 1,2(2 1 L),
> aollol gy + 100 ey + 1) ( S +1)
hold for all (¢,z) € Qo. Then (3.30) yields that

z(t,z) =0, Y(t,z) = 0. (3.31)

In virtue of (3.18)-(3.21), (3.31) integrating by parts in (3.17) when Vp = 0,
u=0,w € V(Qp,n),T=0and Vp=0,u=0,w=0,7 € O(Qo,n) gives us
the equalities

(w(0, ), ZO)Vl(Qo) = (w(0,), 2(0, '))Lz(Qo) =0,
(w(0,-), Yo)wi () = (7(0,),%(0,°)) o) = 0.

Therefore
20 = 0, ¢0 =0. (332)

Hence, by (3.18), (3.31), (3.32) ¢ = (m(t, z),((t, 1), 20(x), Yo(z)) = 0. W
3.3. Now we can prove the main result of this section.
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THEOREM 3.1. Suppose that v € V1’2(2)(Q),§ € W23)(Q), the operator
A'(0) is defined in (2.23), (2.9), (2.11) and the spaces X*(Q), Z*(Q) are de-
fined in (2.14)-(2.21) and the parameter s of these spaces is arbitrary positive
number. Then the image of operator

A'(0) : X°(Q) — 2°(Q)

is the dense in the space Z°(Q).

Proof. Let 2y, Qo be the sets introduced in the beginning of section 3.2.

By Propositions 2.2, 2.3 we extend the functions v(t, ), 6(t, x) continuously
from

V122)(Q) up to V123)(Q) and from WH22)(Q) up to W22 (Qy) cor-
respondingly and denote these new functions also by 0(¢,z),6(t,z). Com-
paring (3.6)-(3.9) and (2.9)-(2.12) we see that the restriction of operator

(3.14), (3.15) on the cylinder @, coincides with the operator
A'(0): U*(Q) — °(Q) (3.33)
where A’(0) is the operator (2.23) and in contrast to (3.12)

U*(Q) =V(Q,1°) x L2(Q, ") x O(Q, ") (3.34)
because the restrictions of arbitrary function from Lo (Qu,n?®) to @Q is identical
zero. Therefore in virtue of Lemma 3.2 the image of operator (3.33), (2.23)
is dense in ®°(Q). Let (f,h,vo,00) € Z°(Q) (see (2.21)) be an arbitrary
element. Since f € F*(Q) (see (2.17)) then f = f1 + Vfy where f; €
Lo(Q,n°), fo € La(0,T;W3(Q)) and therefore (f1,h,vo,00) € ®*(Q). By
the density of the image of operator (3.36), for every e > 0 there exists
(ff,he, v, 0% € ®°(Q) possessing preimage (v, p,0°) € U (Q) :

A'(0) (v, p5, 0% = (ff, S, v§, 05) (3.35)
and satisfying the inequality:

||(f1 _flevh_heavo_v(e)ago_g(e))’

5(Q) S €. (336)
In virtue of (2.9) and (3.35)

A'(0) (v, p° + f2,0°) = (fT + Va2, h%, 05, 0). (3.37)
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Since f — (ff +Vf2) = f1 — ff then by (2.21), (2.18), (3.11), (3.33) we have:

[(f = (fi +Vf2),h—h 00 —v5, 00 — 0°)] 25 (@)
S H(f_ffvh_he7vo_U(€)790_98)‘

so(Q) < € (3.38)

By (3.12), (2.20) the inclusion (v€,p,6°) € U®*(Q) involve the inclusion
(ve,p¢ + f2,0°) € X*(Q). Hence, by (3.37) (v, p¢ + f2,0°) is preimage of
(ff + V fa, he, 0§, 05). This proves theorem. W

Note that for the case of the Stokes system the results similar to Theorem
3.1 were proved in [23], [24].

4.0n a decomposition of Weyl type.

In this section we investigate the decomposition of the Weyl type

y(t, 33) =(t,x) + Vq (ta 33) € Qo, (4.1)

where divv = 0 and Vg = (0;,¢, - - ., 0z, q) is the gradient of a function. We
do not impose any boundary conditions on v or Vq but look for v belonging
to the space V(Qo,n) when y € (0(Q,n))". We do not look for natural
uniqueness conditions for the decomposition (4.1) but need that the following
assumption would be fulfilled:

if divy(0,z) = 0 then y(0,z) = v(0, ). (4.2)

To find decomposition (4.1) we consider the extermal problem:

u(t, z)|%e?"
J(u) = / % dx dt — inf, (4.3)
Au(t,z) = divy(t, ), (t,z) € Qo, (4.4)

where y(t,z) € (©(Qo,n))™ is a given function. If a solution m(t,z) of
problem (4.3), (4.4) would exist then we denote v = y — Vm and by (4.4)
the equality divv = 0 and therefore decomposition (4.1) would be true.
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LEMMA 4.1. There exists such sg that if y(t,z) € (0(Q,n*))" where s >
S0, the problem (4.3), (4.4) has the unique solution m(t,z) € La(Qo,n —
2In(T —t)). This solution satisfies the estimates:

t,x)|? o5 divy|? , -
/ Me% dr dt < 01/ Me% dz dt, (4.5)
T o, T—1)
/ Byt 2) 22" da dt < eyl g (4.6)

0

Proof. Let sq defined in Lemma 3.1. We denote Q. = (0,7 —¢€) x g and
instead of (4.3), (4.4) consider the extremal problem

Je(u) = / %627’ dx dt — inf, (4.7)
Au(t,z) = divy(t, x), (t,x) € Q.. (4.8)

The weight €27(T —t)~* is bounded above and below on Q.. Hence the space
Ue ={u € Ly(Q.) : Au € Lo(Q.)} is natural for the problem (4.7), (4.8) and
the set of its admissible elements is as follows:

A ={u e U, : Au=divy}.

As well-known, the limit m,. € A, of weakly converging subsequence of min-
imizing sequence uy: Je(ur) — inf,ca, Je(v) is the solution of problem
(4.7), (4.8). The uniqueness of m, follows from the functional J, strict-
convexity. For ¢; > €s , m, (t,x) coincides almost everywhere with restric-
tion of me,(t,x) on Q,. Indeed, if it is not so then J, (me,) < Je, (me,).
But in this occasion m., is not solution because the function

A~ t _ m€1 (t7 x)? (t7 x) E QEl?
m(t, ) = { Me, (t,2), (t,x) € Q,.

satisfies (4.8) and inequality J.,(m) < J,(m.,). That is why below we use
the notation: m. = m. Since operator A : U, — Lo(Q.) is epimorphism
we can apply to problem (4.7), (4.8) the Lagrange principle (see [1]). This
principle asserts that there exists p. € (La(Qc))™ such that the Lagrange
function

u(t, z)|?
L(u,pe) = /Q (%%62” + (Au— divy)pe(t,x)) dx dt
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satisfies the equality 0, L(u, pe)|lu=m = 0, i.e. for any h € U,

/ (%e% + Ahp,(t, x)) dz dt = 0. (4.9)

It follows from (4.9) that

Ope
ov

m(t, x)
T — )

=0. (4.10)
00

Ape(taw) + 6277 = 07 in QO; p6|8§20 =

Relations (4.10) imply that p. does not depend on € and therefore, below,
we use the notation: p. = p. We apply to (4.10) Carleman estimate (3.2),
substitute in this estimate s = s1(T — t)~!, multiply it on (T — t)* and
integrate with respect to t. As a result we have an estimate:

2
/ (T — t)pQQ*Qn dr dt < cs /Q (Triit)ﬁlfgn dx dt, (4.11)

where c3 > 0 does not depend on € . After scaling equation (4.4) for m by p
in Ly(Q.),, integrating by parts and applying (4.10) we get

0:/ (Am—divy)pda:dt:/ (mAp — pdivy)dx dt =

€

m2 2n .

This equality and (4.11) yields

2 < ]2 3
m 2n divy|® , 2 -2
———e“Tdxdt < ¢y (/ e“"dxdt (T —t)|p|°e " dx dt
/ (T —t)* Q. (T—1) Q

s 12 2
§05/ Me%da@dt—kl/ Le%’d:vdt.
Q. (T'—1) 2Jq. (T

that gives us upper bound

2 di 2
4 (T‘nzit)éle2n dx dt < cg /Q %6277 dx dt, (412)

Nf=
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where cg does not depend on e. Hence we can pass to limit in (4.12) as € — 0
and obtain (4.5). Let 7 be the solution of problem (4.3), (4.4). Since m is
the solution of (4.7), (4.8) we have

2 )

/ m 2n / m 2

——edxdt < ——e"dx dt Ve > 0
Q (T —t)4 ~Jo (T —t)4

and therefore
)

2
m o _/ m 9
——e“dx dt = ——edx dt.
/“T%ﬂ (T =)

This equation implies the equality m = m because of the uniqueness of
solution of problem (4.3), (4.4). After differentiation of the equations in
(4.3), (4.10) with respect to t we get
Adym = div Oy, (4.13)
2n

e e2n

Applying to (4.14) the Carleman estimate (3.2) by the same way as in (4.11)
we obtain

/ |VOup|>(T —t) e " de dt < 07/ (|0;m|* + (T — t)"*m|*)e*" dx dt.

0 0
(4.15)
Scaling equation (4.13) by 0;p in L2(Qyo), integration by parts, and applica-
tion (4.14) yield

0= / (T — t)*(Adym — divo,y)0ip dx dt = / (T — t)4(6th6tp

0 0
e2n

o7
— (T — t)*(0y, VOyp)) da: dt.

— (O1y, VOip)) dx dt = / (—|0ym|*e®" — ((8;m)mo; T —t)*

0

From this equality we get taking into account (4.15):
21
e

/‘@m%MMﬁg%/(@mW%T:W

0 0

1
+ (T — t)2|0,yle (T — t)% |V yp|) d dt < Z/ |0ym|?e® da dt

0

ml?
+ Cg/ (ﬁ€2n + (T - t)\@ty|2e2”) dx dt.
0
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This inequality and (4.5) imply (4.6). H
Let

p(x) € C*(Qy), plog, =0, p(x) >0, Ve .

Below, we use the following space

M(Qo,n) ={f = (f1,---, fn): ||f||?\4(@0,n) = (T — 75)71fH%Lz(Qo,nS))’”L
IV 1100 meyyn + T =00 f 1L 00 me )

+ Z (T = )02, I 2o meyyn < 00} (4.16)

1,7=1

LEMMA 4.2. Let m(t,x) be the solution of problem (4.3), (4.4) constructed
m Lemma 4.1. Then

10>Vl (0. < C1011YllT(Q0m)n- (4.17)

Proof. Set m = mp. Then by (4.4) for m
Am =mAp+2(Vp,Vm) + pdivy. (4.18)

We multiply this equation by —e*7m (T — t)~2 scalarly in L2(Qo), integrate
by parts and have as a result

1
/ |V |2e? (T — t) 2 dx dt = / (T — t)_2(§]m\2A62’7 — m2pApe*+
0 Qo

1
—m?(Ap?e® + (Vp?, Ve ™)) — p?me?"div y) dx dt

2
2
m . 2 2
SCll/O (m+|dlvy| )6 Tdx dt.

This inequality, (4.5) and the definition (2.16) of space ©(Qo,n) yield:

[pVpm]? 5 / IV(pm)? ,
e ldxdt < 2 e*Mdx dt
/0 (T—t)2€ €T S C12 i (T—t)2€ Xz

m?2|Vp|?
+/ ‘726277 dadt < c13lylfegomyn-  (4-19)
0 (T - t)
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Denote mg = mp?e”. Then we have analogously to (4.18)
Amg =g, moloa, = 0, (4.20)

where g = mA(p%e”) + 2(V(p%e"), V) + p2edivy.
By (4.5), (4.19) we get

19122y < c1allyll@(Qo.m)n- (4.21)

Applying to elliptic boundary value problem (4.20) well-known estimate of
its solution and taking into account (4.21) we obtain

HmOH2L2(0,T;W22(QO)) = ||mp2enH2L2(0,T;W22(Qo))
< c1sll9l1Z,00) < C16llylldigymn-  (422)
Since
02 0 (P 2 210, (%02, m)e"
= c17(1p*(05,m) 05, €"? + (02,m) D, (p*€)* + |3 (p*e"));
then inequalities (4.22), (4.19), (4.5) imply the estimate

/ ¥y |02, (p*Vm)? dx dt < c16 / ST 182, (pPmem)

o =1 Qo jj=1

+ 1% (02, m) 0, €| + [(02,m) D, (p%€")|? + [, (p*e™)[?) d dt

< coollyllie(@omyn  (4-23)

J

Denote m; = p>(dz,m)e (T — t). Then by virtue of (4.4) with u =m

Am; = g, milaq, = 0, (4.24)
where
gi = (02, m)A(p*e" (T — 1)) +2(V(p*e(T — ), 0, V) + p*e(T — )0y, div y.

Applying to the solution m; of problem (4.24) estimate of solution of Laplace
equation we get as in (4.22) taking into account (4.5), (4.19), (4.23):

19* (0, m)e™(T = O)II70,75w2(00)) < c20([1(02,m)A(p°™(T = 1))I[7,q0)
1
+ H(?V(pgen(T — 1)), (82, (p°V'm) = 20z, 0)pVm))||7 00y +

1p*e"(T = 1)0:,divyll7,q,)) < c21llylogomy-  (4:25)
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As in (4.22), inequalities (4.25) with i = 1,...,n, (4.23), (4.19), (4.5) yield:

[ S B (PIIPE —  dedt < callfoge (420
k,l=1

In virtue of (4.13)
A(poym) = OymAp + 2(Vp,Voym) + pdivoy. (4.27)

Scaling (4.27) by —(pd;m)e* (T —t)? in L2(Qo) and integrating by parts we
have

1

/ |V (pdym)|*(T—t)? dz dt = / (§p(8tm)2A627’(T—t)Q—p(ﬁtm)QApe%’(T—t)2

+ (T — )*(0ym)?div(e"Vp?) — p?0ym(div Oyy)e* (T — t)?) dz dt.

N —

This equality implies

/ |pVOm|* (T — t)?e*" d:vdtﬁczg/ |0sm|? (coa| V p|2(T — t)? + p?

0

+1pAD|(T = 1) + cos(T = O)(IV5] + (T — 1) Ap?])e? dar

+ / [(pVOrm, Oyy) pe®™ (T — t)* + 0;m(V (p*e*", Opy) (T — t)?] dx dt
0
1
< c%/ |8ym|2e*" dx dt + 5/ |pVOym|*(T — t)?e*" dx dt
0 0
. / MOy BT — )2 da dt < cas [yl Py e (4:25)
Qo

After transfering the term with pVdym from the right side of (4.28) to the
left side we get with help of (4.6) and (2.16)

/ PV Am[A(T = )% da dt < cas][y] 2oy
0

Upper bounds (4.19), (4.23), (4.26) imply (4.17). &
We prove now the main result of this section.
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THEOREM 4.1. Let s satisfies to the condition of Lemma 4.1. An arbitrary
vector field y € (0(Qo,n®))™ admits decomposition (4.1), where v(t,z) =0
and p3Vq € M(Qo,n°) and if y(t,z) satisfies equality divy(0,z) = 0, then
y(0,z) = 2(0, ).

Proof. We define the function ¢(t) € C*°(0,T), such that ¢(t) = 0 when
t € (0,T/4), ¢(t) =1 when t € [3T,T]. Let m(t,z) be solution of problem
(4.3), (4.4) constructed in Lemma 4.1. Since y € (0(Qq,n))™ then for almost
all t € (0,7), Am(t,-) € La(Qp) and in virtue of (4.5) m(t,-) € La(Qp).
Hence, (see J.L. Lions, E. Magenes [53]) the restriction m(t, -)|aq is defined

and belongs to W21 / 2(890). We introduce the function ((¢,z), defined on
(0,T) x 99 by formula

C(t,x) = p(t)m(t, ) te (0,T), x € 0Q
and consider the following Dirichlet problem
Aq(t,z) = divy(t, x), (t,x) € Qo, (4.29)

ql(0,ryx80, = ¢- (4.30)

The unique solution ¢(t, x) of (4.29), (4.30) exists ( see J.L. Lions, E. Magenes
[53]) and in virtue of properties of (¢, x)

q(z,t) = m(t,x) V (t,z) € [3/4T,T] x Qq (4.31)
and
Y (t,z) € [0,T/4] divy(t,z) =0 imply q(¢,x2) = 0. (4.32)

In virtue of (4.31) and (4.17) we have: p3Vq € M(Qo,n). Besides (4.2)
follows from (4.32). B

5. The proof of main results.

5.1. First of all we want to prove the exact controllability problem for
linearized Boussinesq equations (2.9)-(2.13). To do it we apply the analogous
controllability result for parabolic equation and parabolic system which is
formulated below. We consider the controllability problem for heat equation

0f(t,x) — AO(t, ) = h(t,x) (t,z) € Qo, (5.1)
9|t:0 = 90(%), g‘t:T =0, T e QO, (52)
where the functions h € La(Qo,n), 0o € W3 (Q) are given .
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THEOREM 5.1. There exists a number sy that for any s > sy and for
arbitrary given 0y € W3 (Qq), h € La(Qo,n°) there eists the solution 0 €

©(Qo,n°) of problem (5.1), (5.2).

