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CHAPTER I

EXACT CONTROLLABILITY

OF PARABOLIC EQUATIONS

Introduction

Let (x, t) ∈ Q = Ω×]0, T [, where Ω ⊂ Rn is a connected bounded domain
with boundary ∂Ω ⊂ C2, ν(x) - the external normal to ∂Ω, T ∈ (0,+∞) is
an arbitrary moment of time. We consider the semilinear parabolic equation

G(y) =
∂y

∂t
−

n
∑

i,j=1

∂

∂xi

(

aij(t, x)
∂y

∂xj

)

+
n
∑

i=1

bi(t, x)
∂y

∂xi

+ c(t, x)y + f(t, x, y) = u+ g, u ∈ U(ω), (1)

(l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

Σ
= (l1(t, x)

n
∑

i,j=1

aij(t, x)νi
∂y

∂xj
+ l2(t, x)y)

∣

∣

Σ
= 0,

y(0, x) = v0(x), (2)

where v0 and g are given, and u(t, x) is a control in the space

U(ω) = {u(t, x) ∈ L2(Q)
∣

∣supp u ⊂ [0, T ]× ω}.

Here ω is an arbitrary fixed subdomain of Ω and Σ =]0, T [×∂Ω.
By the problem of exact controllability we mean finding a control u ∈ U(ω)

such that

y(T, x) = v1(x), (3)

where v1(x) is a given function.

1



2 I. EXACT CONTROLLABILITY OF PARABOLIC EQUATIONS

In this paper we also consider the problem of exact boundary controlla-
bility, by which we mean finding a control u(t, x) such that

G(y) = g in Q, y(0, x) = v0(x), y(T, x) = v1(x), (4)

(l1(t, x)
∂y

∂νA
+l2(t, x)y)

∣

∣

]0,T [×Γ0
= u, (l1(t, x)

∂y

∂νA
+l2(t, x)y)

∣

∣

]0,T [×(∂Ω\Γ0)
= 0,

(5)
where Γ0 is an arbitrary fixed subdomain of ∂Ω, and v0, v1, g are given func-
tions.

In the above problems we assume

aij ∈ C1,2(Q), aij = aji, bi ∈ C0,1(Q), c ∈ L∞(Q), (6)

where i, j = 1, · · · , n and the uniform ellipticity: There exists β > 0 such
that

a(t, x, ζ, ζ) =
n
∑

i,j=1

aij(t, x)ζiζj ≥ β|ζ|2 ∀ζ ∈ Rn, (t, x) ∈ Q, (7)

Suppose functions l1, l2 ∈ C1,1(Σ) and

either l1(t, x) > 0 ∀(t, x) ∈ Σ, or l1(t, x) ≡ 0 and l2(t, x) ≡ 1. (8)

and compartibility condition of the first order holds

if l1(t, x) ≡ 0, then v0|∂Ω = 0. (9)

Firstly exact boundary controllability problem was studied in the work of
Yu. V. Egorov [11] for the case of one dimensional equation. For the control-
lability of the linear heat equation with time independent coefficients there
are many developments due to H. Fattorini [15], D. Russel [56] and T. Seid-
man [58]. Most of the results obtained till 1991 are for parabolic equations in
one space dimension and for the heat equation with the control distributed
on part of the boundary such that some non-trapping conditions are fulfilled,
or in the case of domains of special forms (ball, square,..). In the end of 80’s
essential progress was made in the theory of exact boundary controllability
of hyperbolic equations. Automatically the method introduced by Russel in
[57] gives the possibility to prove null controllability for wide class of the
linear parabolic equations under non-trapping conditions [33],[34].
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For approximate boundary controllability of the semilinear heat equa-

tion where the nonlinear term satisfies the sublinear growth condition see C.

Fabre, J. P. Puel and E. Zuazua [12]- [14].

The case of exact controllability of semilinear heat equation with Dirichlet

boundary conditions was studied in works of O.Yu. Imanuvilov [29]-[32].

The case of Neumann boundary conditions was studied in [9]. For the one

dimensional case with analytical nonlinear term there is a result due to W.

Littman and Guo [66]. They introduced the method completely different

from ours. We should also mention the work of G. Lebeau and L. Robbiano

[46] for linear heat equation which used a combination of Russels method,

integral transform, and the Carleman inequality for elliptic equations.

Local exact controllabilty results for the Burgers equation were obtained

by A.V. Fursikov and O.Yu. Imanuvilov in [16]. In the case when the non-

linear term satisfies the superlinear growth condition there is an estimate

for the Burgers equation due to A. V. Fursikov and O. Yu. Imanuvilov [11]

which shows that the equation is not approximately controllable with respect

to boundary control.

This chapter is organized as follows. In the first section we prove the

Carleman estimate for adjoint parabolic equation. In the second section we

apply this estimate to solve problems (1)-(3) and (4), (5) for the case of linear

parabolic equation. We use a variant of the penalization method.

In section 3 in the case where f(t, x, ζ) satisfies the global Lipschitz con-

dition in ζ variable with f(t, x, 0) ≡ 0 we obtain the necessary and sufficient

conditions for the global exact controllability, while where f(t, x, ζ) satisfies

the superlinear growth condition in ζ we prove in section 4 the local exact

controllability. The exact controllability of the nonlinear problem follows by

means of Schauder’s fixed point theorem for the global exact controllability

and by means of the implicit function theorem for the local exact controlla-

bility respectively. Also in section 4 global exact controllability results are

proved. In section 5 for some class of parabolic equations we prove an a

priori estimates which imply uncontrollability of these equations. Finally in

section 6 controllability of Burgers equation is studied.

For more details on the technical assumptions and the results please see

the main theorems in following sections.

1. Carleman estimate.
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Let us introduce the following spaces:

W k
p (Ω) =

{

w(x)
∣

∣ ||w||Wk
p (Ω) =

(

∑

|α|≤k

∫

Ω

|Dαw|pdx
)

1
p <∞

}

,

α = (α1, . . . , αn), |α| = α1 + · · ·+ αn, D
α = ∂α1/∂α1x1 . . . ∂

αn/∂αnxn,

W 1,2
p (Q) =

{

w(t, x)
∣

∣ w,
∂w

∂t
,
∂w

∂xi
,
∂2w

∂xi∂xj
∈ Lp(Q) i, j = 1, . . . , n

}

,

C1,2(Q) =

{

y(t, x)| y, ∂y
∂t
,
∂y

∂xi
,

∂2y

∂xi∂xj
∈ C(Q) i, j = 1, · · · , n

}

.

We have

Lemma 1.1. Let ω0 ⋐ ω be an arbitrary fixed subdomain of Ω. Then there
exists a function ψ ∈ C2(Ω) such that

ψ(x) > 0 ∀x ∈ Ω, ψ|∂Ω = 0, |∇ψ(x)| > 0 ∀x ∈ Ω \ ω0. (1.1)

The proof of Lemma 1.1 will be given later.
We set

ϕ(t, x) = eλψ(x)/(t(T − t)), ϕ̃(t, x) = e−λψ(x)/(t(T − t)), (1.2)

α(t, x) = (eλψ − e
2λ||ψ||

C(Ω))/(t(T − t)),

α̃(t, x) = (e−λψ − e
2λ||ψ||

C(Ω))/(t(T − t)), (1.3)

where λ > 0 and function ψ from Lemma 1.1. Note that

α(t, x) ≥ α̃(t, x) ∀(t, x) ∈ Q.

We also set

γ =

n
∑

i,j=1

||aij ||C1,2(Q) +

n
∑

i=1

||bi||C0,1(Q) + ||c||L∞(Q), γ̃ =

n
∑

i,j=1

||aij||C1,2(Q).

Let us consider the boundary value problem

Lz =
∂z

∂t
−

n
∑

i,j=1

∂

∂xi

(

aij(t, x)
∂z

∂xj

)

+

n
∑

i=1

bi(t, x)
∂z

∂xi
+ c(t, x)z = g in Q,

(1.4)

(l1(t, x)
∂z

∂νA
+ l2(t, x)z)

∣

∣

Σ
= 0, z(0, ·) = z0. (1.5)

We have the following:
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Lemma 1.2. Let (6)- (9) be fulfilled and functions ϕ, α, ϕ̃ and α̃ be defined

as in (1.2) and (1.3). Then there exists a number λ̂ > 0 such that for an

arbitrary λ ≥ λ̂ there exists s0(λ) such that for each s ≥ s0(λ) the solutions
of problem (1.4) - (1.5) satisfy the following inequality:

∫

Q

(

1

sϕ

(

∣

∣

∣

∣

∂z

∂t

∣

∣

∣

∣

2

+ |∆z|2
)

+ sϕ|∇z|2 + s3ϕ3z2

)

(e2sα + e2sα̃)dx dt

≤ c1
(

∫

Q

|g|2(e2sα + e2sα̃)dxdt+

∫

[0,T ]×ω
s3ϕ3z2(e2sα + e2sα̃)dxdt

)

,
(1.6)

where constant c1 depends continuously on γ, λ and constant λ̂ depends con-
tinuously on γ̃.

Since the proof of Lemma 1.2 technically looks very awkward firstly we
demonstrate it’s main ideas considering the more simple case of the heat
equation:

∂tz + ∆z = f(t, x) in Q, (1.7)

z|Σ = 0,
∂z

∂ν

∣

∣

∣

∣

Σ

= 0. (1.8)

We have

Lemma 1.3. There exists such s0 > 0 that for any s > s0 the solution
z(t, x) of (1.7), (1.8) satisfies the Carleman estimate:

∫

Q



(sϕ)−1





∣

∣

∣

∣

∂z

∂t

∣

∣

∣

∣

2

+
n
∑

i,j=1

∣

∣

∣

∣

∂2z(t, x)

∂xi∂xj

∣

∣

∣

∣

2




+sϕ

n
∑

j=1

∣

∣

∣

∣

∂z

∂xi

∣

∣

∣

∣

2

+ s3ϕ3z2



 esα(t,x) dx dt ≤ c3

∫

Q

f2(t, x)esα dx dt, (1.9)

where the functions ϕ(t, x), α(t, x) are defined in (1.2), (1.3), λ = 1, ψ(x) =
x1 and c3 > 0 does not depend on s.

Proof. We make the change of variables

w(t, x) = esαz(t, x) (1.10)
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in (1.7), (1.8). As a result in virtue of (1.10) we get

L1w(t, x) + L2w(t, x) = fs(t, x) (t, x) ∈ Q, (1.11)

w|Σ =
∂w

∂ν

∣

∣

∣

∣

Σ

= 0, (1.12)

where
L1w = ∆w + s2ϕ2w − s(∂tα)w, (1.13)

L2w = ∂tw − 2sϕ∂x1
w, (1.14)

fs = esαf + sϕw. (1.15)

Besides, by virtue of (1.3) and properties of α we have

w|t=0 = w|t=T = 0. (1.16)

Equation (1.11) implies

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) + 2(L1w,L2w)L2(Q) = ‖fs‖2
L2(Q). (1.17)

In virtue of (1.13), (1.14) we get

(L1w,L2w)L2(Q) = I1 + I2 + I3, (1.18)

where

I1 =

∫

Q

(∆w + s2ϕ2w − s(∂tα)w)∂tw dx dt, (1.19)

I2 = −
∫

Q

∆w(2sϕ∂x1
w) dx dt, (1.20)

I3 = −
∫

Q

(s2ϕ2 − s(∂tα))(2sϕw∂x1
w) dx dt. (1.21)

Let us transform I1, I2, I3. Integration by parts in (1.19) with help of (1.12),
(1.16) yields

I1 =

∫

Q

(−1

2
∂t|∇w|2 +

1

2
(s2ϕ2 − s(∂tα))∂t|w|2) dx dt =

−
∫

Q

(s2ϕ∂tϕ− s

2
∂2
ttα)|w|2 dx dt. (1.22)
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Analogously, integration by parts with respect to x in (1.21) with help of
(1.12) yields

I3 = −
∫

Q

(s2ϕ2 − s∂tα)sϕ∂x1
w2 dx dt =

∫

Q

(3s3ϕ3w2

− s2(∂tϕ)ϕw2 − s2(∂tα)ϕw2) dx dt. (1.23)

Finally, let us estimate term (1.20). Integrating by parts and (1.10) imply

I2 = (∇w,∇(2sϕ∂x1
w))(L2(Q))n =

∫

Q

(2sϕ(∂x1
w)2

+ sϕ∂x1
|∇w|2) dx dt =

∫

Q

(2s2ϕ(∂x1
w)2 − sϕ|∇w|2) dx dt. (1.24)

We substitute (1.22), (1.23), (1.24) into (1.18) and after that substitute the
obtained equality into (1.17). As a result we have

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) + 2

∫

Q

(3s3ϕ3|w|2 − sϕ|∇w|2

+ (∂x1
w)22sϕ) dx dt = ‖fs‖2

L2(Q) +X1, (1.25)

where

X1 = 2

∫

Q

(s2ϕ∂tϕ− s

2
∂2
ttα+ s2ϕ(∂tϕ) + s2ϕ(∂tα))|w|2 dx dt. (1.26)

We get with help of simple estimation of (1.15)

‖fs‖2
L2(Ω) ≤ 2

∫

Q

(e2sα|f |2 + s2ϕ2|w|2) dx, (1.27)

where c0 > 0 does not depend on s, t, x.
Definition (1.2), (1.3) of ϕ and α imply the inequalities

|∂tϕ| ≤ c1ϕ
2, |∂tα| ≤ c2ϕ

2, |∂2
ttα| ≤ c3ϕ

3, (1.28)

where c1, c2 c3 does not depend on s, t, x. The estimation of (1.26) with help
of (1.28) yields

|X1| ≤ c4

∫

Q

(1 + s2)ϕ3|w|2 dx dt. (1.29)



8 I. EXACT CONTROLLABILITY OF PARABOLIC EQUATIONS

Scaling (1.11) by sϕw in L2(Q) and taking into account (1.13) we get after
integration by parts
∫

Q

fssϕw dx dt =

∫

Q

(L2w)sϕw dx dt+

∫

Q

(s3ϕ3|w|2−

sϕ(∂tα)|w|2 − sϕ|∇w|2 +
1

2
s∆ϕ|w|2) dx dt.

We can rewrite this equality by the form
∫

Q

sϕ|∇w|2 dx dt =

∫

Q

s3ϕ3|w|2 dx dt−X2, (1.30)

where

X2 =

∫

Q

(f2
s sϕw − (L2w)sϕw + sϕ(∂tα)|w|2 − 1

2
sϕ|w|2) dx dt. (1.31)

We estimate X2 taking into account (1.27), (1.28):

|X2| ≤
1

4
‖L2w‖2

L2(Q)+c5

∫

Q

(e2sα|f |2+(s2ϕ2+s2ϕ3 +sϕ)|w|2) dx dt. (1.32)

The estimation of (1.25) by means of (1.29), (1.30) yields:

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) + 2

∫

Q

(3s3ϕ3|w|2 − sϕ|∇w|2) dx dt

≤
∫

Q

e2sα|f |2dxdt+ c6

∫

Q

((1 + s2)ϕ3 + s2ϕ2)|w|2 dx dt. (1.33)

We express the terms
∫

Q
sϕ|∇w|2 dx dt in (1.33) by means of (1.30) and

after that use estimation (1.32). As a result we get the upper bound

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) + 2

∫

Q

2s3ϕ3|w|2 dx dt

≤ 1

2
‖L2w‖2

L2(Q) + c9

∫

Q

(e2sα|f |2 + s2ϕ2w2) dx dt. (1.34)

By (1.34) there exists a parameter s0 such that the following inequality
holds:

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) +

∫

Q

s3ϕ3|w|2 dx dt

≤ c10

∫

Q

e2sα|f |2 dx dt ∀ s ≥ s0, (1.35)
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where c10 does not depend on s. After the estimation of right side of (1.30)
with help of (1.32), (1.35) we get

∫

Q

sϕ|∇w|2 dx dt ≤ c11

∫

Q

e2sα|f |2 dx dt ∀ s ≥ s0. (1.36)

Multiplying (1.13) on (sϕ)−
1
2 and doing estimate with help of (1.35), (1.28)

we get

∫

Q

(sϕ)−1|∆w|2 dx dt ≤ c12

∫

Q

((sϕ)−1|L1w|2 + s3ϕ3w2

+ (sϕ)−1|∂tα|2w2) dx dt ≤ c13

∫

Q

e2sα|f |2 dx dt ∀ s ≥ s0. (1.37)

Analogously, multiplying (1.14) on (sϕ)−
1
2 we obtain the following inequality

by means of (1.35), (1.36):

∫

Q

(sϕ)−1|∂tw|2 dx dt ≤ c14

∫

Q

e2sα|f |2 dx dt ∀ s > s0. (1.38)

After substitution w = esαz into (1.35) - (1.38) we obtain (1.9).

�

Proof of Lemma 1.2. We give the proof of our lemma for the case

l1(t, x) > 0 for all (t, x) ∈ Σ. The proof in the case of Dirichlet boundary
conditions is more simpler (see [32]). Set l3(t, x) = l2(t, x)/l1(t, x). Then we
can rewrite the boundary condition (1.5) as follows

(
∂z

∂νA
+ l3(t, x)z)|Σ = 0. (1.39)

We can assume without loosing of generality that l3(t, x) > 0 for all (t, x) ∈ Σ
otherwise we made the change z(t, x) → e−κψ(x)z(t, x) where parameter κ
sufficiently large.

Let us consider the operator

L̂z =
∂z

∂t
−

n
∑

i,j=1

aij(t, x)
∂2z

∂xi∂xj
. (1.40)
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We set

g̃(t, x) = g(t, x)−
n
∑

i=1

bi(t, x)
∂z

∂xi
− c(t, x)z +

n
∑

i,j=1

∂aij(t, x)

∂xi

∂z

∂xj
. (1.41)

We denote w(t, x) = esαz(t, x), w̃(t, x) = esα̃z(t, x).
By (1.3) we have

w(T, ·) = w̃(T, ·) = w(0, ·) = w̃(0, ·) = 0 in Ω. (1.42)

We define operators P, P̃ as the following:

Pw = esαL̂e−sαw, P̃w = esα̃L̂e−sα̃w. (1.43)

It follows from (1.4) and (1.40), (1.41) that

Pw = esαL̂e−sαw = esαg̃ in Q, (1.44)

P̃ w̃ = esα̃L̂e−sα̃w̃ = esα̃g̃ in Q. (1.45)

Operator P can be written explicitly as follows

Pw =
∂w

∂t
−

n
∑

i,j=1

aij
∂2w

∂xi∂xj
+ 2sλϕ

n
∑

i,j=1

aijψxi

∂w

∂xj
+ sλ2ϕa(t, x,∇ψ,∇ψ)w

− s2λ2ϕ2a(t, x,∇ψ,∇ψ)w+ sλϕw
n
∑

i,j=1

aijψxixj
− sαtw. (1.46)

We recall that quadratic form a(t, x, ξ, η) was defined in (7). We introduce

the operators L1, L2, L̃1 and L̃2 as follows

L1w = −
n
∑

i,j=1

aij
∂2w

∂xi∂xj
− λ2s2ϕ2a(t, x,∇ψ,∇ψ)w− sαtw, (1.47)

L2w =
∂w

∂t
+ 2sλϕ

n
∑

i,j=1

aijψxi

∂w

∂xj
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w, (1.48)

L̃1w = −
n
∑

i,j=1

aij
∂2w

∂xi∂xj
− λ2s2ϕ̃2a(t, x,∇ψ,∇ψ)w− sα̃tw, (1.49)
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L̃2w =
∂w

∂t
− 2sλϕ̃

n
∑

i,j=1

aijψxi

∂w

∂xj
+ 2sλ2ϕ̃a(t, x,∇ψ,∇ψ)w. (1.50)

It follows from (1.41), (1.46), (1.47) and (1.48) that

L1w + L2w = fs in Q, (1.51)

where

fs(t, x) = g̃esα − sλϕw

n
∑

i,j=1

aijψxixj
+ sλ2ϕa(t, x,∇ψ,∇ψ)w.

Taking L2-norm of both sides of (1.51), we obtain

||fs||2L2(Q) = ||L1w||2L2(Q) + ||L2w||2L2(Q) + 2(L1, w, L2w)L2(Q). (1.52)

By (1.47) and (1.48) we have the following equality:

(L1w,L2w)L2(Q) =
(

−
n
∑

i,j=1

aij
∂2w

∂xi∂xj
− λ2s2ϕ2a(t, x,∇ψ,∇ψ)w

− sαtw,
∂w

∂t
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w

)

L2(Q)
−
∫

Q

(2λ3s3ϕ3a(t, x,∇ψ,∇ψ)w

+ 2s2λϕαtw)a(t, x,∇ψ,∇w)dxdt

−
∫

Q





n
∑

i,j=1

aij
∂2w

∂xi∂xj



 2sλϕa(t, x,∇ψ,∇w)dxdt. (1.53)

Integrating by parts in the first term of the right-hand-side of (1.53), we
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obtain

A0 =
(

−
n
∑

i,j=1

aij
∂2w

∂xi∂xj
− λ2s2ϕ2a(t, x,∇ψ,∇ψ)w− sαtw,

∂w

∂t

+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w
)

L2(Q)
=

∫

Q

(

∂w

∂t

n
∑

i,j=1

∂aij
∂xj

∂w

∂xi
+

n
∑

i,j=1

aij
∂w

∂xi

∂wt
∂xj

− λ2s2ϕ2

2
a(t, x,∇ψ,∇ψ)

∂w2

∂t
− sαt

2

∂w2

∂t
− 2s3ϕ3λ4a(t, x,∇ψ,∇ψ)2w2

− 2s2λ2αtϕa(t, x,∇ψ,∇ψ)w2 + 2λ2sϕa(t, x,∇ψ,∇ψ)w

n
∑

i,j=1

∂aij
∂xj

∂w

∂xi

+ 2sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w
)

+ 2sλ2w
n
∑

i,j=1

aij
∂w

∂xj

∂

∂xi
(ϕa(t, x,∇ψ,∇ψ))

)

dxdt

−
∫

Σ

(

∂w

∂t
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w

)

∂w

∂νA
dΣ. (1.54)

Integrating by parts in the second term of the right-hand-side of (1.53),

we have

−
∫

Q

(2λ3s3wϕ3a(t, x,∇ψ,∇ψ)a(t, x,∇ψ,∇w)+2s2λαtwϕa(t, x,∇ψ,∇w))dxdt

= −
∫

Q

(λ3s3ϕ3a(t, x,∇ψ,∇ψ)a(t, x,∇ψ,∇w2)+s2αtϕλa(t, x,∇ψ,∇w2))dxdt

=

∫

Q

(3λ4s3ϕ3a(t, x,∇ψ,∇ψ)2w2+w2ϕ3λ3s3
n
∑

i,j=1

∂

∂xi
(aijψxj

a(t, x,∇ψ,∇ψ))

+

n
∑

i,j=1

∂

∂xj

(

s2λ2αtϕ

2
aij

∂ψ

∂xi

)

w2)dxdt

−
∫

Σ

(λ3s3ϕ3a(t, x,∇ψ,∇ψ) + s2αtϕλ)a(t, x,∇ψ, ν)w2dΣ. (1.55)
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Finally, integrating by parts for the third term of right-hand-side of (1.53),
and taking into account (1.12) we have

A1 =

∫

Q

−





n
∑

i,j=1

aij
∂2w

∂xi∂xj







2sλϕ
n
∑

k,ℓ=1

akℓψxk

∂w

∂xℓ



 dxdt

=

∫

Q





n
∑

i,j=1

∂aij
∂xj

∂w

∂xi
2sλϕ

n
∑

k,ℓ=1

akℓψxk

∂w

∂xℓ
+ 2sλ2ϕa(t, x,∇ψ,∇w)2

+ 2sλϕ
n
∑

i,j=1



aij
∂w

∂xi

n
∑

k,ℓ=1

∂

∂xj
(akℓψxk

)
∂w

∂xℓ





+ 2sλϕ

n
∑

i,j=1

aij
∂w

∂xi

n
∑

k,ℓ=1

akℓψxk

∂2w

∂xj∂xℓ

)

dxdt+

∫

Σ

2sλϕ|∇ψ|
∣

∣

∣

∣

∂w

∂νA

∣

∣

∣

∣

2

dΣ

=

∫

Q

(

n
∑

i,j=1

∂aij
∂xj

∂w

∂xi
2sλϕ

n
∑

k,ℓ=1

akℓψxk

∂w

∂xℓ
+ 2sλ2ϕa(t, x,∇ψ,∇w)2

+ 2sλϕ

n
∑

i,j=1



aij
∂w

∂xi

n
∑

k,ℓ=1

∂

∂xj
(akℓψxk

)
∂w

∂xℓ





− sλϕ

n
∑

k,ℓ=1

akℓψxk

n
∑

i,j=1

∂aij
∂xℓ

∂w

∂xi

∂w

∂xj

+ sλϕ

n
∑

k,ℓ=1

akℓψxk

∂

∂xℓ

n
∑

i,j=1

aij
∂w

∂xi

∂w

∂xj



 dxdt+

∫

Σ

2sλϕ|∇ψ|
∣

∣

∣

∣

∂w

∂νA

∣

∣

∣

∣

2

dΣ.
(1.56)

Integrating by parts once again, we obtain

A1 =

∫

Q





n
∑

i,j=1

∂aij
∂xj

∂w

∂xi
2sλϕ

n
∑

k,ℓ=1

akℓψxk

∂w

∂xℓ
+ 2sλ2ϕa(t, x,∇ψ,∇w

)2
+

2sλϕ
n
∑

i,j=1



aij
∂w

∂xi

n
∑

k,ℓ=1

∂

∂xj
(akℓψxk

)
∂w

∂xℓ



−sλϕ
n
∑

k,ℓ=1

akℓψxk

n
∑

i,j=1

∂aij
∂xℓ

∂w

∂xi

∂w

∂xj

− sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w)− sλϕ
n
∑

k,ℓ=1

akℓψxk

n
∑

i,j=1

∂aij
∂xℓ

∂w

∂xi

∂w

∂xj
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−a(t, x,∇w,∇w)sλϕ

n
∑

k,ℓ=1

∂

∂xℓ
(akℓψxk

)



 dxdt

+

∫

Σ

(

2sλϕ|∇ψ|
∣

∣

∣

∣

∂w

∂νA

∣

∣

∣

∣

2

− sλϕ|∇ψ|a(t, x,∇w,∇w)a(t, x, ν, ν)

)

dΣ. (1.57)

Now, let us transform integrals on Σ in (1.54) and (1.57). By virtue of

(1.39) for the integral on Σ in (1.54) we have

∫

Σ

(

∂w

∂t
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w

)

a(t, x, ν,∇w)dΣ

=

∫

Σ

(

∂w

∂t
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w)(a(t, x, ν,∇z)esα + sλa(t, x, ν,∇ψ)w

)

dΣ

=

∫

Σ

(

∂w

∂t
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w

)

(sλa(t, x, ν,∇ψ)− l3(t, x))wdΣ;
(1.58)

On the other hand, for the integrals on Σ in (1.57) we have

∫

Σ

(

2sλϕ|∇ψ|
∣

∣

∣

∣

∂w

∂νA

∣

∣

∣

∣

2

− sλϕ|∇ψ|a(t, x,∇w,∇w)a(t, x, ν, ν)

)

dΣ

=

∫

Σ

(2sλϕ|∇ψ|a(t, x, ν,∇w)2 − sλϕ|∇ψ|a(t, x,∇w,∇w)a(t, x, ν, ν))dΣ

=

∫

Σ

(2sλϕ|∇ψ|(−l3(t, x)w + sλϕa(t, x, ν,∇ψ)w)2

− sλϕ|∇ψ|a(t, x, esα(∇z + sλϕ∇ψz), esα(∇z + sλϕ∇ψz))a(t, x, ν, ν))dΣ

=

∫

Σ

(2s3λ3ϕ3|∇ψ|a(t, x, ν,∇ψ)2w2 + 2sλϕ|∇ψ|l23w2

+ 4s2λ2ϕ2|∇ψ|2l3(t, x)a(t, x, ν, ν)w2 − 2s2λ2φ2|∇ψ|2l3(t, x)a(t, x, ν, ν)w2

− |∇ψ|e2sα(sλϕa(t, x,∇z,∇z) + s3λ3ϕ3a(t, x,∇ψ,∇ψ)z2)a(t, x, ν, ν))dΣ.
(1.59)
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By virtue of (1.54), (1.55) and (1.57) - (1.59) one can rewrite (1.53) as follows.

(L1w,L2w)L2(Q) =

∫

Q

(λ4s3ϕ3a(t, x,∇ψ,∇ψ)2w2

+ sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w)+ L2w

n
∑

i,j=1

∂aij
∂xj

∂w

∂xi

+ 2sλ2ϕa(t, x,∇ψ,∇w)2)dxdt+

∫

Σ

(2s3λ3ϕ3w2|∇ψ|a(t, x, ν,∇ψ)2

+ 2sλϕ|∇ψ|l23(t, x)w2 + 2s2λ2ϕ2l3(t, x)|∇ψ|2a(t, x, ν, ν)w2

− sλϕ|∇ψ|e2sα(a(t, x,∇z,∇z) + s2λ2ϕ2a(t, x,∇ψ,∇ψ)z2)a(t, x, ν, ν))dΣ

−
∫

Σ

(

∂w

∂t
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w

)

(sλϕa(t, x, ν,∇ψ)− l3(t, x))wdΣ

−
∫

Σ

(λ3s3ϕ3a(t, x,∇ψ,∇ψ) + s2αtϕλ)w2a(t, x,∇ψ, ν)dΣ +X1, (1.60)

where we put

X1 =

∫

Q



2sλ2w

n
∑

i,j=1

aij
∂w

∂xj

∂

∂xi
(ϕa(t, x,∇ψ,∇ψ))

+
1

2

∂

∂t
(λ2s2ϕ2a(t, x,∇ψ,∇ψ))w2 − sαttw

2

2

+ 2sλϕ
n
∑

i,j=1



aij
∂w

∂xi

n
∑

k,ℓ=1

∂(akℓψxk
)

∂xj

∂w

∂xℓ



− sλϕ
n
∑

k,ℓ=1

akℓψxk

n
∑

i,j=1

∂aij
∂xℓ

∂w

∂xi

∂w

∂xj
− a(t, x,∇w,∇w)sλϕ

n
∑

k,ℓ=1

∂

∂xℓ
(akℓψxk

)

− 1

2

n
∑

i,j=1

∂aij
∂t

∂w

∂xi

∂w

∂xj
+ w2ϕ3λ3s3

n
∑

i,j=1

∂

∂xi
(aijψxj

a(t, x,∇ψ,∇ψ))

−
n
∑

i,j=1

∂

∂xj

(

s2αtϕλ
2

2
aij

∂ψ

∂xi

)

w2



 dxdt.
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One can easily prove the following estimate:

|X1| ≤ c2

∫

Q

((s3λ3ϕ3 + s2λ4ϕ3)w2 + (sλϕ+ 1)|∇w|2)dxdt

s ≥ 1, λ ≥ 1, (1.61)

where the constant c2 is independent on s and λ.
Similarly to (1.51) we have

L̃1w̃ + L̃2w̃ = f̃s in Q, (1.62)

where

f̃s(t, x) = g̃esα̃ + sλϕ̃w

n
∑

i,j=1

aijψxixj
+ sλ2ϕ̃wa(t, x,∇ψ,∇ψ).

Thus,

||f̃s||2L2(Q) = ||L̃1w̃||2L2(Q) + ||L̃2w̃||2L2(Q) + 2(L̃1w̃, L̃2w̃)L2(Q). (1.63)

Since ψ(x)|∂Ω = 0 we have

w̃|Σ = w|Σ; ϕ̃|Σ = ϕ|Σ; α̃|Σ = α|Σ. (1.64)

By similar arguments one can obtain the analog of equality (1.60) for the

scalar product (L̃1w̃, L̃2w̃)L2(Q), and transform it using (1.64).

(L̃1w̃, L̃2w̃)L2(Q) =

∫

Q

(λ4s3ϕ̃3a(t, x,∇ψ,∇ψ)w̃2 + L2w̃
n
∑

i,j=1

∂aij
∂xj

∂w̃

∂xi

+ sλ2ϕ̃a(t, x,∇ψ,∇ψ)a(t, x,∇w̃,∇w̃) + 2sλ2ϕ̃a(t, x,∇ψ,∇w̃)2)dxdt

−
∫

Σ

(2s3λ3ϕ3w2|∇ψ|a(t, x, ν,∇ψ)2 + 2sλϕl23(t, x)|∇ψ|w2

− 2s2λ2ϕ2|∇ψ|2l3(t, x)a(t, x, ν, ν)w2 + sλϕ|∇ψ|e2sα(a(t, x,∇z,∇z)
+ s2λ2ϕ2a(t, x,∇ψ,∇ψ)z2)a(t, x, ν, ν))dΣ

+

∫

Σ

(

∂w

∂t
+ 2sλ2ϕa(t, x,∇ψ,∇ψ)w

)

(sλϕa(t, x, ν,∇ψ)− l3(t, x))wdΣ

+

∫

Σ

(λ3s3ϕ3a(t, x,∇ψ,∇ψ) + s2λαtϕ)w2a(t, x,∇ψ, ν)dΣ +X2, (1.65)
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where |X2| satisfies the estimate

|X2| ≤ c3

∫

Q

[(s3λ3ϕ̃3 + s2λ4ϕ̃3)w̃2 + (sλϕ̃+ 1)|∇w̃|2]dxdt ∀ s ≥ 1, λ ≥ 1.

(1.66)
Constant c3 is independent of s and λ.

Hence by virtue of (1.52), (1.59), (1.63) and (1.65) we have

||fs||2L2(Q) + ||f̃s||2L2(Q) = ||L̃1w̃||2L2(Q) + ||L1w||2L2(Q) + ||L̃2w̃||2L2(Q)

+ ||L2w||2L2(Q) + 2

∫

Q

(λ4s3ϕ3a(t, x,∇ψ,∇ψ)2w2 + λ4s3ϕ̃3a(t, x,∇ψ,∇ψ)2w̃2

+ sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w)+ sλ2ϕ̃a(t, x,∇ψ,∇ψ)a(t, x,∇w̃,∇w̃)

+ (L̃2w̃)





n
∑

i,j=1

∂aij
∂xj

∂w̃

∂xi



+ (L2w)





n
∑

i,j=1

∂aij
∂xj

∂w

∂xi



+ 2sλ2ϕa(t, x,∇ψ,∇w)2

+ 2sλ2ϕ̃a(t, x,∇ψ,∇w̃)2)dxdt+

∫

Σ

(8s2λ2ϕ2|∇ψ|l3(t, x)a(t, x, ν, ν)

+ 2
∂l3
∂t

+ 8sλ2ϕl3a(t, x,∇ψ,∇ψ))w2dΣ +X1 +X2. (1.67)

Applying the Cauchy-Bunyakovskii inequality in (1.67), we get

||L̃1w̃||2L2(Q) + ||L1w||2L2(Q) +
1

2
||L̃2w̃||2L2(Q) +

1

2
||L2w||2L2(Q)

+ 2

∫

Q

(λ4s3ϕ3a(t, x,∇ψ,∇ψ)2w2 + λ4s3ϕ̃3a(t, x,∇ψ,∇ψ)2w̃2+

sλ2ϕa(t, x,∇ψ,∇ψ)a(t, x,∇w,∇w)+ sλ2ϕ̃a(t, x,∇ψ,∇ψ)a(t, x,∇w̃,∇w̃)

− 4





n
∑

i,j=1

∂aij
∂xj

∂w̃

∂xi





2

− 4





n
∑

i,j=1

∂aij
∂xj

∂w

∂xi





2

)

dxdt+X1 +X2

+

∫

Σ

8s2λ2ϕ2|∇ψ|2l3(t, x)a(t, x, ν, ν) + 2
∂l3
∂t

+ 8sλ2ϕl3a(t, x,∇ψ,∇ψ))w2dΣ

≤ ||fs||2L2(Q) + ||f̃s||2L2(Q). (1.68)

We recall that by Lemma 1.1

|∇ψ(x)| > β > 0 ∀x ∈ Ω \ ω0.
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Hence, taking parameter λ > 0 sufficiently large in (1.68), by virtue of
(1.61) and (1.66) we obtain: There exists s0(λ) > 0 such that

||L̃1w̃||2L2(Q) + ||L1w||2L2(Q) +
1

2
||L2w||2L2(Q) +

1

2
||L̃2w̃||2L2(Q)

+

∫

Q

(λ4s3ϕ3w2 + λ4s3ϕ̃3w̃2 + sλ2ϕ|∇w|2 + sλ2ϕ̃|∇w̃|2)dxdt

≤ c4(

∫

[0,T ]×ω

(λ4s3ϕ3w2 + λ4s3ϕ̃3w̃2 + sλ2ϕ|∇w|2 + sλ2ϕ̃|∇w̃|2)dxdt

+ ||g̃esα||2L2(Q) + ||g̃esα̃||2L2(Q)) ∀s ≥ s0. (1.69)

Thus, from (1.47) - (1.50), (1.69) we have

∫

Q

{

1

sϕ

(

∂w

∂t

)2

+
1

sϕ̃

(

∂w̃

∂t

)2

+
1

sϕ

n
∑

i,j=1

(

∂2w

∂xi∂xj

)2

+
1

sϕ̃

n
∑

i,j=1

(

∂2w̃

∂xi∂xj

)2

+ sλ2ϕ|∇w|2 + sλ2ϕ̃|∇w̃|2 + λ4s3ϕ3w2 + λ4s3ϕ̃3w̃2

}

dxdt

≤ c5(

∫

Q

(λ4s3ϕ3w2 + λ4s3ϕ̃3w̃2 + sλ2ϕ|∇w|2 + sλ2ϕ̃|∇w̃|2)dxdt

+ ||g̃esα||2L2(Q) + ||g̃esα̃||2L2(Q)) ∀s ≥ s0. (1.70)

Replacing w by esαz and w̃ by esα̃z respectively in (1.70), we get

∫

Q

{

(
1

sϕ

(

∂z

∂t

)2

+
1

sϕ

n
∑

i,j=1

(

∂2z

∂xi∂xj

)2

+ sλ2ϕ|∇z|2 + s3λ4ϕ3z2)e2sα

+ (
1

sϕ̃

(

∂z

∂t

)2

+
1

sϕ̃

n
∑

i,j=1

(

∂2z

∂xi∂xj

)2

+ sλ2ϕ̃|∇z|2 + s3λ4ϕ̃3z2)e2sα̃
}

dxdt

≤ c6(λ)[

∫

[0,T ]×ω

(λ4s3ϕ3z2e2sα + λ4s3ϕ̃3z2e2sα̃ + sλ2ϕ|∇z|2e2sα

+ sλ2ϕ̃|∇z|2e2sα̃)dxdt+ ||gesα||2L2(Q) + ||gesα̃||2L2(Q)] ∀s ≥ s1.
(1.71)

Let us consider the function ρ(x) ∈ C∞
0 (w), ρ(x) ≡ 1 in ω0. We multiply

the equation (1.44) by sλ2ϕze2sα scalarly in L2(Q). Integrating by parts
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with respect to t and x, applying the Cauchy-Bunyakovskii inequality, we

obtain

∫

[0,T ]×ω0

sλ2ϕ|∇z|2e2sαdxdt ≤ c7(

∫

[0,T ]×ω

s3λ4ϕ3z2e2sαdxdt+ ||g̃esα||2L2(Q)),

(1.72)

where a constant c7 is independent of s.

Similarly

∫

[0,T ]×ω0

sλ2ϕ̃|∇z|2e2sα̃dxdt ≤ c8(

∫

[0,T ]×ω

s3λ4ϕ̃3z2e2sα̃dxdt+ ||g̃esα̃||2L2(Q)),

(1.73)

where a constant c8 is independent of s.

By virtue of (1.41), (1.71), (1.72) and (1.73) we have

∫

Q

((
1

sϕ

(

∂z

∂t

)2

+
1

sϕ





n
∑

i,j=1

∂2z

∂xi∂xj





2

+ sλ2ϕ|∇z|2 + s3λ4ϕ3z2)e2sα

+ (
1

sϕ̃

(

∂z

∂t

)2

+
1

sϕ̃





n
∑

i,j=1

∂2z

∂xi∂xj





2

+ sλ2ϕ̃|∇z|2 + s3λ4ϕ̃3z2)e2sα̃)dxdt

≤ c9[

∫

[0,T ]×ω

(λ4s3ϕ3z2e2sα + λ4s3ϕ̃3z2e2sα̃)dxdt

+ ||gesα||2L2(Q) + ||gesα̃||2L2(Q)] ∀s ≥ s0. (1.74)

We observe that for all λ > 0 there exist constants c10(λ) > 0, c11(λ), c12(λ) >

0, c13(λ) such that the following inequalities hold

c10(λ)|ϕ| ≤ |ϕ̃| ≤ c11(λ)|ϕ|, c12(λ)
1

|ϕ| ≤
1

|ϕ̃| ≤ c11(λ)
1

|ϕ| ∀ (t, x) ∈ Q.