We consider also the controllability problem for the following parabolic
system
aty(tv ‘T) — Ay —d xroty = f, (t7x) € Qo, (53>

Yli=0 = o, Yli=r =0, x € Q. (5.4)

THEOREM 5.2. Let 0(t,x) € V122)(Qo) be given. Then there exists a
number so such that for any s > so and for arbitrary given data yo €
(W3(Q0)™, f € (L2(Qo,n*))"™ there exists the solution y € (©(Qq,n*))"
of problem (5.3), (5.4).

One can prove the Theorems 5.1, 5.2 in absolutely same way as Theorems
1.2.1, 1.3.10 using the carleman estimate (1.9) instead of (1.6). Let us prove
one abstract lemma.

LEMMA 5.1. Suppose that X, Y are Hilbert spaces, a bounded linear oper-
ator B : X — Y s epimorfism and K : X — Y is a linear compact operator.
Then the image of operator B 4+ K is closed in'Y .

Proof. For an arbitrary € > 0 there exists the operator K. that has finite
dimension image and
| K — K| <e. (5.5)

The equality
B+ K =B.+ K, where B, = B + (K — K)

is true. If in (5.5) € is small enough then the image of operator B, coincides
with whole Y. Thus, we reduce the Lemma 5.1 to the case when operator
K : X — Y has a finite dimensional image. We can suppose also that
Ker BN Ker K = 0. Indeed, if it is not so we introduce the factor space
X1 = X/(Ker BN Ker K), define operators B; and K; by formulas

B,z = Bz, Kiz = Kz, where T=x+ Ker BN Ker K

and consider the problem on closure of operators By + K7 : X; — Y image.
Since operator K has a finite dimension image then there exists a finite linear
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independent system of vectors eq,...,ex € Y and linear independent system
of bounded functionals fi,..., f, on X such that

k
Kz = Z fi(z)e;.
j=1

The linear independentness of fi,..., f,, means that there exist such linear
independent vectors gi,...,gx € X that f;(g;) = 6;;, where is Kronecher
symbol. Hence the space X admits the decomposition

X =[g1,..-,91] + Ker K,

where [g1,...,gk] is a linear span of gq,...,gx. Since Ker BN Ker K = 0
then dimKer B < k and X admits the decomposition

X=S+KerB+ KerkK,

where S is a certain finite dimension space. Let By, Ko be the restrictions
at the space S + Ker K of the operators B and K respectively. Since the
operator

B:S+KerK—Y

is isomorphism then by Fredholm theorem the image By + K5 is closed and
has a finite codimension in Y. The coincidence (By + K2)(S + Ker K) =
(B + K)(S + Ker K) implies the including

(B+K)(S+ KerK) c (B+K)X.

Hence (B+ K)X = (B+ K)(S + Ker K) + S1, where S7 is a certain finite
dimensional subspace of Y. Being a finite dimensional space the subspace S
is closed. Hence (B + K) is closed. B

5.2. Now we prove the assertion on closure of set of data for which the
controllability problem for the Boussinesq equations has a solution.

THEOREM 5.3. Let d(t,z) € V12)(Q),0(t,z) € WH22)(Q). Then the
set of data (f,h,vo,00) for which there exists a solution (v,p,0) € X*(Q)
of problem (2.9)-(2.13) is closed in the space Z*°(Q) when magnitude of pa-
rameter s is sufficiently large (spaces X*(Q),Z°(Q) are defined in (2.20),

(2.21)).
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Proof. To proof this theorem we intend to apply Lemma 5.1. We decom-
pose the operator generated by the problem (2.9)-(2.13) by the sum B + K,
where B is the operator generated by the problem

Ow(t,z) — Av—v xrotv+Vp = f(t,z), divv =0, v(0,z) = vo(x)

o~

00(t,z) — A0 = h(t,z), 0(0,z) = Op(x),
0.

5.6
2.7
(T, x) =0, o(T, z) 5.8

)
)
(58)

The operator K is defined by the formula
K(v,p,0) = (—v x rot & + feg, (0, V0) + (v, V) + (v,e0),0,0). (5.9
The boundness of the operator
B:X°(Q) — 2°(Q) (5.10)

is proved in Lemma 2.1. To prove that operator (5.10) is epimorphism we
firstly, change (5.6) for the more simple equations:

Oy(t,x) — Ay —v xroty = fi(t,z),  y(0,2) = yo(z). (5.11)

Let Qo, 2o be the set introduced in the beginning of the section 3.2. We ex-
tend continuously o(, z) from V12(2(Q) to V122 (Qy) as well as 0(t, z) from
W12@2)(Q) to Wh2(2)(Qq) using Proposition 2.3 and consider the problem
(5.11), (5.7) on Qo. Note that yo(z) € V() is an extension of v € V().

We choose parameter s satisfying conditions of Theorems 4.1, 5.1 and 5.2
simultaneously. Then by virtue of these theorems for an arbitrary (f1, h, y0,60) €
(L2(Qo,1m%))"™ X La(Qo,n®) x V() x W4 () there exists a solution (y, §) €
((©(Qo,n*))™ x ©(Qo,n®) of problem (5.11), (5.7) on Qy. With help of The-
orem 4.1 we decompose the component y of this section as follows:

y(t,z) =v(t,x) + Vq, (5.12)
where dive = 0, p?Vq € M(Qo,n°) where M(Qq,n) is space (4.16) and
y(0,z) = v(0,x) = yo(x). We substitute (5.12) into (5.11) and verify that
v(t, x) satisfies the equation

Ou(t,z)—Av—vxrotv+Vm = fi(t,x), dive =0, v(0,z) = yo(z), (5.13)

m = (Oq — Aq). (5.14)
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Now we can prove that (5.10) is epimorphism. Indeed let (f,h,vg,6y) €
Z5(Q) = F(Q,n°) x La(Q,n*) x VI(Q) x W3(Q). By the definition of the
space F'(Q,n) the decomposition

f=H+Vf,  fLeL2AQ,n)",  f2€L2(0,T; W5 (RQ))

holds. After extension of f1, fo, h from @ to Qg and vg, 6y from Q to €
we get as was shown above the function (v, m,#) which satisfy (5.13), (5.7),
(5.8).Evidently, if we define

p=m+ fo (5.15)

then (v,p, ) satisfy (5.6)-(5.8). After the restriction of (v,p,0) at @ this
triplet satisfies (5.6)-(5.8) which considered as defined on . We made the
extension from @ to Qg and after that restriction from Q¢ to ) to have the
equality (5.12) on @ with Vg € M(Q,n®) (the restriction to @ allows us to
take off the multiplier p* including p>Vq € M (Qo,n°). Since Vq € M(Q,n?)
then in virtue of (5.14), (5.15) p € Lo(0,T; W3 ()).

Equality (5.12) and inclusions Vg € M (Q,n),y € (0(Q,n))™ give us that
all terms in definition (2.19) of || - ||y(q,,) for v are finite expect, may be
|0sv — Av|| (@, Let us show that this term is also finite. In virtue of (5.6),
(5.15), (5.14)

HatU—AUHF(Q’n) = ||f1+f)><1‘0t U—f—Vfg—VpHF(Qm) < Hfl—l—@XI‘Ot UH(LQ(Q,W))”“
+ IV f2 = Vpll(La@myr < er(lfilla@umym+
191l (c@yn 11Vl 2@y + IV (O — Al (2o(Quny)n) < 0.

Hence v € V(Q,n) and therefore we have proved that the operator (5.10) is
epimorphism. We prove now that the operator

K:X%(Q) — Z°(Q) (5.16)

is compact, where K is define in (5.9). This assertion is reduced to prove
compactness of the operator

Ky X2(Q) — (L2(Q,n))" x La(@, n), (5.17)

where

Ki(v,p,0) = (—v x rot b + Oeg, (6, VO) + (v, VO) + (v, ep)). (5.18)
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We have
T
/ / e*(Jv x rot 9% + | (8, V) + (v, V) + (v, e)|?) da dt
T—6 JQ
T

T
< 510112000 ) + 1013m0m ) + 1)0 /T 5 /Q (T — 1) (Jof? + 6)
(T — ) VOP2) dwdt < cacsd (012 a0 ) + 1013mmg))  (5:19)
uniformly with respect to
(0,0) € @ = {(0,0) : [[o]2 ) + 101B ) < 1

Evidently, at Q° = (0,T — §) x Q we have

V(Q ) =VIO@Q), @) =W"?Q%),  L(Q".n) = L(Q")
and by the Sobolev embedding theorem the operator
K VI2O(Q7)x Ly (0, T W () x W O(QF) — (La(Q))™ ' x V(@) x W3 (Q)

is compact. This property of operator K and (5.19) prove the compactness
of operator (5.17), (5.18). Hence, all assumptions of Lemma 5.1 are true and
by this lemma we get assertion of Theorem 5.3. H

Now we can prove immediately

THEOREM 5.4. Let © € V1’2(2)(Q),é e W2@)(Q) and a magnitude of
parameter s is sufficiently large*. Then for an arbitrary data (f,h,vg, 0y) €
Z°(Q) there exists a solution (v,p,0) € X*(Q) of problem (2.9)-(2.13).

Proof. By Theorem 3.1 for a dense set of data (f, h, vg, 0p) € Z°(Q) there
exist the solution (v,p, ) € X*(Q) of problem (2.9)-(2.11). By Theorem 5.3
the set of data (f,h,vg,0p) for which there exists a solution is closed in
Z°(Q). Hence, the set of data for which there exists a solution of problem
(2.9)-(2.12) coincides with Z°(Q). &

The proof of Theorem 1.1. Firstly we apply the right inverse operator
theorem to problem (2.3)-(2.7). Let A be operator (2.8), (2.3), (2.5) and

*More precisely, s simultaneously satisfy the conditions of Theorems 4.1, 5.1, 5.2
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the spaces X = X*(Q), Z = Z°(Q) are defined in (2.20), (2.21), (2.15)-
(2.19).Taking into account that A is a sum of linear and quadratic operators
we can assert that continuous differentiability of operator (1.4.2) follows from
Lemmas 2.1 and 2.2. Equality (I1.4.3) is evident for zy = 0, zg = 0. At last,
the assertion that operator

A'0) : X*(Q) — 2°(Q)

is epimorphizm was proved in Theorem 5.4. So, all assumptions of the right
inverse operator theorem are fulfilled and therefore there exists such € > 0,
that for any initial data (wp, 1) satisfying inequality

lwoll$1 0y + ol 0y < €

and for zero right sides of equation (2.3), (2.5) the problem (2.3)- (2.7) posses
the solution (v, q,0) € V(Q,n*)x L2(0,T; W3 (Q))xO(Q,n®). After returning
from problem (2.3)-(2.7) to problem (1.1)-(1.4), (1.6) by change of variables
(2.2) we get the assertion of Theorem 1.1. B

Remark 5.1. As we pointed out in Remark 1.1 the smoothness condition
on the given solution (9, p, é) in Theorem 1.1 can be changed on more weak
condition (1.14). This changement of condition would lead to the complica-
tion of Theorem 5.3 proof which we show below. That is why we approximate

functions o, # by a functions 0. € V122 (Q), 6, € W22 (Q):

19 = Dellyr2a/2 Q)L (@) < € 16 = Oellvwr.20/2 @)nr (@) < € (5.20)
where € is sufficiently small. We can write:
B+ K=B+R.+ K.,
where
K.(v,0) = (—v x rot d. + Oeq, (v, VO) + (v, V) + (v, eg),0,0),

R(v,0) = (—v X rot (0 — 0.), (D — e, VO) + (v, V(0 — 6.)),0,0).

In virtue of (5.20) the operator R, : X*(Q) — Z°(Q) has a small norm
and therefore the operator B + R, : X*(Q) — Z°(Q) is epimorphism. The
compactness of operator K. : X*(Q) — Z°(Q) has been proved in Theorem
5.3. Hence by Lemma 5.1 the image of operator B + R, + K. coincides with

75(Q) .



CHAPTER 1V

EXACT CONTROLLABILITY
OF HYPERBOLIC EQUATIONS

Introduction

In this chapter we study problems of exact boundary controllability of
second order hyperbolic equations. In the first section we concern on the case
of the linear hyperbolic equation. As in chapters I-I1I to solve controllability
problem firstly we prove some a priori inequalities of Carleman inequality for
the adjoint hyperbolic equation. To convert this inequality into an existence
theorem we use duality arguments. Finally existence result is obtained under
an assumption of existence of psevdoconvex function (see condition 1.1). The
section 2 is devoted to the study of exact controllability problem for the one
dimensional second order hyperbolic equations. In this case, the situation is
more complicated compared to the linear case, and solvability of the problem
depends on a behavior of nonlinear term at infinity.

Firstly the problem of exact controllability of linear hyperbolic equations
was studied in the works of D.L. Russel and H. O. Fattorini. They introduced
the following methods (see the excellent survey paper [56]).

1.Reduction of controllability problem to the moment problem.

2.Extension method to the whole space.

3 Use of harmonic analysis in control theory.

4.Introduction of stabilization operators.

5.Multiplier method.(see also [26], [39], [52] and references there in)

For controllability of hyperbolic equations with constant coefficients and
control distributed on the whole boundary there is a method based on the
Fourier and Radon transforms introduced by W. Littman in [54]. During past
few years there has been a marked progress in controllability theory of linear
hyperbolic equations. Two powerful methods were introduced. The first one
based on the theory of pseudo-differential operators and microlocal analysis

138
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(see [6], [33], [34]). Existence theorems proved by this method under non-
trapping condition are sharp. Unfortunately the use of pseudo-differential
operators requirs that the coefficients of main part of hyperbolic equation and
boundary of domain belongs to C*°. The second method based on Carleman
inequalities can be applied to wide class of evolution equations (see [61]).
This method does not demand high smoothness of coefficients of hyperbolic
equations. Despite of the results obtained in [60] and [61] are general they
are not sharp, since the control is distributed on the whole boundary. Below
the sharp Carleman’s inequality is proved for particular case of second order
hyperbolic equations. Existence theorems proved by second method demand
the existance of a pseudoconvex function. There is a very interesting (and
still open to the author’s knowledge ) question : Does the fulfillment of
non-trapping condition imply the existence of pseudoconvex function?

Unfortunately, to the author’s knowledge there are not so many results
on controllability of semilinear hyperbolic equations. First there is the local
existence theorems, similar to what we proved for the Navier-Stokes system.
For the case of nonlinear term with sublinear growth there is an existence
theorem due to I. Lasieska and R. Triggiani. The results, presented in section
2, are from [36], while results of section 1 are from [35] and [65].

1. Controllability of linear hyperbolic equations

Let Q C R™ be a bounded domain with the boundary I' = 9Q € C2, 'y
be an arbitrary subdomain of I' and I'y = I'\T'g. Denote Q1 =]0, T[xQ, X1 =
10, T[xT, X% =0, T[xTg, X% =]0, T[xT;. Denote x = (zg,z") = (zg, 1, ..., Tpn),
¢ = (¢o,¢") = (Co,C1y -+, Cn). Here we use notation ¢ = z( for the time vari-
able and 2’ for the space variable. Benefits of such notation will be clear
below.

Let function y(xo,z") satisfy the boundary value problem

0%y "9
Pu= 54 2 o (05 ) ¥ 2005

+c(2')y =g in Qr, (1.1)

1=

y\ng =0, y‘zOT =1u, (1.2)

—(0,2") = vy (2'), (1.3)
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where functions vg, v1, g are given, and u is a control function. Let we have
target functions vs, v3. To solve exact controllability problem one should find
control u such that function y at moment T satisfy equations

9y

e (T,z") = vz(x). (1.4)

y(Tv 33',) = U2($,)7
We assume that coefficients of the linear operator P satisfy conditions
a;; € CQ(Q), Qi = Qjj, b; € Cl(ﬁ), (S LOO(Q), (15)

where 7,7 = 1,---,n and the uniform ellipticity: There exists § > 0 such
that

a(2',¢, Q)= Y ay(2')¢¢ > BIC)> VCeR™!, a2’ eq. (1.6)

,j=1

For two an arbitrary smooth functions ¢(x, (), (z,() we define Poisson
bracket by the formula

(000 D I
{¢,¢}—;(398—%_8xi89)'

Denote by p(z, () the main symbol of operator P:

n

p(w,¢) =G — > (@)

1,7=1

To formulate our results we introduce the functional spaces

o0 9y _ e
XT = {y(x()?x/)‘y €L (OvT; W%(Q)% 6—1'0 el (O7T; L2(Q))}7
0 _
Y = {y(wo,a')ly € L0, T LHQ), 52 € L¥(0,T: Wy ()}
equipped with norms
dy
19llxr = Yl 0,mwi ) + ' 920 ;
L°°(0,T;L2(Q))
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9y
8.1‘0

rwnnwzrwnbnmfﬂpgn>+' |
Loo(0,T; W5 1 (2))

Let us consider the boundary value problem

. 0% "9 ,\ 0z "0 , N
Prz= org Z Ox; (a(x)ﬁ—%) _gﬁwi(bi(x)2)+0(w )2=0in Qr,

Q=1
(1.7)
0z

zls, =0, 2(0,2") = zo(2'), G—M(O,x') = 21 (). (1.8)

The following Theorem proved in [52],[44].
THEOREM 1.1. Let (1.5), (1.6) be fulfilled. Then for any initial date

20 € W3(Q), 21 € L3(Q) there exist a unique solution of the problem (1.7),
(1.8) z € X which satisfy inequality

9z

ol + | 52

< a(llzollwp ) + lz1llz2@)- (1.9)
L2(ZT)

We assume that the following condition holds

CONDITION 1.1. There exists a function ¢o(z') € C?*(Q) such that

Io

_ "9
! / mn /
V' € Q, "€ R™\ 0, ;Zl —8Cia(x , Q)
and inclusion holds

LoD {z' €T a(z',v,Vo(z')) < 0}.

We have

THEOREM 1.2. Let 29 € W3(Q), 21 € L*(Q), (1.5),(1.6) and condition
1.1 be fulfilled. Then there exists a constant Ty such that for any T > Ty
solutions of the problem (1.7),(1.8) satisfy the estimate

0
ol < D) |

. (1.10)
£2(29)
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Proof. Set ¢(z) = & (2o — T/2)? + ¢o(a’), where ¢o(z’) is a function
introduced in the Condition 1.1. The magnitude of parameters ¢ € (0,1)
and 7" > 0 will be defined below.

Follow to [27] we introduce the notations:

2

. o .
pU z, —p(z, pUk) z,() = z, (),
(z,¢) = ij( oF (z,¢) 8Cj8Ck:p( 9
0
Pi(,¢) = 5 pla0).
Set
= 6 6
_ /
Q(x) - C(Q}' )Z + Z 61’1 Z 6 6.11]
=0 i,j=1
By (1.7) equality holds
0%z - 0%z .

ij=1
Denote u(x) = z(x)e™*?, q5(x) = ge=*%. It follows from (1.11) that
Yy = e *?Le*%u = e %Lz = ¢, in Q. (1.12)
The short calculations gives equation
Lu+ Liu=gsin Qr, u|n, =0, (1.13)

where

n

Lyu = Z 5o, PD (z, V),

=0

n

gs(w) =(s + Z aij(82¢$i¢xj + Sgbxixj) - S¢xoxo - 52¢3:Q u.

ij=1
Taking Lo- norm of both parts of (1.13;) we obtain
HgSH%Q(QT) = HLU’H%Q(QT) + HLWH%%QT) + 2(Lyu, Lu)r2(Qq)- (1.14)

Let us transform the last term from right side of (1.14). We have
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LEMMA 1.1. The following equality holds
(Lau, Lu) 200 :/ %is@c.])(i)(az Vu)
bl T Q 8{1)0 — 7 b
s _Ou NT
— 8¢z, p(x, Vu) + 598—33015 dx ‘0

+ S/ET (%)QGW,V, v)a(z, v, Vé)ds — S/T ({p, {(p, o} }(z, V) +

> P Vu)ou PO, Vu) = 3 62, PO, Vu)u + g,0u—
k,i=0 =0

- daij Ou ou 060 ou 00
— — . (11
Z (8331 8Ij0u+ajﬁxju8wi) 8%0 8w0u du ( 5>

,j=1

where *

n

0@) = > (Gura, PY™ (2, V) + ¢, PL™ (2, Vur)).
I,m=0

Proof. Note, that since u|s, = 0, then

ou ou

v, vi=1,..n 1.16
o, Yov ! " (1.16)
Bearing in mind (1.16) and integrating by parts the last term in right side

of (1.14) we get

X

Ou Z 5, PV (x, Vu)dz' ’g

=0

L L 2 = —_—
(Liu, Lu) r2(gq) 0

2
+28/ (%) a(x’,v,v)a(z’,v,V)d%
X

[ PO Vb PO V0
Q

T k,i=0
i » 0
+ 60 (P (@, V) + PO (2, V=) }+
8Ik
d)xiP,gk)(x,VU)P(i)(x,Vu))dx. (1.17)

*note that function 6 is independent of w.
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We claim, that the following identity holds

> PO (e, Vu)n, PO (2, Vo) =
3 Tk
k,i=0

Z b PO (2, V) {(fxip(x, Vu) — Pi(z, Vu)} . (1.18)

k,i=0
Really, the short calculation gives

ou \ Ou
(k) () _ o | 5. =
3 PO Vb PO T 0) = 3, 5 e (1) 22

k,i=0 k,i=0 l,7=0

ou Ou
> tonan 3 oy (axk) 7o = s Yo (70 )

= 3 6 PO, V) (e, V) — B, Vi) =
1,i=0

Z ¢p, PR (2, Vu)(aip(w Vu) — Py(z, Vu)).
k,i=0

Let us transform (1.17) using identity (1.18). As a result we have

ou

Er Z s¢e, P (z, Vu)dx"g—f—
Q 0

=0

2
23/ (?) a(z’,v,v)a(z' v, V)d%
Sy \OV

s / 42 PO V) bnin PO, V)

2 ,
k,i=0

(Llu, LU)LQ(QT) =

(@) (i.k) 9 _
+ 60, PO (2, V) ]Hzoqs P, T0) (ple, V)~ P, )

+ Z¢wiP,§k)(a:,Vu)P(i)(a:,Vu) dr. (1.19)
k,i=0
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Integrating by parts in (1.19) we get the equality

Ou Z s¢e, PO (z, Vu)dz' ‘g

=0

2
—s/ quop(w,Vu)dx"g—f—s/ (%) a(x’,v,v)a(x’,v,Vo)dE
o) S 81/

Liu, L = —
( 1U, U’)LQ(QT) o 070

a g/ Z (P(k)(xv Vu) [¢wiwkp(i)(a:? Vu)+
Q

T k,i=0
O, Péi) (z, V)] — ¢p, PR (2, V) Py (2, Viu)
— ($wa PN (@, V) + 6, P (2, V) )p(a, V)
+ ¢, P (2, Vu) P (2, Vu))da.  (1.20)

Short calculation give the identity

n

{p.p, 63}z, Vu) = > (PW (2, Vu) [P (2, Vi) fg o, + Py (, Vi) b, ]
i,k=0

— ¢p, P (2, Vu) Py(x, Vu)). (1.21)
Using identity (1.21) one can rewrite (1.20) as follows

Ou Z s, PO (z, Vu)dz' ‘g

=0

Liu, L = —
( 1U, U’)LQ(QT) q 070

_ wop(, Vu)da! |-
8/Q¢ p(z u)x’0+
3 2
s /E ) (6_“;) ala’,v,v)a(a’,v, V6)dE - 3 /Q {pAp o} V)

N (oo, POF (@, V) + by, P (@, Vu))pla, Vu)+
k,i=0

ZP,gk)(x,Vu)gbxiP(i)(a:,Vu) dr. (1.22)
k,i=0

Let us multiply equation (1.13) by fu scalarly in L?(Qr) and integrate by
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parts. As result we obtain equality

/T Op(xz, Vu)dr = 550 udx’ }0 /QT gSde—f—/ ) Quzsd)mip(i)(x, Vu)dz

1=0

- aa” au ou 00 ou 060

,5=1

Equalities (1.22), (1.23) imply (1.15).1
Let us continue the proof of Theorem 1.2. Denote

6U - i T T
Al :AT%ZS¢x1P()($, vu)d;p/’O —3/ ¢$op(w7VU)d$/}O

/ Z bp,2, PO (2, V) + ¢y, P (7' k)(a: Vu))a—uudx’}T,
Q 1 ' 63}'0 0

k,i=0

_ s () Oa; 8u % 00
As 2/T Zs¢ PV a:VuGu%—Z(&%Z 81‘1 +a”8wju8wi

1=0 7.71

Short calculations give the estimate
| A2] < es(l9sllT2qry + VIIVullZzom + s ullTzop)- (1.24)

By virtue (1.14), (1.15) for every s > 2 we have

ou\?
93 0r) = L1l +2Ars24a42s [ (51 ale' mvyate’ v, Toyas
T

) (p, {p, 6} }(z, Vu)dz — || L1u| 2 (g ZP( (@, V)| 12y >
T k=0

ou\’ , ,
(3_) a(z’,v,v)a(x’, v, Vo)dx

1 2
SIEulaq,) + 241 + 245 + 25 / "

X

—/ s{p, {p, ¢} }(x, Vu)dx — —/Q ZP(k) (z,Vu))?dz. (1.25)

T k=0
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By definition of the function ¢ the Poisson bracket {p, {p, ¢}} can be written
as follows

(1)o7 = 32 ()4 g 0}, 9 =

%(66—;) +{a(z’, Vu, Vu), {a(z’', Vu, Vu), ¢o}}. (1.26)

Note that condition 1.1 imply the existence of constants 4 > 0 and ¢4 > 0
such that

n 2
C4 (Z oz, PO (2, O) —{p. {p, ¢} }(z,¢) > pa(z’,(,¢) V¢ € R
=1

(1.27)
By (1.25)-(1.27) for any s > 2 we have

ou\ > / ’
(6_) a(@’,v,v)a(z’,v,V)dx

1
90300, 2 ILrulgyy+24+24042s [ (2

X
2
+/ (sua(x Vu,Vu) — 8;9 (687“)
T 0

%(Z P,gk)(a:, Vu))? - 048(2 b0z, P9 (z, Vu))Q) dr. (1.28)
k=0

i=1

Let us multiply (1.13) by u scalarly in L?(Q7). Integrating by parts we

obtain )
ou ,
— ) dx = a(z’, Vu, Vu)dx + As, (1.29)
Qr \0%0 r
where
ou "\ Oay; Ou
As = ——dz’ / ulqu + Yy —gou | dr. (1.30)
8330 ‘O Qr i,jzzl 8IZ 833]'

By (1.29) the estimate holds,

€ T 6u
404 /QT T Tro — — Z¢Oxk wvvu)

ou
8330

=

< ecy

(/ a(z’, Vu, Vu)dz)z < 06/ a(z’, Vu, Vu)dz+cr|Asl,
L*(Qr) T T

(1.31)
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there constants cg, c7 are independent on &, 7.
From (1.28) we deduce that

P 2
HgH%Q(QT) >2A1 +2A5 + 28/ (8_u) a(g;", v, V)Cl(g;", v, V¢)d2

Sr v
+ [ AR v - 52 (2 b eas((3 6, PO 0, V)
) 2 a(z’, Vu, Vu T \ oz C48 Th z,Vu

k=0

= (2 0 PV, Tu)?) bl = 211+ 24
k=1

2
- / /
+ 2s /2T (8u) a(z’,v,v)a(x’, v, Vo)dE
s, 8es [ Ou )\’
+/T{ 3 a(z’, Vu, Vu) T (83:0)

+4 E _Z ’ ﬁ ’
N\ 3 do
4se

O
ki _ il (k)
+ T (zo — T/2) Dz ];:1 b0z, PV (z, Vu)}da:. Vs > sg. (1.32)

Let us choose ¢ from interval (0, min{1, %, 1/ (c68)}). The (1.28) imply the

inequality. Using the estimate (1.31) in inequality (1.32) for any s > sg we
obtain

8 [ Ou\> 3 . )
/T s <_T (8—%) + Z,ua(w ,VU,VU)) dx+2s /ET a(z’,v,v)a(z',v,V¢)d2

< cs(|Ar| + |Ag| + | As] +s4/ W2dz). (1.33)
T

By virtue of (1.24), (1.30), (1.33) there exists a constant s; such that

2
/ 1su ((ﬁ) +a(x',Vu,Vu)) da:+2$/ a(x’,v,v)a(x’,v,V)d%
Qr 4 61'0 S

< eo(s(T+1) /Q(|VU(T, 22+ |Vu(0,2)|* + |u(T, ") > + |u(0,2")|?)dz’

+s4/ u?dr) Vs> s (1.34)
T
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Now we return in (1.34) from variable u to z. We obtain

/1 22+(’v v) —25¢4
T4s,u g alz',Vz,Vz) |e T

92\ 2
—|—28/ (—Z) a(z’,v,v)a(z’, v, Vo)e 2*?dx §09(3(T+1)/(]Vz(T,a:’)\2
s \OV Q
+[V2(0,2)]” + [2(T, 2') > + |2(0,2")[)e 22T+ da!
+ 54/ 22e72%dg) Vs > sy (1.35)
Qr
Now we take parameter Ty > 1 such, that

v =min ¢(Tp,z’') > 3 = max  _¢(x).
z’' €Q xG[TQ/4,3TQ/4]><Q

Then there exists a constant s3 such, that for any s > s3 the inequality holds

1 9z \ 2 / e
—S[ — ) 4a(z,V2,Vz) |e dx >
[To/4,3To/4]xQ S Oxo

2
1
/ —Su (ﬁ) +a($,,VZ,VZ) 6_2Sﬁdﬂf 2
[To/4,3To /4] xQ 8 Oxg

098(T0+1)/(\Vz(T,x')]Q—F\Vz((),x')]2+]z(T,x')]2+\z(O,x')\2)6_257da:' >
Q

cos(To+1) / (IV2(T, ) |2+|V2(0, 2" ) >+|2(T, ') [>+|2(0, z')|?) e~ 25=) gz
Q (1.36)

The (1.35), (1.36) imply the inequality

1 9z \?
“sp | [ 5= ) +a(z',Vz,V2) | e 2Pda+
8 Ox

QT 0

2
23/ (%) a(z',v,v)a(z’, v, Ve)e 22dn < 61184/ 22e 259 dy
St ov T

Vs > max(sz,s3). (1.37)
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From this moment we set
s = max(S2, S3).

Note that
a(z',v, V) = a(z',v, Vo) Vo € R, x Q.

Hence (1.37) and Condition 1.1 imply the estimate

T

2
/ ‘Vz’Qda: < c12(T) (/ (%) Cb(x/, v, I/)Cb(x’, v, V¢0)e*25¢d2
29"0

+/ z2dﬂc) VT >Ty (1.38)

Denote

Er = {(vo,v1) € W3 (Q) x L*(Q)| P*2=0in Qr, 2|z, =0,

0z 0z
—| =0, 2(0,2") = vy, =—(0,2") =
v - ’ Z( 7x) UO,@J}'O( 7x) Ul}
T
Evidently, that
E’T1 C ET2 V11 >1Ty >1T. (139)

By virtue of (1.38), (1.39) on segment [Ty, c0) function £(t) = dimE; finite
and decrease monotonically. But values of the function ¢(¢) belong to Z .
So, for any 0 > 0 there exist T1, T € [Ty, To + 0] such that

dim Er, = dim E,. (1.40)
By virtue of (1.39) the equality (1.40) imply
Er, = Enr,.
But since the coefficients of operator P* are independent on x(, we have

Er, =Fs YTi>Tp. (1.41)

1

Let pair (vg, v1) is an arbitrary element of the space E. Let us consider the
boundary problem

0z

P*z=0in R' x Q, z|pi1x090 =0, 2(0,2') = vy, =——
61’0

(0,2") =v1.  (1.42)



EXACT BOUNDARY CONTROLLABILITY 151

Let us show, that
0z

== = 0. (1.43)
ov R xTg

Let 7 > 0 be an arbitrary number. By (1.42) there exist a pair (79, 01) € Fs
such that equalities holds

o
8.1‘0

P*Z=0 in Qooa 2|R1><8§2207 2(0,.1‘,):1]0, O,II):Ul.

and os
(3(r,a"), a—jow, ') = (v, v1).

By Theorem 1.1 we have
2(x) = Z(xo — 7, 2').
But since (09, ?1) € Foo, then

0z

- =0.
OV {[—r.0)xro
This equality proves (1.43).
In [62] proved, that any function z which satisfy (1.42), (1.43) equal zero
in R'. Hence

Let us assume that there exists a sequence of functions z; € X which are the
solution of problem (1.7), (1.8) such that

0z

£ —0 ask— +o0. (1.45)

L2(2%)

okl = 1. '

and
2r — 2z weakly in Wy (Qr), zx — 2 in L*(Qr).