(1.75)

By (1.74), (1.75) we finally obtain (1.6).�

Remark 1.1. Careful examination of the proof of Lemma 1.3 shows, that
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parameter λ̂ can be defined by formula

λ̂ =
10

β
sup

(t,x)∈Q

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

∂

∂xi
(aijψxi

a(t, x,∇ψ,∇ψ))

∣

∣

∣

∣

∣

∣

+
10

β
sup

(t,x)∈Q

∣

∣

∣

∣

∣

∣

n
∑

k,ℓ=1

akℓψxk

n
∑

i,j=1

∂aij
∂xℓ

∣

∣

∣

∣

∣

∣

+ sup
(t,x)∈Q

10

n
∑

i,j=1

∣

∣

∣

∣

∂

∂xi
(aijψxj

)

∣

∣

∣

∣

,

where constant β defined in (7).
Remark 1.2. In the case of the Dirichlet boundary conditions z|Σ = 0

instead of (1.6) we can prove the more sharp estimate

∫

Q

(

1

sϕ

(

∣

∣

∣

∣

∂z

∂t

∣

∣

∣

∣

2

+ |∆z|2
)

+ sϕ|∇z|2 + s3ϕ3z2

)

(e2sα + e2sα̃)dx dt

+

∫

Σ

sϕ

(

∂z

∂ν

)2

(e2sα + e2sα̃)dΣ

≤ c1
(

∫

Q

|g|2(e2sα + e2sα̃)dxdt+

∫

[0,T ]×ω
s3ϕ3z2(e2sα + e2sα̃)dxdt

)

.

Proof of the Lemma 1.1. Let us consider a function θ(x) ∈ C2(Rn) such
that

Ω = {x
∣

∣ θ(x) < 0}, |∇θ(x)| 6= 0 ∀ x ∈ ∂Ω. (1.76)

By virtue of the Theorem on density of Morse functions (see [3]) there exist
a sequence of Morse functions {θk(x)}∞k=1 such that

θk → θ in C2(Ω) as k → +∞. (1.77)

Let us construct a Morse function µ ∈ C2(Ω) such that

µ(x)|∂Ω = 0, |∇µ(x)| > 0 ∀ x ∈ ∂Ω. (1.78)

We denote by B = {x ∈ Rn|∇θ(x) = 0} the set of critical points of
functions θ. Since |∇θ|

∣

∣

∂Ω
> 0 there exists an open set Θ ⊂ Rn such that

Θ ∩ B = {∅}, ∂Ω ⊂ Θ. (1.79)
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Let e(x) ∈ C∞
0 (Θ), e|∂Ω ≡ 1. Set µk(x) = θk + e(θ − θk). It is obvious that

µk|∂Ω = 0. (1.80)

By definition of the function e(x) we have

∇µk(x) = ∇θk(x) ∀x ∈ Ω \ Θ. (1.81)

For all x from the set Θ ∩ Ω

∇µk(x) = ∇θk + e(∇θ −∇θk) + ∇e(θ − θk). (1.82)

By virtue of (1.77) and (1.82) we have: ∀ǫ > 0 ∃ k0(ǫ) such that

|∇µk| ≥ |∇θk| − ||e||C1(Ω)|∇θ −∇θk|
− ||e||C1(Ω)|θ − θk| ≥ |∇θk| − ǫ ∀x ∈ Θ ∩ Ω,

where k > k0.
It follows from (1.77), (1.79), (1.81) and this inequality that there exists

such ǫ > 0 and k̂ that
|∇µk̂| > 0 in Θ ∩ Ω. (1.83)

Set µ(x) = µk̂(x). By (1.80), (1.81) and (1.83) the Morse function µk̂(x)
satisfies (1.78).

We denote by M the set of critical points of function µ(x):

M = {x̂i ∈ Rn i = 1, . . . r}.

Let us consider the sequence of functions {li}ri=1 ⊂ C∞([0, 1]; Rn) such that

li(t) ∈ Ω ∀ t ∈ [0, 1], li(t1) 6= li(t2) ∀t1, t2 ∈ [0, 1] & t1 6= t2 i = 1, · · · , r;
(1.84)

li(1) = x̂i, li(0) ∈ ω0 i = 1, · · · , r; (1.85)

li(t1) 6= lj(t2) ∀ i 6= j ∀ t1, t2 ∈ [0, 1]. (1.86)

By (1.84) - (1.86) there exists a sequence of functions {w(i)}ri=1 ⊂ C2(Rn,Rn)
and {ei}ri=1 ⊂ C∞

0 (Ω) such that

dli(t)

dt
= w(i)(li(t)) ∀ t ∈ [0, 1], i = 1, · · · , r; (1.87)
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supp ei ⊂ Ω i = 1, · · · , r; (1.88)

supp ei ∩ supp ej = {∅} ∀ i 6= j; (1.89)

ei(li(t)) = 1 ∀ t ∈ [0, 1], i = 1, · · · , r. (1.90)

We set
V (i)(x) = ei(x)w

(i)(x).

Let us consider the system of the ordinary differential equations

dx

dt
= V (i)(x), x(0) = x0. (1.91)

We denote by S
(i)
t : Rn → Rn the operator such that S

(i)
t (x0) = x(t), where

x(t) is the solution of problem (1.91).
By (1.85), (1.87) and (1.90) we have

S
(i)
1 (li(0)) = x̂i i = 1, · · · , r.

We set
ψ(x) = µ(gr(x)), gr(x) = S

(1)
1 ◦ S(2)

1 ◦ · · · ◦ S(r)
1 (x). (1.92)

By (1.88) there exists a domain S ⊂ Rn such that ∂Ω ⊂ S and

S
(i)
1 (x) = x ∀ x ∈ S, i = 1, · · · , r. (1.93)

By (1.93) the mappings S
(i)
1 (x) - are diffeomorfisms on the domain Ω. So

gr(x) is a diffeomorfism on the domain Ω. By (1.93) ψ(x) = µ(x) ∀x ∈ S.
Hence

ψ(x)|∂Ω = 0. (1.94)

We denote by Ψ the set of critical points of function ψ. Since the mapping
gr : Ω → Ω is a diffeomorfism we have

Ψ = {x ∈ Ω| gr(x) ∈ M}. (1.95)

By (1.89) and (1.93)

gr(li(0)) = x̂i i = 1, · · · , r. (1.96)

It follows from (1.95) and (1.96) that

Ψ ⊂ ω0.�
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2. Exact controllability of linear parabolic equations

In this section we will prove an existence theorem for the problem of exact
controllability for linear parabolic equations.

Let us introduce function η(t, x, λ) as follows:

η(t, x, λ) = (e
2λ||ψ||

C(Ω) − eλψ)/((T − t)l(t)), (2.1)

where λ ≥ λ̂. The function ψ(x) and the parameter λ̂ were defined in Lemmas
1.1, 1.2. We assume that l(t) is a fixed function, which satisfies the following
conditions

l(t) ∈ C1[0, T ], l(t) = t ∀ t ∈
(3T

4
, T
]

, l(t) > 0 ∀ t ∈ [0, T ].

To formulate our results we need to introduce the following function
spaces:

Y (Q) =

{

y(t, x)
∣

∣ y ∈ L2(0, T ;W 2
2 (Ω)),

∂y

∂t
∈ L2(Q)

}

,

Xλ
s (Q) = {y(t, x)

∣

∣ esηy ∈ L2(Q)},

Zλs (Q) =

{

y(t, x)| esηy

(T − t)3/2
∈ L2(Q)

}

,

Ξλs (Q) =
{

y(t, x) ∈ Zλs (Q)| |∇y|esη/
√

(T − t),

√

(T − t)





∣

∣

∣

∣

∂y

∂t

∣

∣

∣

∣

+
n
∑

i,j=1

∣

∣

∣

∣

∂2y

∂xi∂xj

∣

∣

∣

∣



 esη ∈ L2(Q)
}

equipped with the norms

||y||2Y (Q) = ||y||2L2(0,T ;W 2
2 (Ω)) + ||∂y/∂t||2L2(Q) ,

||y||Xλ
s (Q) = ||esηy||L2(Q),

||y||Zλ
s (Q) =

∣

∣

∣

∣

∣

∣

∣

∣

esη

(T − t)3/2
y

∣

∣

∣

∣

∣

∣

∣

∣

L2(Q)

,
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||y||Ξλ
s (Q) = (||y||2Zλ

s (Q) + ‖|∇y|esη/
√

(T − t)‖2
L2(Q)

+ ||
√

(T − t)(|∂y
∂t

| +
n
∑

i,j=1

| ∂2y

∂xi∂xj
|)esη||2L2(Q))

1
2 .

Let us consider the problem of exact controllability for linear parabolic
equations

Ly =
∂y

∂t
−

n
∑

i,j=1

∂

∂xi

(

aij(t, x)
∂y

∂xj

)

+
n
∑

i=1

bi(t, x)
∂y

∂xi

+ c(t, x)y = u+ g in Q, (2.2)

u ∈ U(ω), (l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

Σ
= 0, y(0, x) = v0(x), (2.3)

y(T, x) = v1(x). (2.4)

We have

Theorem 2.1. Let λ ≥ λ̂ and v0 ∈W 1
2 (Ω), v1 ≡ 0, and let conditions (6)

-(9) be fulfilled. Then there exist a constant s0(λ) such that if g ∈ Xλ
s (Q)

with s ≥ s0(λ), then problem (2.2) - (2.4) has a solution (y, u) ∈ (Y (Q) ∩
Zλs (Q)) × (U(ω) ∩Xλ

s (Q)) which satisfies the following estimate:

||(y, u)||(Y (Q)∩Zλ
s (Q))×(U(ω)∩Xλ

s (Q)) ≤ c1(λ, s)(||v0||W 1
2 (Ω) + ||g||Xλ

s (Q)). (2.5)

Proof. We recall that parameter λ̂ was defined in the Lemma 1.2.
Let us consider the extremal problem

Jk(y, u) =
1

2

∫

Q

ρky
2

(T − t)3
dxdt+

1

2

∫

Q

ρkmku
2dxdt→ inf, (2.6)

Ly = u+ g in Q, (l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

Σ
= 0,

y(0, x) = v0, y(T, x) = 0, (2.7)
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where

ρk(t, x) = e
2sη(t,x,λ)(T−t)

(T−t+1/k) , mk(x) =

{

1, x ∈ w,

k, x ∈ Ω \ w,
and parameters s ≥ s0(λ), λ ≥ λ̂ are fixed. Here s0(λ) is defined in Lemma
1.2 and function η(t, x, λ) defined in (2.1) .

It is easy to prove (see [47], [51]) that problem (2.6) - (2.7) has a unique
solution, which we denote as (ŷk, ûk) ∈ Y (Q) × L2(Q).

Applying the Lagrange principle to the problem (2.6) - (2.7) (see [1], [47]
and [22]) we obtain

Lŷk = g+ûk in Q, (l1(t, x)
∂ŷk
∂νA

+l2(t, x)y)
∣

∣

Σ
= 0, ŷk(T, ·) ≡ 0, ŷk(0, ·) = v0,

(2.8)

L∗pk =
ρk

(T − t)3
ŷk in Q, (l1(t, x)

∂pk
∂νA

+ l2(t, x)pk)
∣

∣

Σ
= 0,

pk +mkρkûk = 0 in Q, (2.9)

where

L∗y = −∂y
∂t

−
n
∑

i,j=1

∂

∂xi

(

aij(t, x)
∂y

∂xj

)

−
n
∑

i=1

∂bi(t, x)y

∂xi
+ c(t, x)y

is an operator formally conjugate to the operator L.
By (1.6) and a priori estimates for linear parabolic equations we have

∫

Q

e−2sη|pk|2dxdt+

∫

Ω

|pk(0, x)|2dx

≤ c2(λ, s)(

∫

Q

ρ2
k

(T − t)3
e−2sηŷ2

kdxdt+

∫

[0,T ]×ω

e−2sηp2
kdxdt).

We observe that |ρk(t, x)e−2sη(t,x)| ≤ 1 ∀ (t, x) ∈ Q.
Thus, we have

∫

Ω

|pk(0, x)|2dx+

∫

Q

|pk|2e−2sηdxdt

≤ c2(λ, s)(

∫

Q

ρkŷ
2
k

(T − t)3
dxdt+

∫

[0,T ]×ω

e−2sηρ2
kû

2
kdxdt). (2.10)
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Multiplying (2.91) by ŷk scalarly in L2(Q), and integrating by parts with
respect to t and x, we have

0 = (L∗pk − ρkŷk, ŷk)L2(Q)

= −
∫

Q

ρkŷ
2
kdxdt+ (pk, Lŷk)L2(Q) + (pk(0, ·), ŷk(0, ·))L2(Ω)

= −
∫

Q

ρkŷ
2
k

(T − t)3
dxdt−

∫

Q

ρkmkû
2
kdxdt+

∫

Q

gpkdxdt+ (pk(0, ·), v0)L2(Ω).

Hence

Jk(ŷk, ûk) =
1

2

∫

Q

(

ρkŷ
2
k

(T − t)3
+ ρkmkû

2
k

)

dxdt

=
1

2





∫

Q

gpkdxdt+ (pk(0, ·), v0)L2(Q)



 . (2.11)

By (2.10) and (2.11) we obtain

Jk(ŷk, ûk) ≤ c3(||g||Xλ
s (Q) + ||v0||L2(Ω))

√

Jk(ŷk, ûk).

It follows that

Jk(ŷk, ûk) ≤ c23(||g||Xλ
s (Q) + ||v0||L2(Ω))

2. (2.12)

By virtue of (2.12) we have a subsequence {(ŷk, ûk)}∞k=1 such that

(ŷk, ûk) → (y, u) weakly in Y (Q) × L2(Q),

ûk → 0 in L2((0, T ) × (Ω \ ω)),
√
ρkûk → esηu weakly in L2((0, T ) × ω),
√
ρk

(T − t)3/2
ŷk → esη

(T − t)3/2
y weakly in L2(Q). (2.13)

Using (2.13), we pass to the limit in (2.8) to obtain that pair (y, u) is a
solution of problem (2.2) - (2.4). Estimate (2.5) follows from (2.12), (2.13).
�

Now, we will prove that solutions of controllability problem (2.2) - (2.4)
from the Theorem 2.1 have further regularity as described in the following
theorem.
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Theorem 2.2. Let λ ≥ λ̂, and v0 ∈W 1
2 (Ω), v1 ≡ 0, and let conditions (6)

- (9) be fulfilled. Then there exist a constant s0(λ) such that if g ∈ Xλ
s (Q),

with s ≥ s0(λ) then problem (2.2) - (2.4) has a solution (y, u) ∈ Ξλs (Q) ×
(U(ω) ∩Xλ

s (Q)) which satisfies the following estimate

||(y, u)||Ξλ
s (Q)×(U(ω)∩Xλ

s (Q)) ≤ c4(λ, s)(||v0||W 1
2 (Ω) + ||g||Xλ

s (Q)). (2.14)

Proof. By Theorem 2.1 for v0 ∈ W 1
2 (Ω), g ∈ Xλ

s (Q) we have a solution
(y, u) ∈ (Y (Q)∩Zλs (Q))×(U(ω)∩Xλ

s (Q)) of problem (2.2) - (2.4) which sat-

isfies the estimate (2.5). Let us prove that this solution satisfies the estimate
(2.14).

Multiplying (2.2) by e2sη

(T−t)y scalarly in L2(Q), and integrating by parts

with respect to t and x, we have

∫

Q





1

T − t

n
∑

i,j=1

aij(t, x)
∂y

∂xi

∂y

∂xj
e2sη +

1

T − t

n
∑

i,j=1

aij
∂y

∂xj
y
∂e2sη

∂xi

− 1

2
y2 ∂

∂t

(

e2sη

T − t

)

+
1

T − t

(

n
∑

i=1

bi
∂y

∂xi
+ cy

)

ye2sη

)

dxdt

− 1

2T

∫

Ω

e2sη(0,x,λ)y2(0, x)dx =

∫

Q

(u+ g)e2sηydxdt. (2.15)

By (6), (2.15) the following equality holds.

∫

Q

1

T − t

n
∑

i,j=1

aij(t, x)
∂y

∂xi

∂y

∂xj
e2sηdxdt ≤ c4

∫

Q

( 1

(T − t)2
|∇y||y|

+
y2

(T − t)2
)

dxdt+
1

2T

∫

Ω

e2sη(0,x,λ)y2(0, x)dx =

∫

Q

(u+ g)e2sηydxdt. (2.16)

By (2.16) and (7) we have the inequality:

∫

Q

|∇y|2e2sη
(T − t)

dxdt ≤ c5

(∫

Q

y2e2sη

(T − t)3
dxdt+ ||u||2Xλ

s (Q) + ||g||2Xλ
s (Q)

)

. (2.17)
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Let us denote w(t, x) = esηy
√
T − t. By (2.3) we have

Lw = yL(esη
√
T − t) − 2

√
T − t

n
∑

i,j=1

aij
∂y

∂xj

∂esη

∂xi

+ esη
√

(T − t)(u+ g) in Q, (l1(t, x)
∂w

∂νA
+ l2(t, x)w)|Σ = 0,

(2.18)

w(0, x) = v0(x)e
sη(0,x,λ)

√
T . (2.19)

We also denote

q = yL(esη
√
T − t) − 2

√
T − t

n
∑

i,j=1

aij
∂y

∂xj

∂esη

∂xi
+ esη

√
T − t(u+ g).

Hence, by (2.18), (2.19) function w satisfy

Lw = q in Q, (l1(t, x)
∂w

∂νA
+l2(t, x)y)

∣

∣

Σ
= 0, w(0, x) = v0e

sη(0,x,λ)
√
T .

(2.20)
By (2.5), (2.17) we have

||q||L2(Q) ≤ c6(||y||Zλ
s (Q) + ||u||Xλ

s (Q) + ||g||Xλ
s (Q)). (2.21)

Then, using well-known a priori estimates for linear parabolic equations,
we have

||w||Y (Q) ≤ c7(||q||L2(Q) + ||w(0, ·)||W 1
2 (Ω)). (2.22)

By (2.5), (2.17), (2.21) and (2.22) we obtain




∫

Q



(T − t)





∣

∣

∣

∣

∂y

∂t

∣

∣

∣

∣

2

+

n
∑

i,j=1

∣

∣

∣

∣

∂2y

∂xi∂xj

∣

∣

∣

∣

2


+
|∇y|2

(T − t)



 e2sη(t,x,λ)dxdt





1
2

+ ||y||Zλ
s (Q) + ||u||Xλ

s (Q) ≤ c8(||g||Xλ
s (Q) + ||v0||W 1

2 (Ω)). (2.23)

The inequality (2.23) prove Theorem 2.2. �

Let us consider the problem of exact boundary controllability for linear
parabolic equation

Ly = g in Q, (l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

]0,T [×(∂Ω\Γ0)
= 0,

(l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

[0,T ]×Γ0
= u, (2.24)

y(0, x) = v0(x), y(T, x) = v1(x). (2.25)

The following theorem is a corollary of Theorem 2.2.
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Theorem 2.3. Let v0 ∈ W 1
2 (Ω), v1 ≡ 0, and let conditions (6) - (9) be

fulfilled. Then there exists a constant λ̂ > 0 such that for λ ≥ λ̂ there exists a

constant s0(λ) such that if g ∈ Xλ
s (Q) where λ ≥ λ̂, s ≥ s0(λ), then problem

(2.24) - (2.25) has a solution (y, u) ∈ Ξλs (Q) × L2(0, T ;W
1
2
2 (∂Ω)).

Proof. Let us consider a connected domain Ω̃ such that

Ω̃ = Ω ∪ ω, ∂Ω̃ ∈ C2, ω ∩ (∂Ω \ Γ0) = {∅},

where ω is a connected domain in Rn. Denote by Q̃ =]0, T [×Ω̃. Set g(t, x) =

0 ∀(t, x) ∈ [0, T ] × ω. We extend the function v0 on Ω̃ such that v0 ∈
W 1

2 (Ω̃). We also extend coefficients of operator L keeping properties (6) -

(9). Applying Theorem 2.1, we get a solution (y, u) ∈ Ξλs (Q̃)×(U(ω)∩Xλ
s (Q̃))

of the following problem of exact controllability

{

Ly = g + u in Q̃, supp u ⊂ [0, T ]× ω,

(l1(t, x)
∂y
∂νA

+ l2(t, x)y)|[0,T ]×∂Ω̃ = 0, y(0, x) = v0(x), y(T, x) ≡ 0.

It is easily seen that the pair (y, l1(t, x)
∂y
∂νA

+ l2(t, x)y)|[0,T ]×Γ0
) is a solution

of problem (2.24), (2.25). �

To prove local controllability theorem in the case of superlinear growth of
nonlinear term we need to prove existence of solution of problem (1) - (3) in
the space L∞(Q).

We have

Theorem 2.4. Let p > max{2, (n+ 2)/2}, λ ≥ λ̂, v0 ∈ W 1
∞(Ω), v1 ≡ 0,

and conditions (6)- (9) be fulfilled. Then there exists a constant s0(λ) such

that if g ∈ Xλ
s (Q) ∩ Lp(Q) with s ≥ s0(λ), and λ ≥ λ̂, then problem (2.2) -

(2.4) has a solution (y, u) ∈ (W 1,2
p (Q) ∩ Ξλs (Q)) × (U(w) ∩Xλ

s (Q) ∩ Lp(Q))
which satisfies the following estimate

||(y, u)||(W 1,2
p (Q)∩Ξλ

s (Q))×(Xλ
s (Q)∩Lp(Q)) ≤ c10(λ, s)(||v0||W 1

∞
(Ω)

+ ||g||Xλ
s (Q)∩Lp(Q)). (2.26)

Proof. To construct solution (y, u) of the problem (2.2) - (2.4) firstly we
consider boundary value problem (2.2) - (2.3) when u(t, x) ≡ 0:

Lỹ = g in Q, (l1(t, x)
∂ỹ

∂νA
+ l2(t, x)y)

∣

∣

Σ
= 0, ỹ(0, x) = v0(x). (2.27)
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It is well known (see [51],[38]), that under assumptions of Theorem 2.4 for
arbitrary g ∈ Lp(Q) and v0 ∈ W 1

∞(Ω) there exists a unique solution of this
problem ỹ ∈W 1,2

p (Q).

Let l(t) = exp(−t/(T − t)3). We set y(t, x) = l(t)ỹ(t, x) . By (2.27) the
function y satisfies the following:

Ly = gℓ(t) + ℓ′(t)ỹ, (l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

Σ
= 0, y(0, x) = v0(x),

y(T, x) = 0. (2.28)

Let us consider the problem of exact controllability

Lz = −gℓ(t)− ℓ′(t)ỹ + g + v, v ∈ U(ω0), (2.29)

(l1(t, x)
∂z

∂νA
+ l2(t, x)y)

∣

∣

Σ
= 0, z(0, x) = 0, z(T, x) = 0, (2.30)

where ω0 ⋐ ω. By virtue of definition of function ℓ(t) we have

ℓ′(t)ỹ ∈ Zλs (Q) ∀ λ > 0, s > 0.

By Theorem 2.2 problem (2.29) - (2.30) has a solution (z, v) ∈ Ξλs (Q) ×
(U(ω0) ∩ Xλ

s (Q)) which satisfies the estimate (2.13). Let ω0 ⋐ ω1 ⋐ ω,
ρ(x) ∈ C∞(Ω), ρ(x) ≡ 1 ∀x ∈ Ω \ ω1, ρ(x) ≡ 0 ∀ x ∈ ω1. We set z1(t, x) =

ρ(x)z(t, x), u1(t, x) = −z∑n
i,j=1

∂
∂xi

(

aij(t, x)
∂ρ
∂xj

)

− a(t, x,∇z,∇ρ)
+ ρ

∑n
i=1 bi(t, x)

∂z
∂xi

+ ρu + (ρ − 1)g + (1 − ρ)(gℓ(t) + ℓ′(t)ỹ). By (2.28) the

pair (z1(t, x), u1(t, x)) satisfies the equations

Lz1 = −gℓ(t)− ℓ′(t)ỹ + g + u1, u1 ∈ U(ω), (2.31)

(l1(t, x)
∂z1
∂νA

+ l2(t, x)y)
∣

∣

Σ
= 0, z1(0, x) = 0, z1(T, x) = 0. (2.32)

Using well known results on the regularity of solutions of parabolic equations,
we get that pair

(z1, u1) ∈ (W 1,2
p (Q) ∩ Ξλs (Q)) × (U(ω) ∩Xλ

s (Q) ∩ Lp(Q))

and satisfies the inequality (2.26). Then the pair (y, u) = (y − z1, v − u1) is
a solution of problem (2.2) - (2.4) which also satisfies the estimate (2.26). �
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3. Exact controllability of semilinear parabolic equation.

Let us assume that

f(t, x, 0) = 0 ∀ (t, x) ∈ Q, (3.1)

and function f(t, x, y) satisfies the Lipschitz condition

|f(t, x, ζ1) − f(t, x, ζ2)| ≤ K|ζ1 − ζ2| ∀ (t, x, ζ) ∈ Q× R1, (3.2)

Let us consider the boundary value problem for parabolic equation

G(y) = g, (l1(t, x)
∂y

∂νA
+ l2(t, x)y)|Σ = 0, y(0, ·) = v0. (3.3)

The following theorem proved in [38]

Theorem 3.1. Let (6)-(9), (3.2) be fulfilled. Then for every (v0, g) ∈
W 1

2 (Ω) × L2(Q) there exists a unique solution of problem (3.3) y ∈ Y (Q)
which satisfy inequality

‖y‖Y (Q) ≤ c1(‖v0‖W 1
2 (Ω) + ‖g‖L2(Q)). (3.4)

We have

Theorem 3.2. Let v0 ∈ W 1
2 (Ω), v1 ≡ 0, and let the conditions (6)- (9),

(3.1) and (3.2) be fulfilled. Then there exists λ̂ > 0 such that for λ ≥ λ̂ there

exists such constant s0(λ) such that if g ∈ Xλ
s (Q), with λ ≥ λ̂, s ≥ s0(λ)

then there exists a solution pair (y, u) ∈ Y (Q) × U(ω) of the problem (1) -
(3).

Proof. Let us consider the following family of problems of exact control-
lability

Gε(y) = Ly + fε(t, x, y)− fε(t, x, 0) = u+ g in Q, u ∈ U(ω), (3.5)

(l1(t, x)
∂y

∂νA
+ l2(t, x)y)|Σ = 0, y(0, x) = v0(x), (3.6)

where fε(t, x, y) = 1
ε

∫

R1

ω
(

|τ−y|
ε

)

f(t, x, τ)dτ , ω(x) ≥ 0 ∀x ∈ R1, ω(x) =

ω(|x|), suppω ⊂ {x||x| ≤ 1},
∫

R1

ωdx = 1 and operator L was defined in (2.2).
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We have
(fε(t, x, ζ)− fε(t, x, 0))|ζ=0 = 0 (t, x) ∈ Q. (3.7)

Moreover

|fε(t, x, ζ1) − fε(t, x, ζ2)| ≤
1

ε

∣

∣

∫

R1

ω

( |τ − ζ1|
ε

)

f(t, x, τ)dτ

−
∫

R1

ω

( |τ − ζ2|
ǫ

)

f(t, x, τ)dτ

∣

∣

∣

∣

=
1

ǫ

∣

∣

∣

∣

∫

R1

(

ω

( |τ |
ε

)

f(t, x, τ − ζ1)

− ω

( |τ |
ε

)

f(t, x, τ − ζ2)
)

dτ
∣

∣ ≤ K

ε

∫

R1

ω

( |τ |
ε

)

dτ |ζ1 − ζ2| ∀ (t, x) ∈ Q.
(3.8)

By (3.7) and (3.8) we obtain

fε(t, x, ζ)− fε(t, x, 0) = f̃ε(t, x, ζ)ζ,

|f̃ε(t, x, ζ)| ≤ K ∀ (t, x, ζ) ∈ Q× R1. (3.9)

where the constant K is from (3.2).
It follows from (3.9) that for linear parabolic operator Rε(y)z = Lz +

f̃ε(t, x, y)z the parameter γ(y) defined

γ(y) =
n
∑

i,j=1

||aij||C1,2(Q) +
n
∑

i=1

||bi||C0,1(Q) + ||c(t, x) + f̃ε(t, x, y)||L∞(Q)

for every y ∈ L2(Q) satisfies the inequality

γ(y) ≤ c2. (3.10)

where c1 is a constant independent of y and ε.
Let us consider the problem of exact controllability of parabolic equations

Rε(y)z = u+ g in Q, u ∈ U(ω),

(l1(t, x)
∂z

∂νA
+ l2(t, x)z)

∣

∣

Σ
= 0, z(0, x) = z0(x), z(T, x) = 0.

(3.11)

By (3.10) and Theorem 2.2 we obtain that there exists λ̂ > 0 such that

for λ ≥ λ̂ there exists s0(λ) that if λ ≥ λ̂ the problem of exact controllability
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(3.11) has solutions in the space Ξλs (Q)× (U(ω)∩Xλ
s (Q)) for all initial data

(v0, g) ∈W 1
2 (Ω)×Xλ

s (Q), moreover, these solutions satisfy (2.14) with c1(λ)
independent of y ∈ L2(Q) and ǫ ∈ (0, 1).

Let us introduce the mappings Ψ(ε) : y → ẑε and Ψ
(ε)
1 : y → (ẑε, ûε) as

follows: For y ∈ L2(Q) a pair (ẑε, ûε) is a solution of the extremal problem:

J (z, u) =

∫

Q

e2sη(t,x,λ)

(T − t)3
z2dxdt+

∫

Q

e2sη(t,x,λ)u2dxdt→ inf , (3.12)

Rε(y)z = g + u in Q, u ∈ U(ω),

(l1(t, x)
∂z

∂νA
+ l2(t, x)z)

∣

∣

Σ
= 0, z(0, x) = v0(x), z(T, x) = 0.

(3.13)

By virtue of Theorem 2.2 for y ∈ L2(Q) there exists the unique solution
(ẑε, ûε) ∈ (Y (Q) ∩ Zλs (Q)) × (U(ω) ∩Xλ

s (Q)) of the problem (3.12) - (3.13).

So mappings Ψ(ε) and Ψ
(ε)
1 are well defined on the whole space L2(Q).

Let us prove that Ψ(ε) ∈ C(L2(Q), L2(Q)) is a continuous mapping. Let
ε > 0 be fixed. Assume the contrary. Then there exists a function y ∈ L2(Q)
and a sequence {(yi, ẑi, ûi)} such that

yi → y in L2(Q), Ψ(ε)(yi) = ẑi → z weakly in Y (Q) ∩ Zλs (Q),

ûi → u weakly in U(ω) ∩Xλ
s (Q), (3.14)

Ψ
(ε)
1 (y) = (ẑ, û) 6= (z, u), ẑ ∈ Zλs (Q), (3.15)

the triple (yi, ẑi, ûi) satisfies (3.13) and

J (ẑ, û) < µ0 < J (ẑi, ûi) ∀ i ∈ Z+. (3.16)

By (3.14) and (3.15)

ẑ(f̃ε(t, x, yi) − f̃ε(t, x, y)) → 0 in Zλs (Q) as i→ +∞. (3.17)

By (3.17) and Theorem 2.1 there exists a subsequence {(δi, qi)}∞i=1 ⊂ (Y (Q)∩
Zλs (Q)) × (U(ω) ∩Xλ

s (Q)) such that

Lδi + f̃ε(t, x, y)δi = ẑ(f(t, x, yi) − f(t, x, y)) + qi in Q, (3.18)
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(l1(t, x)
∂δi
∂νA

+ l2(t, x)δi)|Σ = 0, δi(0, x) = δi(T, x) = 0, (3.19)

||δi||Y (Q)∩Zλ
s (Q) + ||qi||Xλ

s (Q) → 0 as i→ +∞. (3.20)

We set
z̃i = ẑ − δi, ũi = û− qi. (3.21)

By (3.15), (3.18) and (3.19) the following holds:

Lz̃i + f̃ε(t, x, yi)z̃i = g + ũi in Q, ũi ∈ U(ω), (3.22)

(l1(t, x)
∂z̃i
∂νA

+ l2z̃i)
∣

∣

Σ
= 0, z̃i(0, x) = v0(x), z̃i(T, x) = 0. (3.23)

Moreover, by (3.20)
J (z̃i, ũi) → J (ẑ, û). (3.24)

By (3.16), (3.22) and (3.23) the pair (z̃i, ũi) is an admissible element of
extremal problem (3.12) - (3.13). So by definition of the mapping Ψε

1 the
following inequality holds

J (ẑi, ûi) ≤ J (z̃i, ũi). (3.25)

Now (3.24) and (3.25) contradict to (3.15). We reached to contradiction.
Denote by Br a ball in L2(Q) with the center at zero, and having as a

radius r. By (2.5) and (3.10) for all sufficiently large r we obtain

Ψ(ε)(Br) ⊂ Br.

where r is independent on ǫ. Moreover, if S is a bounded set in L2(Q), then
by (2.14) the set Ψ(ε)(S) is bounded in Y (Q). Since imbedding Y (Q) ⊂
L2(Q) is compact, the mapping Ψ(ε) is a compact mapping.

Applying the Schauder fixed point theorem, we find that there exists a
fixed point yε of the mapping Ψ(ε):

Ψ(ε)(yε) = yε

and
||Ψ(ε)

1 (yε)||Y (Q)×U(ω) ≤ c2, (3.26)

where c2 is a constant independent of ε.
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Obviously a pair Ψ
(ε)
1 (yε) = (yε, uε) is a solution of the exact controllabil-

ity problem:

Lyε + fε(t, x, yε) − fε(t, x, 0) = uε + g in Q, uǫ ∈ U(ω), (3.27)

(l1(t, x)
∂yε
∂νA

+ l2(t, x)yε)|Σ = 0, yε(0, x) = v0(x), yε(T, x) = 0. (3.28)

By (3.26) taking, if necessary, a subsequence, we can pass to the limit in
(3.27) and (3.28). This limit is a solution of the problem (1) - (3). �

By similar procedure leading to Theorem 2.3 we obtain the following the-
orem from Theorem 3.1.

Theorem 3.3. Let v0 ∈W 1
2 (Ω) and v1 ≡ 0 and conditions (6)- (9), (3.1)

and (3.2) be fulfilled. Then there exists λ̂ > 0 such that for all λ ≥ λ̂ there

exists a constant s0(λ) such that if g ∈ Xλ
s (Q) where λ ≥ λ̂, and s ≥ s0(λ)

then there exists a solution pair (y, u) ∈ Ξλs (Q) × L2(0, T ;W
1
2
2 (∂Ω)) of the

problem (4) - (5).

Now, let us consider the case, v1 6≡ 0. Let us assume

Condition 3.1. There exists a constant τ > 0 and function ũ ∈ U(ω) such
that the boundary value problem

Lỹ + f(t, x, ỹ) = ũ+ g in [T − τ, T ] × Ω,

(l1(t, x)
∂ỹ

∂νA
+ l2(t, x)ỹ)

∣

∣

[T−τ,T ]×∂Ω
= 0, ỹ(T, ·) = v1

has a solution ỹ ∈ Y (Q).
We have

Theorem 3.4. Let v0 ∈W 1
2 (Ω) and g ∈ L2(Q) and let (6)- (9), (3.1) and

(3.2) be fulfilled, and the finally let functions v1 and g satisfy the condition
3.1. Then there exists a solution (y, u) ∈ Y (Q) × U(ω) of problem (1) - (3).

Proof. We denote pair (y, u) ∈ Y (Q) × U(ω) which is a solution of the
problem (1.1) - (1.3). We set u(t, x) = 0 ∀ (t, x) ∈ [0, T − τ ] × Ω. For
(t, x) ∈ [0, T − τ ]×Ω we define the function y(t, x) as a solution of boundary
value problem

Ly+f(t, x, y) = g in [0, T−τ ]×Ω, (l1(t, x)
∂y

∂νA
+l2(t, x)y)|[0,T−τ ]×∂Ω = 0,

y(0, x) = v0(x).
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In the cylinder [T − τ, T ]× Ω we are looking for solution of the problem (1)
- (3) in the following form

(y, u) = (ŷ, û) + (ỹ, ũ), (3.30)

where (ỹ, ũ) is the pair from condition 3.1, and a pair (ŷ, û) satisfies the
equations

Lŷ+f(t, x, ŷ+ ỹ)−f(t, x, ỹ) = û− ũ in [T − τ, T ]×Ω, û ∈ U(ω), (3.31)

(l1(t, x)
∂ŷ

∂νA
+ l2(t, x)ŷ)|[T−τ,T ]×∂Ω = 0, ŷ(T − τ, x) = y(T − τ, x). (3.32)

By virtue of (3.6), (3.7) and condition 3.1 the function f0(t, x, ζ) =
f(t, x, ζ + ỹ) − f(t, x, ỹ) satisfies (3.1) and (3.2). So applying Theorem 3.1,
we obtain a solution of (3.31) and (3.32). Hence, the solution of (1) - (3)
defined by formula (3.30) is obtained for t ∈ [T − τ, T ]. �

Condition 3.2. There exists a constant τ > 0 and a function

ũ ∈ L2(T − τ, T ;W
1
2
2 (Ω)) such that the following boundary value problem

Lỹ + f(t, x, ỹ) = g in [T − τ, T ] × Ω, ỹ(T, x) = v1(x),

(l1(t, x)
∂ỹ

∂νA
+ l2(t, x)ỹ)|[T−τ,T ]×Γ0

= ũ,

(l1(t, x)
∂ỹ

∂νA
+ l2(t, x)ỹ)|[T−τ,T ]×(∂Ω\Γ0) = 0 (3.33)

has a solution ỹ ∈ Y (Q).
From Theorem 3.3, using the similar methods used in the proof of Theorem

2.3, we can obtain

Theorem 3.5. Let v0 ∈ W 1
2 (Ω) and g ∈ L2(Q) and let (6)- (9), (3.1)

and (3.2) be fulfilled, and finally let function v1 and g satisfy the condition

3.2. Then there exists a solution pair (y, u) ∈ Y (Q) × L2(0, T ;W
1
2
2 (Ω)) of

problem (4) - (5).

Note that conditions 3.1 and 3.2 are not only sufficient, but also necessary.
Indeed if the problems (1)-(3) or (4)-(5) has a solution (y, u) then functions
v1, g satisfy condition 3.1 or 3.2 with (ỹ, ũ) = (y, u) and τ = T.

Example. Let us assume that there exist τ0 > 0 such that g(t, x) = 0 for
all (t, x) ∈ [T − τ, T ] × Ω. Then by (3.1) functions v1 ≡ 0 and g ≡ 0 satisfy
condition 3.1 or 3.2 with (ỹ, ũ) = (0, 0).
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If the coefficients of operator G and function g are independent of t, and
v1 is a steady-state solution of equation (1):G(v1(x)) = g(x) in Ω, v1|∂Ω = 0
then the pair (v1, g) satisfy condition 3.1 or 3.2.

Numerous results on solvability of (3.33) for the linear parabolic operators
with analytic coefficients were obtained in [10].

Let us consider parabolic equation of the form

∂y

∂t
−

n
∑

i,j=1

∂

∂xi
(aij(x)

∂y

∂xj
) + c(x)y = 0 in Q, (3.34)

where aij , c satisfy (6),(7).
The following theorem due to E. Landis and O. Oleinik [40].

Theorem 3.6. Let y(t, x) be a solution of equation (3.34) in (0, T ] ×
Br(0). Suppose |x0| < R and that as x → x0 the function y(T, x) de-
cays faster than any polynomial, that is, for each k there exists ck such that
|y(T, x)| ≤ ck|x− x0|k. Then y(T, x) ≡ 0.

To find a function v1(x) which satisfy condition 3.1 one should solve the
problem (3.33) for parabolic equation. It is well known (see [45]) that this
problem is ill posed. If operator G is a linear operator there is the following
result due to J.L. Lions.

Theorem 3.7. Let f ≡ 0 and conditions (6)-(9) be fulfilled. Then set
of initial dates (v1, g) for which exists solution y ∈ Y (Q) dense in the space
W 1

2 (Ω) × L2(Q).

Now we prove approximate boundary controllability of the parabolic equa-
tion (41).

Theorem 3.8. Let v1, v0 ∈ W 1
2 (Ω), g ∈ L2(Q) and let (6)- (9), (3.1) and

(3.2) be fulfilled. Then for every ε > 0 there exists a control uε ∈ U(ω) such
that solution of problem (1),(2) yε ∈ Y (Q) satisfy the inequality

‖yε(T, ·) − v1‖W 1
2 (Ω) ≤ ε. (3.35)

Proof. By Theorem 3.1 for every ε > 0 one can find δ > 0 such that the
solution of boundary value problem

G(zε) = g (t, x) ∈ (T − δ, T ) × Ω, (l1(t, x)
∂zε
∂νA

+ l2(t, x)zǫ)|∂Ω = 0,

zε(T − δ, ·) = v1(x) (3.36)
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satisfy the inequality
‖zε(T, ·) − v1‖W 1

2 (Ω) ≤ ε. (3.37)

By (3.36) functions zε, g satisfy Condition 3.1. So the initial datum (v0,
zε(T, ·), g) satisfy to all assumptions of Theorem 3.5. Thus applying this
theorem we get a solution of the problem (1)-(3) which satisfy (3.35) by
virtue of (3.37). �

Remark 3.1. We can consider analog of the problem (1)-(3)

∂y

∂t
+ Ay +

n
∑

k=1

Bk
∂y

∂xk
+ Cy + f(t, x, y) = u+ g, u ∈ (U(ω))n,

(3.38)

(l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

Σ
= 0, y(0, x) = v0(x), (3.39)

y(T, x) = v1(x), (3.40)

and problem (4)-(5)

∂y

∂t
+ Ay +

n
∑

k=1

Bk
∂y

∂xk
+ Cy + f(t, x, y) = g in Q, (3.41)

(l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

]0,T [×Γ0
= u,

(l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

]0,T [×(∂Ω\Γ0)
= 0, (3.42)

y(0, ·) = v0, y(T, ·) = v1 (3.43)

for the system of parabolic equations. Here y(t, x) = (y1(t, x), ..., yn(t, x)),
y0(x) = (y0

1(x), ..., y
0
n(x)), y1(x) = (y1

1(x), ..., y
1
n(x)), u(t, x) = (u1(t, x), ...,

un(t, x)), g(t, x) = (g1(t, x), ..., gn(t, x)), f(t, x, y) = (f1(t, x, y), ..., fn(t, x, y)),

A = −
n
∑

i,j=1

∂

∂xi

(

aij(t, x)
∂

∂xj

)

, Bk =
{

b
(k)
ij (t, x)

}n

i,j=1
, C =

{

cij(t, x)
}n

i,j=1
.

We assume that

aij ∈ C0,1(Q), aij = aji, b
(k)
ij ∈ C0,1(Q), cij ∈ L∞(Q) k, i, j = 1, . . . , n

(3.44)
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and initial datum (v1, g) satisfy to the
Condition 3.3. There exists a constant τ > 0 and function ũ ∈ (U(ω))n

such that the boundary value problem

∂ỹ

∂t
+Aỹ +

n
∑

k=1

Bk
∂ỹ

∂xk
+ Cỹ + f(t, x, ỹ) = ũ+ g in [T − τ, T ] × Ω,

(l1(t, x)
∂ỹ

∂νA
+ l2(t, x)ỹ)

∣

∣

[T−τ,T ]×∂Ω
= 0, ỹ(T, ·) = v1

has a solution ỹ ∈ (Y (Q))n.
or to the

Condition 3.4. There exists a constant τ > 0 and a function

ũ ∈ L2(T − τ, T ; (W
1
2
2 (Ω))n) such that the following boundary value problem

∂ỹ

∂t
+Aỹ +

n
∑

k=1

Bk
∂ỹ

∂xk
+ Cỹ + f(t, x, ỹ) = g in [T − τ, T ] × Ω,

ỹ(T, x) = v1(x), (l1(t, x)
∂ỹ

∂νA
+ l2(t, x)ỹ)|[T−τ,T ]×Γ0

= ũ,

(l1(t, x)
∂ỹ

∂νA
+ l2(t, x)ỹ)|[T−τ,T ]×(∂Ω\Γ0) = 0

has a solution ỹ ∈ (Y (Q))n.
We have

Theorem 3.9. Let v0 ∈ (W 1
2 (Ω))n and g ∈ (L2(Q))n and let (3.44), (7)-

(9), (3.1) and (3.2) be fulfilled, and the finally let functions v1 and g satisfy
the condition 3.3. Then there exists a solution (y, u) ∈ (Y (Q))n × (U(ω))n

of problem (3.38) - (3.40).

Theorem 3.10. Let v0 ∈ (W 1
2 (Ω))n and g ∈ (L2(Q))n and let (3.44),

(7)-(9), (3.1) and (3.2) be fulfilled, and finally let function v1 and g satisfy
the condition 3.4. Then there exists a solution pair (y, u) ∈ (Y (Q))n ×
L2(0, T ; (W

1
2
2 (Ω))n) of problem (3.41) - (3.43).

4. Local exact controllability of semilinear parabolic equations

In §3 we proved the global existence theorem for the problem of exact
boundary controllability (1) - (3) in the case of sublinear growth of nonlinear
term. When nonlinear term has a superlinear growth (for example f(t, x, y) =
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|y|py, where p > 0 ) in general case the statement of the Theorem 3.3 and 3.4
isn’t true. We will discuss this situation in details in the next section. Below
in the case of superlinear growth we can prove only a theorem on local exact
controllability of the parabolic equation.

Let (ŷ, û) ∈W 1,2
p (Q) × (U(ω) ∩ Lp(Q)) satisfy (1) - (2) :

G(ŷ) = û+ g in Q, (l1(t, x)
∂ŷ

∂νA
+ l2(t, x)ŷ)

∣

∣

Σ
= 0. (4.1)

Definition 4.1. Let X,Z are the Banach spaces. A linear continous
operator A : X → Z is called epimorphism if it maps the space X onto the
whole space Z.

We recall theorem on right inverse operator

Theorem 4.1. Let X, Z are the Banach spaces and

A : X → Z (4.2)

is a continuously differentiated mapping. Let us assume that for some x0 ∈
X, and z0 ∈ Z equality holds

A(x0) = z0, (4.3)

and derivative
A′(x0) : X → Z (4.4)

of the operator A at x0 is a epimorphism. Then for sufficiently small ε > 0
exists mapping M(z) : Bε(z0) → X, defined on the ball

Bε(z0) = {z ∈ Z : ‖z − z0‖Z < ε},

which satisfy conditions

A(M(z)) = z, z ∈ Bε(z0), (4.5)

‖M(z) − x0‖X ≤ k ‖A(x0) − z‖Z for all z ∈ Bε(z0), (4.6)

where k > 0 some number.

This theorem is a simple corollary of the generalized implicit function
theorem which has been proved in V. M. Aleksev, V. M. Tikhomirov and S.
V. Fomin [1].

We have
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Theorem 4.2. Let p > max{2, (n+ 2)/2}, and f(t, x, y) ∈ C1(Q× R1),
conditions (6) - (9) be fulfilled, and v0 ∈ W 1

∞(Ω) and v1(x) = ŷ(T, x), and
let (ŷ, û) ∈ W 1,2

p (Q) × (U(ω) ∩ Lp(Q)) be a solution of (4.1). Then there
exist ε > 0 such that if ||v0 − ŷ(0, ·)||W 1

∞
(Ω) ≤ ε the problem (1) - (3) has a

solution (y(t, x), u(t, x)) ∈W 1,2
p (Q) × (U(ω) ∩ Lp(Q)).

Proof. We are looking for solution in the form

y(t, x) = ŷ(t, x) + w(t, x), u(t, x) = û(t, x) + q(t, x). (4.7)

The substitution of (4.2) into equation (1) and (2) and subtraction from them
of the same equation as (4.1) for (ŷ, û) yields

N(w, q) = Lw + f(t, x, ŷ+ w) − f(t, x, ŷ) − q = 0 in Q, q ∈ U(ω), (4.8)

(l1(t, x)
∂w

∂νA
+ l2(t, x)w)

∣

∣

Σ
= 0, w(0, x) = v0(x) − ŷ(0, x), (4.9)

w(T, x) = 0. (4.10)

We introduce the mapping A(w, q) by:

A(w, q) = (N(w, q), w(0, ·)).

Let us consider the space

V λs (Q) = {(w(t, x), q(t, x)) ∈ Ξλs (Q) × (U(ω) ∩Xλ
s (Q) ∩ Lp(Ω)), |L̂w ∈

Lp(Q) ∩Xλ
s (Q), y(0, x) ∈W 1

∞(Ω), l1∂w/∂νA + l2w = 0 ∀ (t, x) ∈ Σ },
where operator L̂ was defined in (1.40). We note (see [38], [51]) V λs (Q) ⊂
L∞(Q). It is obvious that for all λ > 0 and s > 0 we have

A ∈ C1(V λs (Q), (Xλ
s (Q) ∩ Lp(Q)) ×W 1

∞(Ω)). (4.11)

By Theorem 2.4 there exist ŝ > 0 and λ̂ > 0 such that

A′(0, 0)V λ̂ŝ (Q) = (X λ̂
ŝ (Q) ∩ Lp(Q)) ×W 1

∞(Ω). (4.12)

We set X = V λ̂ŝ (Q), Z = (X λ̂
ŝ (Q) ∩ Lp(Q)) × W 1

∞(Ω), x0 = (0, 0) and
z0 = (0, 0).

By (4.11) and (4.12) all assumptions of theorem on a right inverse operator
are fulfilled. So, applying this theorem, we complete the proof of Theorem
4.1. �

Let ŷ ∈W 1,2
p (Q) satisfy equation

G(ŷ) = g in Q, (l1(t, x)
∂ŷ

∂νA
+ l2(t, x)ŷ)

∣

∣

[0,T ]×(∂Ω\Γ0)
= 0. (4.13)

We have
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Theorem 4.3. Let p > max{2, (n+ 2)/2}, f(t, x, y) ∈ C1(Q× R1), and
let conditions (6) - (9) be fulfilled, v0 ∈ W 1

∞(Ω) and v1(x) = ŷ(T, x) where
ŷ(t, x) ∈W 1,2

p (Q) is a solution of (4.13). Then there exist ε > 0 such that if
||v0− ŷ(0, ·)||W 1

∞
(Ω) ≤ ε the problem (4), (5) has a solution (y(t, x), u(t, x)) ∈

W 1,2
p (Q) × L2(0, T ;W

1
2
2 (∂Ω)).

Proof. Let us consider a connected domain Ω̃ such that

Ω̃ = Ω ∪ ω, ∂Ω̃ ∈ C2, ω ∩ (∂Ω \ Γ0) = {∅},

where ω is a nonempty set in Rn. Set Q0 = (0, T ) × Ω̃. We extend function
ŷ from W 1,2

p (Q) up to W 1,2
p (Q0), function f(t, x, y) from C1(Q× R1) up to

C1(Q0 ×R1) and coefficients of the operator L on Q0 keeping the properties
(6)-(9).

Let us consider the problem of exact controllability

G(y + ŷ) = u+ g in Q0, u ∈ U(ω̃), (4.14)

(l1(t, x)
∂y

∂νA
+ l2(t, x)y)

∣

∣

Σ
= 0, y(0, x) = v0(x), y(T, x) = 0.

(4.15)

By Theorem 4.2 there exist ε > 0 such that for all

||v0||W 1
∞

(Ω) ≤ ε

the problem (4.14) - (4.15) has a solution

(y(t, x), u(t, x)) ∈W 1,2
p (Q0) × (U(ω̃) ∩ Lp(Q̃)).

Restricting function y(t, x) on Q we find that the pair (y + ŷ, (l1∂y/∂νA +
l2y + l1∂ŷ/∂νA + l2ŷ)|Σ) is a solution of problem (4) - (5). �

One of the possible applications of this theorem is as follows. Let ŷ(t, ·) is
a smooth periodical solution of problem (4)

G(ŷ) = g in R1 × Ω, ŷ(t+ l, x) = ŷ(t, x).

By Theorem 4.2 there exists a neighborhood S of this curve ŷ(t, ·) in the
space W 1

∞(Ω) such that an arbitrary point v0 from S can be transferred on
this curve by means of boundary control.
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Let us consider the problem (4) - (5) for one-dimensional semilinear par-
abolic equation

G1(y) =
∂y

∂t
−a(x)∂

2y

∂x2
+b(x)

∂y

∂x
+c(x)y+f(x, y) = g(x) in [0, 1], (4.16)

y(t, 0) = u1(t), y(t, 1) = u2(t), (4.17)

y(0, x) = v0(x), y(T, x) = v1(x), (4.18)

where
a(x), b(x), c(x) ∈ C1(Ω), a(x) > 0. (4.19)

Let us assume that function f(x, y) ∈ C2([0, 1] × R1) satisfy the following
inequality

−f(x, y)y ≥ c1|y|p − c2 ∀(x, y) ∈ [0, 1]× R1, (4.20)

where
c1 > 0, c2 > 0, p > 1.

We have

Theorem 4.4. Let conditions (4.19) and (4.20) be fulfilled and, let v0, v1 ∈
C1(Ω) be the steady-state solutions of the equation (4.16). Then there ex-

ists T̂ > 0 such that for arbitrary T ≥ T̂ the problem (4.16) - (4.18) has a
solution.

Proof. Let ℓ(t) ∈ C2([0, 1]; R2) such that

ℓ(0) =

(

v0(0),
∂v0
∂x

(0)

)

, ℓ(1) =

(

v1(1),
∂v1
∂x

(1)

)

.

By (4.19) and (4.20) there exist a function v(t, x) ∈ C1,2([0, 1] × [0, 1])
such that

a(x)
∂2v(t, x)

∂x2
+ b(x)

∂v(t, x)

∂x
+ c(x)v(t, x) + f(x, v(t, x)) = g(x),

(

v(t, 0),
∂v

∂x
(t, 0)

)

= ℓ(t).

By Theorem 4.3 there exist finite number of points

t0 = 0 < t1 · · · < tk−1 < tk = 1
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such that there exist a solution of the following problem of exact controlla-
bility

G1(yi) = g(x) in [0, 1] × [0, 1], yi(0, x) = v(ti−1, x), yi(1, x) = v(ti, x).

Set T̂ = k. We define the solution of problem (4.16) - (4.18) by the formula :

t ∈ [i− 1, i] implies y(t, x) = yi(t+ i− 1, x).

The control functions u1(t) and u2(t) are well defined by the formulas (4.17).
�

From now we assume that nonlinear term of parabolic equation function
f is independent on t, x and satisfy the following growth condition: There
exists a constant p > 1 such that

c4|y|p+1 − c5 ≤ f(y)y ≤ c6(|y|p+1 + 1); f ′(y) ≥ c7 ∀y ∈ R1, (4.21)

where c4 > 0, c5, c6, c7 are independent constants.
Let Ω = [0, L]. We consider the dynamical system

∂y

∂t
−∂

2y

∂x2
+f(y) = 0, x ∈ Ω,

∂y(t, 0)

∂x
=
∂y(t, L)

∂x
= 0, y(0, ·) = v0. (4.22)

The evolution dynamical system (4.22) described by a family of operators
S(t), t ≥ 0, that map L2(0, L) (W 1

2 (0, L)) into itself and enjoy the usual
semigroup properties

St+s = StSs ∀s, t ≥ 0,

S0 = I (I − identity in L2(0, L) (W 1
2 (0, L))),

y(t, ·) = Stv0.

We need to remind some facts of the theory of infinite-dimensional dynamical
systems (see [5],[64]). Let E be a Banach space. Set

distE(X, Y ) = sup
x∈X

inf
y∈Y

‖x− y‖E.

Definition 4.1. Let St : E → E be a semigroup in a Banach space E.
The set X is called point-attracting in E if distE(Stu,X) → 0 as t → +∞
for any point u ∈ E.

Definition 4.2. A functional Φ : E → R is called a Lyapunov function
of semigroup {St} on E if first for any u ∈ E the function Φ(St(u)) of the
variable t is a monotonously decreasing in t and, the second, if the equality
Φ(u) = Φ(Stu) for some t > 0 implies that u = Stu = z is an equilibrium
point of the semigroup {St}, that is Stz = z ∀t ≥ 0.

The following theorem proved in [5].
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Theorem 4.5. Let E be a Banach space and let a semigroup {St}, St :
E → E have a point-attracting set X compact in E. Let {St} be continuous
on E and have the Lyapunov function defined, continuous and bounded from
below in a neighborhood of X in E. Let M be the set of all equilibrium points
of {St}. Then

dist(Stu,M) → 0 as → +∞ ∀u ∈ E.

Denote by B the collection of all bounded subset in L2(0, L).
Definition 4.3. A set X ⊂ W 1

2 (0, L) is called (L2(0, L),W 1
2 (0, L))-

attracting if for any B ⊂ B ∃T > 0 such that St ⊂ W 1
2 (0, L) for t > T

and StB → X in W 1
2 (0, L) as t→ +∞.

Definition 4.4. A set U ⊂W 1
2 (0, L) is called a maximal (L2(0, L),W 1

2 (0, L))
attractor of the semigroup St if it has a following properties:

1. U is compact in W 1
2 (0, L).

2. U is an (L2(0, L),W 1
2 (0, L)) - attracting set.

3. U is strictly invariant, i.e. StU = U ∀t ≥ 0.
Now let us return again to the dynamical system (4.22). It is well known

that under assumptions (4.21) there exists an attractor of dynamical system
(4.22). The following theorem is a special case of the general theorem proved
in [5, pp.127].

Theorem 4.6. Let (4.21) be fulfilled. The semigroup S(t) : L2(0, L) →
L2(0, L) possesses an (L2(0, L),W 1

2 (0, L))- maximal attractor U which is
bounded in W 1

2 (0, L), compact and connected in L2(0, L).

We introduce the Lyapunov function of dynamical system (4.22) by the
formula

Φ(u) =

∫ L

0

(

1

2

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

+ F (u)

)

dx, F (u) =

∫ u

0

f(v)dv.

Let us check the properties of the Lyapunov function. Firstly we show that
function Φ(y(t, ·)) decrease in t on the trajectories of dynamical system.
Differentiation of Φ(y(t, ·)) respect to variable t gives

∂

∂t
Φ(y(t, ·)) =

∫ L

0

(

∂y

∂x

∂2y

∂t∂x
+ f(y)

∂y

∂t

)

dx =

∫ L

0

(

−∂
2y

∂x2
+ f(y)

)

∂y

∂t
dx = −

∫ L

0

(

−∂
2y

∂x2
+ f(y)

)2

dx ≤ 0.
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Now we assume that for some t0 > t1 Φ(y(t0, ·)) = Φ(y(t1, ·)). Multiplying
equation (4.22) on y scalarly in L2(0, L) and integrating it on the segment
[t0, t1] we obtain

0 =

∫ t1

t0

∫ L

0

y2
t dxdt+ Φ(y(t, ·))|t1t0 =

∫ t1

t0

∫ L

0

y2
t dxdt.

This equality in turn imply

y(t, x) = y(x).

So the functional Φ posses all properties necessary to be Lyapunov function
of dynamical system (4.22). Note that by (4.21) there exists a constant c7
such that

Φ(v) > c7 ∀v ∈W 1
2 (0, L).

Set E = W 1
2 (0, L). As a point-attracting set X ⊂ E we consider the maximal

(L2(0, L),W 1
2 (0, L)) attractor, which existence was establish in the Theorem

4.6. Thus all conditions necessary to apply the Theorem 4.5 are fulfilled.
Let M be the set of equilibrium points of dynamical system (4.22) i.e M

is a collection of all functions z(x) ∈W 2
2 (0, L) such that

−d
2z

dx2
+ f(z) = 0 x ∈ (0, L),

∂z(0)

∂x
=
∂z(L)

∂x
= 0. (4.23)

By Theorem 4.5 we have

Theorem 4.7. Let (4.21) be fulfilled and y(t, x) be solution of the problem
(4.22) with initial datum v0 ∈W 1

2 (0, L). Then

distW 1
2 (0,L)(y(t, ·),M) → 0 as t→ +∞. (4.24)

Now we consider the problem of exact controllability for the equation
(4.221) when control concentrated on the part of the boundary

∂y

∂t
− ∂2y

∂x2
− f(y) = 0, x ∈ [0, L], (4.25)

∂y

∂x
(t, 0) = 0,

∂y

∂x
(t, L) = u(t), (4.26)

y(0, x) = v0(x), y(T, x) = v1(x), (4.27)
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where ( we remind) u(t) is a control, function v0 is a initial state, and v1 is
a target function.

We introduce numbers m and M by formulas

m = inf
a∈{f(a)=0}

a, M = sup
a∈{f(a)=0}

a.

Denote by R(v0) the set of reachability of the function v0. i.e.

R(v0) = {v(x)|there exists a pair (y(t, x), u(t)) which satisfy (4.25), (4.26)

such that y(0, ·) = v0, y(T, ·) = v.}

We would like to investigate the following problem: Is the set M belong to
R(v0) for an arbitrary v0 or not?

Let us consider the Cauchy problem for the second order differential equa-
tion

−d
2z

dx2
+ f(z) = 0, z(0) = z0, zx(0) = 0. (4.28)

We have

Theorem 4.8. Let (4.21) be fulfilled. Then there exist 0 < L̂ ≤ ∞ that

for L < L̂ for an arbitrary v0 ∈ W 1
2 (0, L) M ⊂ R(v0) and for L > L̂ there

exists a open set O ⊂ W 1
2 (0, L) such that for every v0 ∈ O M * R(v0).

Moreover L̂ 6= +∞ if and only if for some L1 > 0 there exists z0 ∈ (m,M)
such that there is not solution of the problem (4.28) on segment [0, L1].

Proof. Multiplying the (4.23) by z scalarly in L2(0, L) and integrating
by parts we have

∫ L

0

(|∇z|2 + |z|p+1)dx ≤ c8(L), (4.29)

where constant c8 dependes continuously on L. The estimate (4.29) and the
Sobolev imbedding theorem imply

‖z‖C[0,L] ≤ c9(L), (4.30)

Let us show that constant c9 dependes continuously on L. Our proof by
contradiction. Let us assume

‖z‖C[0,L] → +∞ as L→ +0. (4.31)



48 I. EXACT CONTROLLABILITY OF PARABOLIC EQUATIONS

By (4.29), (4.31)

inf
x∈(0,L∗)

|z(x)| → +∞ as L→ +0, (4.32)

where L∗ ∈ (0, L) the first point, such ∂z(L∗)
∂x = 0.

Integrating (4.231) on [0, L∗], bearing in mind boundary conditions, we
obtain

∫ L∗

0

f(y)dx = 0. (4.33)

From (4.21), (4.33) we get the contradiction to (4.32). But (4.30) in turn
imply

‖z‖C2[0,L] ≤ c10, (4.34)

where constant c10 also dependes continuously on L.
Now let v0 ∈ W 1

2 (0, L) be an arbitrary function. By Theorem 4.7 we get
for any ε > 0 there exists a function zε ∈ M such that for some tǫ ∈ R1

+ we
have inequality

‖zε − S(tε)v0‖W 1
2 (0,L) ≤ ε.

By (4.34) the set M bounded in C2[0, L]. So applying the Theorem 4.2 for
suitable ε, we can reach some target function ẑ ∈ M at some moment t̂.
Thus we prove that for any v0 ∈W 1

2 (0, L) there exists ẑ ∈ M∩ R(v0).
Let z̃ be an arbitrary function from M. Now we assume that for any z0 ∈

(m(L),M(L)) there exist a solution of the problem (4.28) z(x) ∈ C2[0, L].
Thus one can find a function z(τ, x) for any fixed τ ∈ [0, 1], z(τ, ·) is a solution
of the following problem:

−d
2z(τ, ·)
dx2

+ f(z(τ, ·)) = 0, z(τ, 0) = (1 − τ)ẑ(0) + τ z̃(0),
∂z(τ, 0)

∂x
= 0.

Thanks to local existence and uniqueness theorem for O.D.E. (see [2]) the
mapping τ → z(τ, ·) is continuous in the space W 1

2 (0, L). By uniqueness the-
orem for ordinary differential equations z(0, ·) = ẑ, z(1, ·) = z̃. By arguments
similar to the proof of Theorem 4.3 we obtain that the function z̃ belong to
the set of reachability of the function ẑ.

On the other hand if there exists z0 ∈ (m(L),M(L)) such that the solution
of the problem (4.28) z(x) blow up at the moment x0 < L. Then by (4.21)
there are only two possibilities

either lim
x→x0−0

z(x) = +∞, or lim
x→x0−0

z(x) = −∞. (4.35)
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Assume that first one holds. Set O = {v(x) ∈ W 1
2 (0, L)|v(x) < z(x) x ∈

[0, x0]}. Obviously that interiority of this set in W 1
2 (0, L) is not empty. Let

y(t, x) is a solution of the problem (4.25)-(4.27) with some control u(t) and
initial condition v0 ∈ O. Let us continue the functions y(t, x), v0(x) on the
segment [−L, 0] by formula y(t, x) = y(t,−x), v0(x) = v0(−x). Evidently
function y(t, x) satisfy the equations

∂y

∂t
− ∂2y

∂x2
+ f(y) = 0, x ∈ [−L, L], (4.36)

y(t,−L) = u(t), y(t, L) = u(t), (4.37)

y(0, x) = v0(x). (4.38)

Applying to (4.36)-(4.38) the maximum principle ,bearing in mind (4.35),
we have

y(t, x) ≤ z(x). (4.39)

By definition of m(L),M(L) there exist a function z̃ ∈ M such that z̃(0) >
z(0). Thus if we consider the problem (4.25)-(4.27) with initial datum v0 ∈ O

and v1 = z̃ the inequality (4.39) imply that there is no solution of this
problem. �

§5. Some results on uncontrollability of semilinear parabolic

equations

Let us consider the problem of exact controllability (1)-(3) under the fol-
lowing assumptions on nonlinear term of parabolic equation (1): There exist
constants c1 > 0, c2, p > 1 such that

f(t, x, y)y > c1|y|p+1 − c2 ∀(t, x) ∈ Q∞, y ∈ R1, (5.1)

where Q∞ = R1
+ × Ω.

We also assume that functions aij , bi, c satisfy conditions (6), (7) where Q

replaced by Q∞. Let ω′ ⊂ Ω be subdomain of Ω such that ω ⊂ ω′, ∂ω′ ∈ C∞.
Denote by ρ ∈ C∞(Ω) a function such that

ρ|∂Ω = 0, ρ|ω′ = 0, ρ(x) > 0 ∀x ∈ Ω \ ω′. (5.2)

Firstly we prove the a priori estimate for solutions of problem (1)-(3). We
have
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Theorem 5.1. Let k > 2(p+1)/(p−1) , l1 ≡ 0,(6)- (9), (5.1) be fulfilled,

function ρ satisfy (5.2) and (y, u) ∈ Y (Q) × U(ω) be a solution of problem

(1)-(3). Then the estimate holds

d

dt

∫

Ω

ρky2(t, x)dx+
c1
4

∫

Ω

ρk|y|p+1dx ≤ c3(‖g(t, ·)‖2
L2(Ω) + 1). (5.3)

Proof. Multiplying equation (1) by ρky scalarly in L2(Ω) and integrating

by parts respect to variable x we have

1

2

d

dt

∫

Ω

ρky2 dx+

∫

Ω

n
∑

i,j=1

(

aijρ
k ∂y

∂xi

∂y

∂xj
+ aij

∂ρk

∂xi
y
∂y

∂xj

)

dx

+

∫

Ω

{

n
∑

i=1

biρ
ky

∂y

∂xi
+ρkcy2+ρkf(t, x, y)y

}

dx =

∫

Ω

(u+g)ρkydx =

∫

Ω

gρkydx.
(5.4)

Integrating by parts in the left hand side of (5.4) again and carry out some

terms from the left part of this equality to right part we obtain

1

2

d

dt

∫

Ω

ρky2 dx+

∫

Ω



ρk
n
∑

i,j=1

aij
∂y

∂xi

∂y

∂xj
+ ρkf(t, x, y)y



dx =

∫

Ω





1

2

n
∑

i,j=1

∂

∂xj

(

aij
ρk

∂xi

)

y2 +

n
∑

i=1

∂

∂xi
(biρ

k)y2 − ρkcy2



 dx+

∫

Ω

ρkgydx.
(5.5)

Note that

∣

∣

∣

∣

∂2ρk(x)

∂xi∂xj

∣

∣

∣

∣

≤ c4(k)ρ
k−2(x),

∣

∣

∣

∣

∂ρk(x)

∂xi

∣

∣

∣

∣

≤ c5(k)ρ
k−1(x) ∀x ∈ Ω. (5.6)

Hence by (5.1), (5.5) we get from (5.4)

1

2

d

dt

∫

Ω

ρky2dx+

∫

Ω

c1ρ
k|y|p+1dx ≤ c7‖g(t, ·)‖2

L2(Ω) + c6

∫

Ω

ρk−2y2dx, (5.7)

where c6, c7 are independent constants.



I. EXACT CONTROLLABILITY OF PARABOLIC EQUATIONS 51

By Hölder inequality one can estimate the last integral in the right hand
side of (5.7) as follows

∣

∣

∣

∣

∫

Ω

ρk−2y2dx

∣

∣

∣

∣

≤
(
∫

Ω

|y|p+1ρ(p+1)(k−2)/2dx

)
2

p+1
(
∫

Ω

1dx

)
p−1
p+1

≤ c8

(
∫

Ω

|y|p+1ρ(p+1)(k−2)/2dx

)
2

p+1

≤ c9

(
∫

Ω

|y|p+1ρkdx

)
2

p+1

. (5.8)

Applying the inequality ab ≤ 1
pa

p + 1
q b
q to the right side of (5.8) we have

∣

∣

∣

∣

∫

Ω

ρk−2y2dx

∣

∣

∣

∣

≤ c1
2

∫

Ω

|y|p+1ρkdx+ c10. (5.9)

Replacing in (5.6) the last term by right part of (5.8) we get (5.2). �

We have

Theorem 5.2. Let (5.1), (6)-(9) be fulfilled, l1 ≡ 0, v0 ∈ L2(Ω), g ∈
L2(Ω). Then there exists a function v1 ∈ C∞(Ω) such that for any T > 0

the problem (1)-(3) has not solution y ∈W 1,2
2 (Q).

Proof. Let us introduce function m(t) by formula m(t) =
∫

Ω
ρky2(t, x)dx

where k > (p+ 1)/(p− 1) and function ρ defined in (5.2). By (5.3) we have

1

2

d

dt
m+

c1
4

∫

Ω

ρk|y|p+1dx ≤ c4(‖g‖2
L2(Ω) + 1) ∀t ∈ (0,+∞). (5.10)

By Hölder inequality there exists some µ > 0 such that

µmp+1 ≤ c1
4

∫

Ω

ρk|y|p+1dx.

Thus (5.10) imply the inequality

1

2

d

dt
m+ µmp+1 ≤ c11(‖g‖2

L2(Ω) + 1) ∀t ∈ (0,+∞). (5.11)

It follows from this inequality that

m(t) ≤ A = max







∫

Ω

ρkv2
0dx,

(

c12(‖g‖2
L2(Ω) + 1)

µ
+ 1

)
1

p+1







∀t ∈ [0, T ].

(5.12)
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So, if for given (v0(x), g(x)) one choose a function v1(x) such that

∫

Ω

ρkv2
1dx > A

the inequality (5.12) imply that there is no solution of problem (1)- (3).�
Note that nonexistence results of such type were proved in [25] for partic-

ular case of semilinear parabolic equations.
We assume that nonlinear term of equation (1) satisfies the relation

c12|y|p+1 − c13 ≤ f(t, x, y), (5.13)

where p > 0, c12 > 0.
It is known (see [48]) that in this case for some initial datum v0, g the

problem does not have a global solution in t. For similar equations J.L.
Lions posed in [51] the following ”stabilization” problem: by choice of the
control u arrange that the solution of the problem (1), (2) exists on a given
time interval [0, T ]. We have

Theorem 5.3. Suppose, that (6)-(9),(5.13) be fulfilled and g(t, x) ≡ 0,
l1(t, x) ≡ 0. Then there exists a constant T0 > 0 such that for T > T0 the
boundary value problem has no solution in the space L2(0, T ;Lp+1(Ω)) for
any control u ∈ U(ω).

Proof. Multiply (1) by ρk, where

k > 2(1 +
1

p
). (5.14)

By integrating the resulting equation over Ω we get

d

dt

∫

Ω

ρkydx+

∫

Ω





n
∑

i,j=1

∂

∂xj

(

aij
∂ρk

∂xi

)

y

−
n
∑

i=1

∂

∂xi
(ρkbi)y + ρkcy + f(t, x, y)ρk

)

dx = 0. (5.15)

It follows from (5.15) by (5.13) and by the inequality

∣

∣

∣

∣

∂2ρk(x)

∂xi∂xj

∣

∣

∣

∣

+

∣

∣

∣

∣

∂ρk(x)

∂xi

∣

∣

∣

∣

≤ c14ρ
k−2(x) ∀x ∈ Ω,
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that

− d

dt

∫

Ω

ρkydx ≥ c12

∫

Ω

ρkyp+1dx− c15

∫

Ω

ρk−2|y|dx− c16. (5.16)

Application of Hölder’s inequality to the last integral in right part of (5.16)
yield

− d

dt

∫

Ω

ρkydx ≥ c12

∫

Ω

ρk|y|p+1dx− c17

(
∫

Ω

ρ(k−2)(p+1)|y|p+1dx

)
1

p+1

− c16.

It follows from (5.13) and this inequality that

− d

dt

∫

Ω

ρkydx ≥ c12
2

∫

Ω

ρk|y|p+1dx− c17 ≥ c18

∣

∣

∣

∣

∫

Ω

ρkydx

∣

∣

∣

∣

p+1

− c19, (5.17)

where constants c18 > 0, c are independent on v0. Setting β(t) = −
∫

Ω
ρky(t, x)dx

we deduce that by (5.17) the function β(t) satisfies the differential inequality

dβ

dt
≥ c18β

p+1 − c19.

It is known that this differential inequality does not have a global solution
in t if β(0) = −

∫

Ω
ρky0dx is sufficiently large.�

§6. Exact controllability of Burgers equation

From now we start studying the problems of exact controllability of evo-
lution equations which describe the fluid flow. The simplest of them is the
Burgers equation. In this section we show that steady state solutions of
Burgers equation with zero right hand side belongs to the set of reachability
of any initial condition v0. On the other hand we prove that the Burgers
equation is not approximately controllable on the arbitrary bounded time
intervals. Let us consider the Burgers equation

R(y) =
∂y(t, x)

∂t
−∂

2y(t, x)

∂x2
+2y(t, x)

∂y(t, x)

∂x
= u(t, x) (t, x) ∈ [0, T ]×[0, L],

(6.1)
where ∞ > L > 0 and T > 0 are arbitrary fixed numbers. We suppose that
y(t, x) satisfies zero boundary and initial conditions

y(t, 0) = y(t, L) = 0, y(0, ·) = v0, y(T, ·) = v1, (6.2)



54 I. EXACT CONTROLLABILITY OF PARABOLIC EQUATIONS

where v0 is a given initial data, v1 is a target function. Assume that control
u(t, x) ∈ L2([0, T ]× [0, L]) and that for any t ∈ [0, T ]

supp u(t, x) ⊂ [b, e], 0 < b < e < L. (6.3)

We also consider the problem of exact boundary controllability for Burgers
equation

R(y) = 0 x ∈ [0, L], y(t, 0) = u1(t), y(t, L) = u2(t), y(0, ·) = v0, y(T, ·) = v1.
(6.4)

It is well-known that for an arbitrary u(t, x) ∈ L2([0, T ]× [0, L]) there exists
a unique solution y(t, x) ∈ L2(0, T ;W 2

2 (0, L)) of problem (6.1)-(6.2). It is
possible to see, that ∂y/∂t ∈ L2([0, T ] × [0, L]). The following Lemma de-
scribes the set of steady state solutions of Burgers equation with zero right
hand side i.e. the set of functions z(x) such that

−∂
2z

∂x2
+
∂z2

∂x
= 0, x ∈ (0, L), (6.5)

z(0) = α1, z(L) = α2. (6.6)

Lemma 6.1. For an arbitrary finite α1 ≤ α2 there exists the unique solu-
tion of the problem (6.4),(6.5). Moreover











if α2 − α1 > Lα1α2 then z(x) =
√
c tg(

√
c(x+ d));

if α2 − α1 = Lα1α2 then z(x) = −1/(x+ d);

if α2 − α1 < Lα1α2 then z(x) =
√
c cth(

√
c(x+ d)).

(6.7)

For α1 ≥ α2 problem (6.5), (6.6) has a solution

z(x) ≡ α1, if α1 = α2; (6.8)

z(x) = −
√
c cth(

√
c(x+ d)), if α1 > α2. (6.9)

The constants c, d are determinatead uniquely by α1, α2.

Proof. Integrating (6.5) in x we obtain

∂y

∂x
= y2 + c. (6.10)
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If c > 0 then integrating (6.10) we obtain the equality

1√
c
arctg

y√
c

= x+ d (6.11)

which implies (6.7). Let us show that the constants c > 0, d in this inequality
is determinatead by α1, α2. It follows from (6.11), (6.6) that

L
√
c = artg

α2√
c
− artg

α1√
c
.

Applying to the both parts of this equality the operator tg we obtain that

tg(L
√
c) =

√
c(α2 − α1)/(c+ α1α2).

Solving this equation by the graphics method we obtain that if α1, α2 satisfy
condition (6.71) then the unique positive solution c of this equation exists.

If c = 0 then we obtain (6.72) after integrating (6.10) . Equation (6.10)
with c < 0 implies the equality

z −√
c1

z +
√
c1

= e2
√
c1(x+d), (6.12)

where c1 = c. It follows from (6.12) (6.6) that

e2γL =

∣

∣

∣

∣

(α2 − γ)(α1 + γ)

(α2 + γ)(α1 − γ)

∣

∣

∣

∣

,

where γ =
√
c1. Solving this equation by graphics method, one can easily

to show that this equation has a unique positive solution if α1, α2 satisfy
condition (6.73), (6.9). The case (6.8) is evident.The proof of the theorem is
complete.�

Lemma 6.2. Let α1, α2 ∈ R satisfy condition α2 ≥ α1 and z(x) is a
solution of problem (6.5), (6.6) and y(t, x) is a solution of the problem (6.4)
with u(t) = α1 and u(t) = α2. Then there exists λ > 0 such that

‖z − y(t, ·)‖2
L2(0,L) ≤ e−λt‖v0 − z‖2

L2(0,L), (6.13)

∫ +∞

0

∥

∥

∥

∥

∂(z − y(t, ·))
∂x

∥

∥

∥

∥

2

L2(0,L)

dt ≤ ‖z − v0‖2
L2(0,L). (6.14)
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Proof. Set w(t, x) = y(t, x) − z(x). By virtue of (6.4)-(6.6) w(t, x) is a

solution of the problem

∂w

∂t
− ∂2w

∂x2
+ 2

∂(wz)

∂x
+
∂w2

∂x
= 0 x ∈ [0, L], (6.15)

w(t, 0) = w(t, L) = 0, w(0, x) = z(x) − v0(x). (6.16)

Scaling in L2(0, L) both parts of (6.15) by the w(t, x) and taking into account

(6.16) we obtain after simple transformations, that

1

2

d

dt
‖w(t, ·)‖2

L2(0,L) +

∥

∥

∥

∥

∂w

∂x

∥

∥

∥

∥

2

L2(0,L)

+

∫ L

0

(

∂z

∂x

)

w2(t, x)dx = 0. (6.17)

Let λ1 be the minimal eigenvalue of the spectral problem

−∂
2v(x)

∂x2
+
∂v(x)

∂x
= λv(x) x ∈ [0, L], v(0) = v(L) = 0.

Since by Lemma 6.1 the inequality ∂z(x)
∂x

≥ 0 holds, then λ1 > 0. It follows
from (6.17) that

1

2

d

dt
‖w(t, ·)‖2

L2(0,L) + λ1‖w(t, ·)‖2
L2(0,L) ≤ 0.

This inequality imply (6.13). Integrating (6.17) on segment (0,∞) bearing

in mind (6.13) we get (6.14).�

Theorem 6.1. Let ŷ(t, x) ∈W 1,2
2 (Q) be a solution of problem (6.1). Then

there exists ε > 0 such that for every

‖v0 − ŷ(0, ·)‖W 1
2 (0,L) ≤ ε

there exists a solution of the problem (6.4) with initial datum (v0, ŷ(T, ·)).
The constant ǫ dependes on T , ‖ŷ‖W 1,2

2 (Q) continuously and monotonicaly.

The proof of this theorem similar to the proof of Theorem 4.2. We leave

it to readers as exercise.
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Theorem 6.2. Let function v1 satisfy (6.5). Then for an arbitrary v0 ∈
W 1

2 (0, L) one can find T0(v0, v1) such that for T > T0 there exist a solution
of the problem (6.4) (y, u) ∈ L2(0, T ;W 1

2 (0, L)) × L2(0, T ).

Proof. Let z̃(x) be an arbitrary function which satisfy (6.5), (6.6) and let
v0(x) be an arbitrary function from the space W 1

2 (0, L) . Denote by y(t, x)
the solution of (6.41) − (6.44) with the zero boundary conditions u1(t) =
u2(t) = 0. Thanks to Lemma 6.2 y(t, ·) → 0 in L2(0, L) as t → +∞ and
inequality holds

∫ +∞

0

∥

∥

∥

∥

∂y(t, ·)
∂x

∥

∥

∥

∥

2

L2(0,L)

dt <∞.

This inequality imply that for every ε > 0 there exists tε such that ‖z0 −
y(Tε, ·)‖W 1

2 (0,L) ≤ ε. Then thanks Theorem 6.1 there exists ε > 0 and tε such
that the following problem has a solution

∂y(t, x)

∂t
− ∂2y(t, x)

∂x2
+2y(t, x)

∂y(t, x)

∂x
= 0 (t, x) in [tǫ, tǫ+τ ]×[0, L], (6.18)

y(t, 0) = u1(t), y(t, L) = u2(t), (6.19)

y(tε, ·) = lim
t→tε−0

y(t, ·), y(tε + 1, ·) = 0. (6.20)

Let tε be fixed. Now we construct the solution of problem 6.4 in following
manner. For t ∈ [0, tε] we set u1(t) = u2(t) = 0. For t ∈ [tε, tε+1] we choose
(y, u1, u2) as a solution of problem (6.18)-(6.20).

Note that the problem (6.5), (6.6) has a unique solution. Really existence
of solution was proved in Lemma 6.1. Let us assume that this problem has
two solutions z(x), u(x). Set δ = z−u. This function should satisfy equations

−∂
2δ

∂x2
+ u

∂δ

∂x
+ δ

∂u

∂x
= 0, x ∈ [0, L], δ(0) = δ(L) = 0. (6.21)

The integration of (6.21) gives − ∂δ
∂x

+uδ = const. By the second integration,
bearing in mind the boundary conditions (6.211) we get that δ ≡ 0. We
introduce function z(τ, x) (τ, x) ∈ [0, 1]× [0, L] as follows: for every τ ∈ [0, 1]
function z(τ, ·) is a solution of (6.5) with boundary conditions z(τ, 0) =
(1− τ)z̃(0), z(τ, L) = (1− τ)z̃(L). Since we proved the uniqueness of solution
of problem (6.5), (6.6) this function correctly defined.
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Now let us prove that the mapping t → z(t, ·) is continuous in the space
W 1

2 (0, L). If this mapping is discontinuous than there exists a point τ̂ ∈ [0, 1]
and sequence {τi} such that

z(τi, ·) → z(τ̂ , ·) in W 1
2 (0, L) as τ 9 τ̂ . (6.22)

Note that (6.5), (6.6) imply inequality

‖z(τi, ·)‖W 1
2 (0,L) ≤ c2,

where c is independent on i. This inequality in turn imply

‖z(τi, ·)‖W 2
2 (0,L) ≤ c3.