Passing to the limit as kK — +oo we obtain that function z satisfy (1.7), (1.8).
Moreover by (1.9), (1.45) function z satisfy (1.43). Hence z = 0. But this
is impossible by virtue of (1.38), (1.45). This contradiction completes the
proof of the theorem.Hl

We have
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THEOREM 1.3. Let (1.5), (1.6) be fulfilled. Then for any initial date vy €
L3(Q), v; € Wy H(Q), g € LY(0,T; W5 *(Q)) there exist a unique solution of
the problem (1.1)- (1.3) y € Y and inequality holds

lyllvr < er(llvollrz(o) + ||U1HW2—1(Q) + HgHL1(07T;W2_1(Q)))' (1.46)

Proof. We define the linear functional I(q) on the space L'(0,T; L?(f2))
by formula

1(q) = (9, 2)L2(Qr) + (Y0, 220 (0, ) £2() — (v1, 2(0, ) L2(2)

0z

+ (bovo, 2(0, ) L2(0) — (%7”)1?(2%)7 (1.47)

where functions ¢ and z are connected by relations
P*z=qin Qr, zln, =0, 2(T,-) = 2z, (T,-) = 0.
By Theorem 1.1 the functional [ is bounded and the following estimate holds

4l < CClooll @) + 191y 1y + lezlzace)
+ HU3HW271(Q) + HgHLl(O,T;ng(Q)))' (148)

Thus the functional [ is continuous. It is known that any linear continuous
functional on the space L'(0,T; L?()) can be written as follows

1(q) = (¥ D)2 Q) (1.49)

where y is some function from the space L>(0,T’; L*()).
Using (1.49) we can rewrite (1.47):

(yaQ)L2(QT) = (9, Z)L2(QT) — (o, 2z, (0, ‘))LQ(Q) + (w1, 2(0, ‘))LQ(Q)

0z
(bovo,Z(O, )) 2(Q) — <—,u) . (150)
AT ey

So function y satisfy (1.17) in the sense of theory of distributions. By (1.48),
(1.49) and (1.50) we obtain

1Yl o< 0.7:22(0)) < Cl[voll2(@) + llvillw, 1) + 1191 0.7w5 1 (@)))- (1:51)
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Since y € L>(0, T; L*(2)) it follows from (1.50) that 94 b e LY0,T; W5 2(Q)).
Moreover inequality holds

0%y
= C([lv + v 1 + 1 =1 .
'8%3 Ll(O,T;WQ_Q(Q)) (H OHL2(Q) || 1HW2 (Q) HgHL (0,T;W, (Q)))
(1.52)
Note that
0%y 2
<o 5 Wy o rizo(cy)-
Hal‘o L= (0,T; W5 1()) 8%3 L1(0,T;W;2(Q)) (0,T5L2(Q2))

This inequality together with (1.51), (1.52) gives (1.46).H

The following theorem, proved in [52] is a corollary of Hilbert Unique-
nesses Method . But here we gives other version of its proof based on Reiz
representation theorem for Hilbert spaces and Hanh-Banach extension theo-
rem.

THEOREM 1.4. Let (1.5), (1.6) be fulfilled and constant T > 0 such that
for any solution of (1.7), (1.8) inequality (1.10) holds. Then for any initial
date vo,va € L%(Q), vi,v3 € W, 1(Q), g € LY0,T; W, 1(Q)) there exist a
solution of the problem (1.1)-(1.4) a pair (y,v) € Y7 x L*(X9%).

Proof. Let us introduce the space F' by formula
F = {m(t,z) (t,z) € £%|there exists z € X7, P*z =0 in Qr,
0z

2|z =0, %’2% =m(t,z)}.

And equipped it with norm [|m||p = [|m||L2(x9 ).Note that all assumptions of
Theorem 1.3 are fulfilled. This imply that there exists a constant C' that

Izllvz < Cllmllr2sg,), (1.53)

where functions z and m connected by relations

0z

P*z=0in QT, Z|§;T :0, N
6VA 30
T

=m(t, z). (1.54)

Thus (1.53) imply that F' is a Banach space. Let us consider the linear
functional {(m) defined on the space F' by formula

[(m) = (vo, 22, (0, ) L2() — (v1,2(0, ) L2(2) + (bovo, 2(0, ) L2(q)
—(bovz, 2(T, ) L2(0) — (v2, 226 (T, *)) L2(2) + (v3, 2(T, ) L2(02) + (9, 2) L2(Q1)>
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where functions (vg, v1,v2,v3,9) € L2(Q) x Wy 1) x L*(Q) x W, 1(Q) x
LY0, T; Wy 1(Q)) are given, and function z and m connected by relation
(1.54). By (1.53) this functional is correctly defined on F. The short calcu-
lations gives

1m)] < floollz@llz2 (0, Yz + on -1 oy 1200, Ml
+ [[voll 220 1200, ) L2 (@) [lv2l[ L2@) [12(T5 ) L2(0) + [v2ll2 @) 12e(T ) 220
Hllvslly1 o) 12(T5 w0 Hlgll 1o, 7w @ 12z 0, 7w20)) < Clllvoll 2o
+ llvrlly 1) + lvallzz) + lvsllw-1) + 191l Lo, mwrr @) Imll L2 ng.)-
Thus by Hanh-Banach extension theorem the functional [ can be extended
onto the hole space L2(E?p), keeping its norm. Applying the Reiz theorem

on representation of a linear functional in Hilbert space we obtain that there
exists a function u(t, ) € L?(X9.) such that

l(m) = —(u, m)LQ(E%) V'm e F.

Set u(t,z) = 0 (t,x) € ¥k. For any (vg,v1) € L*(Q) x W, () denote by
y(t,x) € Y the unique solution of the following boundary value problem

: dy
Py =gm QT7 ylZ% = 07 ylZOT = u, y((),a:') = UO(x/)7 8—%(0,1.,) = /Ul(x/)
(1.55)
which exists by Theorem 1.3. Let us prove that
T,-)= = v3.
Let function z € X7 be a solution of boundary value problem
P*2=0in Qr, z|x, =0, 2(T,-) = 20, 22,(T,) = 21. (1.56)

Multiplying (1.551) by 2 scalarly in L?(Qr) and integrating by parts we have

0z
(zwo (T7 ')7 y(Tv '))LQ(Q) - (Z(T7 ')7 Yz (T7 '))LQ(Q) - (%7 u)LQ(E‘%)

+ (boz(T, ), y(T,-)) L2y — (boy(0,-), 2(0, ) £2(q)
— (220(0,),v0) £2() + (2(0,-),v1) 2(0) = (9, 2) L2(Qr)-
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By definition of the functional [ we have

(220 (T, +),y(T, ) L2() — (2(T ), Yo (T, +)) L2¢02) + (boy(T,+), (T, ) 20
- (bovg, Z(T, ))LQ(Q) — (Zwo (T, -),UQ)LQ(Q) — (Z(T, -),Ug)Lz(Q) = 0. (157)

Since (z9, 21) are an arbitrary functions from the space W3 () x L?(Q) equal-
ity (1.57) imply
y(T7 ) = V2, Yz (Ta ) = Us.

This proves our theorem.
The Theorem 1.3 and Theorem 1.4 imply

THEOREM 1.5. Let (1.5),(1.6) and condition 1.1 be fulfilled. Then there
exists a constant Ty such that for T > Ty and for any initial date vy, vy €
L3(Q), vi,v3 € Wy H(Q), g € L?(0,T; W;l(ﬂ)) there exist a solution of the
problem (1.1)-(1.4) a pair (y,v) € Yp x L*(X%).

As a example of application of the Theorem 1.5 we consider the problem
of exact boundary controllability of hyperbolic operator which in principal

part be the same as the wave operator [ = 88—:2 - 2?21 88—:%. Set

Ty = {33'/ € F‘ ZI/Z(.IZZ —Ti) > 0},
1=1

where T € R" is an arbitrary point.
Let function y(x) satisfy equations

62y - / dy ' .
y\ng =0, y‘zOT =1u, (1.59)
/ / 8y / /
y(()?x ) - UO(I' )7 (07'1: ) = Ul(a: )7 (160>
61’0
/ / 8y / !
y(T,2') = va(z'), ——(T,2") = vz('). (1.61)
8.1‘0

We have
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THEOREM 1.6. Let (1.5) be fulfilled. Then there exists a constant Ty such
that for T > Ty and for any initial date vo,va € L%(Q), vi,v3 € Wy (),
g € L*(0,T; W, 1(Q)) there exist a solution of the problem (1.58)-(1.61) a
pair (y,v) € Yr x L2(£9).

Proof. We set ¢o(z') = — >, (x; — T;)?. The short calculations shows,
that function ¢g(z’) satisfy to Condition 1.1. Application of the Theorem
1.5 gives the statement of the Theorem 1.6.H

2. Boundary control by semilinear hyperbolic equations.

We consider the following problem

2 2
G(y) = % - % + by (t, a:)gi + bg(t,x)% — ft,z,y)=0 in @, (2.1)
y(t.0) = (D), 3t 1) = walt) 2.2)
y0.2) = (@), L0 =y, 2.3)

where yo € W3 (0, L) and y; € L?(0, L) are given functions. Suppose that we
have the functions yo € W4(0, L) and y3 € L?(0,L). It is required to find
v1(t),v2(t) € W1(0,T) such that at time T the following inequality hold:

o(T0) = (o), DD () (2.4

Thus the solution of the problem (2.1)-(2.4) is a triple of functions (y(¢,x),
v1(t),v2(t)) € W3 (Q) x W3 (0,T) x W5 (0,T).

We set K7 = {(t,z) € Q|(L/2—1t) > |x—L/2|}, Ko = {(t,x) € Q|(t—T +
L/2) > |z — L/2]}.

We shall assume the following condition:

Condition 2.1. In cone K there exists a solution y(t,z) € W4 (Ky) of
the Cauchy problem (2.1), (2.3). In cone K there exists a solution y(¢,z) €
W3 (K1) of the Cauchy problem (2.1), (2.4).

We have the following theorem
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THEOREM 2.1. Suppose that Condition 2.1 holds, bi,by € L>®(Q), f €
CL(Q x R') and that there is a number p > 0 such that

of(t,z,y

L2 < oyl + 1),

(e +| LT |

Yy
Crly[Ptt < / ft,2,Q)d¢+Cy V (t,z,y) € Q x R*,Cy > 0.
0

Then:

a) if T > L, then there exist infinitely many solutions of the problem
(2.1)-(2.4).

b) if T < L, then there exist yo,y1,y2,y3 € W4 (0, L) such that problem
(2.1)-(2.4) has no solutions.

Proof. We set A =(0,0),B=(0,7),C = (L,T),D = (L,0). We denote
by E = (L/2,L/2),F = (L/2,T — L/2) the vertices of the cones K; and
K5, by K3, K the trapeziums AFFB, DEFC and by S7, 55 the polygonal
line AEFB and DEFC. We claim that for any u € L?(K3), 2o € W4(S5),
z1 € L2(E, F) there exists a solution z € W3 (K3) N L>°(Q) of the following

problem:

. 0z
G(Z) =u 1 K37 Z‘Sl - an %‘[E7F] = Z1 (25)

We scalar multiply (2.51) by %eN”f in L?(K3). For sufficiently large N we
obtain upon integrating by parts with respect to x and ¢ the a estimate

2
l2llwy (reynzoe sy < lllullzacrg) + 20l s, ) + Izillzacsm +1).

Thus the image of operator

0z
P(z) = (G(2), 2|s,, %\[E,F])-

is closed in the space Y = L?(K3) x W} (S) x L*(E, F).
Let us introduce the operator GG; by formula

0%z 0%z 0z 0z
Gl(z) = ﬁ - @ + bl(tax)% + bQ(tax)a + c(t,x)z,

where ¢ € L*°(K3). Let us consider the following boundary problem

. 0z
Giz=u in K3, z|s, = 20, %‘[EF] = 21. (2.6)
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For all (u, zg,21) € Y there exist the unique solution of problem (2.6) which
satisfy the estimate

HZHWQI(Kg)uLoo(Kg) < c[[(u, 20, 21) v

Applying the implicit function theorem we find that Im P is open in the space
Y. Thus
ImP=Y.

We construct a solution of the problem (2.1)-(2.4) in the following manner.
In the cones Ki, K it coincides with the solutions of the problems (2.1),
(2.3) and (2.1), (2.4) which exist by virtue of Condition 2.1.

Let g, 1 are an arbitrary functions which satisfy the following properties

SOOEW21(E7F>7 @O(L/27L/2>:y(L/27L/2)7 ®1 GLZ(E7F)'

In the trapezium AEF B we set y(t, z) equal to the solution of problem (2.5)
with u = 0, 29 = o on [E,F], zo = yon [A,E]U[F,B], z1 = 1. To
find y in the trapezium DFEFC, we solve the following problem in it that is
analogous to (2.5):

: 0z
G(y) =0in K47 y|52 = ¢27 %“E,F] = ¢17

where ¢o = ¢g(t,x) € [E, F] and ¢2 = y(t,x) € [D,E]U [E,C].1
Condition 2.2 Let f does not depend on ¢, x and ether

lim f(y)=—co, lim |f(y)|<oo

y—+00
or
lim [f(y)| <oo, lim f(y) < 4oo.
Yy——+00 Y— — 00
We have

THEOREM 2.2. Let T > 3L, by = by = 0, f(y) € C*(R') and suppose
that condition 2.2 holds. Then there exists a solution of the problem (2.1) -

(2.4).

Proof. Let ¢(¢) € W5(0,1), (0) = 0,9n(7) = —n7, 7 € [0,70], ¥u(r) =
nto, T € [10,!], where 0 < 79 < [l. In the region @1 = (0,1) x (0,) we consider
the Goursat problem

0%z
oToC

+ f(Z) =0, 2(07C) =¥, Z(Ta 0) = tn.
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Let limy ;o f(y) = —oo. We claim that under condition 2 there exists
no (70, ) such that problem (2.7) has a solution for all n > ng. We set

fk(z) = f(Z), z € (—OO,k), fk(z) = f(k> + f/(k)(z - k)v z € (k,+OO) We
denote by zj the solution of problem (2.7) in which the function f in the
equation is replaced by f:

62Zk
0TIC

+ f(z) =0, 2k(0,0)=¢, zk(7,0)=1y,. (2.7)

Using Condition 2.2 it can be shown that there are numbers C' and N
such that for all n > ng, 2zx(t,z) < C for all (¢,x) € Q7. Scalar multiply-
ing equation (2.7) by 9zp/0¢ and 9z, /0t in L?(0,1) and using the upper
estimate, we have

l2kllwi@unc=@y < Cilllellwz o + 1¥nllwioy +1) vV E=0.

Consequently there is a number kg such that zj is a solution of problem (2.7)
for all k > ko. Let € € (0,7 — 3L). We set A = (0,0),B = (0,L),C =
(0,L+¢),D = (0,T),E = (L,T),F = (L,T - L), = (L,2L+¢), ] = (L,0).
We denote by M the point of intersection of the characteristics BJ and C1,
and by P the point of intersection of the characteristics CI and DF. The
solution of problem (2.1) - (2.4) is constructed as follows. In the triangles
ABJ and DEF it coincides with the solutions of problems (2.1), (2.3) and
(2.1), (2.4) the existence of which is proved in [55]. To find y in rectangle
BDFT we solve the Goursat problem for equation (2.1) in the triangles JMI
and C'PD. The initial data for these problems are already defined on the
intervals [B, J] and [D, F|, while on the interval [C, I] we set y(t,x) = —N.
According to what has been proved above, we can choose the initial data
on the polygonal lines BMC' and I PF such that for some N both Goursat
problems can be solved simultaneously. B
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CHAPTER III

EXACT CONTROLLABILITY FOR
2-D NAVIER-STOKES SYSTEM

Introduction

In this chapter we are concerned on the local exact controllability of the
2-D Navier-Stokes system, defined in a bounded domain Q C R? for the
control distributed on the whole boundary 9€2, or on it’s part. The case of
local distributed control is also studied.

The case of the local exact controllability with control distributed on the
part of the boundary I'y C 0 is very interesting from theoretical point of
view, and is important in practice. In this chapter we made only first step
to solve this problem. Namely, the local exact controllability was proved for
control distributed on part of the boundary I'; if for complement I'g = 0Q\I'
the following boundary conditions holds

(y(@),v(z))|r, =0, roty(z)lr, =0,

where v- outward normal to 92 , roty = 0,,y1 — 02, 2.

We also consider the local exact controllability when control is a function
u(t, ) in the right hand side of the Navier-Stokes system with support in the
given subdomain w C 2 :

suppu C (0,7) X w.

The case of the locally distributed control is a basic case of this work. The
results on local exact boundary controllability are deduced from the results
on local exact distributed controllability.

This chapter is organized as follows. In section 1 we state exact control-
lability problems and formulate main results. In section 2 we introduce the
stream function ¥ (t,x) and equation for it. Then using this equation and

95



96 III. EXACT CONTROLLABILITY FOR 2-D NAVIER-STOKES SYSTEM

implicit function theorem, we reduce our original problem to the case of lin-
ear exact controllability problem. Sections 3-5 is devoted to prove solvability
of this problem. In section 6 we prove main theorems. Note that in §3 we
use the Carleman estimate for parabolic equation

OAY 9
5 TAYV=/S
which is proved in section 7. This Carleman’s estimate is slightly different
from one proved in Chapter I. We close the section by mentioning some
previous works on this subject. The cases of the 2-D and 3-D Navier-Stokes
system with control on the whole boundary were studied in [17], [21] and [20].
The e-controllability of the Stokes system was proved in [23],[24]. There is a
very interesting nonlocal result on 2-D Euler equation due to Coron. In [7]
and [8] for the Euler equation

o .
Fi_(y,V)nyJru, divy =0, y(0,-) = vo

the global e-controllability and for some cases global exact controllability were
proved. Thus additional argument was supplied for J.L. Lions conjecture on
global e-controllability of the Navier-Stokes system. The Coron’s techniques
of proof is qwite different from ours and relies on special structure of nonlinear
term of Euler equation and it’s invertibility respect to time.