By (6.22) and this inequality and Rellix-Kondrashov theorem one can find a
subsequence τik such that

z(τik , ·) → u 6= z(τ̂ , ·) in W 1
2 (0, L) as τik → τ̂ .

Evidently u is a solution of (6.5) with boundary conditions u(0) = (1 −
τ̂)z̃(0), u(L) = (1 − τ̂)z̃(L). Since above uniqueness of solution of problem
(6.5),(6.5) was proved we have contradiction.

By Theorem 6.1 there exist finite number of points

0 < τ1 < · · · < τs · · · < τk = 1

such that the following problems of exact boundary controllability have a
solution

R(yi) = 0 (t, x) ∈ [0, 1]× [0, L], yi(0, x) = z(ti−1, x), y(1, x) = z(ti, x).
(6.23)

No we finish construction of control u1(t), u2(t). Set T0 = tε + k + 1,

u1(t) = yi(t+ ε+ i, 0) for t ∈ [tǫ + i, tǫ + i+ 1],

u2(t) = yi(t+ tε + i, L) for t ∈ [tǫ + i, tǫ + i+ 1],

where i ∈ {1, . . . , k} and yi(t, x) is a solution of problem (6.23). Since
z(tk, ·) = z(1, ·) = z̃ the theorem is proved. �

We proof one estimate for solution y(t, x) of problem (6.1), (6.2) which
simply implies the uncontrollability of this problem.
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Lemma 6.2. Let u(t, x) ∈ L2([0, T ] × [0, L]) satisfy (6.3) and y(t, x) be

the solution of the problem (6.1), (6.2). Denote y+(t, x) = max(y(t, x), 0).

Then for arbitrary N > 5 the estimate

d

dt

∫ b

0

(b− x)Ny4
+(t, x)dx < α(N)bN−5 (6.24)

holds where b is the constant from (6.3) and α(N) > 0 is a constant, depend-

ing on N only.

Proof. We multiply both sides of (6.1) by (b− x)Ny3
+(t, x) and integrate

them with respect to x from 0 to b. Integrating by parts in the second term

of the left hand side of the obtained identity we shall have

∫ b

0

(b− x)N (∂ty)y
3
+(t, x)dx+

∫ b

0

(b− x)N3y2
+(∂xy+)(∂xy)dx

−
∫ b

0

N(b− x)N−1y3
+(∂xy)dx+

∫ b

0

2(b− x)Ny4
+(∂xy)dx = 0. (6.25)

It follows from the theorem on the smoothness of a solution of the Burgers

equation that y(t, x) ∈ C∞((0, T ) × (0, L)). Denote y− = min(y, 0). Then

y3
+

∂y

∂x
= y3

+

(

∂y+
∂x

+
∂y−
∂x

)

= y3
+

∂y+
∂x

=
1

4

∂y4
+

∂x
.

The following identities are proved in an analogous way

y2
+

∂y+
∂x

∂y+
∂x

= y2
+

(

∂y+
∂x

)2

, yk+ =
1

k + 1

∂yk+1
+

∂x
.

Using these equalities and integrating by parts in last two terms of equation

(6.25), we obtain

∫ b

0

(b− x)N
1

4
∂ty

4
+(t, x)dx+

∫ b

0

(b− x)N3y2
+(∂xy+)2dx

−
∫ b

0

N

4
(N − 1)(b− x)N−2y4

+dx+

∫ b

0

2N

5
(b− x)N−1y5

+dx = 0. (6.26)
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By the Hölder inequality

∫ b

0

(b− x)N−2y4
+(t, x)dx ≤

(

∫ b

0

(b− x)N−6dx

)1/5(
∫ b

0

(b− x)N−1y5
+(t, x)dx

)4/5

=

=
b(N−5)/5

(N − 5)1/5

(

∫ b

0

(b− x)N−1y5
+dx

)4/5

. (6.27)

Using the Young inequality, we shall have

N

5

∫ b

0

(b−x)N−1y5
+(t, x)dx− N(N − 1)

4(N − 5)1/5
b(N−5)/5

(

∫ b

0

(b− x)N−1y5
+dx

)4/5

≥

− α(N)bN−5, (6.28)

where α(N) is a positive constant, depending on N > 5 only. Substituting
(6.27)-(6.28) into (6.26) we obtain (6.24).�

We have

Theorem 6.3. Let T > 0 be an arbitrary finite number. Then problem
(6.1)-(6.2) is not L2(0, L) - approximately controllable with respect to set of
controls u ∈ L2((0, T )× (0, L)) satisfying (6.3).

Proof. Let ŷ(x) ∈ L2(0, a), ŷ(x) ≥ 0, y be a solution of problem (6.1)-
(6.2). Then

(

∫ b

0

|ŷ(x) − y(T, x)|2dx
)1/2

≥
(

∫ b/2

0

|ŷ(x) − y+(T, x)|2dx
)1/2

≥ ‖ŷ‖L2(0,b/2) − ‖y+(T, ·)‖L2(0,b/2). (6.29)

By the Cauchy-Bunyakovskii inequality, we have:

‖y+(T, ·)‖L2(0,b/2) ≤
(

∫ b
2

0

(b− x)−Ndx

)1/2(
∫ b

0

(b− x)N |y+|4dx
)1/2

≤
(

b1−N (2N−1 − 1)

N − 1

)1/2
(

∫ b

0

(b− x)N |y+|4dx
)1/2

. (6.30)
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In virtue of (6.24) for any T > 0 the inequality

∫ b

0

(b− x)N |y+|4dx ≤ Tα(N)bN−5

holds. Let T > 0 be fixed and ŷ(x) ∈ L2(0, L) satisfies condition

‖ŷ‖L2(0,b/2) >

(

b1−N (2N−1 − 1)

N − 1
Tα(N)NN−5

)1/2

+ 1. (6.31)

Then it follows from (6.30) - (6.31) that for any control u ∈ L2((0, T )×(0, L))
satisfying (6.3), the solution y of problem (6.1)-(6.2) satisfies inequality

‖ŷ − y(T, ·)‖L2(0,L) > 1.

The inequality implies the approximate uncontrollability of problem (6.1)-
(6.2). �

Now we consider the Burgers equation with boundary control u:

∂y

∂t
− ∂2y

∂x2
+ 2y

∂y

∂x
= 0 (t, x) ∈ [0, T ] × [0, L], (6.32)

y(t, 0) = 0, y(t, b) = u(t), y(0, x) = 0, u ∈ L2(0, T ). (6.33)

We have

Theorem 6.4. Problem (6.32)-(6.33) is not L2(0, L)-approximately con-
trollable with respect to the control space L2(0, T ) for an arbitrary T > 0.

Proof. Estimate (6.24) holds for solution y of problem (6.32)-(6.33) and
its proof does not differ from the proof of Lemma 6.2. We obtain the assertion
of the theorem by means of this estimate after repeating the proof of Theorem
6.3 word by word.�



CHAPTER II

EXACT CONTROLLABILITY OF BOUSSINESQ SYSTEM

Introduction

We study the local controllability problem for the Boussinesq equation
that describe the incompressible fluid flow coupled to thermal dynamics.
The control function is the Dirichlet boundary condition of the velocity and
temperature vector field of the fluid flow. More precisely, the investigated
problem is as follows: Suppose that

∂ty(t, x) + A(y) = f(t, x), t ∈ (0, T ), x ∈ Ω (1)

is a symbolic writing of the Boussinesq equations defined in a bounded do-
main Ω ⊂ Rn n=2,3, where y(t, x) is a velocity and temperature vector field
and f(t, x) is an external forces vector field, t ∈ (0, T ) is a time. We assume
that a solution ŷ(t, x) of (1)

∂tŷ(t, x) +A(ŷ) = f(t, x)

as well as an initial condition y0(x) are given and they satisfy the proximity
condition

‖ŷ(0, ·) − y0(·)‖ ≤ ǫ, (2)

where ‖ · ‖ is the norm of corresponding initial conditions space and ǫ > 0 is
sufficiently small magnitude. One has to find such control u defined on the
lateral surface Σ = (0, T )× ∂Ω of the cylinder (0, T ) × Ω:

y|Σ = u (3)

that the solution y(t, x) of (1), (3) supplied by the initial condition

y|t=0 = y0 (4)

62



EXACT BOUNDARY CONTROLLABILITY 63

coincides with the given solution ŷ(t, x) at instant t = T

y|t=T = ŷ|t=T . (5)

One useful application of local exact controllability problem is as follows. Let
f(t, x) ≡ f(x) be independent on t and ŷ(x) be a steady-state solution of (1)
with zero boundary condition which, by definition, is an unstable point in the
phase space of the dynamical system generated by equation (1) supplied by
zero boundary conditions. Then the problem (1), (3), (5) solvability implies
that one can transfer an arbitrary point y0 belonging to a small neighborhood
of ŷ to ŷ a solution of (1) by means of boundary control.

We are intrested in the Boussinesq equations because the investigation of
a fluid flow stability in the free convection problem is one of the basic area
in the theory of hydrodynamical stability (See D.Joseph [37]). Besides as
we understand, the local exact controllability problem connected with area
outlined by J.L. Lions [49], [50] which contains in particular, certain prob-
lems about climate. It, in particular, explains our interest to the Boussinesq
equations. The first step of the controllability property proof is the reduction
of nonlinear problem (1),(2)-(5) to the solvability of the analogous problem
for the linearization of (1). We do it with help of one variant of implicit
function theorem. To establish the solvability of controllability problem we
prove the density of data set for which the linear controllabilty problem is
solvable (§3) and closure of this set (§5). The main difficulties of proof con-
nected with the pressure term in the Boussinesq equations. To overcome this
difficulty we introduce some nonstandard functional spaces for investigation
of our problem and construct in these spaces a decomposition of a vector field
on solenoidal and potential component (§4). This is based on the Carleman
estimate for Laplace operator (L. Hörmander [27], [28]) and for heat equation
(chapter I §6).

1. Statement of problem and formulation of the main result.

In a bounded domain Ω ⊂ Rn (n=2 or 3) with C∞-boundary ∂Ω we
consider the Boussinesq system

∂tv(t, x) − ∆v + (v,∇)v + θ(t, x)e0 + ∇p(t, x) = f(t, x), (1.1)

div v ≡
n
∑

j=1

∂xj
vj = 0, (1.2)
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∂tθ(t, x)− ∆θ + (v,∇θ) + (v, e0) = h(t, x), (1.3)

v(t, x)|t=0 = v0(x), θ(t, x)|t=0 = θ0(x), (1.4)

v|Σ = uv, θ|Σ = uθ. (1.5)

Here (t, x) ∈ Q = (0, T ) × Ω, v(t, x) = (v1(t, x), . . . , vn(t, x)) is a fluid
velocity at point x at instant t, θ(t, x) is a fluid temperature, p is a pressure
gradient, f(t, x) is the density of external forces, h(t, x) is the density of ex-
ternal heat sources, e0 ∈ Rn is the vector of the gravity force direction, uv, uθ

are Dirichlet boundary conditions (in our case they are control functions), v0,
θ0 are initial conditions. Besides, Σ = (0, T ) × ∂Ω, ∂t = ∂/∂t, ∂xj

= ∂/∂xj
,

∆ is the Laplace operator, (v,∇)v =
∑

vj∂xj
v, (v,∇θ) =

∑n
j=1 vj∂xj

θ. We
investigate the local exact controllability problem for Boussinesq equations

which is as follows. Let v̂(t, x), ∇p̂(t, x), θ̂(t, x) be sufficiently smooth* solu-
tion of Boussinesq equations (1.1)-(1.3):

∂tv̂(t, x) − ∆v̂ + (v̂,∇)v̂ + θ̂(t, x)e0 + ∇p̂(t, x) = f(t, x),

div v̂ = 0,

∂tθ̂(t, x) − ∆θ̂(t, x) + (v̂,∇θ̂) + (v̂, e0) = h(t, x),

and initial conditions v0(x), θ0(x) are sufficiently closed to v̂(0, x), θ̂(0, x)
with respect to an appropriate norm. One has to find such boundary control
(uv, uθ) defined on the lateral surface Σ of the cylinder Q, that the com-
ponents (v(t, x), θ(t, x)) of solution of boundary value problem (1.1)-(1.5)

coincide at instant t = T with the given solutions components (v̂, θ̂):

v(T, x) ≡ v̂(T, x), θ(T, x) ≡ θ̂(T, x). (1.6)

Let us introduce the functional spaces to set precisely the controllability
problem and to formulate the main result. Besides the Sobolev spaces
W k

p (Ω), 1 ≤ p < ∞ introduced in chapter I we define the functional space

V k(Ω) of solenoidal vector fields

V k(Ω) = {v(x) ∈ (W k
2 (Ω))n : div v(x) = 0}. (1.7)

We need the following spaces of functions defined in the cylinder Q:

W 1,2(k)(Q) = {θ(t, x) ∈ L2(0, T ;W k+2
2 (Ω)) : ∂tθ ∈ L2(0, T ;W k

2 (Ω))}, (1.8)

V 1,2(k)(Q) = {v(t, x) ∈ (W 1,2(k)(Q))n : div v = 0}. (1.9)

The main result of this chapter is as follows

*The precise smoothness conditions are formulated below
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Theorem 1.1. Suppose that f(t, x) ∈ (W 1,2(2)(Q))n, h(t, x) ∈W 1,2(2)(Q)

are given data and (v̂(t, x), p̂(t, x), θ̂(t, x)) ∈ V 1,2(2)(Q) × L2(0, T ;W 3
2 (Ω)) ×

W 1,2(2)(Q) are a solution of equations (1.1)-(1.3), satisfying the property

∫

Γj

(v̂(t, x), ν(x)) dσ = 0, j = 1, . . . , r, t ∈ [0, T ) (1.10)

where Γj are components of ∂Ω: ∂Ω = ∪r
j=0Γj ,Γj ∩Γk = {∅}, if j 6= k, ν(x)

is the vector field of outside normals to ∂Ω . Suppose that (v0(x), θ0(x)) ∈

V 1(Ω) ×W 1
2 (Ω) is a given initial datum satisfying conditions

∫

Γj

(v0(x), ν(x)) dσ = 0, j = 1, . . . , r (1.11)

which is closed to (v̂(0, x), θ̂(0, x)):

‖v0 − v̂(0, ·)‖2
V 1(Ω) + ‖θ0 − θ̂(0, ·)‖2

W 1
2 (Ω) < ǫ (1.12)

where 0 < ǫ ≤ ǫ0 and ǫ0 is sufficiently small magnitude depending on (v̂, θ̂).

Then there exists such boundary control (uv, uθ) ∈ (L2(Σ))n × L2(Σ) that
there exists the solution (v, p, θ) ∈ V 1,2(0)(Q)×L2(0, T ;W 1

2 (Ω))×W 1,2(0)(Q)

of problem (1.1)-(1.5) and this solution satisfies condition (1.6). Moreover,

there exist constants κ > 0, c1 > 0 that

‖v(t, ·)− v̂(t, ·)‖2
V 1(Ω) + ‖θ(t, ·)− θ̂(t, ·)‖2

W 1
2 (Ω) ≤ c1e

− κ
(T−t) as t→ T.

(1.13)

The remaining part of this chapter is devoted to prove this theorem.

Remark 1.1. The condition (v̂, p̂, θ̂) ∈ V 1,2(2)(Q) × L2(0, T ;W 3
2 (Ω)) ×

W 1,2(2)(Q) of Theorem 1.1 can be weakened. Namely, the assertion of The-

orem 1.1 remains true when instead of above assumption we suppose that

v̂(t, x) ∈ V 1,2(1/2)(Q) ∩ (L∞(Q))n, θ̂ ∈ W 1,2(1/2)(Q). (1.14)

In the case of assumption (1.14) we would have to add the Theorem 1.1 proof

in several points by some complicated applications of the Sobolev imbedding

theorem and also by one technical method mentioned below in Remark 5.1.
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2. Reduction to a linear controllability problem.

2.1. We begin with certain simply but useful remarks about the in-

vestigated problem. First of all, note that we will not construct specially

the boundary control (vu, θu) but study the solvability of problem (1.1)-

(1.4),(1.6) without boundary conditions (1.5). We will find a boundary con-

trol (vu, θu) at the very end of proof with help of restriction of constructed

solution (v, θ) at the boundary Σ. Besides, we show that it is possible to

reduce the controllability problem mentioned above to the case of simply

connected bounded domain Ω. Indeed , let Γ0 be the external component of

the boundary ∂Ω. By G we denote the bounded domain with the boundary

Γ0. Evidently

G = Ω ∪ ∪r
j=1(Ωj ∪ Γj),

where Ωj is the bounded domain with the boundary Γj . To reduce the

proof of Theorem 1.1 to the case of simply connected domain G we have

to extend continuously functions (û, p̂, θ̂) ∈ V 1,2(2)(Q) × L2(0, T ;W 3
2 (Ω)) ×

W 1,2(2)(Q) up to (ũ, p̃, θ̃) ∈ V 1,2(2)(Q̂)×L2(0, T ;W 3
2 (G))×W 1,2(2)(Q̂) where

Q̂ = (0, T )×G and initial conditions (v0, θ0) ∈ V 1(Ω)×W 1
2 (Ω) up to (ṽ, θ̃) ∈

V 1(G) ×W 1
2 (G). After this extension we substitute (ṽ, p̃, θ̃) into (1.1), (1.3)

and calculate the right side (f̃ , h̃) of these equations. Naturally, (f̃ , h̃) will

be an extension of (f, h). When we will prove Theorem 1.1 in the case of

simply connected domain G, we will restrict the solution of controllability

problem at ∂Ω = ∪r
j=0Γj . Then the constructed function (vu, θu) will be the

control which solves the controllability problem in the case of multiconnected

domain Ω.

Proposition 2.1. For an arbitrary natural number l there exists the ex-

tension operator L : Lθ(x)|Ω ≡ θ(x) such that the maps

L : W k
2 (Ω) →W k

2 (G)

are bounded for k = 0, .., l.

Although the proof of this proposition is well-known we remind briefly the

extension construction, taking into account our future goals. After applica-

tion of a partition unity and restrictifying the boundary we obtain the prob-

lem of extension of a function u(x) defined in Rn
+ = {x = (x1, . . . , xn), xn >
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0} up to a function on Rn . The extension operator L is now defined by the
formula

Lu(x′, xn) =

{

u(x′, xn), when xn ≥ 0,
∑l

j=1 λju(x
′,−xn/k), when xn < 0,

where λ1, . . . , λn are the solution of system

l
∑

k=1

(

−
1

k

)j

λk = 1 (j = 0, 1, . . . , l− 1).

This construction allows to prove estimates declared in Proposition 2.2 (see
[4], [59]) This construction and Proposition 2.1 imply

Proposition 2.2. For an arbitrary natural k there exists a bounded ex-
tension operator

L : W 1,2(k)(Q) →W 1,2(k)(Q̂), Q̂ = (0, T ) ×G,

L : L2(0, T ;W k
2 (Ω)) → L2(0, T ;W k

2 (G)).

Let us consider functional spaces of solenoidal vector fields. We define the
space

V̂ k(Ω) = {v0 ∈ V k(Ω) : v0 satisfies (1.11)}.

Remark 2.1. In the case of dimΩ = 2 we define the operator rot by
formula

rot u = ∂x1
u2 − ∂x2

u1.

We have

Proposition 2.3. i) For an arbitrary natural number k there exists the

extension operator L̂ such that the maps

L̂ : V̂ k(Ω) → V k(G)

are bounded for k = 0, 1, . . . , l.
ii) For an arbitrary natural number k there exist bounded extension oper-

ators
L̂ : V 1,2(k)(Q) → V 1,2(k)(Q̂), Q̂ = (0, T ) ×G

L̂ : L2(0, T ;V k(Ω)) → L2(0, T ;V k(G)).
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Proof. Denote Hσ = {v ∈ V 0(Ω) : (v, ν)|∂Ω = 0}, where (v, ν) under-
stands in W−1/2(Ω) (See details in R. Temam [63]). For u ∈ V k(Ω) we
consider the boundary value problem

rot v = u x ∈ Ω,

div v = 0 x ∈ Ω,

(v, ν)|∂Ω = 0.

In R. Temam [63] it was shown that there exists a solution v ∈ V k(Ω) ∩Hσ

of this problem, which satisfies the estimate

‖v‖V k+1(Ω) ≤ c1(‖u‖V k(Ω) + ‖v‖(L2(Ω))n).

Moreover if we will take v from orthogonal complement to Ker rotV 1(Ω) in
the space Hσ then (see R. Temam [63])

‖v‖(L2(Ω))n ≤ c2‖u‖(L2(Ω))n .

Hence, for such v we have the estimate

‖v‖V k+1(Ω) ≤ c3‖u‖V k(Ω).

Now, for u ∈ V k(Ω) we define the restriction operator L̂ by formula

L̂u = rotLv,

where L is a extension operator from Proposition 2.1 and v is the solenoidal
vector field constructed above by u. Evidently, estimate for v written above
and Propositions 2.1, 2.2 imply assertions i) and ii) of Proposition 2.3.

�

2.2. Now we reduce the proof of Theorem 1.1 to the case of a linear con-
trollability problem. Applying the well-known formula of vectorial analysis

(v,∇)v = −v × rot v + ∇(|v|2/2),

where × is the operation of vectorial multiplication we can rewrite equation
(1.1) in the form

∂tv(t, x) − ∆v − v × rot v + θ(t, x)e0 + ∇p′(t, x) = f(t, x) (2.1)
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if we denote ∇p′ = ∇(p+ |v|2/2). We write the solution (v, θ) which we are
looking in the form

v(t, x) = v̂(t, x) + w(t, x), θ(t, x) = θ̂(t, x) + τ(t, x). (2.2)

The substitution of (2.2) into equation (2.1), (1.2), (1.3) and subtraction

from them of the same equations for (v̂, p̂, θ̂) yields the equations

N (w, q, τ) = ∂tw(t, x)−∆w−v̂×rotw−w×rot v̂−w×rotw+∇q+τe0 = 0,
(2.3)

divw = 0, (2.4)

H(w, τ) = ∂tτ(t, x)−∆τ + (v̂,∇τ) + (w,∇θ̂) + (w,∇τ) + (w, e0) = 0, (2.5)

where ∇q = ∇p′ −∇p̂. The functions w, τ satisfy the initial conditions:

w(0, x) = w0(x), τ(0, x) = τ0(x), (2.6)

where w0(x) = v0(x) − v̂(0, x), τ0(x) = θ0(x) − θ̂(0, x). Evidently we have
reduced our problem to construction of solution (w(t, x), τ(t, x)) of problem
(2.3)-(2.6) which satisfies the equalities

w(T, x) = 0, θ(T, x) = 0. (2.7)

Remark 2.2. In the two dimensional case we will rewrite the nonlinear
term (v,∇)v as follows

(v,∇)v = (−v2 rot v, v1 rot v) + ∇(|v|2/2).

Despite of the system (2.3)-(2.7) is different the proof of Theorem 1.1 is same.
We will solve problem (2.3)-(2.7) with help of the variant of the implicit

function theorem formulated in the section 4 of chapter I.
In our case X will be a space of triplets x = (w, q, τ)

A(x) = (N (w, q, τ),H(w, τ), w|t=0, τ |t=0) (2.8)

and the space Z be defined by collection of components in (2.8). We mark
that we will guarantee of (2.7) by introduction of special weights in the norm
of X . We take as x0 and z0 the zero elements: x0 = (0, 0, 0), z0 = (0, 0, 0).
Then equation (1.4.3) for operator (2.8), (2.3), (2.5) is fulfilled. Thus, the
main condition which we have to verify applying the right inverse operator
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theorem, is the assertion on solvability of equation A′(0)x = z for any z ∈ Z.
This equation in our case has the following form:

N ′(0)(v, p, θ) = ∂tv(t, x)−∆v− v̂× rot v− v× rot v̂+ θe0 +∇p = f, (2.9)

div v = 0, (2.10)

H′(0)(v, θ) = ∂tθ(t, x) − ∆θ + (v̂,∇θ) + (v, θ̂) + (v, e0) = h, (2.11)

v|t=0 = v0, θ|t=0 = θ0, (2.12)

v|t=T = 0, θ|t=T = 0. (2.13)

2.3. We define now the functional spaces X , Z corresponding to the
problem (2.3)-(2.7). Let

η(t, x) ≡ ηs(t, x) = s(e2x̂1 − ex1)/((T − t)l(t)) (2.14)

be the weight function where s > 0 is a parameter which will be chosen
below, x̂1 = maxx=(x1...xn)∈Ω |x1| and l(t) is a fixed function which satisfies
the following conditions

l(t) ∈ C1[0, T ], l(t) = t ∀ t ∈
(3T

4
, T
]

, l(t) > 0 ∀ t ∈ [0, T ].

Denote

L2(Q, η) ≡ L2(Q, η
s) = {y(t, x) : ‖y‖2

L2(Q,η) =

∫

Q

e2ηs

|y|2 dx dt <∞}.

(2.15)
Below we will use also the space L2(Q, β) with weights of different form. We
define the space Θ(Q, η) of components θ(t, x) in (2.9) - (2.13):

Θ(Q, η) ≡ Θ(Q, ηs) = {θ(t, x), (t, x) ∈ Q : ‖θ‖2
Θ(Q,ηs) ≡ ‖∂tθ−∆θ‖2

L2(Q,ηs)

+ ‖(T − t)−3/2θ‖2
L2(Q,ηs) + ‖(T − t)−1/2|∇θ|‖2

L2(Q,ηs)

+ ‖(T − t)1/2∂tθ‖
2
L2(Q,ηs) +

n
∑

i,j=1

‖(T − t)1/2∂2
xixj

θ‖2
L2(Q,ηs) <∞}. (2.16)

The space of right components f in (2.9)-(2.13) is as follows

F (Q, η) ≡ F (Q, ηs) = {f ∈ (L2(Q))n : ∃ f1 ∈ (L2(Q, η))
n,

∃ f2 ∈ L2(0, T ;W 1
2 (Ω)) such that f = f1 + ∇f2}. (2.17)
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The norm of the space F (Q, η) is defined by the relation

‖f‖F (Q,ηs) = inf
f1,∇f2

f=f1+∇f2

(‖f1‖
2
(L2(Q,ηs))n + ‖∇f2‖

2
(L2(Q))n)1/2. (2.18)

Remark 2.3. Note that F (Q, ηs) is a Hilbert space. Really, since the func-
tional J(f1, f2) = (‖f1‖2

(L2(Q,ηs))n + ‖∇f2‖2
(L2(Q))n)1/2 is the strictly convex

for any f ∈ F (Q, ηs) there exists only one pair (f̂1, ∇̂f2) ∈ (L2(Q, η
s))n ×

(L2(Q))n such that ‖f‖F (Q,ηs) = J(f̂1, f̂2).

We define operatorB by formulaBf = (f̂1,∇f̂2). ObviouslyB ∈ C(F (Q, ηs),
(L2(Q, η

s))n× (L2(Q))n). One can easily check that B is the linear operator.
Thus we can introduce scalar product in F (Q, ηs) by formula

(f, f̃)F (Q,ηs) = (Bf,Bf̃)(L2(Q,ηs))n×(L2(Q))n).

The space V (Q, η) of components v in (2.9)-(2.13) we define with the help
of inequality

V (Q, η) ≡ V (Q, ηs) = {v(t, x) : div v = 0, ‖v‖2
V (Q,ηs) ≡

‖∂tv − ∆v‖2
F (Q,ηs) + ‖(T − t)−1v‖2

(L2(Q,ηs))n + ‖∇v‖2
(L2(Q,ηs))n+

‖(T − t)∂tv‖
2
(L2(Q,ηs))n +

n
∑

i,j=1

‖(T − t)∂2
xixj

v‖2
(L2(Q,ηs))n <∞}. (2.19)

Now we can define the spaces X and Z in the case of problems (2.3)-(2.7) or
(2.9)-(2.13):

X = Xs(Q) = V (Q, ηs) × L2(0, T ;W 2
1 (Ω)) × Θ(Q, η), (2.20)

Z = Zs(Q) = F (Q, ηs) × L2(Q, η
s) × V 1(Ω) ×W 1

2 (Ω). (2.21)

Since the weight ηs(t, x) increases exponentially as t → T , the functions
v ∈ V (Q, ηs), θ ∈ Θ(Q, ηs) decrease exponentially as t → T and therefore
equalities (2.13) are true.

2.4. Let us show that for an arbitrary parameter s > 0 the operator
(I.4.2) and its derivative

A′(0) : Xs(Q) → Zs(Q), (2.22)

are continuous, where A(x) is defined in (2.8), (2.3), (2.5).
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Lemma 2.1. Suppose that v̂ ∈ V 1,2(2)(Q), θ̂ ∈W 1,2(2)(Q)

A′(0)(v, p, θ) = (N ′(0)(v, p, θ),H′(0)(v, θ), v|t=0, θ|t=0) (2.23)

where N ′(0), H′(0) are defined by (2.9), (2.11). Then for s > 0 the operator

(2.22) is continuous.

Proof. Evidently the embeddings V (Q, η) ⊂ V 1,2(0)(Q), Θ(Q, η) ⊂
W 1,2(0)(Q) are continuous. Since the restriction operator γ0y = y|t=0 acts
continuously from W 1,2(0)(Q) to W 1

2 (Ω) and from V 1,2(0)(Q) to V 1(Ω) (see

[52]), the inequalities

‖γ0v‖V 1(Ω) ≤ c4‖v‖V (Q,η), ‖γ0θ‖W 1
2 (Ω) ≤ c5‖θ‖Θ(Q,η) (2.24)

holds. Let us prove the continuity of the operator

H′(0) : V (Q, η)× Θ(Q, η) → L2(Q, η) (2.25)

defined in (2.11). Since the embeddings

V 1,2(2)(Q) ⊂ (C(0, T ;C1(Ω̄))n, W 1,2(2)(Q) ⊂ C(0, T ;C1(Ω̄)) (2.26)

are continuous, for n ≤ 3 we obtain taking into account (2.11), (2.15), (2.16)

‖H′(0)(v, θ)‖L2(Q,η) ≤ ‖∂tθ − ∆θ‖L2(Q,η) + ‖v̂‖(C(Q̄))n‖∇θ‖(L2(Q,η))n

+‖∇θ̂‖(C(Q̄))n‖v‖(L2(Q,η))n ≤ (1+‖v̂‖V 1,2(2)(Q))‖θ‖Θ(Q,η)+‖∇θ̂‖(C(Q̄))n‖v‖V (Q,η).
(2.27)

The relations (2.9),(2.15)-(2.19) yields

‖N ′(0)(v, p, θ)‖F (Q,η) ≤ ‖∂tv−∆v− v̂× rot v− v× rot v̂+ θe0‖(L2(Q,η))n

+ ‖∇p‖(L2(Q))n ≤ ‖∂tv + ∆v‖(L2(Q,η))n + ‖v̂‖C(0,T ;(C1(Ω̄))n)(‖v‖(L2(Q,η))n

+ ‖|∇v|‖(L2(Q,η))n) + c6‖θ‖L2(Q,η) + ‖∇p‖(L2(Q))n

≤ (1 + ‖v̂‖V 1,2(2)(Q))‖v‖V (Q,η) + c7‖θ‖Θ(Q,η) + ‖p‖L2(0,T ;W 1
2 (Ω)). (2.28)

The inequalities (2.24), (2.27), (2.28) imply the desired assertion. �
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Lemma 2.2. Suppose that v̂ ∈ V 1,2(2)(Q), θ̂ ∈ W 1,2(2)(Q), and A is
operator (2.8). Then for arbitrary s > 0 the operator

A : Xs(Q) → Zs(Q)

is continuous.

Proof. To prove this Lemma we need only to complete the proof of
Lemma 2.1 by the estimate of the terms w×rotw and (w,∇τ). The Cauchy-
Bouniakovskii inequality and the Sobolev embedding theorem yield

‖eη(w,∇τ)‖L2(Q) ≤

∫ T

0

‖e
η
2w(t, ·)‖(L4(Ω))n‖e

η
2 |∇τ |‖L4(Ω) dt

≤ c8

∫ T

0

‖e
η
2w(t, ·)‖V 1(Ω)‖e

η
2 τ‖W 2

2 (Ω) dt

≤ c9‖e
η
2w‖C(0,T ;V 1(Ω))‖e

η
2 τ‖L2(0,T ;W 2

2 (Ω))

≤ c10‖e
η
2w‖V 1,2(0)(Q)‖e

η
2 τ‖L2(0,T ;W 2

2 (Ω)). (2.29)

By definition of the norms of spaces V 1,2(0)(Q), L2(0, T ;W 2
2 (Ω)) in the right

side of (2.28), taking into account (2.14) and evident inequality

(T − t)−k ≤ c(k)eη/2

we get the estimate

‖e
η
2w‖V 1,2(0)(Q)‖e

η
2 τ‖L2(0,T ;W 2

2 (Ω)) ≤ c11(‖e
η
2 (T − 2)−2w‖(L2(Q))n

+‖e
η
2 (T−t)−1|∇w|‖(L2(Q))n +

n
∑

i,j=1

‖e
η
2 ∂2

xixj
w‖(L2(Q))n(‖e

η
2 (T−t)−2τ‖L2(Q)

+‖e
η
2 (T −t)−1|∇τ |‖L2(Q) +

n
∑

i,j=1

‖e
η
2 ∂2

xixj
τ‖L2(Q)) ≤ c12‖w‖V (Q,η)‖v‖Θ(Q,η).

(2.30)

One can estimate the term (w,∇)w analogously. �

Thus, to have the possibility to apply the theorem on right inverse operator
we must prove that the operator A′(0) : Xs(Q) → Zs(Q) is epimorphism.
To prove this assertion we will show that the image of this operator is dense
in Zs(Q) and besides, it is a closed subset of Zs(Q) for s sufficiently large.
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These assertions imply that the image of A′(0) coincides with the whole space
Zs(Q).

3. The solvability of the linear controllability

problem for dense set of data.

3.1. To prove the controllabilty problem for a dense set of data we need
the Carleman estimate for elliptic and inverse parabolic equations.

We consider the Cauchy problem for the Laplace operator

∆z(x) = f(x), x ∈ Ω, z|∂Ω =
∂z

∂ν

∣

∣

∣

∣

∂Ω

= 0, (3.1)

where Ω ⊂ Rn is a bounded domain with C∞ boundary, ∂/∂ν is the deriva-
tive along outside normal ν to ∂Ω.

Lemma 3.1. Let f(x) ∈ L2(Ω). There exists such s0 > 0 that for any
s > s0 the solution z(x) ∈W 2

2 (Ω) of (3.1) satisfies the Carleman estimate:

∫

Ω





1

s

n
∑

i,j=1

∣

∣

∣

∣

∂2z(x)

∂xi∂xj

∣

∣

∣

∣

2

+ s|∇z|2 + s3z2



 exp(sex1) dx

≤ c1

∫

Ω

f2(x)exp(sex1) dx, (3.2)

where x1 is the first component of x = (x1, ..., xn) ∈ Ω and c1 > 0 does not
depend on s.

For the proof of Lemma 3.1 refer to L. Hörmander [27], [28].
We introduce function

γ(t)

by formula
γ(t) = (T − t)t. (3.3)

We define ϕ(t, x), α(t, x) by relations:

ϕ(t, x) =
ex1

γ(t)
, α(t, x) = (ex1 − e2x̂1)/γ(t), (3.4)

where x̂1 = max
x=(x1,...,xn)∈Ω

|x1|.
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Corollary 3.1. Let f(x) ∈ L2(Ω) and s is just the same as in Lemma
3.1. Then for any t ∈ (0, T ) the following estimate is true

∫

Ω





γ(t)

s

n
∑

i,j=1

∣

∣

∣

∣

∂2z(x)

∂xi∂xj

∣

∣

∣

∣

2

+
s

γ(t)
|∇z|2 +

s3

γ(t)3
|z|2



 esϕ(t,x) dx

≤ c2

∫

Ω

f2(x)esϕ(t,x) dx. (3.5)

Proof. We substitute s = (s1γ(t))−1 into (3.2) and obtain (3.5) where
instead of s1 we write s. In virtue of Lemma 3.1 the estimate (3.5) is true
when s > s0γ(t). Since 0 < γ(t) ≤ 1 for t ∈ (0, T ) this inequality is also true
when s > s0. �

3.2. Firstly instead of problem (2.9)-(2.13) we consider an auxiliary
problem. Let Ω0 ⊂ Rn be a bounded domain with C∞ -boundary ∂Ω0

which contains the closure Ω̄ of Ω : Ω̄ ⊂ Ω0 and satisfies the condition
supx∈Ω0

|x1| < 2 supx∈Ω |x1|. Therefore function the η from (2.14) is posi-
tive and the function α from (3.4) is negative. We denote

Q0 = (0, T ) × Ω0, Σ0 = (0, T ) × ∂Ω0, ω = Ω0 \ Ω̄.

In Q0 we consider the linearized Boussinesq equation with the distributed
control concentrated in (0, T ) × ω:

N̂ ′(w, p, τ, u) = ∂tw(t, x)− ∆w − v̂ × rotw + w × rotv̂

+ ∇p+ τ(t, x)e0 + u′(t, x) = f(t, x), (3.6)

divw = 0, (3.7)

Ĥ′(w, τ, u) = ∂tτ(t, x)−∆τ+(w,∇θ̂)+(v̂,∇τ)+(w, e0)+un+1(t, x) = h(t, x),
(3.8)

w(0, x) = w0(x), τ(0, x) = τ0(x), (3.9)

w(T, x) = 0, τ(T, x) = 0, (3.10)

where u(t, x) = (u′(t, x), un+1(t, x)) = (u1, .., un, un+1) is the distributed
control concentrated in Qω = (0, T )×ω: supp u ⊂ Qω. The functional space
for data (f, h, w0, τ0) of problem (3.6)-(3.10) are as follows:

(f, h, w0, τ0) ∈ Φs(Q0) = (L2(Q0, η
s))n × L2(Q0, η

s) × V 1(Ω0) ×W 1
2 (Ω0),

(3.11)
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where s > 0 is arbitrary fixed number. We define the functional space of
problem (3.6)-(3.10) by formula

(w,∇p, τ, u) ∈ Us(Q0) ≡ V (Q0, η
s) × L2(Q0, η

s) × Θ(Q0, η
s)

× (L̂2(Qω, η
s))n+1, (3.12)

where L̂2(Qω, η
s) is the set of functions which belong to L2(Q0, η

s) and equal
zero on the set Q0 \Qω; the constant s, in (3.12) is just the same as in (3.11).

We suppose that the functions v̂, θ̂ in (3.6), (3.8) satisfy the condition

v̂ ∈ V 1,2(1/2)(Q0), θ̂ ∈W 1,2(1/2)(Q0). (3.13)

As in Lemma 2.1 one can prove easily that the operator

Â′ : Us(Q0) → Φs(Q0) (3.14)

is continuous, where Φs(Q), Us(Q) are defined in (3.11), (3.12) and

Â′(w,∇p, τ, u) = (N̂ ′(w,∇p, τ, u), Ĥ′(w, τ, u), γ0w, γ0τ) (3.15)

with N̂ ′, Ĥ′ defined in (3.6), (3.8).

Lemma 3.2. The image of the operator (3.14), (3.15) is dense in the space
Φs(Q0).

Proof. Suppose that the assertion of Lemma 3.2 is not true. Then there
exists not zero collection φ ≡ (m(t, x), ζ(t, x), z0(x), ψ0(x)) ∈ Φs(Q0), that

(A′(w,∇p, τ, u), φ)Φs(Q0) = 0, ∀ (w,∇p, τ, u) ∈ Us(Q0). (3.16)

One can rewrite equality (3.16) in the form

∫

Q0

(∂tw(t, x) − ∆w − v̂ × rotw − w × rot v̂ + ∇p(t, x) + τ(t, x)e0

+ u′(t, x), m(t, x))e2ηs(t,x) dx dt+

∫

Q0

(∂tτ(t, x)− ∆τ + (w,∇θ̂) + (v̂,∇τ)

+(w, e0)+un+1)ζ(t, x)e
2ηs

dx dt+(w(0, ·), z0)V 1(Ω0)+(θ(0, ·), ψ0)W 1
2 (Ω0) = 0.

(3.17)
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We set in (3.17)

z(t, x) = m(t, x)e2ηs(t,x), ψ(t, x) = ζ(t, x)e2ηs(t,x), (3.18)

∇p(t, x) ≡ 0, u(t, x) ≡ 0, w ∈ V (Q0, η)∩(C∞
0 (Q0))

n, τ ∈ Θ(Q0, η)∩C∞
0 (Q0).

Then the integrating by parts in (3.17) yields the equations

∂tz + ∆z = rot (v̂ × z) + z × rot v̂ + ψ(∇θ̂ + e0) + ∇p in Q0, (3.19)

∂tψ + ∆ψ = −∇(ψv̂) + (e0, z) inQ0. (3.20)

If one set in (3.17) u ∈ (L̂2(Qω, η))
n+1, ∇p = 0, w = 0, τ = 0, he will obtain

the equalities

z(t, x) ≡ 0, ψ(t, x) = 0, (t, x) ∈ Qω = Q0 \Q. (3.21)

In particularly (3.21) means that z and ψ equal zero in a neighborhood of
Σ0 = (0, T ) × ∂Ω0. After setting in (3.17) ∇p ∈ (L2(Q0, η))

n, w = 0, τ = 0,
u = 0 and taking into account (3.21) we get

div z = 0 inQ0. (3.22)

Equalities (3.19), (3.21) yields that

∇p̃(t, x) ≡ 0 (t, x) ∈ Qω. (3.23)

Applying to both parts of (3.19) the operator div and taking into account
(3.22) and the formula div rot y = 0 we obtain

−∆p̃ = div(z × rot v̂) + div((∇θ̂ + e0)ψ). (3.24)

Our main goal now is to deduce from relations (3.19)-(3.24) that z ≡ 0,
ψ ≡ 0. We will make it with help of Carleman estimates (3.5), (I.1.9). We
can suppose that s0 in Lemma 3.1 and in Lemma I.1.3 are equal. Otherwise,
we can interchange them in both Lemmas on their maximum.

Let
σ ≥ max(s, s0), (3.25)

where s is the constant from Zs(Q0) in Lemma 3.2 formulation. We take
magnitude σ instead of s in (I.1.9) and apply estimate (I.1.9) to the equations



78 A. V. FURSIKOV AND O. YU. IMANUVILOV

(3.19), (3.20). Note that boundary conditions (I.1.8) are fulfilled in our case
in virtue of (3.21). We have

∫

Q0

(σϕ|∇z|2 + (σϕ)3|z|2)eσα(t,x) dx dt

+

∫

Q0

(σϕ|∇ψ|2 + (σϕ)3|ψ|2)eσα dx dt

≤ c1

∫

Q0

eσα(|v̂|2|∇z|2 + |∇v̂|2|z|2 + |ψ|2(1 + |∇θ̂|2) + |∇p̃|2

+ |ψ|2|∇v̂|2 + |∇ψ|2|v̂|2 + |z|2) dx dt. (3.26)

In the right side (3.26) we need to estimate ∇p̃. We do it by means of
(3.24),(3.23). Note that p̃ is defined to within an arbitrary constant. We fix
it by the condition

p̃(t, x) ≡ 0, (t, x) ∈ Qω. (3.27)

Taking into account (3.23), (3.27) we apply to (3.24) estimate (3.5). Af-
ter multiplication of inequality (3.5) on (γ(t)/σ)exp(−e2x̂1/γ(t)) scalarly in
L2(Ω) and integration respect to t we get

∫

Q0

|∇p̃|2eσα dx dt ≤ c5

∫

Q0

γ(t)

σ
(|∇z|2|∇v̂|2 + |z|2|∇rotv̂|2

+ |∇ψ|2(1 + |θ̂|2) + |ψ|2|∆θ̂|2)eσα dx dt

≤ c6(‖v̂‖
2
C(0,T ;(C1(Ω̄))n)+‖θ̂‖2

C(0,T ;C1(Ω̄))+1)

∫

Q0

γ(t)

σ
(|∇z|2+|∇ψ|2)eσα dx dt+

c7

(

‖rot v̂‖2
L∞(0,T ;(W 1

4 (Ω0))n)

∫ T

0

(

∫

Ω

(

e2σα

(

γ(t)

σ

)2

|z|4

)

dx

)
1
2

dt

+ ‖∆θ̂‖2
L∞(0,T ;L4(Ω0))

∫ T

0

(

∫

Ω

(

γ(t)

σ

)2

ψ4e2σα dx

)
1
2

dt

)

. (3.28)

We estimate the right side of (3.28) using the continuity of embedding
W 1,2(2)(Q0) ⊂ C(0, T ;C1(Ω̄0)), W 1,2(2)(Q0) ⊂ L∞(0, T ;W 2

4 (Ω0)),
W 1

2 (Ω0) ⊂ L4(Ω0) when dimΩ0 ≤ 3 and taking into account that in virtue
of (3.4)

|∂xj
(e

σα
2 z)|2 ≤ c8(σ

2ϕ2|z|2 + |∇z|2)eσα.
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As a result we obtain the inequality
∫

Q0

|∇p̃|2eσα dx dt ≤ c9(‖v̂‖
2
V 1,2(2)(Q0)

+‖θ̂‖2
W 1,2(2)(Q0)

+1)

∫

Q0

(

γ(t)

σ
(|∇z|2 + |∇ψ|2) +

σe2x1

γ(t)
(|z|2 + |ψ|2)

)

eσα dx dt.
(3.29)

The substitution of (3.29) into (3.26) and simple transformations give us the
upper bound:
∫

Q0

(

σex1

γ(t)
(|∇z|2 + |∇ψ|2) +

σ3e3x1

γ(t)3
(|z|2 + |ψ|2)

)

eσα dx dt

≤ c10(‖v̂‖
2
V 1,2(2)(Q0)

+ ‖θ̂‖2
W 1,2(2)(Q0)

+ 1)

∫

Q0

((

γ(t)

σ
+ 1

)

(|∇z|2 + |∇ψ|2 )

+

(

σ e2x1

γ(t)
+ 1

)

(|z|2 + |ψ|2)
)

eσα dx dt. (3.30)

Note that (3.30) is true for arbitrary σ satisfying (3.25). We choose σ so
large that estimates

σex1

γ(t)
> c10(‖v̂‖

2
V 1,2(2)(Q0)

+ ‖θ̂‖2
W 1,2(2)(Q0)

+ 1)

(

γ(t)

σ
+ 1

)

,

σ3e3x1

γ(t)3
> c10(‖v̂‖

2
V 1,2(2)(Q0)

+ ‖θ̂‖2
W 1,2(2)(Q0)

+ 1)

(

σe2x1

γ(t)
+ 1

)

,

hold for all (t, x) ∈ Q0. Then (3.30) yields that

z(t, x) ≡ 0, ψ(t, x) ≡ 0. (3.31)

In virtue of (3.18)-(3.21), (3.31) integrating by parts in (3.17) when ∇p ≡ 0,
u ≡ 0, w ∈ V (Q0, η), τ ≡ 0 and ∇p ≡ 0, u ≡ 0, w ≡ 0, τ ∈ Θ(Q0, η) gives us
the equalities

(w(0, ·), z0)V 1(Ω0) = (w(0, ·), z(0, ·))L2(Ω0) = 0,

(w(0, ·), ψ0)W 1
2 (Ω0) = (τ(0, ·), ψ(0, ·))L2(Ω) = 0.

Therefore
z0 = 0, ψ0 = 0. (3.32)

Hence, by (3.18), (3.31), (3.32) φ ≡ (m(t, x), ζ(t, x), z0(x), ψ0(x)) ≡ 0. �

3.3. Now we can prove the main result of this section.
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Theorem 3.1. Suppose that v̂ ∈ V 1,2(2)(Q), θ̂ ∈W 1,2(2)(Q), the operator
A′(0) is defined in (2.23), (2.9), (2.11) and the spaces Xs(Q), Zs(Q) are de-
fined in (2.14)-(2.21) and the parameter s of these spaces is arbitrary positive
number. Then the image of operator

A′(0) : Xs(Q) → Zs(Q)

is the dense in the space Zs(Q).

Proof. Let Ω0, Q0 be the sets introduced in the beginning of section 3.2.

By Propositions 2.2, 2.3 we extend the functions v̂(t, x), θ̂(t, x) continuously
from
V 1,2(2)(Q) up to V 1,2(2)(Q0) and from W 1,2(2)(Q) up to W 1,2(2)(Q0) cor-

respondingly and denote these new functions also by v̂(t, x), θ̂(t, x). Com-
paring (3.6)-(3.9) and (2.9)-(2.12) we see that the restriction of operator
(3.14), (3.15) on the cylinder Q, coincides with the operator

A′(0) : Us(Q) → Φs(Q) (3.33)

where A′(0) is the operator (2.23) and in contrast to (3.12)

Us(Q) = V (Q, ηs) × L2(Q, η
s) × Θ(Q, ηs) (3.34)

because the restrictions of arbitrary function from L̂2(Qω, η
s) toQ is identical

zero. Therefore in virtue of Lemma 3.2 the image of operator (3.33), (2.23)
is dense in Φs(Q). Let (f, h, v0, θ0) ∈ Zs(Q) (see (2.21)) be an arbitrary
element. Since f ∈ F s(Q) (see (2.17)) then f = f1 + ∇f2 where f1 ∈
L2(Q, η

s), f2 ∈ L2(0, T ;W 1
2 (Ω)) and therefore (f1, h, v0, θ0) ∈ Φs(Q). By

the density of the image of operator (3.36), for every ǫ > 0 there exists
(f ǫ

1 , h
ǫ, vǫ, θǫ) ∈ Φs(Q) possessing preimage (vǫ, pǫ, θǫ) ∈ Us(Q) :

A′(0)(vǫ, pǫ, θǫ) = (f ǫ
1 , h

ǫ, vǫ
0, θ

ǫ
0) (3.35)

and satisfying the inequality:

‖(f1 − f ǫ
1 , h− hǫ, v0 − vǫ

0, θ0 − θǫ
0)‖Φs(Q) ≤ ǫ. (3.36)

In virtue of (2.9) and (3.35)

A′(0)(vǫ, pǫ + f2, θ
ǫ) = (f ǫ

1 + ∇f2, h
ǫ, vǫ

0, θ
ǫ
0). (3.37)



EXACT BOUNDARY CONTROLLABILITY 81

Since f − (f ǫ
1 +∇f2) = f1 − f ǫ

1 then by (2.21), (2.18), (3.11), (3.33) we have:

‖(f − (f ǫ
1 + ∇f2), h− hǫ, v0 − vǫ

0, θ0 − θǫ)‖Zs(Q)

≤ ‖(f − f ǫ
1 , h− hǫ, v0 − vǫ

0, θ0 − θǫ
0)‖Φs(Q) < ǫ. (3.38)

By (3.12), (2.20) the inclusion (vǫ, pǫ, θǫ) ∈ Us(Q) involve the inclusion

(vǫ, pǫ + f2, θ
ǫ) ∈ Xs(Q). Hence, by (3.37) (vǫ, pǫ + f2, θ

ǫ) is preimage of

(f ǫ
1 + ∇f2, h

ǫ, vǫ
0, θ

ǫ
0). This proves theorem. �

Note that for the case of the Stokes system the results similar to Theorem

3.1 were proved in [23], [24].

4.On a decomposition of Weyl type.

In this section we investigate the decomposition of the Weyl type

y(t, x) = v(t, x) + ∇q (t, x) ∈ Q0, (4.1)

where div v = 0 and ∇q = (∂x1
q, . . . , ∂xn

q) is the gradient of a function. We

do not impose any boundary conditions on v or ∇q but look for v belonging

to the space V (Q0, η) when y ∈ (Θ(Q, η))n. We do not look for natural

uniqueness conditions for the decomposition (4.1) but need that the following

assumption would be fulfilled:

if div y(0, x) ≡ 0 then y(0, x) ≡ v(0, x). (4.2)

To find decomposition (4.1) we consider the extermal problem:

J(u) =

∫

Q0

|u(t, x)|2e2η

(T − t)4
dx dt→ inf, (4.3)

∆u(t, x) = div y(t, x), (t, x) ∈ Q0, (4.4)

where y(t, x) ∈ (Θ(Q0, η))
n is a given function. If a solution m(t, x) of

problem (4.3), (4.4) would exist then we denote v = y − ∇m and by (4.4)

the equality div v = 0 and therefore decomposition (4.1) would be true.
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Lemma 4.1. There exists such s0 that if y(t, x) ∈ (Θ(Q, ηs))n where s ≥
s0, the problem (4.3), (4.4) has the unique solution m(t, x) ∈ L2(Q0, η −
2 ln(T − t)). This solution satisfies the estimates:

∫

Q0

|m(t, x)|2

(T − t)4
e2ηs

dx dt ≤ c1

∫

Q0

|div y|2

(T − t)
e2ηs

dx dt, (4.5)

∫

Q0

|∂tm(t, x)|2e2ηs

dx dt ≤ c2‖y‖
2
Θ(Q0,ηs). (4.6)

Proof. Let s0 defined in Lemma 3.1. We denote Qǫ = (0, T − ǫ)×Ω0 and
instead of (4.3), (4.4) consider the extremal problem

Jǫ(u) =

∫

Qǫ

|u(t, x)|2

(T − t)4
e2η dx dt→ inf, (4.7)

∆u(t, x) = div y(t, x), (t, x) ∈ Qǫ. (4.8)

The weight e2η(T −t)−4 is bounded above and below on Qǫ. Hence the space
Uǫ = {u ∈ L2(Qǫ) : ∆u ∈ L2(Qǫ)} is natural for the problem (4.7), (4.8) and
the set of its admissible elements is as follows:

Aǫ = {u ∈ Uǫ : ∆u = div y}.

As well-known, the limit mǫ ∈ Aǫ of weakly converging subsequence of min-
imizing sequence uk: Jǫ(uk) → infv∈Aǫ

Jǫ(v) is the solution of problem
(4.7), (4.8). The uniqueness of mǫ follows from the functional Jǫ strict-
convexity. For ǫ1 > ǫ2 , mǫ1(t, x) coincides almost everywhere with restric-
tion of mǫ2(t, x) on Qǫ2 . Indeed, if it is not so then Jǫ1(mǫ1) < Jǫ1(mǫ2).
But in this occasion mǫ2 is not solution because the function

m̂(t, x) =

{

mǫ1(t, x), (t, x) ∈ Qǫ1 ,

mǫ2(t, x), (t, x) ∈ Qǫ2 .

satisfies (4.8) and inequality Jǫ2(m̂) < Jǫ2(mǫ2). That is why below we use
the notation: mǫ = m. Since operator ∆ : Uǫ → L2(Qǫ) is epimorphism
we can apply to problem (4.7), (4.8) the Lagrange principle (see [1]). This
principle asserts that there exists pǫ ∈ (L2(Qǫ))

n such that the Lagrange
function

L(u, pǫ) ≡

∫

Qǫ

(

1

2

|u(t, x)|2

(T − t)4
e2η + (∆u− div y)pǫ(t, x)

)

dx dt
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satisfies the equality ∂uL(u, pǫ)|u=m = 0, i.e. for any h ∈ Uǫ

∫

Qǫ

(

m(t, x)h(t, x)

(T − t)4
e2η + ∆hpǫ(t, x)

)

dx dt = 0. (4.9)

It follows from (4.9) that

∆pǫ(t, x) +
m(t, x)

(T − t)4
e2η = 0, in Q0, pǫ|∂Ω0

=
∂pǫ

∂ν

∣

∣

∣

∣

∂Ω0

= 0. (4.10)

Relations (4.10) imply that pǫ does not depend on ǫ and therefore, below,

we use the notation: pǫ = p. We apply to (4.10) Carleman estimate (3.2),

substitute in this estimate s = s1(T − t)−1, multiply it on (T − t)4 and

integrate with respect to t. As a result we have an estimate:

∫

Qǫ

(T − t)p2e−2η dx dt ≤ c3

∫

Qǫ

m2

(T − t)4
e2η dx dt, (4.11)

where c3 > 0 does not depend on ǫ . After scaling equation (4.4) for m by p

in L2(Qǫ),, integrating by parts and applying (4.10) we get

0 =

∫

Qǫ

(∆m− div y)p dx dt =

∫

Qǫ

(m∆p− pdiv y) dx dt =

−

∫

Qǫ

(

m2

(T − t)4
e2η + pdiv y

)

dx dt.

This equality and (4.11) yields

∫

Qǫ

m2

(T − t)4
e2η dx dt ≤ c4

(
∫

Qǫ

|div y|2

(T − t)
e2ηdxdt

)
1
2
(
∫

Q

(T − t)|p|2e−2η dx dt

)
1
2

≤ c5

∫

Qǫ

|div y|2

(T − t)
e2η dx dt+

1

2

∫

Qǫ

m2

(T − t)4
e2η dx dt.

that gives us upper bound

∫

Qǫ

m2

(T − t)4
e2η dx dt ≤ c6

∫

Qǫ

|div y|2

(T − t)
e2η dx dt, (4.12)



84 A. V. FURSIKOV AND O. YU. IMANUVILOV

where c6 does not depend on ǫ. Hence we can pass to limit in (4.12) as ǫ→ 0
and obtain (4.5). Let m̂ be the solution of problem (4.3), (4.4). Since m is
the solution of (4.7), (4.8) we have

∫

Qǫ

m2

(T − t)4
e2η dx dt ≤

∫

Qǫ

m̂2

(T − t)4
e2η dx dt ∀ǫ > 0

and therefore
∫

Q0

m2

(T − t)4
e2η dx dt =

∫

Q0

m̂2

(T − t)4
e2η dx dt.

This equation implies the equality m = m̂ because of the uniqueness of
solution of problem (4.3), (4.4). After differentiation of the equations in
(4.3), (4.10) with respect to t we get

∆∂tm = div∂ty, (4.13)

∆∂tp+ (∂tm)
e2η

(T − t)4
+m∂t

(

e2η

(T − t)4

)

= 0. (4.14)

Applying to (4.14) the Carleman estimate (3.2) by the same way as in (4.11)
we obtain
∫

Q0

|∇∂tp|
2(T − t)7e−2η dx dt ≤ c7

∫

Q0

(|∂tm|2 + (T − t)−4|m|2)e2η dx dt.

(4.15)
Scaling equation (4.13) by ∂tp in L2(Q0), integration by parts, and applica-
tion (4.14) yield

0 =

∫

Q0

(T − t)4(∆∂tm− div∂ty)∂tp dx dt =

∫

Q0

(T − t)4(∂tm∆∂tp

− (∂ty,∇∂tp)) dx dt =

∫

Q0

(−|∂tm|2e2η − ((∂tm)m∂t
e2η

(T − t)4
)(T − t)4

− (T − t)4(∂ty,∇∂tp)) dx dt.

From this equality we get taking into account (4.15):
∫

Q0

|∂tm|2e2η dx dt ≤ c8

∫

Q0

(|∂tm||m|
e2η

(T − t)2

+ eη(T − t)1/2|∂ty|e
−η(T − t)

7
2 |∇∂tp|) dx dt ≤

1

4

∫

Q0

|∂tm|2e2η dx dt

+ c9

∫

Q0

(

|m|2

(T − t)4
e2η + (T − t)|∂ty|

2e2η

)

dx dt.
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This inequality and (4.5) imply (4.6). �

Let

ρ(x) ∈ C∞(Ω̄0), ρ|∂Ω0
= 0, ρ(x) > 0, ∀ x ∈ Ω0.

Below, we use the following space

M(Q0, η) = {f = (f1, . . . , fn) : ‖f‖2
M(Q0,η) = ‖(T − t)−1f‖2

(L2(Q0,ηs))n+

‖|∇f |‖2
(L2(Q0,ηs))n + ‖(T − t)∂tf‖

2
(L2(Q0,ηs))n

+

n
∑

i,j=1

‖(T − t)∂2
xixj

f‖2
(L2(Q0,ηs))n <∞}. (4.16)

Lemma 4.2. Let m(t, x) be the solution of problem (4.3), (4.4) constructed
in Lemma 4.1. Then

‖ρ3∇m‖2
M(Q0,η) ≤ c10‖y‖

2
(Θ(Q0,η))n . (4.17)

Proof. Set m̃ = mρ. Then by (4.4) for m

∆m̃ = m∆ρ+ 2(∇ρ,∇m) + ρdiv y. (4.18)

We multiply this equation by −e2ηm̃(T − t)−2 scalarly in L2(Q0), integrate
by parts and have as a result

∫

Q0

|∇m̃|2e2η(T − t)−2 dx dt =

∫

Q0

(T − t)−2(
1

2
|m̃|2∆e2η −m2ρ∆ρe2η+

1

2
m2(∆ρ2e2η + (∇ρ2,∇e2η)) − ρ2me2ηdiv y) dx dt

≤ c11

∫

Q0

(

m2

(T − t)4
+ |div y|2

)

e2η dx dt.

This inequality, (4.5) and the definition (2.16) of space Θ(Q0, η) yield:

∫

Q0

|ρ∇ρm|2

(T − t)2
e2η dx dt ≤ c12

∫

Q0

|∇(ρm)|2

(T − t)2
e2η dx dt

+

∫

Q0

m2|∇ρ|2

(T − t)2
e2η dx dt ≤ c13‖y‖

2
(Θ(Q0,η))n . (4.19)
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Denote m0 = mρ2eη. Then we have analogously to (4.18)

∆m0 = g, m0|∂Ω0
= 0, (4.20)

where g = m∆(ρ2eη) + 2(∇(ρ2eη),∇m) + ρ2eηdiv y.
By (4.5), (4.19) we get

‖g‖L2(Q) ≤ c14‖y‖(Θ(Q0,η))n . (4.21)

Applying to elliptic boundary value problem (4.20) well-known estimate of
its solution and taking into account (4.21) we obtain

‖m0‖
2
L2(0,T ;W 2

2 (Ω0))
= ‖mρ2eη‖2

L2(0,T ;W 2
2 (Ω0))

≤ c15‖g‖
2
L2(Q0)

≤ c16‖y‖
2
Θ(Q0,η)n . (4.22)

Since

|∂2
xixj

(ρ2meη)|2 ≥
1

2
|∂xi

(ρ2∂xj
m)eη|2

− c17(|ρ
2(∂xj

m)∂xj
eη|2 + |(∂xi

m)∂xj
(ρ2eη)|2 + |m∂2

xixj
(ρ2eη)|2);

then inequalities (4.22), (4.19), (4.5) imply the estimate

∫

Q0

e2η
n
∑

j=1

|∂xj
(ρ2∇m)|2 dx dt ≤ c16

∫

Q0

n
∑

i,j=1

(|∂2
xixj

(ρ2meη)|2

+ |ρ2(∂xj
m)∂xi

eη|2 + |(∂xi
m)∂xj

(ρ2eη)|2 + |m∂2
xixj

(ρ2eη)|2) dx dt

≤ c19‖y‖
2
(Θ(Q0,η))n . (4.23)

Denote mi = ρ3(∂xi
m)eη(T − t). Then by virtue of (4.4) with u = m

∆mi = gi, mi|∂Ω0
= 0, (4.24)

where

gi = (∂xi
m)∆(ρ3eη(T − t))+2(∇(ρ3eη(T − t), ∂xi

∇m)+ρ3eη(T − t)∂xi
div y.

Applying to the solution mi of problem (4.24) estimate of solution of Laplace
equation we get as in (4.22) taking into account (4.5), (4.19), (4.23):

‖ρ3(∂xi
m)eη(T − t)‖2

L2(0,T ;W 2
2 (Ω0))

≤ c20(‖(∂xi
m)∆(ρ3eη(T − t))‖2

L2(Q0)

+ ‖(
1

ρ2
∇(ρ3eη(T − t)), (∂xi

(ρ2∇m) − 2(∂xi
ρ)ρ∇m))‖2

L2(Q0)
+

‖ρ3eη(T − t)∂xi
div y‖2

L2(Q0)
) ≤ c21‖y‖

2
(Θ(Q0,η))n . (4.25)



EXACT BOUNDARY CONTROLLABILITY 87

As in (4.22), inequalities (4.25) with i = 1, . . . , n, (4.23), (4.19), (4.5) yield:

∫

Q0

e2η
n
∑

k,l=1

|∂2
xkxl

(ρ3∇m)|2(T − t)2 dx dt ≤ c22‖y‖
2
(Θ(Q0,η))n . (4.26)

In virtue of (4.13)

∆(ρ∂tm) = ∂tm∆ρ+ 2(∇ρ,∇∂tm) + ρdiv∂ty. (4.27)

Scaling (4.27) by −(ρ∂tm)e2η(T − t)2 in L2(Q0) and integrating by parts we
have

∫

Q0

|∇(ρ∂tm)|2(T−t)2 dx dt =

∫

Q0

(
1

2
ρ(∂tm)2∆e2η(T−t)2−ρ(∂tm)2∆ρe2η(T−t)2

+
1

2
(T − t)2(∂tm)2div(eη∇ρ2) − ρ2∂tm(div∂ty)e

2η(T − t)2) dx dt.

This equality implies

∫

Q0

|ρ∇∂tm|2(T − t)2e2η dx dt ≤ c23

∫

Q0

|∂tm|2(c24|∇ρ|
2(T − t)2 + ρ2

+ |ρ∆ρ|(T − t)2 + c25(T − t)(|∇ρ2| + (T − t)|∆ρ2|)e2η dx dt

+

∫

Q0

[(ρ∇∂tm, ∂ty)ρe
2η(T − t)2 + ∂tm(∇(ρ2e2η, ∂ty)(T − t)2] dx dt

≤ c26

∫

Q0

|∂tm|2e2η dx dt+
1

2

∫

Q0

|ρ∇∂tm|2(T − t)2e2η dx dt

+ c27

∫

Q0

e2η|∂ty|
2(T − t)2 dx dt ≤ c28‖y‖

2
(Θ(Q0,η))n . (4.28)

After transfering the term with ρ∇∂tm from the right side of (4.28) to the
left side we get with help of (4.6) and (2.16)

∫

Q0

|ρ∇∂tm|2(T − t)2e2η dx dt ≤ c28‖y‖
2
(Θ(Q0,η))n .

Upper bounds (4.19), (4.23), (4.26) imply (4.17). �

We prove now the main result of this section.
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Theorem 4.1. Let s satisfies to the condition of Lemma 4.1. An arbitrary
vector field y ∈ (Θ(Q0, η

s))n admits decomposition (4.1), where v(t, x) ≡ 0
and ρ3∇q ∈ M(Q0, η

s) and if y(t, x) satisfies equality div y(0, x) ≡ 0, then
y(0, x) ≡ z(0, x).

Proof. We define the function ϕ(t) ∈ C∞(0, T ), such that ϕ(t) ≡ 0 when
t ∈ (0, T/4), ϕ(t) ≡ 1 when t ∈ [ 34T, T ]. Let m(t, x) be solution of problem
(4.3), (4.4) constructed in Lemma 4.1. Since y ∈ (Θ(Q0, η))

n then for almost
all t ∈ (0, T ), ∆m(t, ·) ∈ L2(Ω0) and in virtue of (4.5) m(t, ·) ∈ L2(Ω0).
Hence, (see J.L. Lions, E. Magenes [53]) the restriction m(t, ·)|∂Ω is defined

and belongs to W
1/2
2 (∂Ω0). We introduce the function ζ(t, x), defined on

(0, T ) × ∂Ω0 by formula

ζ(t, x) = ϕ(t)m(t, x) t ∈ (0, T ), x ∈ ∂Ω0

and consider the following Dirichlet problem

∆q(t, x) = div y(t, x), (t, x) ∈ Q0, (4.29)

q|(0,T )×∂Ω0
= ζ. (4.30)

The unique solution q(t, x) of (4.29), (4.30) exists ( see J.L. Lions, E. Magenes
[53]) and in virtue of properties of ζ(t, x)

q(x, t) ≡ m(t, x) ∀ (t, x) ∈ [3/4T, T ]× Ω0 (4.31)

and

∀ (t, x) ∈ [0, T/4] div y(t, x) = 0 imply q(t, x) ≡ 0. (4.32)

In virtue of (4.31) and (4.17) we have: ρ3∇q ∈ M(Q0, η). Besides (4.2)
follows from (4.32). �

5. The proof of main results.

5.1. First of all we want to prove the exact controllability problem for
linearized Boussinesq equations (2.9)-(2.13). To do it we apply the analogous
controllability result for parabolic equation and parabolic system which is
formulated below. We consider the controllability problem for heat equation

∂tθ(t, x)− ∆θ(t, x) = h(t, x) (t, x) ∈ Q0, (5.1)

θ|t=0 = θ0(x), θ|t=T = 0, x ∈ Ω0, (5.2)

where the functions h ∈ L2(Q0, η), θ0 ∈W 1
2 (Ω) are given .



EXACT BOUNDARY CONTROLLABILITY 89

Theorem 5.1. There exists a number s1 that for any s > s1 and for
arbitrary given θ0 ∈ W 1

2 (Ω0), h ∈ L2(Q0, η
s) there exists the solution θ ∈

Θ(Q0, η
s) of problem (5.1), (5.2).

We consider also the controllability problem for the following parabolic
system

∂ty(t, x)− ∆y − v̂ × rot y = f, (t, x) ∈ Q0, (5.3)

y|t=0 = y0, y|t=T = 0, x ∈ Ω0. (5.4)

Theorem 5.2. Let v̂(t, x) ∈ V 1,2(2)(Q0) be given. Then there exists a
number s2 such that for any s > s2 and for arbitrary given data y0 ∈
(W 1

2 (Ω0))
n, f ∈ (L2(Q0, η

s))n there exists the solution y ∈ (Θ(Q0, η
s))n

of problem (5.3), (5.4).

One can prove the Theorems 5.1, 5.2 in absolutely same way as Theorems
I.2.1 , I.3.10 using the carleman estimate (1.9) instead of (1.6). Let us prove
one abstract lemma.

Lemma 5.1. Suppose that X, Y are Hilbert spaces, a bounded linear oper-
ator B : X → Y is epimorfism and K : X → Y is a linear compact operator.
Then the image of operator B +K is closed in Y .

Proof. For an arbitrary ǫ > 0 there exists the operator Kǫ that has finite
dimension image and

‖K −Kǫ‖ < ǫ. (5.5)

The equality

B +K = Bǫ +Kǫ where Bǫ = B + (K −Kǫ)

is true. If in (5.5) ǫ is small enough then the image of operator Bǫ coincides
with whole Y . Thus, we reduce the Lemma 5.1 to the case when operator
K : X → Y has a finite dimensional image. We can suppose also that
KerB ∩ KerK = 0. Indeed, if it is not so we introduce the factor space
X1 = X/(KerB ∩KerK), define operators B1 and K1 by formulas

B1x̃ = Bx, K1x̃ = Kx, where x̃ = x+Ker B ∩KerK

and consider the problem on closure of operators B1 +K1 : X1 → Y image.
Since operator K has a finite dimension image then there exists a finite linear
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independent system of vectors e1, . . . , ek ∈ Y and linear independent system
of bounded functionals f1, . . . , fn on X such that

Kx =

k
∑

j=1

fj(x)ej.

The linear independentness of f1, . . . , fn means that there exist such linear
independent vectors g1, . . . , gk ∈ X that fj(gi) = δi,j , where is Kronecher
symbol. Hence the space X admits the decomposition

X = [g1, . . . , gk] +KerK,

where [g1, . . . , gk] is a linear span of g1, . . . , gk. Since KerB ∩ KerK = 0
then dimKer B ≤ k and X admits the decomposition

X = S +KerB +KerK,

where S is a certain finite dimension space. Let B2, K2 be the restrictions
at the space S + KerK of the operators B and K respectively. Since the
operator

B : S +KerK → Y

is isomorphism then by Fredholm theorem the image B2 +K2 is closed and
has a finite codimension in Y . The coincidence (B2 + K2)(S + KerK) =
(B +K)(S +KerK) implies the including

(B +K)(S +KerK) ⊂ (B +K)X.

Hence (B +K)X = (B +K)(S +KerK) + S1, where S1 is a certain finite
dimensional subspace of Y . Being a finite dimensional space the subspace S1

is closed. Hence (B +K) is closed. �

5.2. Now we prove the assertion on closure of set of data for which the
controllability problem for the Boussinesq equations has a solution.

Theorem 5.3. Let v̂(t, x) ∈ V 1,2(2)(Q), θ̂(t, x) ∈ W 1,2(2)(Q). Then the
set of data (f, h, v0, θ0) for which there exists a solution (v, p, θ) ∈ Xs(Q)
of problem (2.9)-(2.13) is closed in the space Zs(Q) when magnitude of pa-
rameter s is sufficiently large (spaces Xs(Q), Zs(Q) are defined in (2.20),
(2.21)).
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Proof. To proof this theorem we intend to apply Lemma 5.1. We decom-
pose the operator generated by the problem (2.9)-(2.13) by the sum B +K,
where B is the operator generated by the problem

∂tv(t, x)−∆v− v̂× rot v+∇p = f(t, x), div v = 0, v(0, x) = v0(x),
(5.6)

∂tθ(t, x)− ∆θ = h(t, x), θ(0, x) = θ0(x), (5.7)

v(T, x) ≡ 0, θ(T, x) ≡ 0. (5.8)

The operator K is defined by the formula

K(v, p, θ) = (−v × rot v̂ + θe0, (v̂,∇θ) + (v,∇θ̂) + (v, e0), 0, 0). (5.9)

The boundness of the operator

B : Xs(Q) → Zs(Q) (5.10)

is proved in Lemma 2.1. To prove that operator (5.10) is epimorphism we
firstly, change (5.6) for the more simple equations:

∂ty(t, x) − ∆y − v̂ × rot y = f1(t, x), y(0, x) = y0(x). (5.11)

Let Q0, Ω0 be the set introduced in the beginning of the section 3.2. We ex-

tend continuously v̂(t, x) from V 1,2(2)(Q) to V 1,2(2)(Q0) as well as θ̂(t, x) from
W 1,2(2)(Q) to W 1,2(2)(Q0) using Proposition 2.3 and consider the problem
(5.11), (5.7) on Q0. Note that y0(x) ∈ V 1(Ω) is an extension of v0 ∈ V 1(Ω0).

We choose parameter s satisfying conditions of Theorems 4.1, 5.1 and 5.2
simultaneously. Then by virtue of these theorems for an arbitrary (f1, h, y0, θ0) ∈
(L2(Q0, η

s,))n×L2(Q0, η
s)×V 1(Ω0)×W 1

2 (Ω0) there exists a solution (y, θ) ∈
((Θ(Q0, η

s))n ×Θ(Q0, η
s) of problem (5.11), (5.7) on Q0. With help of The-

orem 4.1 we decompose the component y of this section as follows:

y(t, x) = v(t, x) + ∇q, (5.12)

where div v = 0, ρ3∇q ∈ M(Q0, η
s) where M(Q0, η) is space (4.16) and

y(0, x) = v(0, x) = y0(x). We substitute (5.12) into (5.11) and verify that
v(t, x) satisfies the equation

∂tv(t, x)−∆v−v̂×rot v+∇m = f1(t, x), div v = 0, v(0, x) = y0(x), (5.13)

m = (∂tq − ∆q). (5.14)



92 A. V. FURSIKOV AND O. YU. IMANUVILOV

Now we can prove that (5.10) is epimorphism. Indeed let (f, h, v0, θ0) ∈
Zs(Q) = F (Q, ηs) × L2(Q, η

s) × V 1(Ω) ×W 1
2 (Ω). By the definition of the

space F (Q, η) the decomposition

f = f1 + ∇f2, f1 ∈ (L2(Q, η
s))n, f2 ∈ L2(0, T ;W 1

2 (Ω))

holds. After extension of f1, f2, h from Q to Q0 and v0, θ0 from Ω to Ω0

we get as was shown above the function (v,m, θ) which satisfy (5.13), (5.7),
(5.8).Evidently, if we define

p = m+ f2 (5.15)

then (v, p, θ) satisfy (5.6)-(5.8). After the restriction of (v, p, θ) at Q this
triplet satisfies (5.6)-(5.8) which considered as defined on Q. We made the
extension from Q to Q0 and after that restriction from Q0 to Q to have the
equality (5.12) on Q with ∇q ∈ M(Q, ηs) (the restriction to Q allows us to
take off the multiplier ρ3 including ρ3∇q ∈M(Q0, η

s). Since ∇q ∈M(Q, ηs)
then in virtue of (5.14), (5.15) p ∈ L2(0, T ;W 1

2 (Ω)).
Equality (5.12) and inclusions ∇q ∈M(Q, η), y ∈ (Θ(Q, η))n give us that

all terms in definition (2.19) of ‖ · ‖V (Q,η) for v are finite expect, may be
‖∂tv−∆v‖F (Q,η). Let us show that this term is also finite. In virtue of (5.6),
(5.15), (5.14)

‖∂tv−∆v‖F (Q,η) = ‖f1+v̂×rot v+∇f2−∇p‖F (Q,η) ≤ ‖f1+v̂×rot v‖(L2(Q,η))n

+ ‖∇f2 −∇p‖(L2(Q,η))n ≤ c1(‖f1‖(L2(Q,η))n+

‖v̂‖(C(Q̄))n‖|∇v|‖(L2(Q,η))n + ‖|∇(∂tq − ∆q)|‖(L2(Q,η))n) <∞.

Hence v ∈ V (Q, η) and therefore we have proved that the operator (5.10) is
epimorphism. We prove now that the operator

K : Xs(Q) → Zs(Q) (5.16)

is compact, where K is define in (5.9). This assertion is reduced to prove
compactness of the operator

K1 : Xs(Q) → (L2(Q, η))
n × L2(Q, η), (5.17)

where

K1(v, p, θ) = (−v × rot v̂ + θe0, (v̂,∇θ) + (v,∇θ̂) + (v, e0)). (5.18)
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We have

∫ T

T−δ

∫

Ω

e2η(|v × rot v̂|2 + |(v̂,∇θ) + (v,∇θ̂) + (v, e0)|
2) dx dt

≤ c2(‖v̂‖
2
C(0,T ;(C1(Ω̄))n)+‖θ̂‖2

C(0,T ;C1(Ω̄))+1)

∫ T

T−δ

∫

Ω

e2η(|v|2+|θ|2+|∇θ|2) dx dt

≤ c3(‖v̂‖
2
V 1,2(2)(Q) + ‖θ̂‖2

W 1,2(2)(Q) + 1)δ

∫ T

T−δ

∫

Ω

e2η((T − t)−2(|v|2 + |θ|2)

+ (T − t)−1|∇θ|2) dx dt ≤ c4c3δ(‖v̂‖
2
V 1,2(2)(Q) + ‖θ̂‖2

W 1,2(2)(Q)) (5.19)

uniformly with respect to

(v, θ) ∈ Φ ≡ {(v, θ) : ‖v‖2
V (Q,η) + ‖θ‖2

Θ(Q,η) ≤ c4}.

Evidently, at Qδ = (0, T − δ) × Ω we have

V (Qδ, η) = V 1,2(0)(Qδ), Θ(Qδ, η) = W 1,2(0)(Qδ), L2(Q
δ, η) = L2(Q

δ)

and by the Sobolev embedding theorem the operator

K : V 1,2(0)(Qδ)×L2(0, T ;W 1
2 (Ω))×W 1,2(0)(Qδ) → (L2(Q

δ))n+1×V 1(Ω)×W 1
2 (Ω)

is compact. This property of operator K and (5.19) prove the compactness
of operator (5.17), (5.18). Hence, all assumptions of Lemma 5.1 are true and
by this lemma we get assertion of Theorem 5.3. �

Now we can prove immediately

Theorem 5.4. Let v̂ ∈ V 1,2(2)(Q), θ̂ ∈ W 1,2(2)(Q) and a magnitude of
parameter s is sufficiently large*. Then for an arbitrary data (f, h, v0, θ0) ∈
Zs(Q) there exists a solution (v, p, θ) ∈ Xs(Q) of problem (2.9)-(2.13).

Proof. By Theorem 3.1 for a dense set of data (f, h, v0, θ0) ∈ Zs(Q) there
exist the solution (v, p, θ) ∈ Xs(Q) of problem (2.9)-(2.11). By Theorem 5.3
the set of data (f, h, v0, θ0) for which there exists a solution is closed in
Zs(Q). Hence, the set of data for which there exists a solution of problem
(2.9)-(2.12) coincides with Zs(Q). �

The proof of Theorem 1.1. Firstly we apply the right inverse operator
theorem to problem (2.3)-(2.7). Let A be operator (2.8), (2.3), (2.5) and

*More precisely, s simultaneously satisfy the conditions of Theorems 4.1, 5.1, 5.2
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the spaces X = Xs(Q), Z = Zs(Q) are defined in (2.20), (2.21), (2.15)-
(2.19).Taking into account that A is a sum of linear and quadratic operators
we can assert that continuous differentiability of operator (I.4.2) follows from
Lemmas 2.1 and 2.2. Equality (I.4.3) is evident for x0 = 0, z0 = 0. At last,
the assertion that operator

A′(0) : Xs(Q) → Zs(Q)

is epimorphizm was proved in Theorem 5.4. So, all assumptions of the right
inverse operator theorem are fulfilled and therefore there exists such ǫ > 0,
that for any initial data (w0, τ0) satisfying inequality

‖w0‖
2
V 1(Ω) + ‖τ0‖

2
W 1

2 (Ω) ≤ ǫ

and for zero right sides of equation (2.3), (2.5) the problem (2.3)- (2.7) posses
the solution (v, q, θ) ∈ V (Q, ηs)×L2(0, T ;W 1

2 (Ω))×Θ(Q, ηs). After returning
from problem (2.3)-(2.7) to problem (1.1)-(1.4), (1.6) by change of variables
(2.2) we get the assertion of Theorem 1.1. �

Remark 5.1. As we pointed out in Remark 1.1 the smoothness condition

on the given solution (v̂, p̂, θ̂) in Theorem 1.1 can be changed on more weak
condition (1.14). This changement of condition would lead to the complica-
tion of Theorem 5.3 proof which we show below. That is why we approximate

functions v̂, θ̂ by a functions v̂ǫ ∈ V 1,2(2)(Q), θ̂ǫ ∈W 1,2(2)(Q):

‖v̂− v̂ǫ‖V 1,2(1/2)(Q)∩(L∞(Q))n ≤ ǫ, ‖θ̂− θ̂ǫ‖W 1,2(1/2)(Q)∩L∞(Q) < ǫ, (5.20)

where ǫ is sufficiently small. We can write:

B +K = B +Rǫ +Kǫ,

where

Kǫ(v, θ) = (−v × rot v̂ǫ + θe0, (v̂ǫ,∇θ) + (v,∇θ̂ǫ) + (v, e0), 0, 0),

Rǫ(v, θ) = (−v × rot (v̂ − v̂ǫ), (v̂ − v̂ǫ,∇θ) + (v,∇(θ̂ − θ̂ǫ)), 0, 0).