1. The statement of the problem and formulation of main results.

1.1. In a bounded domain Q C R? with boundary 992 € C> we consider
the Navier-Stokes system

aty(ta *T) - Ay(ta *T) + (ya v) Yy + VP(t7 x) = f(tv 1’), (11>

divy = 0,,y1 + O0z,y2 = 0, (1.2)

(t,z) € Q= (0,T) x Q, where y(t,z) = (y1(t, z), ya2(t, x)) - velocity of fluid,
Vp(t, z) - pressure gradient, 0; = %, Op; = %, (y,V)y = Z§:1 002y, A—

Laplace operator, f = (f1, f2)— density of external forces. We assume that

y(t, o)|t=0 = yo(x), (1.3)

where yo(z) = (yo1, Yo2) is a given initial condition.
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Let I'g be an open subset of 012,
Iy Cco, Ty =00\'g, L=(0,T)x0Q, %;,=(0,T)xT, (1.4)
1t =0,1. We set on Xy the boundary conditions

(I‘Ot y) ‘Eo =0, (yv V) ‘Eo =0, (1'5>

where v = (11, 1) is a vector field of outward normal to 09, (y,v) = y1v1 +

Yoo, TOot Yy = Oy, Y2 — O, 1.
On the part of the lateral surface 3; Dirichlet boundary conditions

yle, =u, (1.6)

are posed, where u is a boundary value of the vector field y, which in the our
case is a control.
Since Vp easily can be determinate from (1.1) by f, y below, if we say
about solutions of system (1.1), instead of pair (y, Vp) we are writing y.
Now we can set the problem of exact controllability. Let we have a solution
g € VE2(Q) of equation (1.1), (1.2) and initial condition yy € V?2()
satisfying the inequality

19(0,-) — yo”%/z(g) <e¢g, (1.7)

where € > 0 is sufficiently small. Assume that for any connected component
0f2; of the boundary 02 the following equalities hold:

/ (y0,v)do =0, /(g), v)do = 0. (1.8)

9 oQ
Moreover the initial datum gy satisfy the compatibility conditions

rot yolr, =0, (yo0,v)|r, = 0. (1.9)

The local exact controllability problem is to find control u € W12(1/2) (%),
such that the solution y € V12(M(Q) of (1.1)-(1.3), (1.5), (1.6) satisfies for
t =T equation

y(t, @)|i=r = §(T, z). (1.10)

Below we will prove
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THEOREM 1.1. Let Ty be connected in OQ , Ty = O0\Tg # 0 (ToNTy =
0), 5 € V20)(Q) is a given solution (1.1), (1.2), yo € VZ(Q) and conditions
(1.8),(1.9),(1.7) are fulfilled with sufficiently small ¢ > 0. Then one can find
a control u € W1’2(1/2)(21) such that there exists a solution of the problem
(1.1)-(1.8), (1.5), (1.6) in the space V12M(Q) and for t = T satisfy (1.10).

Moreover inequality holds

N —k

where ¢ > 0,k > 0 some constants.

Remark 1.1. In particular, the set Iy C 02 may be empty i.e. the
control u from (1.6) can be distributed on the whole lateral boundary .

1.2. Now let us consider the Navier-Stokes equation, governed by dis-
tributed control, concentrated in some fixed subdomain w C € i.e. the case
of local distributed control. Let I’y = 99 , thus X =X , Ty =0, 37 = 0.
We replace (1.1) by the equation

Oy(t,x) — Ay(t, x) + (y, V)y + Vp(t, ) = f(t,z) +ult,z),  (1.12)
where u(t,x) = (u1,u2) is a control, concentrated in the subdomain w C Q :

1, zew,

u(t,x) = xw(®)u(t,z), where x,(x)= {0, v dw (1.13)

Let §(t,z) € V12(M(Q) be a given solution of equations (1.1), (1.2) and
yo(z) € VZ(Q) be initial condition connected with ¢ by inequality (1.7).

To solve exact controllability problem with locally distributed control we
have to construct a control u(t,x) such that solution of the problem (1.12),
(1.2), (1.3), (1.5) for t = T satisfies to equation (1.10).

For w C @ set Q¥ = (0,T) x w.

THEOREM 1.2. Ty = 9Q be connected, §(t,z) € VH20(Q) be a given
solution of (1.1), (1.2), (1.5) and yo(x) € V*(Q) satisfy (1.9), (1.7) with
sufficiently small € > 0. Then there exists a local distributed control u(t, x) €
Ly(Q), suppu C Q¥, such that corresponding solution y(t,z) € V12M(Q) of
the problem (1.12), (1.2), (1.83), (1.5) exists and satisfy (1.11), (1.10).
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2. Reduction to a linear control problem.

2.1. To get rid of pressure we transform the Navier-Stokes system to
the equation for stream function v which is connected with velocity field

y(t,x) = (y1,y2) by equations
O = ~y2,  Ontp =y1. (2.1)

Application the operator 9, to the first of equations (1.1) and operator —0,,
to the second one, adding of this two new equations yields the equation for
the stream function:

Ou(—AY(t,x)) + A% + 0uy (00, ) AY) — (02, ((00,0) AY) = u+g. (2:2)

In the right-hand-side of (2.2) instead of rot f we substitute u(t, z) + g(¢, x),
where g = rot f and w is a control. Just this form of the right-hand-side
we need below. First of boundary condition (1.5) by virtue of (2.1) can be
rewritten as follows

(—AY)|y =0, X =(0,T7) x 05 (2.3)
The second one is transformed to the equation

0:1)ls, = 0, (2.4)

where 7 = (71, 72) = (—12,r1) is the vector tangential to the 0€). By this
equality
Y| 5q = const,

and since 0f) is a connected set™ function 1) can be determined by (2.1) up
to constant arbitraryness. Without the loosing of generality we can assume
that

Ylg =0. (2.5)
By virtue of (2.1), (1.5) instead of the initial condition (1.3) we have

¢(tax)‘t:0 = ¢0(90)a (2.6)

*Only here,deducing condition (2.5) we used connectedness of 9. Therefore, below
controllability problem for current function studied without assumption of connectedness

of 99.
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where 1y can be determined by the equalities

Oz, %0 = —Yo2, Oz,%0 = Yo1-
According to (1.9), (2.5) following compatibility conditions should be fulfilled

Yolyn =0, Aoy = 0. (2.7)

Let us assume similarly to the section §1 that a solution 7,2(75, r) € Wh22)(Q)
of (2.2) with u(¢,x) = 0 and right-hand-side g € L2(Q) are given. Moreover
the function ¢ (¢, z) satisfies to the boundary conditions (2.4), (2.5) and the
inequality

50, — o)

<Eg, 2.8
HWQB(Q) N ( )

holds, where parameter € > 0 is sufficiently small. The local exact control-
lability problem consists in the constructing of such control u(t,x) € Lo(Q),
suppu C Q¥, such that the solution of boundary value problem (2.2)-(2.6)
function (¢, x) satisfy the condition

~

U(t, @) |or = (t, @) |i=1- (2.9)
We are looking for solution (¢, z) in the following form
V(t, ) = wit,z) +(t, ), (2.10)

where w is a new unknown function. Substitution of (2.10) in (2.2) - (2.6)
yields the equation for the function w :

O(—Aw(t,2) + A%w + B+ w,w) + Bw,§) = u(t,2),  (211)
where
B(wv 90) = 6962 ((awlw)A90> - 6331 (((%;Jﬁ)AgD) (2'12>
This also gives boundary and initial conditions
(—Aw)|g =0, wly =0, (2.13)
w(t, x)|,_q = wo. (2.14)

Here wo(z) = 1bo(z) — (0, ). By virtue of (2.10), (2.7), (2.8) we have
wolgg = Awolyg =0, HwOHa/S(Q) <ée. (2.15)

In sections 2-7 will be proved
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THEOREM 2.1. Let ¢ € Wh22)/(Q) satisfies (2.2) with w = 0, (2.3),
(2.5), and initial condition wy € W3(Q) satisfies (2.15) with sufficiently
small e > 0. Then one can find such control u € Ly(Q), suppu C (0,T) X w,
that the corresponding solution w € W2(2)(Q) of the problem (2.11) -(2.14)
exists and satisfies equality

w(t,z)|,_r = 0. (2.16)

2.2. To prove Theorem 2.1 we use the theorem on right inverse operator
which was formulated in §4 of the chapter 1.

In our case the space X consists of pairs x = (w,u), and operator A(x)
defined by formula (2.11):

A(z) = (=9, Aw + A%w + B¢ + w, w) + B(w, ) —u, w|,_y)  (2.17)

( the condition w|,_, = 0 and boundary conditions for w are included to the
space X definition. ) The space Z will be determined by set of pairs (2.17).
Set ¢ = (0,0), zo = (0,0). Evidently equality (1.4.3) is fulfilled.

To the check of the epimorphism condition of the operator (1.4.4) we write

out equation
Al(zg)z = 2.

In our case this equation is as follows:
Lw — u = 0y(—Aw) + A%w + B¢, w) + B(w,¥) —u = f, (2.18)
where u = y,u, the function x, be determined in (1.13),
wly, = Awly, =0, (2.19)

w|t:0 = Wo, w‘t:T = 0. (2.20)

Note that if 2o = (0,0), 2o = (0,0) then function ¢ from (2.18) coincides
with ¢). However we will prove solvability of problem (2.18)-(2.20) for an
arbitrary function ¢ € W1’2(1)(Q). This result below give us possibility to
strengthen the statement of the Theorem 2.1. (see Remark 6.1 below.)

Now, let us define the spaces X, Z which corresponding to problems (2.11)-
(2.14) and (2.18)-(2.20). Set

n(t,z) = m(t,x) = (e WWlew — AP@) /(7 —p), (2.21)
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where parameter A > 0 (magnitude of A will be fixed below), function 3(x) €
C?(Q) satisfies conditions

VB(x) #0, Vz € Q\uw', (VB(x),v(z)) <0, Vz € 09, (2.22)
B(z) >1In3, Vo € Q, min #(x) > §mag(ﬁ(x). (2.23)
x€e) 4 zeQ

Here w’ CC w CC Q are subdomains of 2 , v(z) is outward normal to 0€2 .
Existence of function 3 € C?(£2) which satisfies (2.23) proved in Lemma I.1.1.
For validity of (2.23) one has to increase ( on sufficiently large constant. Let
k(t,x) >0, (t,z) € Q . Set

Lo(Q, k) = { u(t,2), (t,2) € Q: ull2, i ) = / K2 (1, 2)u (1, @) dadt < oo

Q
(2.24)

Weight functions used below are constructed by means of the function (2.21).
One of such weight functions defined by the formula fe”, where

0(t, ) = Xo (@)(T — )% + (1 — xu(2))(T — t), (2.25)

and y,, is a characteristic function of the set w (see (1.13)). We introduce
the space

Y(Q) = {ylt:2) e WA (Q) : gl = Ayl =0,

2
HyH?/(Q) = Hﬁt(_Ay) + A2?JHL2(Q79€n) + ||?JH$/V1,2(2)(Q) +

+ S (T =)D De Ay + Y (T —4)?170 Dyl | e*dadt o

Q \lol=2 la|<3
(2.26)
where functions 6, n are defined in (2.25), (2.21). Define also
Uu(Q) = {u(t,z) € L2(Q) : suppu C Q*,
||u||2UW(Q) = /(T — 1)e?" u)? dudt < oo}, (2.27)

Qw
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where remind Q¥ = (0,7) X w
To apply the Theorem 1.4.1 in order to establish solvability of (2.11),
(2.13), (2.14), (2.16) we define spaces X , Z as follows

X =Y(Q) xUs(Q),  Z=La(Q,0¢") x W3(Q), (2.28)
where
= {v(z) € W3(Q) : v|yo = Av|yg =0} . (2.29)
We have

PROPOSITION 2.1. Let the spaces X, Y defined in (2.28), operator A(x)
defined by formula (2.17). Then the mapping (2.17) continuously differenti-
ated for any point xg € X.

Proof. Definition (2.26)-(2.28) of the spaces X, Z implies directly conti-
nuity of the operator

(w,u) — (O(—Aw) + A%w —u, wli—o) : X — Z

Being linear this operator belongs to C'(X, Z). The operator B from (2.17)
defined by (2.12) is bilinear one. Thus to prove proposition 2.1 one has to
establish continuity of bilinear operator

B:Y(Q) x Y(Q) — La(Q, 0e™). (2.30)

Taking into account (2.12), (2.25)-(2.27), we get simple calculations

1B, )1z (q0em < € / 022 (|00, ¥1* [V A[* + [VAY[ |0, oI )dadt <
Q

2 2 2 2
< cIVelieg) VAL, @.en HIVElE@ IVAYIL, @.em) < cl¥lly ) lellyq) -

This estimate proves continuity of the operator (2.30).H

Evidently, equality (I.4.3) holds for mapping (2.17) when xy = (w%, u") =
0, zo = 0. So, to apply Theorem 1.4.1 now we have to establish only that
image of operator (I.4.4) coincides with Z. This reduced to the proof of
solvability of problem (2.18)-(2.20) for any (f,wg) € Z. Sections 3-5 are
devoted to achievement of this aim.
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3. Auxiliary extremal problem and solvability of it’s
optimal system

We start to prove the solvability of problem (2.18)-(2.20). Obviously, this
is an ill-posed problem, because the number of boundary conditions on 3 is
unsufficient and there are too much conditions on the time axis. That is why
first of all we reduce it’s solution to solvability of some coercive boundary
problem. To write out it we consider the following extremal problem:

1 627] 2 1 o 2 .

J(w,u) = 5 / mw (t,z)dzdt + 5 /(T —t)eu”(t, x)dzdt — inf,
Q Q«

(3.1)

where a pair (w,u) satisfy (2.18)-(2.20). The optimality system of problem

(3.1), (2.18)-(2.20) is as follows

Lp = 0i(Bp(t,2)) + A2+ B (e, p) + Bl (p, 1) = —(Te_—”t)b,w (3.2)
pls = Aply, =0, (3.3)
Yo (2)p(t, z) = (T — t)e* u(t, x), (3.4)

where By (-,v), B3(1,-) are operators adjoint formaly to linear operators
B(-,v), B(1,-) respectively. By definition (2.12) of operator B(v,¢) we
have

Bl (h, 1) = 0z, (A0, h) — O, (A0, h), (3.5)

To deduce (formally) system (3.2)-(3.4) one can, for example, apply Lagrange
principle (see [1]). Since, the fact that (3.2)-(3.4) is the optimality system of
extremal problem (3.1), (2.18)-(2.20) never used below, here we do not prove
this. Note, that can be obtain as in [21].

Now instead of problem (2.18) - (2.20) we are investigating the problem
(2.18)- (2.20), (3.2)-(3.4). First of all let us get over from (2.18)-(2.20), (3.2)-
(3.4) to the boundary problem with one unknown function p(t,z). For this
we express function w from (3.2) and function u from (3.4) and substitute
these formulas into (2.18). As a result we have the equation for the function
p(t, )

CL((T - 0L ) — (T — ) e 2y (@p= . (37)
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The boundary conditions (2.20) we rewrite using (3.2):
—(T = t)%e™*"L*p|,_, = wo, —(T = )% *"L*p|,_,, = 0. (3.8)

Now, let us prove that if parameter A in the function n = n* sufficiently
large the problem (3.7), (3.8), (3.3) has a unique solution. For this we need
the Carleman’s inequality of the following type.

THEOREM 3.1. Let function n = n* defined in (2.21), function 3 satisfy
conditions (2.22), (2.23) and functions p,w satisfy (3.2), (3.3), where coef-

ficient ¥ from (3. 2) belongs to the space W22 (Q). Then there exists X > 0
such that for \ > A inequality holds

@) = [(T 0710897 + 3 (T = D2 gl +
Q la|<2
+ Z )21l D2 Ap|*e Q"Adxdtg c/ — )% lw|?e 207 drdt+
|a|<4 Q
+/(T—t)1 p|? 27" dudt), (3.9)
Qw

where the constant ¢ depends on A and ||¢||y1.22) (). Moreover dependness
of constant ¢ on the second argument is continuous and monotonic.

The proof of this theorem, because of it’s technically awkward will be
given in the end of the paper in the section 7.

To define the generalized solution of problem (3.7), (3.8), (3.3) we intro-
duce the space ¢, by formula

A
By = { p(t.z) : I3, = In(p) + / (T — )~ |pl? 27" dudt +
Qw

+ /(T - 25)66_277X |L*p|? dadt < oo, ply = Aply, =0, (3.10)
Q

where functional I,(p) defined in (3.9). Note that traces ply., Ap|s, are
correctly defined by virtue of the inequality ||p|le, < oo.
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DEFINITION 3.1. Let f € Lo(Q,e), wo € W2(Q). Function p(t,z) €
Dy, is called the generalized solution of problem (3.7), (3.8), (3.3) if for any
q € Py the inequality

/ (T — t)8e=2"" L*p - L*qdzdt + / (T — )62 pgdadt =
Q QW

= —/fqd:vdt—i—/wo(w)Aq(O,x)dm, (3.11)
Q

Q
holds where operator L* defined by formula (3.2).
We have.