In virtue of (5.20) the operator Rǫ : Xs(Q) → Zs(Q) has a small norm
and therefore the operator B + Rǫ : Xs(Q) → Zs(Q) is epimorphism. The
compactness of operator Kǫ : Xs(Q) → Zs(Q) has been proved in Theorem
5.3. Hence by Lemma 5.1 the image of operator B +Rǫ +Kǫ coincides with
Zs(Q) . �



CHAPTER IV

EXACT CONTROLLABILITY

OF HYPERBOLIC EQUATIONS

Introduction

In this chapter we study problems of exact boundary controllability of
second order hyperbolic equations. In the first section we concern on the case
of the linear hyperbolic equation. As in chapters I-III to solve controllability
problem firstly we prove some a priori inequalities of Carleman inequality for
the adjoint hyperbolic equation. To convert this inequality into an existence
theorem we use duality arguments. Finally existence result is obtained under
an assumption of existence of psevdoconvex function (see condition 1.1). The
section 2 is devoted to the study of exact controllability problem for the one
dimensional second order hyperbolic equations. In this case, the situation is
more complicated compared to the linear case, and solvability of the problem
depends on a behavior of nonlinear term at infinity.

Firstly the problem of exact controllability of linear hyperbolic equations
was studied in the works of D.L. Russel and H. O. Fattorini. They introduced
the following methods (see the excellent survey paper [56]).

1.Reduction of controllability problem to the moment problem.
2.Extension method to the whole space.
3 Use of harmonic analysis in control theory.
4.Introduction of stabilization operators.
5.Multiplier method.(see also [26], [39], [52] and references there in)
For controllability of hyperbolic equations with constant coefficients and

control distributed on the whole boundary there is a method based on the
Fourier and Radon transforms introduced by W. Littman in [54]. During past
few years there has been a marked progress in controllability theory of linear
hyperbolic equations. Two powerful methods were introduced. The first one
based on the theory of pseudo-differential operators and microlocal analysis

138
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(see [6], [33], [34]). Existence theorems proved by this method under non-

trapping condition are sharp. Unfortunately the use of pseudo-differential

operators requirs that the coefficients of main part of hyperbolic equation and

boundary of domain belongs to C∞. The second method based on Carleman

inequalities can be applied to wide class of evolution equations (see [61]).

This method does not demand high smoothness of coefficients of hyperbolic

equations. Despite of the results obtained in [60] and [61] are general they

are not sharp, since the control is distributed on the whole boundary. Below

the sharp Carleman’s inequality is proved for particular case of second order

hyperbolic equations. Existence theorems proved by second method demand

the existance of a pseudoconvex function. There is a very interesting (and

still open to the author’s knowledge ) question : Does the fulfillment of

non-trapping condition imply the existence of pseudoconvex function?

Unfortunately, to the author’s knowledge there are not so many results

on controllability of semilinear hyperbolic equations. First there is the local

existence theorems, similar to what we proved for the Navier-Stokes system.

For the case of nonlinear term with sublinear growth there is an existence

theorem due to I. Lasieska and R. Triggiani. The results, presented in section

2, are from [36], while results of section 1 are from [35] and [65].

1. Controllability of linear hyperbolic equations

Let Ω ⊂ Rn be a bounded domain with the boundary Γ = ∂Ω ∈ C2, Γ0

be an arbitrary subdomain of Γ and Γ1 = Γ\Γ0. Denote QT =]0, T [×Ω,ΣT =

]0, T [×Γ,Σ0
T =]0, T [×Γ0,Σ

1
T =]0, T [×Γ1.Denote x = (x0, x

′) = (x0, x1, ..., xn),

ζ = (ζ0, ζ
′) = (ζ0, ζ1, ..., ζn). Here we use notation t = x0 for the time vari-

able and x′ for the space variable. Benefits of such notation will be clear

below.

Let function y(x0, x
′) satisfy the boundary value problem

Py =
∂2y

∂x2
0

−
n
∑

i,j=1

∂

∂xi

(

a(x′)
∂y

∂xj

)

+

n
∑

i=0

bi(x
′)
∂y

∂xi
+c(x′)y = g in QT , (1.1)

y|Σ1

T
= 0, y|Σ0

T
= u, (1.2)

y(0, x′) = v0(x
′),

∂y

∂x0
(0, x′) = v1(x

′), (1.3)
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where functions v0, v1, g are given, and u is a control function. Let we have
target functions v2, v3. To solve exact controllability problem one should find
control u such that function y at moment T satisfy equations

y(T, x′) = v2(x
′),

∂y

∂x0
(T, x′) = v3(x

′). (1.4)

We assume that coefficients of the linear operator P satisfy conditions

aij ∈ C2(Ω), aij = aji, bi ∈ C1(Ω), c ∈ L∞(Ω), (1.5)

where i, j = 1, · · · , n and the uniform ellipticity: There exists β > 0 such
that

a(x′, ζ, ζ) =

n
∑

i,j=1

aij(x
′)ζiζj ≥ β|ζ|2 ∀ζ ∈ R

n+1, x′ ∈ Ω. (1.6)

For two an arbitrary smooth functions φ(x, ζ), ψ(x, ζ) we define Poisson
bracket by the formula

{

φ, ψ
}

=

n
∑

i=0

(

∂φ

∂ζi

∂ψ

∂xi
− ∂φ

∂xi

∂ψ

∂ζi

)

.

Denote by p(x, ζ) the main symbol of operator P :

p(x, ζ) = ζ2
0 −

n
∑

i,j=1

aij(x
′)ζiζj .

To formulate our results we introduce the functional spaces

XT = {y(x0, x
′)|y ∈ L∞(0, T ;W 1

2 (Ω)),
∂y

∂x0
∈ L∞(0, T ;L2(Ω))},

YT = {y(x0, x
′)|y ∈ L∞(0, T ;L2(Ω)),

∂y

∂x0
∈ L∞(0, T ;W−1

2 (Ω))}

equipped with norms

‖y‖XT
= ‖y‖L∞(0,T ;W 1

2
(Ω)) +

∥

∥

∥

∥

∂y

∂x0

∥

∥

∥

∥

L∞(0,T ;L2(Ω))

,
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‖y‖YT
= ‖y‖L∞(0,T ;L2(Ω)) +

∥

∥

∥

∥

∂y

∂x0

∥

∥

∥

∥

L∞(0,T ;W−1

2
(Ω))

.

Let us consider the boundary value problem

P ∗z =
∂2z

∂x2
0

−
n
∑

i,j=1

∂

∂xi

(

a(x′)
∂z

∂xj

)

−
n
∑

i=0

∂

∂xi
(bi(x

′)z) + c(x′)z = 0 in QT ,

(1.7)

z|ΣT
= 0, z(0, x′) = z0(x

′),
∂z

∂x0
(0, x′) = z1(x

′). (1.8)

The following Theorem proved in [52],[44].

Theorem 1.1. Let (1.5), (1.6) be fulfilled. Then for any initial date
z0 ∈ W 1

0 (Ω), z1 ∈ L2(Ω) there exist a unique solution of the problem (1.7),
(1.8) z ∈ XT which satisfy inequality

‖z‖XT
+

∥

∥

∥

∥

∂z

∂ν

∥

∥

∥

∥

L2(ΣT )

≤ c1(‖z0‖W 1

2
(Ω) + ‖z1‖L2(Ω)). (1.9)

We assume that the following condition holds

Condition 1.1. There exists a function φ0(x
′) ∈ C2(Ω) such that

{a(x′, ζ ′, ζ ′), {a(x′, ζ ′, ζ ′), φ0(x
′)}} < 0

∀x′ ∈ Ω, ζ ′ ∈ Rn \ 0,

n
∑

i=1

∂

∂ζi
a(x′, ζ)

∂φ0

∂xi
= 0

and inclusion holds

Γ0 ⊃ {x′ ∈ Γ| a(x′, ν,∇φ0(x
′)) < 0}.

We have

Theorem 1.2. Let z0 ∈ W 1
2 (Ω), z1 ∈ L2(Ω), (1.5),(1.6) and condition

1.1 be fulfilled. Then there exists a constant T0 such that for any T ≥ T0

solutions of the problem (1.7),(1.8) satisfy the estimate

‖z‖XT
≤ c2(T )

∥

∥

∥

∥

∂z

∂ν

∥

∥

∥

∥

L2(Σ0

T
)

. (1.10)
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Proof. Set φ(x) = ε
T (x0 − T/2)2 + φ0(x

′), where φ0(x
′) is a function

introduced in the Condition 1.1. The magnitude of parameters ε ∈ (0, 1)
and T > 0 will be defined below.

Follow to [27] we introduce the notations:

P (j)(x, ζ) =
∂

∂ζj
p(x, ζ), P (j,k)(x, ζ) =

∂2

∂ζj∂ζk
p(x, ζ),

Pj(x, ζ) =
∂

∂xj
p(x, ζ).

Set

q(x) = −c(x′)z +

n
∑

i=0

∂

∂xi
(bi(x

′)z) +

n
∑

i,j=1

∂

∂xi
aij(x

′)
∂z

∂xj
.

By (1.7) equality holds

Lz =
∂2z

∂x2
0

−
n
∑

i,j=1

aij(x
′)

∂2z

∂xi∂xj
= q in QT . (1.11)

Denote u(x) = z(x)e−sφ, qs(x) = qe−sφ. It follows from (1.11) that

Ψu = e−sφLesφu = e−sφLz = qs in QT . (1.12)

The short calculations gives equation

Lu+ L1u = gs in QT , u|ΣT
= 0, (1.13)

where

L1u =
n
∑

i=0

sφxi
P (i)(x,∇u),

gs(x) = qs +





n
∑

i,j=1

aij(s
2φxi

φxj
+ sφxixj

) − sφx0x0
− s2φ2

x0



u.

Taking L2- norm of both parts of (1.131) we obtain

‖gs‖2
L2(QT ) = ‖Lu‖2

L2(QT ) + ‖L1u‖2
L2(QT ) + 2(L1u, Lu)L2(QT ). (1.14)

Let us transform the last term from right side of (1.14). We have
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Lemma 1.1. The following equality holds

(L1u, Lu)L2(QT ) =

∫

Ω

(

∂u

∂x0

n
∑

i=0

sφxi
P (i)(x,∇u)

− sφx0
p(x,∇u) +

s

2
θ
∂u

∂x0
u

)

dx′
∣

∣

T

0

+ s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x, ν,∇φ)dΣ− s

2

∫

QT

(

{p, {p, φ}}(x,∇u)+
n
∑

k,i=0

P
(k)
k (x,∇u)φxi

P (i)(x,∇u) −
n
∑

i=0

sφxi
P (i)(x,∇u)θu+ gsθu−

n
∑

i,j=1

(

∂aij

∂xi

∂u

∂xj
θu+ aij

∂u

∂xj
u
∂θ

∂xi

)

− ∂u

∂x0

∂θ

∂x0
u



 dx, (1.15)

where*

θ(x) =
n
∑

l,m=0

(φxlxm
P (l,m)(x,∇u) + φxl

P (l,m)
m (x,∇u)).

Proof. Note, that since u|ΣT
= 0, then

∂u

∂xi

∣

∣

∣

∣

ΣT

= νi
∂u

∂ν
∀ i = 1, ..., n. (1.16)

Bearing in mind (1.16) and integrating by parts the last term in right side
of (1.14) we get

(L1u, Lu)L2(QT ) =

∫

Ω

∂u

∂x0

n
∑

i=0

sφxi
P (i)(x,∇u)dx′

∣

∣

T

0

+ 2s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

− s

2

∫

QT

n
∑

k,i=0

(P (k)(x,∇u)
{

φxixk
P (i)(x,∇u)

+ φxk
(P

(i)
k (x,∇u) + P (i)(x,∇ ∂u

∂xk
))
}

+

φxi
P

(k)
k (x,∇u)P (i)(x,∇u))dx. (1.17)

*note that function θ is independent of u.
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We claim, that the following identity holds

n
∑

k,i=0

P (k)(x,∇u)φxi
P (i)(x,∇ ∂u

∂xk
) =

n
∑

k,i=0

φxk
P (k,i)(x,∇u)

{

∂

∂xi
p(x,∇u) − Pi(x,∇u)

}

. (1.18)

Really, the short calculation gives

n
∑

k,i=0

P (k)(x,∇u)φxi
P (i)(x,∇ ∂u

∂xk
) =

n
∑

k,i=0

4φxi

n
∑

l,j=0

ajkail
∂

∂xl

(

∂u

∂xk

)

∂u

∂xj
=

n
∑

l,i=0

4φxi
ail

n
∑

k,j=0

ajk
∂

∂xl

(

∂u

∂xk

)

∂u

∂xj
=

n
∑

i,l=0

2φxi
ail

n
∑

k,j=0

ajk
∂

∂xl

(

∂u

∂xk

∂u

∂xj

)

=
n
∑

l,i=0

φxi
P (i,l)(x,∇u)( ∂

∂xl
p(x,∇u) − Pl(x,∇u)) =

n
∑

k,i=0

φxi
P (i,k)(x,∇u)( ∂

∂xk
p(x,∇u) − Pk(x,∇u)).

Let us transform (1.17) using identity (1.18). As a result we have

(L1u, Lu)L2(QT ) =

∫

Ω

∂u

∂x0

n
∑

i=0

sφxi
P (i)(x,∇u)dx′

∣

∣

T

0
+

2s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

− s

2

∫

QT







n
∑

k,i=0

P (k)(x,∇u)[φxixk
P (i)(x,∇u)

+ φxi
P

(i)
k (x,∇u)] +

n
∑

k,i=0

φxi
P (i,k)(x,∇u)

(

∂

∂xk
p(x,∇u) − Pk(x,∇u)

)

+
n
∑

k,i=0

φxi
P

(k)
k (x,∇u)P (i)(x,∇u)







dx. (1.19)
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Integrating by parts in (1.19) we get the equality

(L1u, Lu)L2(QT ) =

∫

Ω

∂u

∂x0

n
∑

i=0

sφxi
P (i)(x,∇u)dx′

∣

∣

T

0

− s

∫

Ω

φx0
p(x,∇u)dx′

∣

∣

T

0
+ s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

− s

2

∫

QT

n
∑

k,i=0

(P (k)(x,∇u)[φxixk
P (i)(x,∇u)+

φxi
P

(i)
k (x,∇u)] − φxi

P (i,k)(x,∇u)Pk(x,∇u)
− (φxixk

P (i,k)(x,∇u) + φxi
P

(i,k)
k (x,∇u))p(x,∇u)

+ φxi
P

(k)
k (x,∇u)P (i)(x,∇u))dx. (1.20)

Short calculation give the identity

{p, {p, φ}}(x,∇u) =
n
∑

i,k=0

(P (k)(x,∇u)[P (i)(x,∇u)φxixk
+ P

(i)
k (x,∇u)φxi

]

− φxk
P (k,i)(x,∇u)Pi(x,∇u)). (1.21)

Using identity (1.21) one can rewrite (1.20) as follows

(L1u, Lu)L2(QT ) =

∫

Ω

∂u

∂x0

n
∑

i=0

sφxi
P (i)(x,∇u)dx′

∣

∣

T

0

− s

∫

Ω

φx0
p(x,∇u)dx′

∣

∣

T

0
+

s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)dΣ − s

2

∫

QT

({p, {p, φ}}(x,∇u)

−
n
∑

k,i=0

(φxixk
P (i,k)(x,∇u) + φxi

P
(i,k)
k (x,∇u))p(x,∇u)+

n
∑

k,i=0

P
(k)
k (x,∇u)φxi

P (i)(x,∇u)



dx. (1.22)

Let us multiply equation (1.13) by θu scalarly in L2(QT ) and integrate by
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parts. As result we obtain equality

∫

QT

θp(x,∇u)dx =

∫

Ω

θ
∂u

∂x0
udx′

∣

∣

T

0
−
∫

QT

gsθdx+

∫

QT

θu
n
∑

i=0

sφxi
P (i)(x,∇u)dx

+

∫

QT





n
∑

i,j=1

(

∂aij

∂xi

∂u

∂xj
θu+ aij

∂u

∂xj
u
∂θ

∂xi

)

− ∂u

∂x0

∂θ

∂x0
u



 dx. (1.23)

Equalities (1.22), (1.23) imply (1.15).�
Let us continue the proof of Theorem 1.2. Denote

A1 =

∫

Ω

∂u

∂x0

n
∑

i=0

sφxi
P (i)(x,∇u)dx′

∣

∣

T

0
− s

∫

Ω

φx0
p(x,∇u)dx′

∣

∣

T

0

+
s

2

∫

Ω

n
∑

k,i=0

(φxixk
P (i,k)(x,∇u) + φxi

P
(i,k)
k (x,∇u)) ∂u

∂x0
udx′

∣

∣

T

0
,

A2 =
s

2

∫

QT





n
∑

i=0

sφxi
P (i)(x,∇u)θu+

n
∑

i,j=1

(

∂aij

∂xi

∂u

∂xi
θu+ aij

∂u

∂xj
u
∂θ

∂xi

)

− ∂u

∂x0

∂θ

∂x0
u− gsθu

)

dx.

Short calculations give the estimate

|A2| ≤ c3(‖gs‖2
L2(QT ) +

√
s‖∇u‖2

L2(QT ) + s4‖u‖2
L2(QT )). (1.24)

By virtue (1.14), (1.15) for every s ≥ 2 we have

‖gs‖2
L2(QT ) ≥ ‖L1u‖2

L2(QT )+2A1+2A2+2s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

− s

∫

QT

{p, {p, φ}}(x,∇u)dx− ‖L1u‖L2(QT )‖
n
∑

k=0

P
(k)
k (x,∇u)‖L2(QT ) ≥

1

2
‖L1u‖2

L2(QT ) + 2A1 + 2A2 + 2s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

−
∫

QT

s{p, {p, φ}}(x,∇u)dx− 1

2

∫

QT

(

n
∑

k=0

P
(k)
k (x,∇u))2dx. (1.25)
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By definition of the function φ the Poisson bracket {p, {p, φ}} can be written
as follows

{p, {p, φ}}(x,∇u) =
8ε

T

(

∂u

∂x0

)2

+ {p, {p, φ0}}(x,∇u) =

8ε

T

(

∂u

∂x0

)2

+ {a(x′,∇u,∇u), {a(x′,∇u,∇u), φ0}}. (1.26)

Note that condition 1.1 imply the existence of constants µ > 0 and c4 > 0
such that

c4

(

n
∑

i=1

φ0xi
P (i)(x, ζ)

)2

− {p, {p, φ0}}(x, ζ) ≥ µa(x′, ζ, ζ) ∀ζ ∈ Rn+1.

(1.27)
By (1.25)-(1.27) for any s > 2 we have

‖g‖2
L2(QT ) ≥

1

2
‖L1u‖2

L2(QT )+2A1+2A2+2s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

+

∫

QT

(

sµa(x′,∇u,∇u) − 8εs

T

(

∂u

∂x0

)2

−1

2
(

n
∑

k=0

P
(k)
k (x,∇u))2 − c4s(

n
∑

i=1

φ0xi
P (i)(x,∇u))2

)

dx. (1.28)

Let us multiply (1.13) by u scalarly in L2(QT ). Integrating by parts we
obtain

∫

QT

(

∂u

∂x0

)2

dx =

∫

QT

a(x′,∇u,∇u)dx+ A3, (1.29)

where

A3 =

∫

Ω

u
∂u

∂x0
dx′
∣

∣

T

0
+

∫

QT



uL1u+
n
∑

i,j=1

∂aij

∂xi

∂u

∂xj
u− gsu



 dx. (1.30)

By (1.29) the estimate holds,

4c4

∫

QT

ε

T

∣

∣

∣

∣

(x0 −
T

2
)
∂u

∂x0

n
∑

k=1

φ0xk
P (k)(x,∇u)

∣

∣

∣

∣

dx

≤ εc5

∥

∥

∥

∥

∂u

∂x0

∥

∥

∥

∥

L2(QT )

(

∫

QT

a(x′,∇u,∇u)dx) 1

2 ≤ c6

∫

QT

a(x′,∇u,∇u)dx+c7|A3|,
(1.31)
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there constants c6, c7 are independent on ε, T .
From (1.28) we deduce that

‖g‖2
L2(QT ) ≥ 2A1 + 2A2 + 2s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

+

∫

QT

{

7sµ

8
a(x′,∇u,∇u)− 8ǫs

T

(

∂u

∂x0

)2

+ c4s((

n
∑

k=0

φxk
P (k)(x,∇u))2

− (
n
∑

k=1

φxk
P (k)(x,∇u))2)

}

dx = 2A1 + 2A2

+ 2s

∫

ΣT

(

∂u

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

+

∫

QT

{

7sµ

8
a(x′,∇u,∇u)− 8ǫs

T

(

∂u

∂x0

)2

+ 4s

(

ε

T

(

x0 −
T

2

))2(
∂u

∂x0

)2

+
4sε

T
(x0 − T/2)

∂u

∂x0

n
∑

k=1

φ0xk
P (k)(x,∇u)

}

dx. ∀s > s0. (1.32)

Let us choose ε from interval (0,min{1, Tµ
64 , µ/(c68)}). The (1.28) imply the

inequality. Using the estimate (1.31) in inequality (1.32) for any s > s0 we
obtain

∫

QT

s

(

−8ε

T

(

∂u

∂x0

)2

+
3

4
µa(x′,∇u,∇u)

)

dx+2s

∫

ΣT

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

≤ c8(|A1| + |A2| + |A3| + s4
∫

QT

u2dx). (1.33)

By virtue of (1.24), (1.30), (1.33) there exists a constant s1 such that

∫

QT

1

4
sµ

(

(

∂u

∂x0

)2

+ a(x′,∇u,∇u)
)

dx+2s

∫

ΣT

a(x′, ν, ν)a(x′, ν,∇φ)dΣ

≤ c9(s(T + 1)

∫

Ω

(|∇u(T, x′)|2 + |∇u(0, x′)|2 + |u(T, x′)|2 + |u(0, x′)|2)dx′

+ s4
∫

QT

u2dx) ∀s ≥ s1. (1.34)
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Now we return in (1.34) from variable u to z. We obtain

∫

QT

1

4
sµ

(

(

∂z

∂x0

)2

+ a(x′,∇z,∇z)
)

e−2sφdx

+2s

∫

ΣT

(

∂z

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)e−2sφdΣ ≤ c9(s(T +1)

∫

Ω

(|∇z(T, x′)|2

+ |∇z(0, x′)|2 + |z(T, x′)|2 + |z(0, x′)|2)e−2sφ(T,x′)dx′

+ s4
∫

QT

z2e−2sφdx) ∀s ≥ s2. (1.35)

Now we take parameter T0 > 1 such, that

γ = min
x′∈Ω

φ(T0, x
′) > β = max

x∈[T0/4,3T0/4]×Ω
φ(x).

Then there exists a constant s3 such, that for any s ≥ s3 the inequality holds

∫

[T0/4,3T0/4]×Ω

1

8
sµ

(

(

∂z

∂x0

)2

+ a(x′,∇z,∇z)
)

e−2sφdx ≥

∫

[T0/4,3T0/4]×Ω

1

8
sµ

(

(

∂z

∂x0

)2

+ a(x′,∇z,∇z)
)

e−2sβdx ≥

c9s(T0 +1)

∫

Ω

(|∇z(T, x′)|2 + |∇z(0, x′)|2 + |z(T, x′)|2 + |z(0, x′)|2)e−2sγdx′ ≥

c9s(T0+1)

∫

Ω

(|∇z(T, x′)|2+|∇z(0, x′)|2+|z(T, x′)|2+|z(0, x′)|2)e−2sφ(0,x′)dx′.
(1.36)

The (1.35), (1.36) imply the inequality

∫

QT0

1

8
sµ

(

(

∂z

∂x0

)2

+ a(x′,∇z,∇z)
)

e−2sφdx+

2s

∫

ΣT0

(

∂z

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ)e−2sφdΣ ≤ c11s
4

∫

QT

z2e−2sφdx

∀s ≥ max(s2, s3). (1.37)
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From this moment we set

s = max(s2, s3).

Note that
a(x′, ν,∇φ) = a(x′, ν,∇φ0) ∀x ∈ R1

+ × ∂Ω.

Hence (1.37) and Condition 1.1 imply the estimate

∫

QT

|∇z|2dx ≤ c12(T )

(

∫

Σ0

T0

(

∂z

∂ν

)2

a(x′, ν, ν)a(x′, ν,∇φ0)e
−2sφdΣ

+

∫

QT

z2dx

)

∀ T ≥ T0. (1.38)

Denote

ET = {(v0, v1) ∈W 1
2 (Ω) × L2(Ω)| P ∗z = 0 in QT , z|ΣT

= 0,

∂z

∂ν

∣

∣

∣

∣

Σ0

T

= 0, z(0, x′) = v0,
∂z

∂x0
(0, x′) = v1}.

Evidently, that
ET1

⊂ ET2
∀ T1 > T2 ≥ T0. (1.39)

By virtue of (1.38), (1.39) on segment [T0,∞) function ℓ(t) = dimEt finite
and decrease monotonically. But values of the function ℓ(t) belong to Z+ .
So, for any δ > 0 there exist T1, T2 ∈ [T0, T0 + δ] such that

dimET1
= dimET2

. (1.40)

By virtue of (1.39) the equality (1.40) imply

ET1
= ET2

.

But since the coefficients of operator P ∗ are independent on x0, we have

ET1
= E∞ ∀ T1 > T0. (1.41)

Let pair (v0, v1) is an arbitrary element of the space E∞. Let us consider the
boundary problem

P ∗z = 0 in R1 × Ω, z|R1×∂Ω = 0, z(0, x′) = v0,
∂z

∂x0
(0, x′) = v1. (1.42)
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Let us show, that
∂z

∂ν

∣

∣

∣

∣

R1×Γ0

= 0. (1.43)

Let τ > 0 be an arbitrary number. By (1.42) there exist a pair (ṽ0, ṽ1) ∈ E∞

such that equalities holds

P ∗z̃ = 0 in Q∞, z̃|R1×∂Ω = 0, z̃(0, x′) = v0,
∂z̃

∂x0
(0, x′) = v1.

and

(z̃(τ, x′),
∂z̃

∂x0
(τ, x′)) = (v0, v1).

By Theorem 1.1 we have

z(x) = z̃(x0 − τ, x′).

But since (ṽ0, ṽ1) ∈ E∞, then

∂z

∂ν

∣

∣

∣

∣

[−τ,0]×Γ0

= 0.

This equality proves (1.43).
In [62] proved, that any function z which satisfy (1.42), (1.43) equal zero

in R1. Hence
dimET = 0 ∀ T > T0. (1.44)

Let us assume that there exists a sequence of functions zk ∈ X which are the
solution of problem (1.7), (1.8) such that

‖zk‖W 1

2
(QT ) = 1,

∥

∥

∥

∥

∂z

∂ν

∥

∥

∥

∥

L2(Σ0

T
)

→ 0 as k → +∞. (1.45)

and
zk → z weakly in W 1

2 (QT ), zk → z in L2(QT ).

Passing to the limit as k → +∞ we obtain that function z satisfy (1.7), (1.8).
Moreover by (1.9), (1.45) function z satisfy (1.43). Hence z ≡ 0. But this
is impossible by virtue of (1.38), (1.45). This contradiction completes the
proof of the theorem.�

We have
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Theorem 1.3. Let (1.5), (1.6) be fulfilled. Then for any initial date v0 ∈
L2(Ω), v1 ∈ W−1

2 (Ω), g ∈ L1(0, T ;W−1
2 (Ω)) there exist a unique solution of

the problem (1.1)- (1.3) y ∈ YT and inequality holds

‖y‖YT
≤ c1(‖v0‖L2(Ω) + ‖v1‖W−1

2
(Ω) + ‖g‖L1(0,T ;W−1

2
(Ω))). (1.46)

Proof. We define the linear functional l(q) on the space L1(0, T ;L2(Ω))
by formula

l(q) = (g, z)L2(QT ) + (v0, zx0
(0, ·))L2(Ω) − (v1, z(0, ·))L2(Ω)

+ (b0v0, z(0, ·))L2(Ω) − (
∂z

∂νA
, u)L2(Σ0

T
), (1.47)

where functions q and z are connected by relations

P ∗z = q in QT , z|ΣT
= 0, z(T, ·) = zx0

(T, ·) = 0.

By Theorem 1.1 the functional l is bounded and the following estimate holds

‖l‖ ≤ C(‖v0‖L2(Ω) + ‖v1‖W−1

2
(Ω) + ‖v2‖L2(Ω)

+ ‖v3‖W−1

2
(Ω) + ‖g‖L1(0,T ;W−1

2
(Ω))). (1.48)

Thus the functional l is continuous. It is known that any linear continuous
functional on the space L1(0, T ;L2(Ω)) can be written as follows

l(q) = (y, q)L2(QT ), (1.49)

where y is some function from the space L∞(0, T ;L2(Ω)).
Using (1.49) we can rewrite (1.47):

(y, q)L2(QT ) = (g, z)L2(QT ) − (v0, zx0
(0, ·))L2(Ω) + (v1, z(0, ·))L2(Ω)

(b0v0, z(0, ·))L2(Ω) −
(

∂z

∂νA
, u

)

L2(Σ0

T
)

. (1.50)

So function y satisfy (1.11) in the sense of theory of distributions. By (1.48),
(1.49) and (1.50) we obtain

‖y‖L∞(0,T ;L2(Ω)) ≤ C(‖v0‖L2(Ω) + ‖v1‖W−1

2
(Ω) + ‖g‖L1(0,T ;W−1

2
(Ω))). (1.51)
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Since y ∈ L∞(0, T ;L2(Ω)) it follows from (1.50) that ∂2y
∂x2

0

∈ L1(0, T ;W−2
2 (Ω)).

Moreover inequality holds
∥

∥

∥

∥

∂2y

∂x2
0

∥

∥

∥

∥

L1(0,T ;W−2

2
(Ω))

≤ C(‖v0‖L2(Ω) + ‖v1‖W−1

2
(Ω) + ‖g‖L1(0,T ;W−1

2
(Ω))).

(1.52)
Note that

∥

∥

∥

∥

∂y

∂x0

∥

∥

∥

∥

2

L∞(0,T ;W−1

2
(Ω))

≤ C(

∥

∥

∥

∥

∂2y

∂x2
0

∥

∥

∥

∥

2

L1(0,T ;W−2

2
(Ω))

+ ‖y‖2
L∞(0,T ;L2(Ω))).

This inequality together with (1.51), (1.52) gives (1.46).�
The following theorem, proved in [52] is a corollary of Hilbert Unique-

nesses Method . But here we gives other version of its proof based on Reiz
representation theorem for Hilbert spaces and Hanh-Banach extension theo-
rem.

Theorem 1.4. Let (1.5), (1.6) be fulfilled and constant T > 0 such that
for any solution of (1.7), (1.8) inequality (1.10) holds. Then for any initial
date v0, v2 ∈ L2(Ω), v1, v3 ∈ W−1

2 (Ω), g ∈ L1(0, T ;W−1
2 (Ω)) there exist a

solution of the problem (1.1)-(1.4) a pair (y, v) ∈ YT × L2(Σ0
T ).

Proof. Let us introduce the space F by formula

F = {m(t, x) (t, x) ∈ Σ0
T |there exists z ∈ XT , P

∗z = 0 in QT ,

z|ΣT
= 0,

∂z

∂νA
|Σ0

T
= m(t, x)}.

And equipped it with norm ‖m‖F = ‖m‖L2(Σ0

T
).Note that all assumptions of

Theorem 1.3 are fulfilled. This imply that there exists a constant C that

‖z‖YT
≤ C‖m‖L2(Σ0

T
), (1.53)

where functions z and m connected by relations

P ∗z = 0 in QT , z|ΣT
= 0,

∂z

∂νA

∣

∣

∣

∣

Σ0

T

= m(t, x). (1.54)

Thus (1.53) imply that F is a Banach space. Let us consider the linear
functional l(m) defined on the space F by formula

l(m) = (v0, zx0
(0, ·))L2(Ω) − (v1, z(0, ·))L2(Ω) + (b0v0, z(0, ·))L2(Ω)

−(b0v2, z(T, ·))L2(Ω)−(v2, zx0
(T, ·))L2(Ω) +(v3, z(T, ·))L2(Ω) +(g, z)L2(QT ),
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where functions (v0, v1, v2, v3, g) ∈ L2(Ω) ×W−1
2 (Ω) × L2(Ω) ×W−1

2 (Ω) ×
L1(0, T ;W−1

2 (Ω)) are given, and function z and m connected by relation
(1.54). By (1.53) this functional is correctly defined on F . The short calcu-
lations gives

|l(m)| ≤ ‖v0‖L2(Ω)‖zt(0, ·)‖L2(Ω) + ‖v1‖W−1

2
(Ω)‖z(0, ·)‖W 1

2
(Ω)

+ ‖v0‖L2(Ω)‖z(0, ·)‖L2(Ω)‖v2‖L2(Ω)‖z(T, ·)‖L2(Ω) + ‖v2‖L2(Ω)‖zt(T, ·)‖L2(Ω)

+‖v3‖W−1

2
(Ω)‖z(T, ·)‖W 1

2
(Ω)+‖g‖L1(0,T ;W−1

2
(Ω))‖z‖L∞(0,T ;W 1

2
(Ω)) ≤ C(‖v0‖L2(Ω)

+ ‖v1‖W−1

2
(Ω) + ‖v2‖L2(Ω) + ‖v3‖W−1

2
(Ω) + ‖g‖L1(0,T ;W−1

2
(Ω)))‖m‖L2(Σ0

T
).

Thus by Hanh-Banach extension theorem the functional l can be extended
onto the hole space L2(Σ0

T ), keeping its norm. Applying the Reiz theorem
on representation of a linear functional in Hilbert space we obtain that there
exists a function u(t, x) ∈ L2(Σ0

T ) such that

l(m) = −(u,m)L2(Σ0

T
) ∀ m ∈ F.

Set u(t, x) = 0 (t, x) ∈ Σ1
T . For any (v0, v1) ∈ L2(Ω) ×W−1

2 (Ω) denote by
y(t, x) ∈ YT the unique solution of the following boundary value problem

Py = g in QT , y|Σ1

T
= 0, y|Σ0

T
= u, y(0, x′) = v0(x

′),
∂y

∂x0
(0, x′) = v1(x

′)

(1.55)
which exists by Theorem 1.3. Let us prove that

y(T, ·) = v2,
∂y(T, ·)
∂x0

= v3.

Let function z ∈ XT be a solution of boundary value problem

P ∗z = 0 in QT , z|ΣT
= 0, z(T, ·) = z0, zx0

(T, ·) = z1. (1.56)

Multiplying (1.551) by z scalarly in L2(QT ) and integrating by parts we have

(zx0
(T, ·), y(T, ·))L2(Ω) − (z(T, ·), yx0

(T, ·))L2(Ω) − (
∂z

∂νA
, u)L2(Σ0

T
)

+ (b0z(T, ·), y(T, ·))L2(Ω) − (b0y(0, ·), z(0, ·)L2(Ω)

− (zx0
(0, ·), v0)L2(Ω) + (z(0, ·), v1)L2(Ω) = (g, z)L2(QT ).
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By definition of the functional l we have

(zx0
(T, ·), y(T, ·))L2(Ω) − (z(T, ·), yx0

(T, ·))L2(Ω) + (b0y(T, ·), z(T, ·))L2(Ω)

− (b0v2, z(T, ·))L2(Ω) − (zx0
(T, ·), v2)L2(Ω) − (z(T, ·), v3)L2(Ω) = 0. (1.57)

Since (z0, z1) are an arbitrary functions from the space W 1
2 (Ω)×L2(Ω) equal-

ity (1.57) imply

y(T, ·) = v2, yx0
(T, ·) = v3.

This proves our theorem. �

The Theorem 1.3 and Theorem 1.4 imply

Theorem 1.5. Let (1.5),(1.6) and condition 1.1 be fulfilled. Then there
exists a constant T0 such that for T > T0 and for any initial date v0, v2 ∈
L2(Ω), v1, v3 ∈ W−1

2 (Ω), g ∈ L2(0, T ;W−1
2 (Ω)) there exist a solution of the

problem (1.1)-(1.4) a pair (y, v) ∈ YT × L2(Σ0
T ).

As a example of application of the Theorem 1.5 we consider the problem
of exact boundary controllability of hyperbolic operator which in principal

part be the same as the wave operator � = ∂2

∂t2 −
∑n

i=1
∂2

∂x2

i

. Set

Γ0 = {x′ ∈ Γ|
n
∑

i=1

νi(xi − xi) > 0},

where x ∈ Rn is an arbitrary point.

Let function y(x) satisfy equations

∂2y

∂x2
0

− ∆y +

n
∑

i=0

bi(x
′)
∂y

∂xi
+ c(x′)y = g in QT , (1.58)

y|Σ1

T
= 0, y|Σ0

T
= u, (1.59)

y(0, x′) = v0(x
′),

∂y

∂x0
(0, x′) = v1(x

′), (1.60)

y(T, x′) = v2(x
′),

∂y

∂x0
(T, x′) = v3(x

′). (1.61)

We have
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Theorem 1.6. Let (1.5) be fulfilled. Then there exists a constant T0 such
that for T > T0 and for any initial date v0, v2 ∈ L2(Ω), v1, v3 ∈ W−1

2 (Ω),
g ∈ L2(0, T ;W−1

2 (Ω)) there exist a solution of the problem (1.58)-(1.61) a

pair (y, v) ∈ YT × L2(Σ0
T ).

Proof. We set φ0(x
′) = −∑n

i=1(xi − xi)
2. The short calculations shows,

that function φ0(x
′) satisfy to Condition 1.1. Application of the Theorem

1.5 gives the statement of the Theorem 1.6.�

2. Boundary control by semilinear hyperbolic equations.

We consider the following problem

G(y) =
∂2y

∂t2
− ∂2y

∂x2
+ b1(t, x)

∂y

∂x
+ b2(t, x)

∂y

∂t
− f(t, x, y) = 0 in Q, (2.1)

y(t, 0) = v1(t), y(t, L) = v2(t), (2.2)

y(0, x) = y0(x),
∂y(0, x)

∂t
= y1(x), (2.3)

where y0 ∈W 1
2 (0, L) and y1 ∈ L2(0, L) are given functions. Suppose that we

have the functions y2 ∈ W 1
2 (0, L) and y3 ∈ L2(0, L). It is required to find

v1(t), v2(t) ∈W 1
2 (0, T ) such that at time T the following inequality hold:

y(T, x) = y2(x),
∂y(T, x)

∂t
= y3(x). (2.4)

Thus the solution of the problem (2.1)-(2.4) is a triple of functions (y(t, x),

v1(t), v2(t)) ∈W 1
2 (Q) ×W 1

2 (0, T ) ×W 1
2 (0, T ).

We set K1 = {(t, x) ∈ Q|(L/2− t) ≥ |x−L/2|}, K2 = {(t, x) ∈ Q|(t−T +

L/2) ≥ |x− L/2|}.
We shall assume the following condition:

Condition 2.1. In cone K1 there exists a solution y(t, x) ∈ W 1
2 (K1) of

the Cauchy problem (2.1), (2.3). In cone K2 there exists a solution y(t, x) ∈
W 1

2 (K1) of the Cauchy problem (2.1), (2.4).

We have the following theorem
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Theorem 2.1. Suppose that Condition 2.1 holds, b1, b2 ∈ L∞(Q), f ∈
C1(Q×R1) and that there is a number p ≥ 0 such that

|f(t, x, y)|+
∣

∣

∂f(t, x, y)

∂x

∣

∣+
∣

∣

∂f(t, x, y)

∂t

∣

∣ ≤ C(|y|p + 1),

C1|y|p+1 ≤
∫ y

0

f(t, x, ζ) dζ + C2 ∀ (t, x, y) ∈ Q×R1, C1 > 0.

Then:
a) if T > L, then there exist infinitely many solutions of the problem

(2.1)-(2.4).
b) if T ≤ L, then there exist y0, y1, y2, y3 ∈ W 1

2 (0, L) such that problem
(2.1)-(2.4) has no solutions.

Proof. We set A = (0, 0), B = (0, T ), C = (L, T ), D = (L, 0). We denote
by E = (L/2, L/2), F = (L/2, T − L/2) the vertices of the cones K1 and
K2, by K3, K4 the trapeziums AEFB, DEFC and by S1, S2 the polygonal
line AEFB and DEFC. We claim that for any u ∈ L2(K3), z0 ∈ W 1

2 (S),
z1 ∈ L2(E, F ) there exists a solution z ∈ W 1

2 (K3) ∩ L∞(Q) of the following
problem:

G(z) = u in K3, z|S1
= z0,

∂z

∂x
|[E,F ] = z1 (2.5)

We scalar multiply (2.51) by ∂z
∂xe

Nx in L2(K3). For sufficiently large N we
obtain upon integrating by parts with respect to x and t the a estimate

‖z‖W 1

2
(K3)∩L∞(K3) ≤ c(‖u‖L2(K3) + ‖z0‖p+2

W 1

2
(S1)

+ ‖z1‖L2(E,F ) + 1).

Thus the image of operator

P (z) = (G(z), z|S1
,
∂z

∂x
|[E,F ]).

is closed in the space Y = L2(K3) ×W 1
2 (S) × L2(E, F ).

Let us introduce the operator G1 by formula

G1(z) =
∂2z

∂t2
− ∂2z

∂x2
+ b1(t, x)

∂z

∂x
+ b2(t, x)

∂z

∂t
+ c(t, x)z,

where c ∈ L∞(K3). Let us consider the following boundary problem

G1z = u in K3, z|S1
= z0,

∂z

∂x
|[E,F ] = z1. (2.6)
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For all (u, z0, z1) ∈ Y there exist the unique solution of problem (2.6) which
satisfy the estimate

‖z‖W 1

2
(K3)∪L∞(K3) ≤ c‖(u, z0, z1)‖Y .

Applying the implicit function theorem we find that ImP is open in the space
Y . Thus

ImP = Y.

We construct a solution of the problem (2.1)-(2.4) in the following manner.
In the cones K1, K2 it coincides with the solutions of the problems (2.1),
(2.3) and (2.1), (2.4) which exist by virtue of Condition 2.1.

Let ϕ0, ϕ1 are an arbitrary functions which satisfy the following properties

ϕ0 ∈W 1
2 (E, F ), ϕ0(L/2, L/2) = y(L/2, L/2), ϕ1 ∈ L2(E, F ).

In the trapezium AEFB we set y(t, x) equal to the solution of problem (2.5)
with u = 0, z0 = ϕ0 on [E, F ], z0 = y on [A,E] ∪ [F,B], z1 = ϕ1. To
find y in the trapezium DEFC, we solve the following problem in it that is
analogous to (2.5):

G(y) = 0 in K4, y|S2
= φ2,

∂z

∂x
|[E,F ] = φ1,

where φ2 = φ0(t, x) ∈ [E, F ] and φ2 = y(t, x) ∈ [D,E] ∪ [E,C].�
Condition 2.2 Let f does not depend on t, x and ether

lim
y→+∞

f(y) = −∞, lim
y→−∞

|f(y)| <∞

or
lim

y→+∞

|f(y)| ≤ ∞, lim
y→−∞

f(y) < +∞.

We have

Theorem 2.2. Let T > 3L, b1 = b2 = 0, f(y) ∈ C1(R1) and suppose
that condition 2.2 holds. Then there exists a solution of the problem (2.1) -
(2.4).

Proof. Let ϕ(ζ) ∈ W 1
2 (0, l), ϕ(0) = 0, ψn(τ) = −nτ, τ ∈ [0, τ0], ψn(τ) =

nτ0, τ ∈ [τ0, l], where 0 < τ0 < l. In the region Q1 = (0, l)×(0, l) we consider
the Goursat problem

∂2z

∂τ∂ζ
+ f(z) = 0, z(0, ζ) = ϕ, z(τ, 0) = ψn.
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Let limy→+∞ f(y) = −∞. We claim that under condition 2 there exists
n0(τ0, ϕ) such that problem (2.7) has a solution for all n > n0. We set
fk(z) = f(z), z ∈ (−∞, k), fk(z) = f(k) + f ′(k)(z − k), z ∈ (k,+∞). We
denote by zk the solution of problem (2.7) in which the function f in the
equation is replaced by fk:

∂2zk

∂τ∂ζ
+ f(zk) = 0, zk(0, ζ) = ϕ, zk(τ, 0) = ψn. (2.7)

Using Condition 2.2 it can be shown that there are numbers C and N0

such that for all n > n0, zk(t, x) ≤ C for all (t, x) ∈ Q1. Scalar multiply-
ing equation (2.7) by ∂zk/∂ζ and ∂zk/∂τ in L2(0, l) and using the upper
estimate, we have

‖zk‖W 1

2
(Q1)∩L∞(Q1) ≤ C1(‖ϕ‖W 1

2
(0,l) + ‖ψn‖W 1

2
(0,l) + 1) ∀ k ≥ 0.

Consequently there is a number k0 such that zk is a solution of problem (2.7)
for all k > k0. Let ǫ ∈ (0, T − 3L). We set A = (0, 0), B = (0, L), C =
(0, L+ ǫ), D = (0, T ), E = (L, T ), F = (L, T −L), I = (L, 2L+ ǫ), J = (L, 0).
We denote by M the point of intersection of the characteristics BJ and CI,
and by P the point of intersection of the characteristics CI and DF . The
solution of problem (2.1) - (2.4) is constructed as follows. In the triangles
ABJ and DEF it coincides with the solutions of problems (2.1), (2.3) and
(2.1), (2.4) the existence of which is proved in [55]. To find y in rectangle
BDFI we solve the Goursat problem for equation (2.1) in the triangles JMI
and CPD. The initial data for these problems are already defined on the
intervals [B, J ] and [D,F ], while on the interval [C, I] we set y(t, x) = −N.
According to what has been proved above, we can choose the initial data
on the polygonal lines BMC and IPF such that for some N both Goursat
problems can be solved simultaneously.�æ
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(1993), 205–232.
[24] A.V. Fursikov, O.Yu. Imanuvilov, On ǫ-controllability of the Stokes prob-

lem with distributed control concentrated in a subdomain, Russian Math
Surveys 47 (1992), no. 1, 255–256.

[25] J. Henry, Etude de la contróllabilité de certaines équations paraboliques,
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CHAPTER III

EXACT CONTROLLABILITY FOR

2-D NAVIER-STOKES SYSTEM

Introduction

In this chapter we are concerned on the local exact controllability of the
2-D Navier-Stokes system, defined in a bounded domain Ω ⊂ R2 for the
control distributed on the whole boundary ∂Ω, or on it’s part. The case of
local distributed control is also studied.

The case of the local exact controllability with control distributed on the
part of the boundary Γ1 ⊂ ∂Ω is very interesting from theoretical point of
view, and is important in practice. In this chapter we made only first step
to solve this problem. Namely, the local exact controllability was proved for
control distributed on part of the boundary Γ1 if for complement Γ0 = ∂Ω\Γ1

the following boundary conditions holds

(y(x), ν(x)) |Γ0
= 0, rot y(x)|Γ0

= 0,

where ν- outward normal to ∂Ω , rot y = ∂x2
y1 − ∂x1

y2.
We also consider the local exact controllability when control is a function

u(t, x) in the right hand side of the Navier-Stokes system with support in the
given subdomain ω ⊂ Ω :

suppu ⊂ (0, T )× ω.

The case of the locally distributed control is a basic case of this work. The
results on local exact boundary controllability are deduced from the results
on local exact distributed controllability.

This chapter is organized as follows. In section 1 we state exact control-
lability problems and formulate main results. In section 2 we introduce the
stream function ψ(t, x) and equation for it. Then using this equation and
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96 III. EXACT CONTROLLABILITY FOR 2-D NAVIER-STOKES SYSTEM

implicit function theorem, we reduce our original problem to the case of lin-
ear exact controllability problem. Sections 3-5 is devoted to prove solvability
of this problem. In section 6 we prove main theorems. Note that in §3 we
use the Carleman estimate for parabolic equation

−∂∆ψ

∂t
+ ∆2ψ = f

which is proved in section 7. This Carleman’s estimate is slightly different
from one proved in Chapter I. We close the section by mentioning some
previous works on this subject. The cases of the 2-D and 3-D Navier-Stokes
system with control on the whole boundary were studied in [17], [21] and [20].
The ǫ-controllability of the Stokes system was proved in [23],[24]. There is a
very interesting nonlocal result on 2-D Euler equation due to Coron. In [7]
and [8] for the Euler equation

∂y

∂t
− (y,∇)y = f + u, div y = 0, y(0, ·) = v0

the global ǫ-controllability and for some cases global exact controllability were
proved. Thus additional argument was supplied for J.L. Lions conjecture on
global ǫ-controllability of the Navier-Stokes system. The Coron’s techniques
of proof is qwite different from ours and relies on special structure of nonlinear
term of Euler equation and it’s invertibility respect to time.

1. The statement of the problem and formulation of main results.

1.1. In a bounded domain Ω ⊂ R2 with boundary ∂Ω ∈ C∞ we consider
the Navier-Stokes system

∂ty(t, x)− ∆y(t, x) + (y,∇) y + ∇p(t, x) = f(t, x), (1.1)

div y = ∂x1
y1 + ∂x2

y2 = 0, (1.2)

(t, x) ∈ Q ≡ (0, T ) × Ω, where y(t, x) = (y1(t, x), y2(t, x)) - velocity of fluid,

∇p(t, x) - pressure gradient, ∂t = ∂
∂t , ∂xj

= ∂
∂xj

, (y,∇)y =
∑2

j=1 vj∂xj
y, ∆−

Laplace operator, f = (f1, f2)− density of external forces. We assume that

y(t, x)|t=0 = y0(x), (1.3)

where y0(x) = (y01, y02) is a given initial condition.
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Let Γ0 be an open subset of ∂Ω,

Γ0 ⊂ ∂Ω, Γ1 = ∂Ω\Γ0, Σ = (0, T ) × ∂Ω, Σi = (0, T ) × Γi, (1.4)

i = 0, 1. We set on Σ0 the boundary conditions

(rot y) |Σ0
= 0, (y, ν) |Σ0

= 0, (1.5)

where ν = (ν1, ν2) is a vector field of outward normal to ∂Ω, (y, ν) = y1ν1 +
y2ν2, rot y = ∂x1

y2 − ∂x2
y1.

On the part of the lateral surface Σ1 Dirichlet boundary conditions

y |Σ1
= u, (1.6)

are posed, where u is a boundary value of the vector field y, which in the our
case is a control.

Since ∇p easily can be determinate from (1.1) by f , y below, if we say
about solutions of system (1.1), instead of pair (y,∇p) we are writing y.

Now we can set the problem of exact controllability. Let we have a solution
ŷ ∈ V 1,2(1)(Q) of equation (1.1), (1.2) and initial condition y0 ∈ V 2(Ω)
satisfying the inequality

‖ŷ(0, ·) − y0‖2
V 2(Ω) < ε, (1.7)

where ε > 0 is sufficiently small. Assume that for any connected component
∂Ωj of the boundary ∂Ω the following equalities hold:

∫

∂Ωj

(y0, ν)dσ = 0,

∫

∂Ω

(ŷ, ν)dσ = 0. (1.8)

Moreover the initial datum y0 satisfy the compatibility conditions

rot y0|Γ0
= 0, (y0, ν)|Γ0

= 0. (1.9)

The local exact controllability problem is to find control u ∈W 1,2(1/2)(Σ1),
such that the solution y ∈ V 1,2(1)(Q) of (1.1)-(1.3), (1.5), (1.6) satisfies for
t = T equation

y(t, x)|t=T = ŷ(T, x). (1.10)

Below we will prove
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Theorem 1.1. Let Γ0 be connected in ∂Ω , Γ1 ≡ ∂Ω\Γ0 6= ∅ ( Γ0 ∩Γ1 =
∅), ŷ ∈ V 1,2(1)(Ω) is a given solution (1.1), (1.2), y0 ∈ V 2(Ω) and conditions

(1.8),(1.9),(1.7) are fulfilled with sufficiently small ε > 0. Then one can find
a control u ∈ W 1,2(1/2)(Σ1) such that there exists a solution of the problem
(1.1)-(1.3), (1.5), (1.6) in the space V 1,2(1)(Q) and for t = T satisfy (1.10).

Moreover inequality holds

‖y(t, ·)− ŷ(t, ·)‖2
V 2(Ω) ≤ c exp

{ −k
T − t

}
as t→ T, (1.11)

where c > 0, k > 0 some constants.

Remark 1.1. In particular, the set Γ0 ⊂ ∂Ω may be empty i.e. the

control u from (1.6) can be distributed on the whole lateral boundary Σ.

1.2. Now let us consider the Navier-Stokes equation, governed by dis-

tributed control, concentrated in some fixed subdomain ω ⊂ Ω i.e. the case

of local distributed control. Let Γ0 = ∂Ω , thus Σ0 = Σ , Γ1 = ∅ , Σ1 = ∅.
We replace (1.1) by the equation

∂ty(t, x)− ∆y(t, x) + (y,∇) y + ∇p(t, x) = f(t, x) + u(t, x), (1.12)

where u(t, x) = (u1, u2) is a control, concentrated in the subdomain ω ⊂ Ω :

u(t, x) ≡ χω(x)u(t, x), where χω(x) =

{
1, x ∈ ω,
0, x /∈ ω.

(1.13)

Let ŷ(t, x) ∈ V 1,2(1)(Q) be a given solution of equations (1.1), (1.2) and

y0(x) ∈ V 2(Ω) be initial condition connected with ŷ by inequality (1.7).

To solve exact controllability problem with locally distributed control we

have to construct a control u(t, x) such that solution of the problem (1.12),

(1.2), (1.3), (1.5) for t = T satisfies to equation (1.10).

For ω ⊂ Ω set Qω = (0, T )× ω.

Theorem 1.2. Γ0 = ∂Ω be connected, ŷ(t, x) ∈ V 1,2(1)(Q) be a given

solution of (1.1), (1.2), (1.5) and y0(x) ∈ V 2(Ω) satisfy (1.9), (1.7) with

sufficiently small ε > 0. Then there exists a local distributed control u(t, x) ∈
L2(Q), suppu ⊂ Qω, such that corresponding solution y(t, x) ∈ V 1,2(1)(Q) of

the problem (1.12), (1.2), (1.3), (1.5) exists and satisfy (1.11), (1.10).
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2. Reduction to a linear control problem.

2.1. To get rid of pressure we transform the Navier-Stokes system to
the equation for stream function ψ which is connected with velocity field
y(t, x) = (y1, y2) by equations

∂x1
ψ = −y2, ∂x2

ψ = y1. (2.1)

Application the operator ∂x2
to the first of equations (1.1) and operator −∂x1

to the second one, adding of this two new equations yields the equation for
the stream function:

∂t(−∆ψ(t, x)) + ∆2ψ + ∂x2
((∂x1

ψ)∆ψ)− (∂x1
((∂x2

ψ)∆ψ) = u+ g. (2.2)

In the right-hand-side of (2.2) instead of rot f we substitute u(t, x)+ g(t, x),
where g = rot f and u is a control. Just this form of the right-hand-side
we need below. First of boundary condition (1.5) by virtue of (2.1) can be
rewritten as follows

(−∆ψ)|Σ = 0, Σ = (0, T ) × ∂Ω. (2.3)

The second one is transformed to the equation

∂τψ|Σ = 0, (2.4)

where τ = (τ1, τ2) = (−ν2, ν1) is the vector tangential to the ∂Ω. By this
equality

ψ|∂Ω = const,

and since ∂Ω is a connected set* function ψ can be determined by (2.1) up
to constant arbitraryness. Without the loosing of generality we can assume
that

ψ|Σ = 0. (2.5)

By virtue of (2.1), (1.5) instead of the initial condition (1.3) we have

ψ(t, x)|t=0 = ψ0(x), (2.6)

*Only here,deducing condition (2.5) we used connectedness of ∂Ω. Therefore, below

controllability problem for current function studied without assumption of connectedness

of ∂Ω.
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where ψ0 can be determined by the equalities

∂x1
ψ0 = −y02, ∂x2

ψ0 = y01.

According to (1.9), (2.5) following compatibility conditions should be fulfilled

ψ0|∂Ω = 0, ∆ψ0|∂Ω = 0. (2.7)

Let us assume similarly to the section §1 that a solution ψ̂(t, x) ∈W 1,2(2)(Q)
of (2.2) with u(t, x) ≡ 0 and right-hand-side g ∈ L2(Q) are given. Moreover

the function ψ̂(t, x) satisfies to the boundary conditions (2.4), (2.5) and the
inequality ∥∥∥ψ̂(0, ·)− ψ0(·)

∥∥∥
2

W 3
2 (Ω)

< ε, (2.8)

holds, where parameter ε > 0 is sufficiently small. The local exact control-
lability problem consists in the constructing of such control u(t, x) ∈ L2(Q),
supp u ⊂ Qω, such that the solution of boundary value problem (2.2)-(2.6)
function ψ(t, x) satisfy the condition

ψ(t, x)|t=T = ψ̂(t, x)|t=T . (2.9)

We are looking for solution ψ(t, x) in the following form

ψ(t, x) = w(t, x) + ψ̂(t, x), (2.10)

where w is a new unknown function. Substitution of (2.10) in (2.2) - (2.6)
yields the equation for the function w :

∂t(−∆w(t, x)) + ∆2w +B(ψ̂ + w,w) +B(w, ψ̂) = u(t, x), (2.11)

where
B(ψ, ϕ) = ∂x2

((∂x1
ψ)∆ϕ) − ∂x1

((∂x2
ψ)∆ϕ). (2.12)

This also gives boundary and initial conditions

(−∆w)|Σ = 0, w|Σ = 0, (2.13)

w(t, x)|t=0 = w0. (2.14)

Here w0(x) = ψ0(x) − ψ̂(0, x). By virtue of (2.10), (2.7), (2.8) we have

w0|∂Ω = ∆w0|∂Ω = 0, ‖w0‖2
W 3

2 (Ω) < ε. (2.15)

In sections 2-7 will be proved
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Theorem 2.1. Let ψ̂ ∈ W 1,2(2)(Q) satisfies (2.2) with u ≡ 0, (2.3),
(2.5), and initial condition w0 ∈ W 3

2 (Ω) satisfies (2.15) with sufficiently
small ε > 0. Then one can find such control u ∈ L2(Q), suppu ⊂ (0, T )×ω,
that the corresponding solution w ∈W 1,2(2)(Q) of the problem (2.11) -(2.14)
exists and satisfies equality

w(t, x)|t=T = 0. (2.16)

2.2. To prove Theorem 2.1 we use the theorem on right inverse operator
which was formulated in §4 of the chapter I.

In our case the space X consists of pairs x = (w, u), and operator A(x)
defined by formula (2.11):

A(x) = (−∂t∆w + ∆2w +B(ψ̂ + w,w) +B(w, ψ̂) − u, w|t=0) (2.17)

( the condition w|t=T = 0 and boundary conditions for w are included to the
space X definition. ) The space Z will be determined by set of pairs (2.17).
Set x0 = (0, 0), z0 = (0, 0). Evidently equality (I.4.3) is fulfilled.

To the check of the epimorphism condition of the operator (I.4.4) we write
out equation

A′(x0)x = z.

In our case this equation is as follows:

Lw − u ≡ ∂t(−∆w) + ∆2w +B(ψ,w) +B(w, ψ)− u = f, (2.18)

where u = χωu, the function χω be determined in (1.13),

w|Σ = ∆w|Σ = 0, (2.19)

w|t=0 = w0, w|t=T = 0. (2.20)

Note that if x0 = (0, 0), z0 = (0, 0) then function ψ from (2.18) coincides

with ψ̂. However we will prove solvability of problem (2.18)-(2.20) for an
arbitrary function ψ ∈ W 1,2(1)(Q). This result below give us possibility to
strengthen the statement of the Theorem 2.1. (see Remark 6.1 below.)

Now, let us define the spaces X,Z which corresponding to problems (2.11)-
(2.14) and (2.18)-(2.20). Set

η(t, x) ≡ ηλ(t, x) = (e
4λ
3 ‖β‖

C(Ω̄) − eλβ(x))/(T − t), (2.21)
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where parameter λ > 0 (magnitude of λ will be fixed below), function β(x) ∈
C2(Ω̄) satisfies conditions

∇β(x) 6= 0, ∀x ∈ Ω\w′, (∇β(x), ν(x)) ≤ 0, ∀x ∈ ∂Ω, (2.22)

β(x) ≥ ln 3, ∀x ∈ Ω̄, min
x∈Ω̄

β(x) >
3

4
max
x∈Ω̄

β(x). (2.23)

Here ω′ ⊂⊂ ω ⊂⊂ Ω are subdomains of Ω , ν(x) is outward normal to ∂Ω .
Existence of function β ∈ C2(Ω̄) which satisfies (2.23) proved in Lemma I.1.1.
For validity of (2.23) one has to increase β on sufficiently large constant. Let
κ(t, x) > 0, (t, x) ∈ Q . Set

L2(Q, κ) =




u(t, x), (t, x) ∈ Q : ‖u‖2
L2(Q,κ) ≡

∫

Q

κ2(t, x)u2(t, x)dxdt <∞






(2.24)
Weight functions used below are constructed by means of the function (2.21).
One of such weight functions defined by the formula θeη, where

θ(t, x) = χω(x)(T − t)
1
2 + (1 − χω(x))(T − t), (2.25)

and χω is a characteristic function of the set ω (see (1.13)). We introduce
the space

Y (Q) ≡
{
y(t, x) ∈W 1,2(2)(Q) : y|Σ = ∆y|Σ = 0,

‖y‖2
Y (Q) ≡

∥∥∂t(−∆y) + ∆2y
∥∥2

L2(Q,θeη)
+ ‖y‖2

W 1,2(2)(Q) +

+

∫

Q




∑

|α|≤2

(T − t)2(|α|−1) |Dα
x ∆y|2 +

∑

|α|≤3

(T − t)2|α|−6 |Dα
x y|2



 e2ηdxdt




 ,

(2.26)
where functions θ, η are defined in (2.25), (2.21). Define also

Uω(Q) = {u(t, x) ∈ L2(Q) : supp u ⊂ Qω,

‖u‖2
Uω(Q) ≡

∫

Qω

(T − t)e2η |u|2 dxdt <∞
}
, (2.27)
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where remind Qω = (0, T ) × ω.

To apply the Theorem I.4.1 in order to establish solvability of (2.11),
(2.13), (2.14), (2.16) we define spaces X , Z as follows

X = Y (Q) × Uω(Q), Z = L2(Q, θe
η) × Ŵ 3

2 (Ω), (2.28)

where

Ŵ 3
2 (Ω) =

{
v(x) ∈W 3

2 (Ω) : v|∂Ω = ∆v|∂Ω = 0
}
. (2.29)

We have

Proposition 2.1. Let the spaces X, Y defined in (2.28), operator A(x)
defined by formula (2.17). Then the mapping (2.17) continuously differenti-
ated for any point x0 ∈ X.

Proof. Definition (2.26)-(2.28) of the spaces X, Z implies directly conti-
nuity of the operator

(w, u) → (∂t(−∆w) + ∆2w − u, w|t=0) : X → Z

Being linear this operator belongs to C1(X,Z). The operator B from (2.17)
defined by (2.12) is bilinear one. Thus to prove proposition 2.1 one has to
establish continuity of bilinear operator

B : Y (Q) × Y (Q) → L2(Q, θe
η). (2.30)

Taking into account (2.12), (2.25)-(2.27), we get simple calculations

‖B(ϕ, ψ)‖2
L2(Q,θeη) ≤ c

∫

Q

θ2e2η(|∂x1
ψ|2 |∇∆ϕ|2 + |∇∆ψ|2 |∂x1

ϕ|2)dxdt ≤

≤ c(‖∇ψ‖2
C(Q̄) ‖∇∆ϕ‖2

L2(Q,eη)+‖∇ϕ‖2
C(Q̄)‖∇∆ψ‖2

L2(Q,eη)) ≤ c ‖ψ‖2
Y (Q) ‖ϕ‖

2
Y (Q) .

This estimate proves continuity of the operator (2.30).�

Evidently, equality (I.4.3) holds for mapping (2.17) when x0 = (w0, u0) =
0, z0 = 0. So, to apply Theorem I.4.1 now we have to establish only that
image of operator (I.4.4) coincides with Z. This reduced to the proof of
solvability of problem (2.18)-(2.20) for any (f, w0) ∈ Z. Sections 3-5 are
devoted to achievement of this aim.
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3. Auxiliary extremal problem and solvability of it’s

optimal system

We start to prove the solvability of problem (2.18)-(2.20). Obviously, this
is an ill-posed problem, because the number of boundary conditions on Σ is
unsufficient and there are too much conditions on the time axis. That is why
first of all we reduce it’s solution to solvability of some coercive boundary
problem. To write out it we consider the following extremal problem:

J(w, u) =
1

2

∫

Q

e2η

(T − t)6
w2(t, x)dxdt+

1

2

∫

Qω

(T − t)e2ηu2(t, x)dxdt→ inf ,

(3.1)
where a pair (w, u) satisfy (2.18)-(2.20). The optimality system of problem
(3.1), (2.18)-(2.20) is as follows

L∗p ≡ ∂t(∆p(t, x)) + ∆2p+B∗
2(ψ, p) +B∗

1(p, ψ) = − e2η

(T − t)6
w, (3.2)

p|Σ = ∆p|Σ = 0, (3.3)

χω(x)p(t, x) ≡ (T − t)e2ηu(t, x), (3.4)

where B∗
1(·, ψ), B∗

2(ψ, ·) are operators adjoint formaly to linear operators
B(·, ψ), B(ψ, ·) respectively. By definition (2.12) of operator B(ψ, ϕ) we
have

B∗
1(h, ψ) = ∂x1

(∆ψ∂x2
h) − ∂x2

(∆ψ∂x1
h), (3.5)

B∗
2(ψ, h) = ∆(∂x1

h∂x2
ψ − ∂x2

h∂x1
ψ). (3.6)

To deduce (formally) system (3.2)-(3.4) one can, for example, apply Lagrange
principle (see [1]). Since, the fact that (3.2)-(3.4) is the optimality system of
extremal problem (3.1), (2.18)-(2.20) never used below, here we do not prove
this. Note, that can be obtain as in [21].

Now instead of problem (2.18) - (2.20) we are investigating the problem
(2.18)- (2.20), (3.2)-(3.4). First of all let us get over from (2.18)-(2.20), (3.2)-
(3.4) to the boundary problem with one unknown function p(t, x). For this
we express function w from (3.2) and function u from (3.4) and substitute
these formulas into (2.18). As a result we have the equation for the function
p(t, x)

−L((T − t)6e−2ηL∗p) − (T − t)−1e−2ηχw(x)p = f. (3.7)



III. EXACT CONTROLLABILITY FOR 2-D NAVIER-STOKES SYSTEM 105

The boundary conditions (2.20) we rewrite using (3.2):

−(T − t)6e−2ηL∗p
∣∣
t=0

= w0, −(T − t)6e−2ηL∗p
∣∣
t=T

= 0. (3.8)

Now, let us prove that if parameter λ in the function η ≡ ηλ sufficiently
large the problem (3.7), (3.8), (3.3) has a unique solution. For this we need
the Carleman’s inequality of the following type.

Theorem 3.1. Let function η = ηλ defined in (2.21), function β satisfy
conditions (2.22), (2.23) and functions p, w satisfy (3.2), (3.3), where coef-

ficient ψ from (3.2) belongs to the space W 1,2(2)(Q). Then there exists λ̂ > 0

such that for λ > λ̂ inequality holds

Iλ(p) ≡
∫

Q

((T − t)7 |∂t∆p|2 +
∑

|α|≤2

(T − t)3+2|α| |Dα
x ∆p|2 +

+
∑

|α|≤4

(T − t)2|α| |Dα
x ∆p|2)e−2ηλ

dxdt ≤ c(

∫

Q

(T − t)−6 |w|2 e2ηλ

dxdt+

+

∫

Qw

(T − t)−1 |p|2 e2ηλ

dxdt), (3.9)

where the constant c depends on λ and ‖ψ‖W 1,2(2)(Q). Moreover dependness
of constant c on the second argument is continuous and monotonic.

The proof of this theorem, because of it’s technically awkward will be
given in the end of the paper in the section 7.

To define the generalized solution of problem (3.7), (3.8), (3.3) we intro-
duce the space Φλ by formula

Φλ =




p(t, x) : ‖p‖2
Φλ

≡ Iλ(p) +

∫

Qw

(T − t)−1 |p|2 e2ηλ

dxdt +

+

∫

Q

(T − t)6e−2ηλ |L∗p|2 dxdt <∞, p|Σ = ∆p|Σ = 0




 , (3.10)

where functional Iλ(p) defined in (3.9). Note that traces p|Σ , ∆p|Σ are
correctly defined by virtue of the inequality ‖p‖Φλ

<∞.
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Definition 3.1. Let f ∈ L2(Q, e
ηλ

), w0 ∈ W 2
2 (Ω). Function p(t, x) ∈

Φλ, is called the generalized solution of problem (3.7), (3.8), (3.3) if for any
q ∈ Φλ the inequality

∫

Q

(T − t)6e−2ηλ

L∗p · L∗qdxdt+

∫

Qw

(T − t)−1e2ηλ

pqdxdt =

= −
∫

Q

fqdxdt+

∫

Ω

w0(x)∆q(0, x)dx, (3.11)

holds where operator L∗ defined by formula (3.2).

We have.

Theorem 3.2. Let w0 ∈ W 2
2 (Ω), f ∈ L2(Q, e

ηλ

), where λ > λ̂ and λ̂ is
defined in Theorem 3.1. Then there exists an unique generalized solution p
of the problem (3.7), (3.8), (3.3). Function p satisfies (3.7) in the sense of
distributions theory.

Proof. Let us consider the bilinear form, defined on the space Φλ,

a(p, q) =

∫

Q

(T − t)6e−2ηλ

L∗p · L∗qdxdt+

∫

Qω

(T − t)−1e−2ηλ

pqdxdt.

By virtue of Theorem 3.1 this form is continuous and coercive on Φλ :

a(p, q) ≥ c ‖q‖2
Φλ
.

Obviously, the functional

F (q) = −
∫

Q

fqdxdt+

∫

Ω

w0(x)∆q(0, x)dx,

is continuous on Φλ. So by the Riez theorem on representation of linear
functional there exists an unique solution p ∈ Φλ of the equation (3.2).
Setting in (3.11) q ∈ C∞

0 (Q), we get the equality (3.7) in the distributions
theory sense. �

Now we are fix parameter λ, chosen in Theorem 3.2 till the end of section
6.
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Let p be a generalized solution constructed in Theorem 3.2. Using the
function p we can define function w by equation (3.2). Our aim is to prove
that w is a solution of linear controllability problem (2.18) − (2.201). In
the next section we will show, that w is a solution of boundary problem
(2.18)-(2.201).

4. Properties of the function w.

We start from the following Lemma.

Lemma 4.1. Let p(t, x) be a generalized solution of problem (3.7), (3.8),
(3.3), constructed in Theorem 3.2, and functions p and u defined by (3.2),
and (3.4) respectively. Then

w ∈ L2(Q, (T − t)−3eη), u ∈ L2(Q, (T − t))−3eη), suppu ⊂ Qω,

and estimate
∫

Q

(T − t)−6e2ηw2(t, x)dxdt+

∫

Qω

(T − t)e2ηu2(t, x)dxdt ≤

≤ c(

∫

Q

e2ηf2(t, x)dxdt+

∫

Ω

(w0(x))
2dx), (4.1)

holds where c dependes continuously and monotonicaly on ‖ψ‖W 1,2(2)(Q) only.

Moreover, functions w and u satisfy equation (2.18) in the distribution theory
sense.

Proof. Let us substitute p = q into (3.11), than in virtue (3.2), (3.4)

express (L∗p)
2

by w2, and p2 by u2. Applying to the right-hand-side of the
obtained equality the Cauchy-Bynakovskii estimate, and doing simple trans-
formations we get:

∥∥(T − t)−3eηw
∥∥2

L2(Q)
+
∥∥∥(T − t)

1
2 eηu

∥∥∥
2

L2(Qw)
≤ ε(

∥∥e−ηp
∥∥2

L2(Q)
+

+

∫

Ω

(∆p(0, x))2dx) +
c

ε
(‖eηf‖2

L2(Q) + ‖w0‖2
L2(Ω)). (4.2)

Evidently, magnitude
∫

Ω

(∆p(0, x))2dx can be bounded by the left-hand-

side of inequality (3.9). So, estimating the term with ε in (4.2) by inequality
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(3.9) and setting parameter ε sufficiently small, we obtain (4.1). Relations
(3.2),(3.4) and (3.7) imply (2.18). �

Assume, that

ψ ∈ C∞(Q). (4.3)

We intend to show, that w ∈ W 1,2(2)(Q) and together with (2.18) it
satisfies relations (2.19), (2.20). To prove this we firstly investigate boundary
problem

∆y(t, x) = z(t, x), y|Σ = 0, (4.4)

−∂tz+∆z+∂x1
ψ∂x2

z−∂x2
ψ∂x1

z = g, where g = f+u−B(w, ψ), (4.5)

z|Σ = 0, z|t=0 = ∆w0. (4.6)

We have

Lemma 4.2. Let f ∈ L2(Q, e
η), ψ ∈ C∞(Q̄), ψ|Σ = 0,

w0 ∈W 3
2 (Ω) , w0|∂Ω = 0, ∆w0|∂Ω = 0, (4.7)

and w and u functions from Lemma 4.1. Then there exists the unique solution
(y, z) ∈W 1,2(1)(Q) ×W 1,2(−1)(Q) of problem (4.4)-(4.6).

Proof. Lemma’s assumptions and the definition (2.12) of the operator B
imply

g = f + u−B(w, ψ) ∈ L2(0, T ;W−1
2 (Ω)).

Hence, for the solution of parabolic problem (4.5), (4.6) the inclusion z ∈
W 1,2(−1)(Q) is true. Therefore the solution y of elliptic boundary problem
(4.4) belongs to L2(0, T ;W 3

2 (Ω)). Differentiating (4.4) with respect to vari-
able t, we obtain

∂ty ∈ L2(0, T ;W 1
2 (Ω)).�

Lemma 4.3. Let all assumptions of Lemma 4.2 be fulfilled. Then function

w ∈ W 1,2(1)(Q)

satisfies relations (2.18), (2.19), (2.201).

Proof. To prove this lemma it is sufficiently to show that w ≡ y, where
y is the function constructed in Lemma 4.2. We substitute into (4.51) z =
∆y and g = f + y − B(w, ψ), then multiply obtained equality by q ∈
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W 1,2,(2)(Q) ∩ Φλ which satisfies q|t=T = 0 and integrate by parts in this
equality taking into account (4.42), (4.6). As the result we obtain:

∫

Q

[
y(∂t∆q + ∆2q +B∗

2(ψ, q)) +B∗
1(q, ψ)w

]
dxdt−

∫

Qω

uqdxdt =

=

∫

Q

fqdxdt−
∫

Ω

w0(x)∆q(x)dx. (4.8)

On the other hand we can express in (3.11) L∗p and p by w and u with help
of (3.2),(3.4) and express L∗q using (3.2). This yields :

−
∫

Q

[
w(∂t∆q + ∆2q +B∗

2(ψ, q)) +B∗
1(q, ψ)w

]
dxdt+

∫

Qω

uqdxdt =

= −
∫

Q

fqdxdt−
∫

Ω

w0(x)∆q(x)dx. (4.9)

Adding (4.8),(4.9) we get equality:

∫

Q

(y − w)(∂t∆q + ∆2q +B∗
2(ψ, q))dxdt = 0. (4.10)

The Lemma 4.4, proved below and (4.10) imply y ≡ w. �

Lemma 4.4. For an arbitrary h ∈ L2(Q) there exists the unique solution
q ∈W 1,2(2)(Q) of the problem

∂t∆q + ∆2q +B∗
2(ψ, q) = h, q|Σ = ∆q|Σ = 0, q|t=T = 0. (4.11)

Proof. First of all, let us consider the boundary value problem

∂t∆q + ∆2q = f, q|Σ = ∆q|Σ = 0, q|t=T = 0. (4.12)

To prove its unique solvability we represent problem (4.12) as a superposition
of two boundary value problems

∆q = ϕ, q|Σ = 0;
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∂tϕ+ ∆ϕ = f, ϕ|Σ = 0, ϕ|t=T = ∆q|t=T = 0

and use the classical results on their solvability. Note that resolving operator
R of problem (4.12) act continuously from L2(Q) to W 1,2(2)(Q). We are
looking for solution of problem (4.11) in the following form q = Rf . Sub-
stitution this equality in (4.11) yields the equation for the function f into
L2(Q):

f +B∗
2(ψ,Rf) = h. (4.13)

Operator B∗
2(ψ, ·) : W 1,2(2)(Q) → W 1,2(−1)(Q) defined in (3.6) is continu-

ous. The compactness of imbedding W 1,2(−1)(Q) ⊂⊂ L2(Q) implies that the
operator B∗

2 ◦R : L2(Q) → L2(Q) is compact. Applying to equation (4.13)
Fredholm alternative theorem, and taking into account that index of the op-
erator I +B∗

2 ◦R : L2(Q) → L2(Q) equals zero, we reduce the question on
problem’s (4.11) solvability to the proof of uniqueness only of its solution.

Scaling (4.11) with h = 0 by function q scalarly in L2(Ω) and taking into
account (3.6) after the short calculations we obtain:

−1

2

d

dt

∫

Ω

|∇q(t, x)|2 dx+

∫

Ω

|∇q|2 dx =

∫

Ω

2∑

j=1

((∂xj
∂x1

q)∂x2
ψ−(∂xj

∂x2
q)∂x1

ψ+∂x1
q(∂xj

∂x2
ψ)−∂x2

q(∂xj
∂x1

ψ))∂xj
q)dx

≤ c

∫ 

(
2∑

i,j=1

∣∣∂xi
∂xj

q
∣∣2) 1

2 |∇q| + |∇q|2


 dxdt ≤ (4.14)

≤ c(ε

∫

Ω

2∑

i,j=1

∣∣∂xi
∂xj

q
∣∣2 dx+

1

ε

∫

Ω

|∇q|2 dx).

Since q|Σ = 0 then the following estimate for the Dirichlet problem of
Laplace operator is true:

2∑

i,j=1

∫

Ω

∣∣∂xi
∂xj

q(x, t)
∣∣2 dx ≤ c1

∫

Ω

|∆q(x, t)|2 dx. (4.15)

Substituting (4.15) into right-hand-side of (4.14) and setting parameter ε > 0
sufficiently small we can carry out the term with ∆q from right part to
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left part of the new inequality. Then integrating this inequality respect to
variable t we have

∫

Ω

|∇q(t, x)|2 dx ≤ c

T∫

t

∫

Ω

|∇q(τ, x)|2 dxdτ. (4.16)

Applying to (4.16) the Gronwall’s inequality we obtain q ≡ 0.�

Lemma 4.5. Let all assumptions of the Lemma 4.2 be fulfilled. Then
w ∈W 1,2(2)(Q).

Proof. By virtue of Lemma 4.3 w ∈ W 1,2(1)(Q) . So the function g
defined in (4.5) belongs to L2(Q). Hence, solutions (z, y) of problem (4.5),
(4.6) and (4.4) satisfy conditions z ∈W 1,2(0)(Q), y ∈W 1,2(2)(Q). By Lemma
4.3 y = w. Thus, w ∈ W 1,2(2)(Q).�

Now we get rid of assumption (4.3).

Theorem 4.1. Let f ∈ L2(Q, e
η), ψ ∈ W 1,2(2)(Q), q|Σ = 0 and w0

satisfy (4.7). Then the functions (w, u) from Lemma 4.1 satisfy for any
t ∈ (0, T ) estimates:

‖∇w(t, ·)‖2
L2(Ω)+

t∫

0

‖∆w(t, ·)‖2
L2(Ω) dτ ≤ c(‖∇w0‖2

L2(Ω)+‖u‖2
L2(Q)+‖f‖2

L2(Q)),

(4.17)

‖w‖2
W 1,2(1)(Q) ≤ c(‖f‖2

L2(Q) + ‖w‖2
W 3

2 (Ω)), (4.18)

where constant c dependes on ‖ψ‖W 1,2(2)(Q) only. Moreover w ∈ W 1,2(2)(Q)

and satisfies (2.18), (2.19), (2.201).

Proof. Firstly we prove (4.17) for ψ ∈ C∞(Q̄). In this case the statement
of Lemma 4.3 holds true. Multiplying (2.18) scalarly in L2(Q) by w and
integrating by parts taking into account (2.19), (2.201) and (2.12) we have

1

2
‖∇w(t, ·)‖2

L2(Ω) +

t∫

0

‖∆w(τ, ·)‖2
L2(Ω) dτ ≤

≤ 1

2
‖∇w0‖2

L2(Ω) +
1

2

t∫

0

‖u+ f‖W−1
2 (Ω) ‖∇w‖L2(Ω) dτ +

t∫

0

∫

Ω

B(ψ,w)wdxdτ.

(4.19)
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Taking into account (2.12), integrating by parts and using Cauchy- By-

nakovskii inequality and Sobolev inequality we obtain

∣∣∣∣∣∣

t∫

0

∫

Ω

B(ψ,w)wdxdt

∣∣∣∣∣∣
=

∣∣∣∣∣∣

t∫

0

∫

Ω

(∂x1
w∂x2

ψ − ∂x2
ψ∂x1

w)∆wdxdt

∣∣∣∣∣∣
≤

≤ 1

2

t∫

0

‖∆w‖2
L2(Ω) dt+

1

2

t∫

0

∫

Ω

(|∂x1
w∂x2

ψ|2 + |∂x2
ψ∂x1

w|2)dxdt ≤ (4.20)

≤ 1

2

t∫

0

‖∆w‖2
L2(Ω) dt+

1

2

t∫

0

‖∇ψ‖2
C(Ω̄) ‖∇w‖

2
L2(Ω) dt ≤

1

2

t∫

0

‖∆w‖2
L2(Ω) dt+

+c

t∫

0

‖ψ(t)‖2
W 4

2 (Ω) ‖∆w‖
2
W 4

2 (Ω) dt.

Substituting (4.20) into (4.19), we will have after simple calculations

‖∇w(t, ·)‖2
L2(Ω) +

1

2

t∫

0

‖∆w(τ, ·)‖2
L2(Ω) dτ ≤ (4.21)

≤ ‖∇w0‖2
L2(Ω) +

t∫

0

(‖u(τ, ·)‖2
L2(Ω) + ‖f(τ, ·)‖2

L2(Ω))dτ

+ c

t∫

0

(1 + ‖ψ(τ, ·)‖2
W 4

2 (Ω)) ‖∇w(τ, ·)‖2
L2(Ω) dτ.