THEOREM 3.2. Let wg € W2(Q), f € LQ(Q,e”A), where A > X and X is
defined in Theorem 3.1. Then there exists an unique generalized solution p
of the problem (3.7), (3.8), (3.3). Function p satisfies (3.7) in the sense of
distributions theory.

Proof. Let us consider the bilinear form, defined on the space ®),

a(p,q) = /(T — t)Ge_Z”kL*p - L*qdxdt + /(T — t)_le_Z”qudxdt.
Q Q¥

By virtue of Theorem 3.1 this form is continuous and coercive on ® :

2
a(p,q) > cllqlly, -

Obviously, the functional

F(q) = —/fqd:vdt—f— /wo(w)Aq(O,x)d:U,
Q

Q

is continuous on ®,. So by the Riez theorem on representation of linear
functional there exists an unique solution p € @, of the equation (3.2).
Setting in (3.11) ¢ € C§°(Q), we get the equality (3.7) in the distributions
theory sense. W

Now we are fix parameter A, chosen in Theorem 3.2 till the end of section
6.
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Let p be a generalized solution constructed in Theorem 3.2. Using the
function p we can define function w by equation (3.2). Our aim is to prove
that w is a solution of linear controllability problem (2.18) — (2.20;). In
the next section we will show, that w is a solution of boundary problem
(2.18)-(2.20).

4. Properties of the function w.

We start from the following Lemma.

LEMMA 4.1. Let p(t,z) be a generalized solution of problem (3.7), (3.8),
(8.3), constructed in Theorem 3.2, and functions p and u defined by (3.2),
and (8.4) respectively. Then

w e L2(Qv (T - t)—?’e??), u € L2(Q7 (T - t))—3e77), suppu C Qwa

and estimate

/(T — ) %e*Mw? (t, x)dadt + /(T — t)e* M2 (t, x)dxdt <
Q Qv

< c(/ e f2(t, x)dxdt + /(wo(a:))de), (4.1)
Q Q
holds where ¢ dependes continuously and monotonicaly on ||¢|ly1.22) gy only.

Moreover, functions w and u satisfy equation (2.18) in the distribution theory
sense.

Proof. Let us substitute p = ¢ into (3.11), than in virtue (3.2), (3.4)
express (L*p)2 by w?, and p? by u?. Applying to the right-hand-side of the
obtained equality the Cauchy-Bynakovskii estimate, and doing simple trans-
formations we get:

-3 2 1 2 _ 2
H(T —t) eanLQ(Q) + H(T — t)ze”uHLQ(Qw) < 8(”6 anLQ(Q) +
c
+ [@p0.07d0) + ST + o) (42)
Q

Evidently, magnitude [(Ap(0,z))?dz can be bounded by the left-hand-
Q
side of inequality (3.9). So, estimating the term with € in (4.2) by inequality
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(3.9) and setting parameter ¢ sufficiently small, we obtain (4.1). Relations
(3.2),(3.4) and (3.7) imply (2.18). W
Assume, that

Y € CF(Q). (4.3)

We intend to show, that w € W22 (Q) and together with (2.18) it
satisfies relations (2.19), (2.20). To prove this we firstly investigate boundary
problem

Ay(t,x) = 2(t, x), yly, = 0, (4.4)

=012+ A240y, Y0y, 2— 00, 005, 2 = g, where ¢ = f+u—B(w,1), (4.5)
zls, =0, Zl,—o = Awp. (4.6)
We have
LEMMA 4.2. Let f € Lo(Q,€"), ¥ € C™(Q), ¥|x =0,

wo € W5 (Q), wolpg =0, Awp|yg =0, (4.7)

and w and u functions from Lemma 4.1. Then there exists the unique solution

(y,2) € WH2)(Q) x WI2(-D(Q) of problem (4.4)-(4.6).

Proof. Lemma’s assumptions and the definition (2.12) of the operator B
imply
g=f+u—B(wv) € L(0,T; W5 ' (Q)).

Hence, for the solution of parabolic problem (4.5), (4.6) the inclusion z €
W12(=1)(Q) is true. Therefore the solution y of elliptic boundary problem
(4.4) belongs to Lo(0,T; W3(Q)). Differentiating (4.4) with respect to vari-
able ¢, we obtain

Oy € Lo(0,T; W (Q)).M

LEMMA 4.3. Let all assumptions of Lemma 4.2 be fulfilled. Then function
w € W1’2(1)(Q)

satisfies relations (2.18), (2.19), (2.201).

Proof. To prove this lemma it is sufficiently to show that w = y, where
y is the function constructed in Lemma 4.2. We substitute into (4.51) z =
Ay and g = f+y — B(w,v), then multiply obtained equality by ¢ €
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W122)(Q) N &, which satisfies g|;—7 = 0 and integrate by parts in this
equality taking into account (4.43), (4.6). As the result we obtain:

/ [y(@Aq + A% + B3 (. q)) + B (g, v)w] dedt — / wqdadt —
Q Qv

:/fqda:dt—/wo(x)Aq(x)dx- (4.8)
Q

Q

On the other hand we can express in (3.11) L*p and p by w and u with help
of (3.2),(3.4) and express L*q using (3.2). This yields :

- /Q [w(@Ag + A% + By(6,q)) + B (q, o)w] dedt + / wqdedt —

QUJ
= —/fqudt—/wo(x)Aq(x)d:v. (4.9)
Q Q
Adding (4.8),(4.9) we get equality:
/ (y — ) (B, Aq + A% + By(s, q))dzdt = . (4.10)

Q

The Lemma 4.4, proved below and (4.10) imply y = w. B

LEMMA 4.4. For an arbitrary h € Lo(Q) there exists the unique solution
q € WH2)(Q) of the problem

HAq+ A°q+ B3 (1, q) =h, qlg= Aqly, =0, gql,_p=0.  (4.11)

Proof. First of all, let us consider the boundary value problem
OhAg+A%q=f,  dly=A2ql5=0, gl,_p =0 (4.12)

To prove its unique solvability we represent problem (4.12) as a superposition
of two boundary value problems

Agq = o, qls, = 0;
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oo+ Ap = f, 30‘2:07 @’t T = Aq’t =0

and use the classical results on their solvability. Note that resolving operator
R of problem (4.12) act continuously from Ly(Q) to W2(2)(Q). We are
looking for solution of problem (4.11) in the following form ¢ = Rf. Sub-
stitution this equality in (4.11) yields the equation for the function f into
La(Q):

f+ B3, Rf) = h. (4.13)

Operator Bj(v,-) : WhH22)(Q) — WH2(=D(Q) defined in (3.6) is continu-
ous. The compactness of imbedding W2(=1(Q) CC Ly(Q) implies that the
operator By o R : La(Q) — L2(Q) is compact. Applying to equation (4.13)
Fredholm alternative theorem, and taking into account that index of the op-
erator [ + B o R : L2(Q) — L2(Q) equals zero, we reduce the question on
problem’s (4.11) solvability to the proof of uniqueness only of its solution.

Scaling (4.11) with A = 0 by function ¢ scalarly in Lo(Q2) and taking into
account (3.6) after the short calculations we obtain:

1
—§d—/]Vqta:\ d:z:+/\Vq] dx =

2
/Z 806380619 oo (8$j8$2q)8$11/}+8$1q(ﬁxj8132¢)_8$2q(813j8131¢))8$jq)dx
j=1

2
SC/ (Y 100.00,0")? [Va| + |Vl | dedt < (4.14)
2,j=1
/Z ‘8%8%(1‘ dx + — /|Vq\ dz).
,7=1

Since ¢ly, = 0 then the following estimate for the Dirichlet problem of
Laplace operator is true:

Z /}8%8% (z,)] d:v<cl/\Aq (z,1)]? da. (4.15)
1,j= 1Q

Substituting (4.15) into right-hand-side of (4.14) and setting parameter € > 0
sufficiently small we can carry out the term with Ag from right part to
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left part of the new inequality. Then integrating this inequality respect to
variable t we have

T
/\Vq(t,w)|2 dzx < c// \Vq(r,z)|* dedr. (4.16)
Q t Q
Applying to (4.16) the Gronwall’s inequality we obtain ¢ = 0.1
LEMMA 4.5. Let all assumptions of the Lemma 4.2 be fulfilled. Then
w e WH22)(Q).

Proof. By virtue of Lemma 4.3 w € W21)(Q) . So the function g
defined in (4.5) belongs to Lo(Q). Hence, solutions (z,y) of problem (4.5),
(4.6) and (4.4) satisfy conditions z € W20)(Q), y € W2(2)(Q). By Lemma
4.3 y = w. Thus, w € W22 (Q).N

Now we get rid of assumption (4.3).

THEOREM 4.1. Let f € L2(Q,e"), € WH2(Q), ¢l = 0 and wy
satisfy (4.7). Then the functions (w,u) from Lemma 4.1 satisfy for any
t € (0,T) estimates:

t
2 2
Vuw(t, ')HiQ(Q)ﬂL/ 1Aw(E, )17, ) 47 < ellIVwoll7, o)1l 7o)+ 1200
0
(4.17)
2
|!w|!3v1,2<1><Q) < C(HinQ(Q) + llwllws @), (4.18)

where constant ¢ dependes on |[1[|y1.2¢2) gy only. Moreover w € w22 (Q)
and satisfies (2.18), (2.19), (2.20,).

Proof. Firstly we prove (4.17) for ¢ € C°°(Q). In this case the statement
of Lemma 4.3 holds true. Multiplying (2.18) scalarly in L2(Q) by w and
integrating by parts taking into account (2.19), (2.20;) and (2.12) we have

t
1 2 2
9 ||vw(t7 ')||L2 Q + ||Aw(7—7 ')||L2 Q) dr S
2 () (
0

¢ ¢
1 1
<3 HVoniz o t3 [ lut fHW*l(Q) HVUJHLQ(Q) dr + B¢, w)wdzdr.
2 (©) 2 2
0 0 Q

(4.19)
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Taking into account (2.12), integrating by parts and using Cauchy- By-
nakovskii inequality and Sobolev inequality we obtain

t t
/ / B, wywdadt| — / / (O Dot — O, 0y, w) Awdardt] <
0 O 0 Q

t
1 1
<3 / 8uliaay i+ 5 [ [(100,00,,08 + 00,0, 0 dod: < (120)
0 Q
1 1 / 1
<5 [ 18uliag dt+ 5 [ 1900 IVl e < 5 [ 18l di+
0 0

2 2
te / (0 123y A2
0

Substituting (4.20) into (4.19), we will have after simple calculations

1
IVt sy + 5 [ 1807l dr < (@21
0

t
2 2
< 9wl + [ ar. ey + 177l aga)dr
0

t
e / L (7, ) s ) 1907, g
0

The Gronwall’s inequality and (4.21) imply (4.17).

Now let 1» € W12(2)(Q). Let us consider the sequence of 1, € C*®(Q)
such that ¢, — v in W2()(Q). Denote by py the generalized solution with
the coefficient ¢ = v, in definition (2.18) of the operator L. Let wy and u
are functions constructed by pj with help of formulas (3.2), (3.4). Denote by
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p, w and u the similar functions, which corresponds to the coefficient . By
virtue of (4.1) for functions wy and uy, satisfy the inequality

[ =B erun [ g + ||~ O erun

<c, 4.22
La(Qw) ( )

where constant ¢ does not dependent on k. Inequality (3.9), written for
functions py and wy with inequality (4.22) yield:

1Pklle, < e (4.23)

where @, is the space defined in (3.10). So, without loss of generality we can
assume that

Pr — P weakly in ®,. (4.24)

By virtue of (4.24) we can pass to the limit in equality (3.11) where p =
Pk, ¥ = Y as k — oo. As a result we get equality (3.11) for (p,v). The
uniqueness of generalized solution imply p = p. Hence

pr — p in Dy, wy, — w in Lo(Q, (T —t)3eM), (4.25)
up — uin La(QY, (T — t)2e").

But (4.25), (4.17) imply that
wy — w in Le(0,T;W(Q))  and w|y = 0. (4.26)

Since w € L0, T;W3(Q), ¢ € Wh23)(Q), then 9,w
€ Ly(0,T; W3 (), 0,,A¢ € C(0,T; Ly(2)). Thus (2.12) imply B(w,¢) €
L(0,T; W5 °(Q)) for any 6 > 0, This means that function g defined in (4.5)
belongs to Ly (0, T; W5 °(2)). Hence, the solution (y, z) of the problem (4.4)-
(4.6) is from the space W2(2=9)(Q) x Wh2(=9)(Q). Using the proof of the
Lemma 4.3 with the obvious modification we get w = y € W1H22=9(Q).
Again, consider the right hand side of (4.5) we have g € Lo(0,T; Lo(2)).
This imply that w = y € WH2(3)(Q) and w satisfies (2.18), (2.19),(2.20,).
The arguments, used above coupled with estimates for elliptic and parabolic
boundary value problems imply (4.18). B
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5. Solvability of linear control problem
and estimation of it’s solution.

The assertion on solvability of linear control problem (2.18)-(2.20) is a
simple corollary of the Theorem 4.1 and Lemma 4.1. Really, by virtue of
Theorem 4.1 the pair (w,u) satisfies (2.18), (2.19), (2.20;) and we should
prove validity of (2.202) only.

According to Theorem 4.1 and Lemma 4.1 the inclusions w € W1H2(2)(Q)
C(0,T; Ly(Q)), w € La(Q, (T — t)~3e") are true. Thus

(T — ) 3" w(t, -) i <e(T—t)7!
L2(€2)

where ¢ > 0 certain constant. This estimate yields

_k
lw(, )HLQ(Q) Sce 0 (5.1)

for some positive k > 0, ¢ > 0. Inequality (5.1), obviously implies (2.20).

The aim of this section is to prove the inclusion w € Y (Q), where Y (Q)
is space (2.26). Below, in every statement of this section we assume, that
assumptions of Theorem 4.1 hold and (w, u) are functions from Lemma 4.1
formulation.

LEMMA 5.1. For arbitrarye € (0,1) andt € (0,T) the function w satisfies
mequalities:

2 2n(t,x)
|Vw t xT ‘ e de <e ‘VAUJ(t 3}')‘2 2n(t, a:)d 4 |U)| 277(t733)da;-’
v e
Q

(5.2)
|Aw o2n(t 2 _2n(t ‘w‘Q 2n(t
/ n( m)d.ﬁ < 6/ ‘VAU) t .13>| n m)d.f—F /m@ n ’m)d.f,

Q
(5.3)

where constant ¢ does not depend on e, t, w.

Proof. Integrating by parts, by virtue of (2.21) and Cauchy-Bynakovskii
inequality we have

Vutt, o) o, _ [ w@(Vw, V) +Aw)
| e == [T e
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(g [ (T

&1 |[Aw)[? ¢lwl? .
é/((T_t)Q + 61(T—t)6)€2 da. (5.4)
Q

By similar transformations we obtain

e2dx <

/ |Aw(t, z)|? 2 _/ (VAw, Vw) + 2Aw(Vw, Vn)
RN (T -1

o 9 |Aw|2 c1 |Vw|2 9
< — VA Ndz.
_/(2\V w] +2(T—t)2+2(52(T—t)4 edx

Carry over to the left part of this inequality the term containing Aw, we get

9 2

/Me%daj < /(52 IVAw[* + M)e%’dm (5.5)
(T — 1) 2(T —

Q

We estimate right side of (5.5) with the help of (5.4) and transfer the term
containing |Awl|? from left side of the obtained inequality to the right side.
As a result we get

e2dzx.

82 |V Aw|? crelw)?
(T — t)2 € - / €191 * c10 6
J J (1—W) 5152<1—g—;)(T—t)
(5.6)
Setting in (5.6) 6; = 25721 and denoting € = 202 imply (5.3).
Substitution (5.5) into right side of (5.4) and carry- out the term contain-
ing |Vw|? from right side of obtained inequality to the left side yield:

2 2
/ 516
Y R SO S -
J (1-92) oy (1= 92) (T -1y

(5.7)
Setting in (5.7) dy = 261¢1, and denoting € = 4¢167 we get (5.2). B
We have
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LEMMA 5.2. The function w satisfies the estimates

2
a 2 on(t,x) < 2n(t,x) ‘w(t7 ‘T)‘
/ g |Dw(t, x)|" e dz c/ (\Aw(t z)|? +7(T—t)4 dz,

|a\<2 QO
(5.8)
2
/ Z |Dw(t, z)|* 2" E®) da < c/eQU(t’x) IVAw(t, z)[* + M dz,
Q lal<s A (T-9)
(5.9)
where ¢ does not depend on t, w.
Proof. Set v = e"w. By (2.19)
Av =g, V|gn =0, (5.10)
where
g = €e"(Aw + 2(Vn, Vw) + (|n]* + An)w). (5.11)

As consequence of well known estimates for solutions of elliptic boundary
problem applied to (5.10) and also to (5.11), (2.21), (5.4) with 6; = 1 we get

2
N w
/Z | DS (t, z)|? da:<c/\g[ dw<cl/<|Aw|2+ﬁ> e*dz.

la| <2 P
(5.12)
By Leibnitz formula of the product differentiation, (2.26) and (5.4) with
0 = 1 the inequality hold:

/Zu)a (t, )] da:>/z ¢ | DYyt 7)|? da
la|<2 || <2
2 2
. 2n |V1U‘ |w‘ d
cQ/e <(T—t)2+(T—t)4 x

/Z e21 | Do (t, 7)| da:—cl/ 21 <|Aw\ T [w |t) >da:. (5.13)

Inequalities (5.12), (5.13) imply (5.8). Applying a known estimate to the
solution v of the problem (5.10) we obtain by arguments similar to (5.12)

o o jwl?
/Z Du(t, )2 dm</ S b2y dm<cl/<|VAw‘2+m o2

la|<3 o] <1
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Similarly to (5.13) we have

/ Z \Dg‘v(t,a:)\de >

Q lal<3

2n o T x—c | e w [w] T
2/ S [Dsw(t, x) d Q/ (\VA\ 7 )>d.

Q lor| <3
The two last inequalities imply (5.9). W

THEOREM 5.1. Let f € Lo(Q,e"), where n = n*, X is a constant from
Theorem 3.2, 1 € W22)(Q), wq satisfy (4.7). Let p be a generalized solu-
tion (3.7),(3.8), (3.3), functions w and u defined by p using formulas (3.2),
(3.4). Then the pair (w,u) € Y(Q) x U, (Q) is a solution of problem (2.18)-
(2.20) and inequality

2 2 2 2
||wHY(Q) + HUHUu(Q) < C(/ e |f(t, z)|" dedt + ||w0||W23(Q))7 (5.14)
Q

is true where Y (Q), U,(Q) are Banach spaces (2.26), (2.27), and constant
¢ does not depend on w,u, f,wy.

Proof. Multiplying (2.18) by —e?”Aw and integrating in Q, = (0,7) x
Q, 7 € (0,T) we obtain after simple transformations:

/ 2n (26 (Aw)? + |VAw|* — 2Aw(Aw, n* + An)) dxdt =

.

= / (f +u — B(p,w) — B(w, 1)) " Awdzdt. (5.15)
Q-
We transform (5.15), bearing in mind (2.21), as follows

1
/6277 IV Aw|? dzdt + 3 /627’(7’3”) |Aw(r, z)|* de <
Q- Q

/6277(0,03) |Aw (w)|2 dx—f—/ C‘Aw|2 + 1 |VAw|2+ M+
J 0 g (T—1)2 ' 2 (T —t)?

<

N —
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o | Awl|?

ST —1) e dxdt.

(@ = )2 (ISP + [uf + B, w) P + |Blw.v)) +

(5.16)
Let us throw off the second term from the left part of (5.16) and pass to the
limit as 7 — T in the new inequality. Then carry-out the term containing
|V Aw| from right side of obtained inequality to the left side yields

) 9 Co ‘AU)|2
/62’7\VAw\ dxdtgc!\Awo!\L2<a>+/((C”?) T—t "
Q

Fe(T — t)? (W Fluf + | B, w) + |B(w,¢)|2) dedt.  (5.17)

Now let us estimate the terms containing the operator B. Taking into
account (2.12) and continuity of the imbedding W2()(Q) c C(Q) we get

T%/e%\Bw,w)\?dmtgguwug@ T2/e2’7\VAw\2da:dt§
Q Q

< ecT? \ywy\ivl,2<2)(Q)/e2” IV Aw|* dadt. (5.18)
Q
By (2.12) and the Sobolev imbedding theorem we have

T

T2e/e2’7|B(w,w)\2da:dt geTz//He”Vw(t,-)HQC(Q) IVAY(t, z)[* dedt <
Q 0 Q

2 o 2
< T VAL riacy [ O 1DEVwltin)) dude <
Q lal=2

) o 12 1 o, 12
< Tl [ X D2l + iy 3 105w

Q || <3 || <2

1 2
—_— . 1
+ T =0 |Vwl )da:dt (5.19)
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Applying to the right of (5.19) inequality (5.8) multiplied on (7' —¢)~2 and
estimates (5.9), (5.3) we obtain

2
T25/e2” |B(w, ¢)* dwdt < eT%e [¢[3y1.200 () /62’7 <|VAw|2 + %) dadt.

Q Q
(5.20)

Let us set parameter ¢ € (0, 1) such small, that coefficients in the right sides
of (5.18), (5.20) satisfy conditions

2 1 2 1
ecT? ||¢||W1,2(2)(Q) < eT%cy ||¢HW172(2>(Q) < (5.21)

8 8
Substituting (5.18), (5.20) into right side of (5.17), taking into account (5.21),
(5.3), we obtain

1
/ezn IV Aw|? drdt < cHAwOHiQ(Q) +/e277 (5 IVAw|)? + | f|* +
Q Q
+(T —t) |u|2) dxdt + ¢|lwol7,q)

By (4.1) this inequality implies the estimate

/eQT’WAw|2dmdt <c| lwollyzo +/6277\f\2dxdt : (5.22)
Q Q

Inequalities (5.9), (5.8) multiplied by (T —t)72, (5.2), (5.22) and (4.1) yield
the estimate

/e% ST 20 3 D2l | dadi < o ||w0||§v2(m+/e%\f|2dmdt
5 k=0 |l =k ° 5

<c /62" |fI? dadt + Hon%,sz(Q) . (5.23)
Q
By virtue of (5.18), (5.20), (5.22), (4.1) equation (2.18) imply the inequality
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/62” (0 (—Aw) + A%w — u)2 dxdt <
Q

< c/e% (IF7 + 1B, w) + |Blw, o)) dedt < (5.24)
Q

< [P dude+ fuol e
Q
Estimate (5.14) follows from (5.23), (5.24), (4.18), (4.1). &

6. Proof of the main results

Proof of the Theorem 2.1. The reduction of the problem (2.11)-(2.14),
(2.16) to the equation A(x) = z introduced in the Theorem I1.4.1 was de-
scribed in details below the formulation of the Theorem 2.1. In addition
condition (I1.4.3) is trivially fulfilled for ¢ = (0,0),29 = (0,0), continuous
differentiability of the mapping (1.4.2) was checked in Proposition 2.1, and
coincidence of the image of the operator (I1.4.4) with the space Z was proved
in Theorem 5.1. Thus, all assumptions of Theorem 2.2 are checked and ac-
cording to this theorem there exists a solution (w,u) € X of the problem
(2.11)-(2.14), (2.16), where X is the space defined in (2.26)-(2.28). Since by
virtue of (2.26), (2.27) Wh22)(Q) x {u € Ly(Q) : suppu C Q“} D X the
Theorem 2.1 is proved B

Remark 6.1. Since the component w of the solution of the problem
(2.11)-(2.14), (2.16) belongs to space (2.27) the following estimate for the
function w is true:

k
ot gy <o (~ g ) w =T 6)

Remark 6.2. Besides the solvability of the problem of local controllabil-
ity, proved in Theorem 2.1, the statement on the convergence rate of iteration
process, similar to the rate of convergence of classical Newton’s method holds
true.

More precisely, let (w!, u!) € Y(Q) x U,(Q) is a solution of the lin-
ear problem (2.18) - (2.20) constructed in the Theorem 5.1 with initial da-
tum ¢ = v, f = 0. We suppose that n + 1—approximation (w"t!, umtl)
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constructed by means of n—approximation (w"”, u") with help of formula
w™t = w™ + y", where (y™,u"1) is the solution of linear controllability
problem:

L <1ﬁ + w") y" = 0y (—Ay") + A%y

B (f ) 4B () =

y'ly = Ay"ly =0, Y=o = ¥"l;=r = 0.

Here u" ™ = x,u"™! (x., is the function defined in (1.13)) and f™ defined
by formula

fr =0 (—Auw™) + A*w" + B <IZJ\+ wn,w") + B <wn,$+ w") .

Applying to indicated iterations the classic estimates of the abstract New-
ton’s method, taking into account estimates obtained in section 5 one can
prove existence of constant ¢ which depends on [|9)]|y1.2c2 (@) such that for
sufficiently small ¢ from (2.15) the inequality holds

¢ (o = w0y g + 1o =) <1

and

-
[w = w" |y gyt —u" ) S 7 (C (Hw —w'lly g+ llu— ulHU(@)) ’

where (w,u) is a solution of the nonlinear controllability problem (2.11)-
(2.14).
To prove the Theorem 1.1 and 1.2 we need in

LEMMA 6.1. Let functions § € V12M(Q), yo € V2(Q) satisfy conditions
(1.11). Then there exist functions 1 € W2(1)(Q), ¢y € W3(Q), connected
by (2.1) with the functions ,yo respectively. In addition if §,yo satisfy the
conditions (1.5), (1.10) and the set X is connected then functions ¥,y
satisfy (2.8) and

=0, olp, = Aolp, = 0. (6.2)
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One can prove the statement of this Lemma by well known methods( see
for example Appendix 1 in [63]).

Proof of the Theorem 1.2. Let 1) € W12(2)(Q), ¢y € W3(Q) are the
functions, constructed by means of ¢, yo in Lemma 6.1. This fact imply that
these functions satisfy (2.3), (2.5), (2.7), (2.8) (since Iy = 92). Above, equa-
tion (2.2) for the function ¢ with u =0 g = rot f in right side was deduced
from equations (1.1), (1.2) for the . Thus all assumptions of Theorem 2.1
are fulfilled for ¢ and wy = $(0, ) — .

Let w be solution of problem (2.11)-(2.14), (2.16), constructed in this
theorem, and function ¢ be defined in (2.10). Obviously % is a solution of
(2.2),(2.3),(2.5),(2.6),(2.9). Thus y = (y1,y2) constructed by means of 1
in (2.1) is a solution of (1.15), (1.2), (1.3), (1.5), (1.13). Inequality (1.14)
follows from (6.1). W

The proof of the Theorem 1.1. By virtue of (1.8) we can con-
struct stream functions ) € WH2)(Q), and g € W3(Q) of the vector fields
g€ VI2M(Q) and yo € VZ(Q) respectively. Relations (1.5), (1.9) and con-
nectedness of the Ty imply (6.2) and by virtue of (1.7) functions v, ¢ satisfy
(2.8).

Let G is a bounded domain in R?, which satisfy conditions

QCcqG, 0GeC>® TycCcoG, T'indG=0.

(To construct G we need to extend 2 across I'y, preserving I'g as a part of the
boundary 0€2.) If © = (0,7) x G, S = (0,T) x 0G then ¥y C S. Obviously
functions vy € W3 (), V€ W12(2)(Q), satisfying to (6.2) can be extended
up to the functions 1o, € W3(G),¢1 € WH22)(0), which in turn satisfy
equations

10,1

oG — A¢071|8G =0, {ﬁ\l‘ = A{Z;l‘s =0,

S

Moreover
H@ZJOJ - ¢1(07 ')HWB(G) < ¢g,

where c¢ is independent on e form (2.8).

Let us apply to the function 1, the operator from left-hand-side of (2.2),
and denote by g7 the function which we received as a result.

Obviously g1 € L2(0) and ¢; is an extension of g from @ up to ©, where
function ¢ is the result of substitution to the left side of (2.2) of the function

Y.
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Note, that the functions 1), and wo,1 = YPo,1 — 1&(0, -) satisfy to the condi-
tions of the Theorem 2.1, where (2 is replaced by G. Let us take w C G\ €.
Then Theorem 2.1 implies Theorem 1.2 as it was mentioned above. The so-
lution of problem (1.12), (1.2), (1.3), (1.5) constructed in Theorem 1.2 after
the restriction of y(¢, z) from © on @ will satisfy to all assertions of Theorem
1.1, and boundary control u can be constructed by y with help (1.6).H

7. Carleman’s inequalities.

7.1. Our aim in this section is to prove Theorem 3.1. For this, we get
firstly Carleman inequalities for equations, more simple than (3.2). We start
from heat equation with inverse time

Oz(t, ) + Az(t,x) = f(t,z), (t,x)eQ, z|gy=0, (7.1)

where @ = (0,7) x 2,2 C R"™ - bounded domain, with boundary 99 €
C>, ¥ =(0,T) x 0. Let function v(t) € C*°(0,T) satisfy condition

t, te(0,To) VAR
< = = B
0<~(t) <1, ~(¢) {T—t, te(T—T,T) To = min( 3 2). (7.2)

Let w' C w C Q is the subdomain of €.
We remind that by Lemma I.1.1 there exist a function

B(x) € C*(Q), Blag =0, (VB,v)<0VzcoN. (7.3)

and there are no critical points of the function (x),z € Q \ w’ the inequality
holds

min_|[VA(z)| > 0. (7.4)
reEQ\w

Moreover, if to the function § constructed in the Lemma I.1.1 add sufficiently
large constant, the new function will be satisfied conditions (7.3),(7.4) and

B(x) > 1In3, min G(x) > §mag<ﬁ(x). (7.5)
e 4 IS Y)

We introduce functions ¢, a by formulas
p(t,@) = MO (1), a=al(t,@) = (eFIew — @) ), (7.6)

where function a(z) satisfy (7.3)-(7.5),y -satisfy (7.2), and parameter A > 0.
We have.
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THEOREM 7.1. Let functions z and f satisfy (7.1) and s > —3.* Then
for A > X,where X\ > 1 sufficiently large, the Carleman inequality is true

/@251 |8tZ|2+ Z

Q 1,7=1

2 2 2 2 4, 41,2 —2a*
+ A5p° V2" + A% 27| e 7% dadt

2
02,7

<c /g025 |f(t, z)[? e=20"(62) ot 4 / A2 43 |2(t, )P e 2 dadt |

Q Q~’
(7.7)
where Q¥ = (0,T) x ', v, -are functions from (7.2),(7.6), and constant
c > 0 1s independent on f, z.

Proof. After change in (7.1) of the unknown function

z(t,x) = ¢ *ew, (7.8)
we have equalities
Liyw+ Low = fy\(t,z), (t,z)€ Q, wly, = 0, (7.9)
where
Lyw = Aw + X202 |[VB)* w + (s + a)(8; Iny ™ Hw, (7.10)
Low = Oyw — 2X(¢ + s)(V 3, Vw), (7.11)

A= e f+ (A +s)AB+ (N2 (1—25) —s2A2) VB>, (7.12)
By (7.8) and properties of the function « following relations holds

wl,_g = w|,_p =0. (7.13)
We have by (7.9):
2 2 2
[L1w|[7,0) + 1 L2wll7, @) + 2 (1w, Low) oy = 1A ll750) - (7.14)
By virtue of (7.10), (7.11) we obtain:
(Llw, LQw)LQ(Q) = Il + 12 + Ig, (715)

*We use later just such s. This condition of course , by change (7.51) cad be weakened.
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where
I = / (Aw + X2 VB[P w + (s + a) (O Iny 1) w) Oywdxdt,  (7.16)
Q
I, =— / 2 <)\2<p2 VB + (s + ) (0 lnfy_1)> w (¢ +5) (VB, Vw) dzdt,
Q
(7.17)
I3 =— / (Aw) 2\ (¢ + s) (VS, Vw) dzdt. (7.18)

Q

Let us transform integrals I3, Io, Is. Integration by parts in (7.16), bearing
in mind (7.13), (7.93), gives equality

I = / {_%atww\? +% (X2 IV + (s + ) (B my ™)) &ew?} ddt =

— —/ ()\2g08t90 VS + %8t ((s+a) (0 ln'yl))) \w|? dadt. (7.19)

Integrating by parts respect to variable z in (7.17) and taking into account
(7.6) yields:

Iy = _/ <)\2Q02 |Vﬁ|2 + (8 + Oé) (815 ln'y_l)> )‘(90 + 8) (vﬁ,vw2) dedt —
Q

:/{(3)\4903+2)\38902) VBT + 2% (o + 5) [(WLWWE%
Q

+ V8P A8 + (0 ny) [-2%p (o + 5) VA +
FX20 (s +a) [VB2 + A (s +a) (o +3) Aﬁ} } lw|? dadt. (7.20)

Finally, let us transform (7.18):

I3 = / (Vw,V 2X (¢ + ) (VB,Vw))) dedt + I3y = / [(Vw, VB)? 2220 +
Q Q



126 III. EXACT CONTROLLABILITY FOR 2-D NAVIER-STOKES SYSTEM

- 1
+ | D 82,80, wd, w5 (vg,v |vw\2) 2\ (p + 8) | dadt + Is; =

ij=1
_ / (Vu, VB 2220 + | S 02, 30, wd, w-
5 ij=1
Aﬁ 2 2 2 2
5 IVw|™| 2A (¢ + 5) = A7 [VB[" [Vw|" ¢ dadt + I3 + I52,  (7.21)

where

Iy = — / (Y, v) 2) (¢ + 5) (Vaw, V) dodt Tys — / Np+5)| Vw2 (V 8, v)dodt.
by by

Since wly, = 0,

Op,w = Oywv;, j=1,...,n,
where, remind, v = (1, ... ,v,) is the outward normal to 0.
Hence
I33 = I31 + I39 = — / (8,,w)2 (0uB) A (¢ + s)dxdt > 0, (7.22)
b

where inequality follows from the definition (7.6) of function ¢ and inequali-
ties (7.5), s > —3. Substitution (7.19)-(7.21) in (7.15), and next substitution
of the obtained inequality in (7.14) yield relation:

HLleiQ(Q) + HLQU)H%Q(Q) + 2/ <3)\4903 IVBI* [w|® = N |VB[7 |Vw|* +
Q

+2 (Vuw, V3)? Azgp) dedt + Iss = |12l 7,,0) + X1, (7.23)

1
X1 = 2/ {()\2@61590 IV3|* + 56,5 ((s+a) (O Iny™)) — 2X%s¢” Vo[t —
Q

N (0 +5) (VA VIVA) = N2 (0 +5)[V)° A+
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+X20p (p+s) (at ln’y_l) ]Vﬁ]Q — X2 (s+ ) (at lnfy_l) ]VBIQ —

“A(s+a)(p+s) (Iny1) A ) w]? + X (¢ + 5) [AB|Vw|” -

9 zn: <6§iwjﬁ> (Oyw) (O, w)] | dadt. (7.24)

,j=1

Estimating (7.12), we get:

1700 < 3/ {902562“f2 +e <>\2902 IAB]?+ Atp? \V6\4) |wl? }dmdt.

(7.25)
The definition (7.6) of the functions ¢ and « implies the inequalities

0rp] < c0®, |(s+ @) (OrIny™ )| < cp?, |9 ((s + ) B lny )| < ep?,
(7.26)
where constant ¢ > 0 is independent on (t,z) € Q and A > 1. Estimating
(7.24) with the help of (7.26) we obtain

X < c/ (L 2%) @ ful* + (1 + Ag) [Vul?) dedr. (7.27)
Q

Scaling (7.9) by A2¢|V3|* w scalarly in Ly(Q) taking into account (7.10)
and integrating by parts we get

/fAA%\Vﬁﬁwdxdt:/(ng)wvgp\vmzdmm
Q Q

+/ [)\4g02g0 |Vﬁ|4 w? + )\2g0 (s+ ) (8t ln'y_l) \Vﬁ\2 w?—
Q

1
~N VA [Vul® + SA (A%p \vmz) wQ} dudt.
One can rewrite this equality as follows

/A%\Vﬁﬁ V| dedt = /)\4903\Vﬁ\4w2dxdt—X2, (7.28)
Q Q
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where
Xo = / [f,\)\ng \Vﬁ|2 w — (Law) WAy \Vﬁ|2 _
Q
1
N (5-+a) (0Iny™) VBP0 — 5 (W% (V) ) u-

—%290102 <2)\ (vg, \% |v5\2) + 22|Vt + A vaP Aﬁ)} dxdt.

Let us estimate Xy by means of (7.25), (7.26):

1 2
[ Xa| < 6 ||L2w||L2(Q) +

—|—c/ (g025672af2 + ()\4g02 + A2p% + N2 (1+ )\2) ) w2) dzdt. (7.29)
Q
Estimation (7.23) by means of (7.22), (7.27) we yields

L0l + 120l ) + [ (8367 VA1l — 202 [V (V) dadt
Q

< /'y(t)2se2af2d:vdt + c/ (T+2Y) e®+ (1+2%) %) \w|? dzdt+
Q Q

+/c0(1+A)go|vm2\vw\zde / c(1+ N ¢ |Vw|> dedt.  (7.30)
Q Qu/

In addition we include |V 3 |2 into penultimate term of right side of inequality
(7.30). By virtue of (7.4;) this is possible. We express terms in (7.30) which

contains cy |V B|* |Vw|? by means of (7.28) and apply (7.29) to the obtained
equality. As a result we have

2 2 co (1+A) 4, 12
[ L1wl7, ) + [ L2wll7, 0 +/ (4 TR M3 | VB |wl|” dedt <
Q

co(1+A))1 2 25 —2a 2 co(L+A)
S(Q‘f—T EHLQWHL2(Q)+ {Ze ™ f“ 1+ 2+T +

Q
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- (1+ (2+7CO(1)\;”\)) (T+ M) ? + (1+2%) ¢°

A2 (14 22) ) lw*}dadt + ¢ / c(1+ N ¢ |Vwl|® dadt. (7.31)
le

We take \ so large that cg (1 4+ A) /A? < 1. Taking into account, that ¢
dependes on A exponentially, and increasing A if it would be necessary, we
see that (7.31) implies inequality

2 2 4, 2
[ Liwl|7, ) + [[L2wll7, ) +/)‘4903 IVB[" |w]” dzdt <
Q

<c /@2562af2dxdt+ / <)\90\Vw|2 + A3 \w\2> dxdt | . (7.32)
Q Q'

Multiplication of (7.9) by Apw scalarly in Lo(Q), and the simple calculations,
similar to (7.28), (7.30), yield the estimate

1
/A¢|Vw\2dxdt§ % ||L2w||2LQ(Q)—|—3/6286_2af2d:vdt—|—01/)\gog|w|2d:vdt,

Q Q Q
(7.33)

where the constant ¢; defined in (7.32). By virtue of (7.4) inequality

/)\gog \w|? dadt < ¢y /)\g03 VB[ Jw|? dedt + / A |w|? dedt  (7.34)
Q Q Qv’

holds. Let us substitute (7.34) in the right part of (7.33), and new inequality
in turn substitute in (7.32). As a result, increasing if it would be necessary
parameter A, we obtain

L1l ) + 12wl + [ X6 [V fuf? dodt <
Q

<c /90256_2af2dxdt+ / A% [w|® dadt | . (7.35)
Q Q~’
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Relations (7.35), (7.4) imply estimate :

2 2 2
||L1w||L2(Q) + ||L2w||L2(Q) + /)\4903 |w|” dxdt <
Q

<c /go%emf?dxdt—f— / A lw|? dadt | . (7.36)
Q Qv'
Estimation of right side of (7.33) by means of (7.36) we yields:

/)\go IVw|? dedt < ¢ /Q02562af2d$dt + / Ao \w|? dadt | . (7.37)
Q Q Qu/

Multiplying (7.10) by (/%) ~!and estimating (7.36), we get the inequality

/90_1 |Aw|? dzdt < C/(go_l |Lyw|® + <)\4<p2 |Vﬁ|4+cg03) lw|?)dzdt <
Q Q

<c /90256_2af2dxdt+ / A? |w|? dadt | . (7.38)
Q Qv

By similar arguments, multiplying (7.10) by (\/ )\go)_l and estimating by
means of (7.37) we obtain

/ga_l |Oyw|? dadt < ¢ /@286_20‘f2da:dt + / Mo |w|* dadt | . (7.39)
Q Q Qw/

Note that the following equations are true:

Nl

A <go_%w) =" (Aw — A (VB, Vw) +
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Applying to solution ¢~ 3w of elliptic boundary problem (7.40) well known
estimates, and then estimating the right part of new inequality by (7.36)-
(7.38) we obtain

n

2
/ > |02, (¢7Fw)| dedt < c / Y220 2t + / Nig? |uwf* dwdt
Q 17'721 Q Qu/

(7.41)
Substitution into estimates (7.36)-(7.39),(7.41) w = e~ *p°z, yields (7.7).1
Let us consider the Dirichlet problem for the Laplace operator:

Ap(t,z)=z(t,z), (t,z)€Q, plss = 0. (7.42)
We have

THEOREM 7.2. There exists A > 1 such, that for any A > X and s > =3
solution p of the problem (7.42) satisfies the Carleman estimate

2
&imjpj + APV A2 | | €72 0Dt <

<c /g02562a* |z (¢, m)‘2 dzdt + / )\49028+3 Ip (¢, x)‘2 e*Qa’\dxdt

Q Qv'
(7.43)

Proof. Making in (7.42) change p = ¢~ *e“w, we get equality (7.9) where
Lyw = Aw + N2 [VB|*w, Low= -2\ (p+ s) (V3, V) (7.44)

and fy is defined in (7.12). All terms of operators (7.44) are contained in
operators (7.10), (7.11). So if for these terms form (7.44) to conduct estimates
similar as in the proof of the Theorem 7.1, we obtain (7.43).H

7.2. Let us consider problem (3.2), (3.3) in the cylinder @ = (0,7 x
0, QC R?:

O Ap (t,x) + A%p(t,z) = g— Bj (¥,p) — B (0, v), (7.45)
p‘z = AP’z =0, (7-46>

where 1) € W122) (Q) is a given function and operators Bj, B} are defined
by equalities (3.5),(3.6). The main statement of the this section is as follows.
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THEOREM 7.3. Let functzons p, [ satisfy (7.45),(7.46). Then there exists
X > 0 such that for any A > X the estimate holds:

10 = [ e |10

Q 7.7 1

Ap’ + @~ 5\VAp\ +

4
o 3 AP+ Y ST Dol o | e dadt <

k=0 |a|=k
< c/ga_Ge_2o‘A \g|? dzdt + / (14 A'3) g0p2e_2o‘xdxdt. (7.47)
Q Qv
Proof. Set
Ap(t,z) ==z(t,z),  f=g-B3,p)—Bipv). (7.48)

Then, by virtue of (7.45),(7.46) the functions z and f satisfy (7.1) and The-
orem 7.1 implies inequality (7.7) holds with s = 3. Since p and z satisfy
(7.50),(7.46), by virtue of Theorem 7.2 the estimate (7.43) holds with s = 3/2.
The inequalities (7.7) with s = 3 and (7.43) with s = 3/2 imply the estimate

Jo(p) 5/6_20‘ T | AT oD + Z

Q 7.7 1

2
. Ap‘ + X" [VAp[* +

2
Mo AP+t > 102, Ap’ + Ao 2 |Vp| + A [p[* | dadt <

<c| [e (1P e+ 180 o) dude
Q

+ /e—2a ()\4 |p|2+)\490_3\Ap|2> dedt | . (7.49)
Qw/
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Let p(z) € C§° (w), p(x) =1 for any = € w’. The relation holds

/ Mo ™3| Ap|? e 2 dadt < /p)\4g0_3e_2°‘ |Ap|? dedt =
Q- Q=

= / ANpA (pp~3e*Ap) dadt < (7.50)
Qw
< c/ (A7 pAp| + A [p| [VAP| 72 + [pA%p| Mo ™?) e **dadt <
Qw

c / e 2 [a <)\4g073 |Ap|* + X 5 [VAp|> + o7 }AQpF)—f—% (A% + A7) @p? | dadt.
Qw

Substituting (7.50) to the right part of the inequality (7.49), taking in the
obtained inequality parameter ¢ sufficiently small, and increasing parameter
A if it would be necessary we get the estimate

Jo(p) <c /e_2ag0_6 \f\Qda:dt + / e 22 p\p2dxdt |, (7.51)
Q Q¥

where functional Jy defined in (7.49).
To estimate terms in last sum from the left side of the inequality (7.47)
we write out the identities

A(p?ep)=fi, (¢ )|y =0, (7.52)
where
fi=p 3e “Ap+2 (V (90_36_0‘) ,Vp) + A (go‘%‘a) p. (7.53)

Applying a priori estimates for the Dirichlet boundary problem (7.52) we
have

/ S D8 (¢ P p)| dadt < el il (o mawycen) < Mo () (754)
Q |a|:3
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The Leibnitz rule of the differentiation of functions product applied to the
left side of (7.54) and simple calculations give inequality

/6_20‘90_6 Z |DEp|* dadt < eX2J, (p) . (7.55)
Q |a|:3

By similar argument, substituting ¢ ~* instead of =2 in (7.52), and summing
with respect to |a| = 4 instead of || = 3 in (7.54), we obtain

/6_20‘90_8 Z |DSp|? dadt < eA*J, (p). (7.56)
Q |a|:4

By estimates (7.51),(7.55),(7.56) for the functional Jy(p), defined in (7.49),
imply the inequality

J(p) <c /e_Za (1+A%) o ® | f1? dadt + /6_20‘ (1+ A'3) pp°dadt |,

Q Q¥
(7.57)
where ¢ depends on A.
Now we estimate the term Bj + Bf from the definition (7.48) of the func-
tion f. Differentiation of the product in (3.5),(3.6) and short calculation
gives the equation

By (p,¥) + By (¢, p) = (02, Ap) Ouyth — (02, Ap) Oy P+
+2((V02,p) (VOr, ) = (VOu,p) (VOu, ). (7.58)

By virtue of imbedding theorem

/ ¢80 (14 1Y) |VAp| V| dedt <
Q

< cl[¥llwree g /eQQQOG (1+2%) IV Ap|? dadt. (7.59)
Q
Applying imbedding theorem again we obtain

/62a906 (1 +)\4)

Q

92 22 2
mjp) 02 o|” dedt <

iLhk
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T

2
< (1+A4)/He“sof”0ixjp

2
)L (®) oz, xk¢”L4(Q) dt <
0

T

C (1 + )\4) Hw|’2Loo(07T;W23(Q)) / HQ_O‘QD_?’aiwjp
0

3
C (1 + )\4> ”w”afl,Q(Q)(Q) 5)\/6_2a Z Z ’D?p’Q @_2kdﬂfdt+

5 k=2 |a|=k

1
+_/6_2a§0 6
€

Q

Substitution the expression for f from (7.48) into the right side of (7.57) and
then, application of (7.58) and estimates (7.59),(7.60) yield the inequality

a, —392

He_ © 052, dt

)WQ(Q) ’LQ(Q)

2
2., p’ drdt | . (7.60)

J(p) < e / (1628 (60 9P + oS T |Dop 2

Q k=2 |a|=k

+%19076 Z \Dﬁp\z diEdt—f—/eQa (1—}—)\13) opidxdt | . (7.61)
|O[|:2 Qw

Taking ¢ sufficiently small in (7.61) and keeping in mind definition (7.47) of
the functional J we get:

C
J(p) < c2 /eQa L+ [ e gl + 9™ D IDSp[" | dadt+
Q |a|:2

+ / e 2 (1+ )\13) ep*dxdt | . (7.62)
Qu
Taking into account (7.47) function’s ¢ definition (7.6) and increasing, if

it would be necessary parameter A in (7.62), we get from (7.62) inequality
(7.47).1
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We set the initial condition at to € (0,7):

p’t:to = Po, (7.63)

for the (7.45), (7.46) where py € W3 (Q2) satisfies compatibility conditions

PO|aQ = APO‘aQ =0, (7.64)

and consider the problem (7.45),(7.46),(7.63) in the domain (¢, z) € (0,tg) X
Q.

LEMMA 7.2. Let Q C R?, ¢ € Wh22)\(Q), f € La(Q), po € W5(Q) and
satisfy (7.64). Then there exists the unique solution p € WH2(2)((0,t0) x Q)
of the problem (7.45),(7.46),(7.63) which satisfy the estimate

[Pl 0 20y < € (Iollwzay + 1 laqoipeen )+ (765)

where the constant c is independent on py and f.

The proof of Lemma 7.2 is similar to Lemma’s 4.4 proof.

Proof of the Theorem 3.1. Denote by R (p) e=27" the expression in
the left side of equality (3.9):

I (p) = / R(p) (t,z) e 2 (t2) gy, (7.66)
Q

where I (p) defined in (3.9). Let Ty € R! defined in (7.2). For t € (0,7 —Tp)
functions (7' — t) and n* from (2.26) are bounded from above and below by
positive constants, which depends on A only. Therefore, by virtue of (3.2),
(3.3) and estimate (7.65) we have

T

L (p) = / / R(p) (t,2) =" Dtz + [p] 2 a0 0.1z ey < (7-67)
T—Ty Q

T

oMt 2 2
< / /R(p) (t,z)e 2"t )dtdm+0<||l7 (T = To, )lws ) + HwHLQ((O,TfTO)XQ))‘
T T O
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Denote by R; (p) e=29" the integrand in the left hand side of inequality (7.47)

J(p) = / Ry (p) (t,z) e 2% (42) daqt, (7.68)
Q

where the functional J(p) defined in (7.47). Relation (7.64) and estimates
for the Dirichlet boundary problem for the Laplace operator we obtain the
inequality
2 2
IPollws ) < cllApollys(q) -

This estimate, trace theorem and definition (7.68) of the function R; yields

2 2
1P (T = To, )lwsz ) < 1APIwr 2@ (11— 7—1)x00) <

T—T,
< / /R1 (p) (t,x) e207 () gt (7.69)
0 O

By virtue of (7.67), (7.69), compearing definitions (2.26), (7.6), of the func-
tions 1 and «, as well as definitions (7.66),(7.68) of the functions R(p) and
Ri(p) we obtain

1 () < e (J0) + 10l 0y x0) ) - (7.70)

By  virtue of = (7.45), (3.2) we can replace g by
—eQUk(t@)w/ (T —1)® in the estimate (7.47). Then applying the new esti-
mate to the right-hand-side of (7.70) we get (7.49).1