The Gronwall’s inequality and (4.21) imply (4.17).

Now let ψ ∈ W 1,2(2)(Q). Let us consider the sequence of ψk ∈ C∞(Q̄)
such that ψk → ψ in W 1,2(2)(Q). Denote by pk the generalized solution with

the coefficient ψ = ψk in definition (2.18) of the operator L. Let wk and uk

are functions constructed by pk with help of formulas (3.2), (3.4). Denote by
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p, w and u the similar functions, which corresponds to the coefficient ψ. By

virtue of (4.1) for functions wk and uk satisfy the inequality

∥∥(T − t)−3eηwk

∥∥2

L2(Q)
+
∥∥∥(T − t)

1
2 eηuk

∥∥∥
2

L2(Qw)
≤ c, (4.22)

where constant c does not dependent on k. Inequality (3.9), written for

functions pk and wk with inequality (4.22) yield:

‖pk‖Φλ
≤ c, (4.23)

where Φλ is the space defined in (3.10). So, without loss of generality we can

assume that

pk ⇁ p̂ weakly in Φλ. (4.24)

By virtue of (4.24) we can pass to the limit in equality (3.11) where p =

pk, ψ = ψk as k → ∞. As a result we get equality (3.11) for (p̂, ψ). The

uniqueness of generalized solution imply p̂ = p. Hence

pk ⇁ p in Φλ, wk ⇁ w in L2(Q, (T − t)−3eη), (4.25)

uk ⇁ u in L2(Q
ω, (T − t)

1
2 eη).

But (4.25), (4.17) imply that

wk ⇁ w in L2(0, T ;W 2
2 (Ω)) and w|Σ ≡ 0. (4.26)

Since w ∈ L2(0, T ;W 2
2 (Ω)), ψ ∈ W 1,2(2)(Q), then ∂xj

w

∈ L2(0, T ;W 1
2 (Ω)), ∂xj

∆ψ ∈ C(0, T ;L2(Ω)). Thus (2.12) imply B(w, ψ) ∈
L2(0, T ;W−δ

2 (Ω)) for any δ > 0, This means that function g defined in (4.5)

belongs to L2(0, T ;W−δ
2 (Ω)). Hence, the solution (y, z) of the problem (4.4)-

(4.6) is from the space W 1,2(2−δ)(Q) ×W 1,2(−δ)(Q). Using the proof of the
Lemma 4.3 with the obvious modification we get w = y ∈ W 1,2(2−δ)(Q).

Again, consider the right hand side of (4.5) we have g ∈ L2(0, T ;L2(Ω)).
This imply that w = y ∈ W 1,2(2)(Q) and w satisfies (2.18), (2.19),(2.201).

The arguments, used above coupled with estimates for elliptic and parabolic

boundary value problems imply (4.18). �
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5. Solvability of linear control problem

and estimation of it’s solution.

The assertion on solvability of linear control problem (2.18)-(2.20) is a
simple corollary of the Theorem 4.1 and Lemma 4.1. Really, by virtue of
Theorem 4.1 the pair (w, u) satisfies (2.18), (2.19), (2.201) and we should
prove validity of (2.202) only.

According to Theorem 4.1 and Lemma 4.1 the inclusions w ∈W 1,2(2)(Q) ⊂
C(0, T ;L2(Ω)), w ∈ L2(Q, (T − t)−3eη) are true. Thus

∥∥∥(T − t)−3eη(t,·)w(t, ·)
∥∥∥

2

L2(Ω)
≤ c(T − t)−1,

where c > 0 certain constant. This estimate yields

‖w(t, ·)‖2
L2(Ω) ≤ c e−

k
(T−t) (5.1)

for some positive k > 0, c > 0. Inequality (5.1), obviously implies (2.202).
The aim of this section is to prove the inclusion w ∈ Y (Q), where Y (Q)

is space (2.26). Below, in every statement of this section we assume, that
assumptions of Theorem 4.1 hold and (w, u) are functions from Lemma 4.1
formulation.

Lemma 5.1. For arbitrary ε ∈ (0, 1) and t ∈ (0, T ) the function w satisfies
inequalities:

∫

Ω

|∇w(t, x)|2 e2η(t,x)

(T − t)4
dx ≤ ε

∫

Ω

|∇∆w(t, x)|2 e2η(t,x)dx+
c√
ε

∫

Ω

|w|2
(T − t)6

e2η(t,x)dx,

(5.2)∫

Ω

|∆w(t, x)|2
(T − t)2

e2η(t,x)dx ≤ ε

∫

Ω

|∇∆w(t, x)|2 e2η(t,x)dx+
c

ε2

∫

Ω

|w|2
(T − t)6

e2η(t,x)dx,

(5.3)
where constant c does not depend on ε, t, w.

Proof. Integrating by parts, by virtue of (2.21) and Cauchy-Bynakovskii
inequality we have

∫

Ω

|∇w(t, x)|2
(T − t)4

e2ηdx = −
∫

Ω

w(2(∇w,∇η) + ∆w)

(T − t)4
e2ηdx =
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= −
∫

Ω

(
(∇w2,∇η) + w∆w

(T − t)4

)
e2ηdx =

∫

Ω

(
w2(2 |∇η|2 + ∆η) − w∆w

(T − t)4

)
e2ηdx ≤

≤
∫

Ω

(
δ1 |∆w)|2
(T − t)2

+
c |w|2

δ1(T − t)6

)
e2ηdx. (5.4)

By similar transformations we obtain

∫

Ω

|∆w(t, x)|2
(T − t)2

e2ηdx = −
∫

Ω

(∇∆w,∇w) + 2∆w(∇w,∇η)
(T − t)2

e2ηdx ≤

≤
∫

Ω

(
δ2
2
|∇∆w|2 +

|∆w|2
2(T − t)2

+
c1 |∇w|2

2δ2(T − t)4

)
e2ηdx.

Carry over to the left part of this inequality the term containing ∆w, we get

∫

Ω

|∆w(t, x)|2
(T − t)2

e2ηdx ≤
∫

Ω

(δ2 |∇∆w|2 +
c1 |∇w|2
δ2(T − t)4

)e2ηdx. (5.5)

We estimate right side of (5.5) with the help of (5.4) and transfer the term
containing |∆w|2 from left side of the obtained inequality to the right side.
As a result we get

∫

Ω

|∆w(t, x)|2
(T − t)2

e2ηdx ≤
∫

Ω



 δ2 |∇∆w|2(
1 − c1δ1

δ2

) +
c1c |w|2

δ1δ2

(
1 − c1δ1

δ2

)
(T − t)6



 e2ηdx.

(5.6)
Setting in (5.6) δ1 = δ2

2c1
and denoting ε = 2δ2 imply (5.3).

Substitution (5.5) into right side of (5.4) and carry- out the term contain-
ing |∇w|2 from right side of obtained inequality to the left side yield:

∫

Ω

|∇w(t, x)|2
(T − t)4

e2ηdx ≤
∫

Ω



 δ1δ2(
1 − c1δ1

δ2

) |∇∆w|2 +
c |w|2

δ1

(
1 − c1δ1

δ2

)
(T − t)6



 e2ηdx.

(5.7)
Setting in (5.7) δ2 = 2δ1c1, and denoting ε = 4c1δ

2
1 we get (5.2). �

We have
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Lemma 5.2. The function w satisfies the estimates

∫

Ω

∑

|α|≤2

|Dαw(t, x)|2 e2η(t,x)dx ≤ c

∫

Ω

e2η(t,x)

(
|∆w(t, x)|2 +

|w(t, x)|2
(T − t)4

)
dx,

(5.8)
∫

Ω

∑

|α|≤3

|Dαw(t, x)|2 e2η(t,x)dx ≤ c

∫

Ω

e2η(t,x)

(
|∇∆w(t, x)|2 +

|w(t, x)|2
(T − t)6

)
dx,

(5.9)
where c does not depend on t, w.

Proof. Set v = eηw. By (2.19)

∆v = q, v|∂Ω = 0, (5.10)

where
g = eη(∆w + 2(∇η,∇w) + (|η|2 + ∆η)w). (5.11)

As consequence of well known estimates for solutions of elliptic boundary
problem applied to (5.10) and also to (5.11), (2.21), (5.4) with δ1 = 1 we get

∫

Ω

∑

|α|≤2

|Dα
x v(t, x)|2 dx ≤ c

∫

Ω

|g|2 dx ≤ c1

∫

Ω

(
|∆w|2 +

|w|2
(T − t)4

)
e2ηdx.

(5.12)
By Leibnitz formula of the product differentiation, (2.26) and (5.4) with

δ = 1 the inequality hold:
∫

Ω

∑

|α|≤2

|Dα
x v(t, x)|2 dx ≥

∫

Ω

∑

|α|≤2

e2η |Dα
xw(t, x)|2 dx

− c

∫

Ω

e2η

(
|∇w|2

(T − t)2
+

|w|2
(T − t)4

)

dx

≥
∫

Ω

∑

|α|≤2

e2η |Dα
xw(t, x)|2 dx− c1

∫

Ω

e2η

(

|∆w|2 +
|w|2

(T − t)4

)

dx. (5.13)

Inequalities (5.12), (5.13) imply (5.8). Applying a known estimate to the
solution v of the problem (5.10) we obtain by arguments similar to (5.12)

∫

Ω

∑

|α|≤3

|Dα
x v(t, x)|2 dx ≤

∫

Ω

∑

|α|≤1

|Dα
x g|2 dx ≤ c1

∫

Ω

(

|∇∆w|2 +
|w|2

(T − t)6

)

e2ηdx.
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Similarly to (5.13) we have

∫

Ω

∑

|α|≤3

|Dα
x v(t, x)|2 dx ≥

≥
∫

Ω

e2η
∑

|α|≤3

|Dα
xw(t, x)|2 dx− c

∫

Ω

e2η

(
|∇∆w|2 +

|w|2
(T − t)6

)
dx.

The two last inequalities imply (5.9). �

Theorem 5.1. Let f ∈ L2(Q, e
η), where η = ηλ, λ is a constant from

Theorem 3.2, ψ ∈ W 1,2(2)(Q), w0 satisfy (4.7). Let p be a generalized solu-
tion (3.7),(3.8), (3.3), functions w and u defined by p using formulas (3.2),
(3.4). Then the pair (w, u) ∈ Y (Q)×Uω(Q) is a solution of problem (2.18)-
(2.20) and inequality

‖w‖2
Y (Q) + ‖u‖2

Uω(Q) ≤ c(

∫

Q

e2η |f(t, x)|2 dxdt+ ‖w0‖2
W 3

2 (Ω)), (5.14)

is true where Y (Q), Uω(Q) are Banach spaces (2.26), (2.27), and constant
c does not depend on w, u, f, w0.

Proof. Multiplying (2.18) by −e2η∆w and integrating in Qτ = (0, τ) ×
Ω, τ ∈ (0, T ) we obtain after simple transformations:

∫

Qτ

e2η

(
1

2
∂t(∆w)2 + |∇∆w|2 − 2∆w(∆w, η2 + ∆η)

)
dxdt =

=

∫

Qτ

(f + u−B(ψ,w)−B(w, ψ)) e2η∆wdxdt. (5.15)

We transform (5.15), bearing in mind (2.21), as follows

∫

Qτ

e2η |∇∆w|2 dxdt+
1

2

∫

Ω

e2η(τ,x) |∆w(τ, x)|2 dx ≤

≤ 1

2

∫

Ω

e2η(0,x) |∆w0(x)|2 dx+

∫

Qτ

(
c |∆w|2
(T − t)2

+
1

2
|∇∆w|2 +

c1 |∆w|2
(T − t)2

+
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+ε(T − t)2
(
|f |2 + |u|2 + |B(ψ,w)|2 + |B(w, ψ)|2

)
+

c2 |∆w|2
ε(T − t)2

)

e2ηdxdt.

(5.16)
Let us throw off the second term from the left part of (5.16) and pass to the
limit as τ → T in the new inequality. Then carry-out the term containing
|∇∆w| from right side of obtained inequality to the left side yields

∫

Q

e2η |∇∆w|2 dxdt ≤ c ‖∆w0‖2
L2(Ω) +

∫

Q

((
c1+

c2
ε

) |∆w|2
(T − t)2

+

+ε(T − t)2
(
|f |2 + |u|2 + |B(ψ,w)|2 + |B(w, ψ)|2

)
e2ηdxdt. (5.17)

Now let us estimate the terms containing the operator B. Taking into
account (2.12) and continuity of the imbedding W 1,2(2)(Q) ⊂ C(Q̄) we get

T 2ε

∫

Q

e2η |B(ψ,w)|2 dxdt ≤ ε ‖∇ψ‖2
C(Q̄) T

2

∫

Q

e2η |∇∆w|2 dxdt ≤

≤ εcT 2 ‖ψ‖2
W 1,2(2)(Q)

∫

Q

e2η |∇∆w|2 dxdt. (5.18)

By (2.12) and the Sobolev imbedding theorem we have

T 2ε

∫

Q

e2η |B(w, ψ)|2 dxdt ≤ εT 2

T∫

0

∫

Ω

‖eη∇w(t, ·)‖2
C(Ω) |∇∆ψ(t, x)|2 dxdt ≤

≤ εT 2 ‖∇∆ψ‖2
L∞(0,T ;L2(Ω))

∫

Q

∑

|α|≤2

|Dα
x (eη∇w(t, x))|2 dxdt ≤

≤ εT 2c ‖ψ‖2
W 1,2(2)(Q)

∫

Q

e2η

( ∑

|α|≤3

|Dα
xw|2 +

1

(T − t)2

∑

|α|≤2

|Dα
xw|2

+
1

(T − t)4
|∇w|2

)
dxdt. (5.19)
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Applying to the right of (5.19) inequality (5.8) multiplied on (T − t)−2 and
estimates (5.9), (5.3) we obtain

T 2ε

∫

Q

e2η |B(w, ψ)|2 dxdt ≤ εT 2c1 ‖ψ‖2
W 1,2(1)(Q)

∫

Q

e2η

(
|∇∆w|2 +

|w|2
(T − t)6

)
dxdt.

(5.20)
Let us set parameter ε ∈ (0, 1) such small, that coefficients in the right sides
of (5.18), (5.20) satisfy conditions

εcT 2 ‖ψ‖2
W 1,2(2)(Q) <

1

8
, εT 2c1 ‖ψ‖2

W 1,2(2)(Q) <
1

8
. (5.21)

Substituting (5.18), (5.20) into right side of (5.17), taking into account (5.21),
(5.3), we obtain

∫

Q

e2η |∇∆w|2 dxdt ≤ c ‖∆w0‖2
L2(Ω) +

∫

Q

e2η

(
1

2
|∇∆w|2 + |f |2 +

+(T − t) |u|2
)
dxdt+ c ‖w0‖2

L2(Ω) ,

By (4.1) this inequality implies the estimate

∫

Q

e2η |∇∆w|2 dxdt ≤ c



‖w0‖2
W 2

2
(Ω) +

∫

Q

e2η |f |2 dxdt



 . (5.22)

Inequalities (5.9), (5.8) multiplied by (T − t)−2, (5.2), (5.22) and (4.1) yield
the estimate

∫

Q

e2η




∑

k=0

(T − t)2k−6
∑

|α|=k

|Dα
xw|2



 dxdt ≤ c



‖w0‖2
W 2

2
(Ω) +

∫

Q

e2η |f |2 dxdt





≤ c




∫

Q

e2η |f |2 dxdt+ ‖w0‖2
W 2

2
(Ω)



 . (5.23)

By virtue of (5.18), (5.20), (5.22), (4.1) equation (2.18) imply the inequality
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∫

Q

e2η
(
∂t (−∆w) + ∆2w − u

)2
dxdt ≤

≤ c

∫

Q

e2η
(
|f |2 + |B(ψ,w)|2 + |B(w, ψ)|2

)
dxdt ≤ (5.24)

≤ c




∫

Q

e2η |f |2 dxdt+ ‖w0‖2
W 2

2 (Ω)



 .

Estimate (5.14) follows from (5.23), (5.24), (4.18), (4.1). �

6. Proof of the main results

Proof of the Theorem 2.1. The reduction of the problem (2.11)-(2.14),
(2.16) to the equation A(x) = z introduced in the Theorem I.4.1 was de-
scribed in details below the formulation of the Theorem 2.1. In addition
condition (I.4.3) is trivially fulfilled for x0 = (0, 0), z0 = (0, 0), continuous
differentiability of the mapping (I.4.2) was checked in Proposition 2.1, and
coincidence of the image of the operator (I.4.4) with the space Z was proved
in Theorem 5.1. Thus, all assumptions of Theorem 2.2 are checked and ac-
cording to this theorem there exists a solution (w, u) ∈ X of the problem
(2.11)-(2.14), (2.16), where X is the space defined in (2.26)-(2.28). Since by
virtue of (2.26), (2.27) W 1,2(2)(Q) × {u ∈ L2(Q) : supp u ⊂ Qω} ⊃ X the
Theorem 2.1 is proved �

Remark 6.1. Since the component w of the solution of the problem
(2.11)-(2.14), (2.16) belongs to space (2.27) the following estimate for the
function w is true:

‖w(t, ·)‖W 3
2 (Ω) ≤ c exp

(
− k

(T − t)

)
as t→ T. (6.1)

Remark 6.2. Besides the solvability of the problem of local controllabil-
ity, proved in Theorem 2.1, the statement on the convergence rate of iteration
process, similar to the rate of convergence of classical Newton’s method holds
true.

More precisely, let (w1, u1) ∈ Y (Q) × Uω(Q) is a solution of the lin-
ear problem (2.18) - (2.20) constructed in the Theorem 5.1 with initial da-

tum ψ = ψ̂, f ≡ 0. We suppose that n + 1−approximation (wn+1, un+1)
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constructed by means of n−approximation (wn, un) with help of formula
wn+1 = wn + yn, where (yn, un+1) is the solution of linear controllability
problem:

L
(
ψ̂ + wn

)
yn ≡ ∂t (−∆yn) + ∆2yn

+B
(
ψ̂ + wn, yn

)
+B

(
yn, ψ̂ + wn

)
= un+1 + fn,

yn|Σ = ∆yn|Σ = 0, yn|t=0 = yn|t=T = 0.

Here un+1 = χωu
n+1 (χω is the function defined in (1.13)) and fn defined

by formula

fn = ∂t (−∆wn) + ∆2wn +B
(
ψ̂ + wn, wn

)
+B

(
wn, ψ̂ + wn

)
.

Applying to indicated iterations the classic estimates of the abstract New-
ton’s method, taking into account estimates obtained in section 5 one can

prove existence of constant c which depends on ‖ψ̂‖W 1,2(2)(Q) such that for

sufficiently small ε from (2.15) the inequality holds

c
(∥∥w − w1

∥∥
Y (Q)

+
∥∥u− u1

∥∥
Uω(Q)

)
< 1

and

∥∥w − wn+1
∥∥

Y (Q)
+
∥∥u− un+1

∥∥
Uω(Q)

≤ c−1
(
c
(∥∥w − w1

∥∥
Y (Q)

+
∥∥u− u1

∥∥
U(Q)

))2n

,

where (w, u) is a solution of the nonlinear controllability problem (2.11)-
(2.14).

To prove the Theorem 1.1 and 1.2 we need in

Lemma 6.1. Let functions ŷ ∈ V 1,2(1)(Q), y0 ∈ V 2(Ω) satisfy conditions

(1.11). Then there exist functions ψ̂ ∈ W 1,2(1)(Q), ψ0 ∈ W 3
2 (Ω), connected

by (2.1) with the functions ŷ, y0 respectively. In addition if ŷ, y0 satisfy the
conditions (1.5), (1.10) and the set Σ0 is connected then functions ψ, ψ0

satisfy (2.8) and

ψ̂
∣∣∣
Σ0

= ∆ψ̂
∣∣∣
Σ0

= 0, ψ0|Γ0
= ∆ψ0|Γ0

= 0. (6.2)
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One can prove the statement of this Lemma by well known methods( see
for example Appendix 1 in [63]).

Proof of the Theorem 1.2. Let ψ̂ ∈ W 1,2(2)(Q), ψ0 ∈ W 3
2 (Ω) are the

functions, constructed by means of ŷ, y0 in Lemma 6.1. This fact imply that
these functions satisfy (2.3), (2.5), (2.7), (2.8) (since Γ0 = ∂Ω). Above, equa-

tion (2.2) for the function ψ̂ with u ≡ 0 g = rot f in right side was deduced
from equations (1.1), (1.2) for the ŷ. Thus all assumptions of Theorem 2.1

are fulfilled for ψ̂ and w0 = ψ̂(0, ·)− ψ0.
Let w be solution of problem (2.11)-(2.14), (2.16), constructed in this

theorem, and function ψ be defined in (2.10). Obviously ψ is a solution of
(2.2),(2.3),(2.5),(2.6),(2.9). Thus y = (y1, y2) constructed by means of ψ
in (2.1) is a solution of (1.15), (1.2), (1.3), (1.5), (1.13). Inequality (1.14)
follows from (6.1). �

The proof of the Theorem 1.1. By virtue of (1.8) we can con-

struct stream functions ψ̂ ∈W 1,2(2)(Q), and ψ0 ∈W 3
2 (Ω) of the vector fields

ŷ ∈ V 1,2(1)(Q) and y0 ∈ V 2(Ω) respectively. Relations (1.5), (1.9) and con-

nectedness of the Γ0 imply (6.2) and by virtue of (1.7) functions ψ0, ψ̂ satisfy
(2.8).

Let G is a bounded domain in R2, which satisfy conditions

Ω ⊂ G, ∂G ∈ C∞, Γ0 ⊂ ∂G, Γ1 ∩ ∂G = ∅.

(To construct G we need to extend Ω across Γ1, preserving Γ0 as a part of the
boundary ∂Ω.) If Θ = (0, T ) ×G, S = (0, T ) × ∂G then Σ0 ⊂ S. Obviously

functions ψ0 ∈ W 3
2 (Ω), ψ̂ ∈ W 1,2(2)(Q), satisfying to (6.2) can be extended

up to the functions ψ0,1 ∈ W 3
2 (G), ψ̂1 ∈ W 1,2(2)(Θ), which in turn satisfy

equations

ψ0,1|∂G = ∆ψ0,1|∂G = 0, ψ̂1

∣∣∣
S

= ∆ψ̂1

∣∣∣
S

= 0,

Moreover
‖ψ0,1 − ψ1(0, ·)‖W 3(G) < cε,

where c is independent on ε form (2.8).

Let us apply to the function ψ̂1 the operator from left-hand-side of (2.2),
and denote by g1 the function which we received as a result.

Obviously g1 ∈ L2(Θ) and g1 is an extension of g from Q up to Θ, where
function g is the result of substitution to the left side of (2.2) of the function

ψ̂.
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Note, that the functions ψ̂1 and w0,1 = ψ0,1 − ψ̂(0, ·) satisfy to the condi-
tions of the Theorem 2.1, where Ω is replaced by G. Let us take ω ⊂ G \ Ω.
Then Theorem 2.1 implies Theorem 1.2 as it was mentioned above. The so-
lution of problem (1.12), (1.2), (1.3), (1.5) constructed in Theorem 1.2 after
the restriction of y(t, x) from Θ on Q will satisfy to all assertions of Theorem
1.1, and boundary control u can be constructed by y with help (1.6).�

7. Carleman’s inequalities.

7.1. Our aim in this section is to prove Theorem 3.1. For this, we get
firstly Carleman inequalities for equations, more simple than (3.2). We start
from heat equation with inverse time

∂tz(t, x) + ∆z(t, x) = f(t, x), (t, x) ∈ Q, z|Σ = 0, (7.1)

where Q = (0, T ) × Ω,Ω ⊂ Rn - bounded domain, with boundary ∂Ω ∈
C∞, Σ = (0, T ) × ∂Ω. Let function γ(t) ∈ C∞(0, T ) satisfy condition

0 < γ(t) ≤ 1, γ(t) =

{
t, t ∈ (0, T0)

T − t, t ∈ (T − T0,T )
, T0 = min(

T

3
,
1

2
). (7.2)

Let ω′ ⊂ ω ⊂ Ω is the subdomain of Ω.
We remind that by Lemma I.1.1 there exist a function

β(x) ∈ C2(Ω), β|∂Ω = 0, (∇β, ν) ≤ 0 ∀x ∈ ∂Ω. (7.3)

and there are no critical points of the function β(x), x ∈ Ω \ ω′ the inequality
holds

min
x∈Ω\ω

|∇β(x)| > 0. (7.4)

Moreover, if to the function β constructed in the Lemma I.1.1 add sufficiently
large constant, the new function will be satisfied conditions (7.3),(7.4) and

β(x) ≥ ln 3, min
x∈Ω̄

β(x) >
3

4
max
x∈Ω̄

β(x). (7.5)

We introduce functions ϕ, α by formulas

ϕ(t, x) = eλβ(x)/γ(t), α = αλ(t, x) =
(
e

4λ
3 ‖β‖C(Ω̄) − eλβ(x)

)
/γ(t), (7.6)

where function α(x) satisfy (7.3)-(7.5),γ -satisfy (7.2), and parameter λ > 0.
We have.
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Theorem 7.1. Let functions z and f satisfy (7.1) and s ≥ −3.* Then

for λ > λ̂,where λ̂ ≥ 1 sufficiently large, the Carleman inequality is true

∫

Q

ϕ2s−1







|∂tz|2 +
∑

i,j=1

∣∣∣∂2
xixj

z
∣∣∣
2



+ λ2ϕ2 |∇z|2 + λ4ϕ4 |z|2


 e−2αλ

dxdt

≤ c




∫

Q

ϕ2s |f(t, x)|2 e−2αλ(t,x)dxdt+

∫

Qω′

λ4ϕ2s+3 |z(t, x)|2 e−2αdxdt



 ,

(7.7)

where Qω′

= (0, T )× ω′, γ, αλ -are functions from (7.2),(7.6), and constant
c > 0 is independent on f, z.

Proof. After change in (7.1) of the unknown function

z(t, x) = ϕ−seαw, (7.8)

we have equalities

L1w + L2w = fλ(t, x), (t, x) ∈ Q, w|Σ = 0, (7.9)

where
L1w = ∆w + λ2ϕ2 |∇β|2w + (s+ α)(∂t ln γ−1)w, (7.10)

L2w = ∂tw − 2λ(ϕ+ s)(∇β,∇w), (7.11)

fλ = ϕ−se−αf +
(
λ (ϕ+ s)∆β + (λ2ϕ (1 − 2s) − s2λ2

)
|∇β|2 . (7.12)

By (7.8) and properties of the function α following relations holds

w|t=0 = w|t=T = 0. (7.13)

We have by (7.9):

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) + 2 (L1w,L2w)L2(Q) = ‖fλ‖2
L2(Q) . (7.14)

By virtue of (7.10), (7.11) we obtain:

(L1w,L2w)L2(Q) = I1 + I2 + I3, (7.15)

*We use later just such s. This condition of course , by change (7.51) cad be weakened.
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where

I1 =

∫

Q

(
∆w + λ2ϕ2 |∇β|2w + (s+ α)

(
∂t ln γ−1

)
w
)
∂twdxdt, (7.16)

I2 = −
∫

Q

2
(
λ2ϕ2 |∇β|2 + (s+ α)

(
∂t ln γ−1

))
wλ (ϕ+ s) (∇β,∇w) dxdt,

(7.17)

I3 = −
∫

Q

(∆w) 2λ (ϕ+ s) (∇β,∇w) dxdt. (7.18)

Let us transform integrals I1, I2, I3. Integration by parts in (7.16), bearing
in mind (7.13), (7.92), gives equality

I1 =

∫

Q

[
−1

2
∂t |∇w|2 +

1

2

(
λ2ϕ2 |∇β|2 + (s+ α)

(
∂t ln γ−1

))
∂tw

2

]
dxdt =

= −
∫

Q

(
λ2ϕ∂tϕ |∇β|2 +

1

2
∂t

(
(s+ α)

(
∂t ln γ−1

)))
|w|2 dxdt. (7.19)

Integrating by parts respect to variable x in (7.17) and taking into account
(7.6) yields:

I2 = −
∫

Q

(
λ2ϕ2 |∇β|2 + (s+ α)

(
∂t ln γ−1

))
λ (ϕ+ s)

(
∇β,∇w2

)
dxdt =

=

∫

Q

{
(3λ4ϕ3 + 2λ3sϕ2) |∇β|4 + λ3ϕ2 (ϕ+ s)

[(
∇β,∇ |∇β|2

)
+

+ |∇β|2 ∆β
]

+
(
∂t ln γ−1

) [
−λ2ϕ (ϕ+ s) |∇β|2 +

+λ2ϕ (s+ α) |∇β|2 + λ (s+ α) (ϕ+ s) ∆β
]}

|w|2 dxdt. (7.20)

Finally, let us transform (7.18):

I3 =

∫

Q

(∇w,∇ (2λ (ϕ+ s) (∇β,∇w))) dxdt+ I31 =

∫

Q

[
(∇w,∇β)

2
2λ2ϕ +



126 III. EXACT CONTROLLABILITY FOR 2-D NAVIER-STOKES SYSTEM

+




n∑

i,j=1

∂2
xixj

β∂xi
w∂xj

w +
1

2

(
∇β,∇ |∇w|2

)


 2λ (ϕ+ s)



 dxdt+ I31 =

=

∫

Q



(∇w,∇β)
2
2λ2ϕ+




n∑

i,j=1

∂2
xixj

β∂xi
w∂xj

w−

−∆β

2
|∇w|2

]
2λ (ϕ+ s) − λ2 |∇β|2 |∇w|2 ϕ

]
dxdt+ I31 + I32, (7.21)

where

I31 = −
∫

Σ

(∇w, ν) 2λ (ϕ+ s) (∇w,∇β) dσdt I32 =

∫

Σ

λ(ϕ+s)|∇w|2(∇β, ν)dσdt.

Since w|Σ = 0,
∂xj

w = ∂νwνj , j = 1, . . . , n,

where, remind, ν = (ν1, . . . , νn) is the outward normal to ∂Ω.
Hence

I33 = I31 + I32 = −
∫

Σ

(∂νw)
2
(∂νβ)λ (ϕ+ s) dxdt ≥ 0, (7.22)

where inequality follows from the definition (7.6) of function ϕ and inequali-
ties (7.5), s ≥ −3. Substitution (7.19)-(7.21) in (7.15), and next substitution
of the obtained inequality in (7.14) yield relation:

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) + 2

∫

Q

(
3λ4ϕ3 |∇β|4 |w|2 − λ2ϕ |∇β|2 |∇w|2 +

+2 (∇w,∇β)
2
λ2ϕ

)
dxdt+ I33 = ‖fλ‖2

L2(Q) +X1, (7.23)

where

X1 = 2

∫

Q

[(
λ2ϕ∂tϕ |∇β|2 +

1

2
∂t

(
(s+ α)

(
∂t ln γ−1

))
− 2λ3sϕ2 |∇β|4 −

−λ3ϕ2 (ϕ+ s)
(
∇β,∇ |∇β|2

)
− λ3ϕ2 (ϕ+ s) |∇β|2 ∆β+
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+λ2ϕ (ϕ+ s)
(
∂t ln γ−1

)
|∇β|2 − λ2ϕ (s+ α)

(
∂t ln γ−1

)
|∇β|2 −

−λ (s+ α) (ϕ+ s)
(
∂t ln γ−1

)
∆β

)
|w|2 + λ (ϕ+ s) [∆β |∇w|2 −

−2

n∑

i,j=1

(
∂2

xixj
β
)

(∂xi
w)
(
∂xj

w
)
]



 dxdt. (7.24)

Estimating (7.12), we get:

‖fλ‖2
L2(Q) ≤ 3

∫

Q

{
ϕ2se−2αf2 + c

(
λ2ϕ2 |∆β|2 + λ4ϕ2 |∇β|4

)
|w|2

}
dxdt.

(7.25)
The definition (7.6) of the functions ψ and α implies the inequalities

|∂tϕ| ≤ cϕ2,
∣∣(s+ α)

(
∂t ln γ−1

)∣∣ ≤ cϕ2,
∣∣∂t

(
(s+ α) ∂t ln γ−1

)∣∣ ≤ cϕ3,
(7.26)

where constant c > 0 is independent on (t, x) ∈ Q̄ and λ > 1. Estimating
(7.24) with the help of (7.26) we obtain

|X1| ≤ c

∫

Q

((
1 + λ3

)
ϕ3 |w|2 + (1 + λϕ) |∇w|2

)
dxdt. (7.27)

Scaling (7.9) by λ2ϕ |∇β|2w scalarly in L2(Q) taking into account (7.10)
and integrating by parts we get

∫

Q

fλλ
2ϕ |∇β|2wdxdt =

∫

Q

(L2w)wλ2ϕ |∇β|2 dxdt+

+

∫

Q

[
λ4ϕ2ϕ |∇β|4w2 + λ2ϕ (s+ α)

(
∂t ln γ−1

)
|∇β|2 w2−

−λ2ϕ |∇β|2 |∇w|2 +
1

2
∆
(
λ2ϕ |∇β|2

)
w2

]
dxdt.

One can rewrite this equality as follows

∫

Q

λ2ϕ |∇β|2 |∇w|2 dxdt =

∫

Q

λ4ϕ3 |∇β|4w2dxdt−X2, (7.28)
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where

X2 =

∫

Q

[
fλλ

2ϕ |∇β|2w − (L2w)wλ2ϕ |∇β|2 −

−λ2ϕ (s+ α)
(
∂t ln γ−1

)
|∇β|2w2 − 1

2

(
λ2ϕ

(
∆ |∇β|2

))
w2−

−λ
2

2
ϕw2

(
2λ
(
∇β,∇ |∇β|2

)
+ λ2 |∇β|4 + λ |∇β|2 ∆β

)]
dxdt.

Let us estimate X2 by means of (7.25), (7.26):

|X2| ≤
1

6
‖L2w‖2

L2(Q) +

+c

∫

Q

(
ϕ2se−2αf2 +

(
λ4ϕ2 + λ2ϕ3 + λ2

(
1 + λ2

)
ϕ
)
w2
)
dxdt. (7.29)

Estimation (7.23) by means of (7.22), (7.27) we yields

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) +

∫

Q

(
6λ4ϕ3 |∇β|4 |w|2 − 2λ2ϕ |∇β|2 |∇w|2

)
dxdt

≤
∫

Q

γ(t)2se−2αf2dxdt+ c

∫

Q

((
1 + λ4

)
ϕ2 +

(
1 + λ3

)
ϕ3
)
|w|2 dxdt+

+

∫

Q

c0 (1 + λ)ϕ |∇β|2 |∇w|2 dxdt+

∫

Qω′

c (1 + λ)ϕ |∇w|2 dxdt. (7.30)

In addition we include |∇β|2 into penultimate term of right side of inequality
(7.30). By virtue of (7.41) this is possible. We express terms in (7.30) which

contains cϕ |∇β|2 |∇w|2 by means of (7.28) and apply (7.29) to the obtained
equality. As a result we have

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) +

∫

Q

(
4 − c0 (1 + λ)

λ2

)
λ4ϕ3 |∇β|4 |w|2 dxdt ≤

≤
(

2 +
c0 (1 + λ)

λ2

)
1

6
‖L2w‖2

L2(Q)+

∫

Q

{ϕ2se−2αf2

(
1 +

(
2 +

c0 (1 + λ)

λ2

))
+
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+

(
1 +

(
2 +

c0 (1 + λ)

λ2

)((
1 + λ4

)
ϕ2 +

(
1 + λ3

)
ϕ3

+λ2
(
1 + λ2

)
ϕ
))

|w|2}dxdt+ c

∫

Qω′

c (1 + λ)ϕ |∇w|2 dxdt. (7.31)

We take λ so large that c0 (1 + λ) /λ2 < 1. Taking into account, that ϕ
dependes on λ exponentially, and increasing λ if it would be necessary, we
see that (7.31) implies inequality

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) +

∫

Q

λ4ϕ3 |∇β|4 |w|2 dxdt ≤

≤ c




∫

Q

ϕ2se−2αf2dxdt+

∫

Qω′

(
λϕ |∇w|2 + λ3ϕ3 |w|2

)
dxdt



 . (7.32)

Multiplication of (7.9) by λϕw scalarly in L2(Q), and the simple calculations,
similar to (7.28), (7.30), yield the estimate
∫

Q

λϕ |∇w|2 dxdt ≤ 1

2c
‖L2w‖2

L2(Q)+3

∫

Q

e2se−2αf2dxdt+c1

∫

Q

λϕ3 |w|2 dxdt,

(7.33)
where the constant c1 defined in (7.32). By virtue of (7.4) inequality

∫

Q

λϕ3 |w|2 dxdt ≤ c1

∫

Q

λϕ3 |∇β|4 |w|2 dxdt+
∫

Qω′

λϕ3 |w|2 dxdt (7.34)

holds. Let us substitute (7.34) in the right part of (7.33), and new inequality
in turn substitute in (7.32). As a result, increasing if it would be necessary
parameter λ, we obtain

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) +

∫

Q

λ4ϕ3 |∇β|4 |w|2 dxdt ≤

≤ c




∫

Q

ϕ2se−2αf2dxdt+

∫

Qω′

λ3ϕ3 |w|2 dxdt



 . (7.35)
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Relations (7.35), (7.4) imply estimate :

‖L1w‖2
L2(Q) + ‖L2w‖2

L2(Q) +

∫

Q

λ4ϕ3 |w|2 dxdt ≤

≤ c




∫

Q

ϕ2se−2αf2dxdt+

∫

Qω′

λ4ϕ3 |w|2 dxdt



 . (7.36)

Estimation of right side of (7.33) by means of (7.36) we yields:

∫

Q

λϕ |∇w|2 dxdt ≤ c




∫

Q

ϕ2se−2αf2dxdt+

∫

Qω′

λ4ϕ3 |w|2 dxdt



 . (7.37)

Multiplying (7.10) by
(√
ϕ
)−1

and estimating (7.36), we get the inequality

∫

Q

ϕ−1 |∆w|2 dxdt ≤ c

∫

Q

(ϕ−1 |L1w|2 +
(
λ4ϕ2 |∇β|4 + cϕ3

)
|w|2)dxdt ≤

≤ c




∫

Q

ϕ2se−2αf2dxdt+

∫

Qω′

λ4ϕ3 |w|2 dxdt



 . (7.38)

By similar arguments, multiplying (7.10) by
(√
λϕ
)−1

and estimating by
means of (7.37) we obtain

∫

Q

ϕ−1 |∂tw|2 dxdt ≤ c




∫

Q

ϕ2se−2αf2dxdt+

∫

Qω′

λ4ϕ3 |w|2 dxdt



 . (7.39)

Note that the following equations are true:

∆
(
ϕ− 1

2w
)

= ϕ− 1
2

(
∆w − λ (∇β,∇w)+

+

(
λ2

4
(∇β)

2 − λ

2
∆β

)
w

)
,

(
ϕ− 1

2w
)∣∣∣

∂Ω
= 0. (7.40)
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Applying to solution ϕ− 1
2w of elliptic boundary problem (7.40) well known

estimates, and then estimating the right part of new inequality by (7.36)-
(7.38) we obtain

∫

Q

n∑

i,j=1

∣∣∣∂2
xixj

(
ϕ− 1

2w
)∣∣∣

2

dxdt ≤ c




∫

Q

γ2se−2αf2dxdt+

∫

Qω′

λ4ϕ3 |w|2 dxdt



 .

(7.41)
Substitution into estimates (7.36)-(7.39),(7.41) w = e−αϕsz, yields (7.7).�

Let us consider the Dirichlet problem for the Laplace operator:

∆p (t, x) = z (t, x) , (t, x) ∈ Q, p|Σ = 0. (7.42)

We have

Theorem 7.2. There exists λ̂ > 1 such, that for any λ > λ̂ and s ≥ −3
solution p of the problem (7.42) satisfies the Carleman estimate

∫

Q



ϕ2s−1
n∑

i,j=1

∣∣∣∂2
xixj

p
∣∣∣
2

+ λϕ2s+1 |∇p|2 + λ4ϕ2s+3 |p|2


 e−2αλ(t,x)dxdt ≤

≤ c




∫

Q

ϕ2se−2αλ |z (t, x)|2 dxdt+

∫

Qω′

λ4ϕ2s+3 |p (t, x)|2 e−2αλ

dxdt



 .

(7.43)

Proof. Making in (7.42) change p = ϕ−seαw, we get equality (7.9) where

L1w = ∆w + λ2ϕ2 |∇β|4w, L2w = −2λ (ϕ+ s) (∇β,∇w) (7.44)

and fλ is defined in (7.12). All terms of operators (7.44) are contained in
operators (7.10), (7.11). So if for these terms form (7.44) to conduct estimates
similar as in the proof of the Theorem 7.1, we obtain (7.43).�

7.2. Let us consider problem (3.2), (3.3) in the cylinder Q = (0, T ) ×
Ω, Ω ⊂ R2 :

∂t∆p (t, x) + ∆2p (t, x) = g −B∗
2 (ψ, p) −B∗

1 (p, ψ) , (7.45)

p|Σ = ∆p|Σ = 0, (7.46)

where ψ ∈ W 1,2(2) (Q) is a given function and operators B∗
2 , B

∗
1 are defined

by equalities (3.5),(3.6). The main statement of the this section is as follows.
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Theorem 7.3. Let functions p, f satisfy (7.45),(7.46). Then there exists

λ̂ > 0 such that for any λ > λ̂ the estimate holds:

J (p) ≡
∫

Q



ϕ−7



|∂t∆p|2 +
2∑

i,j=1

∣∣∣∂2
xixj

∆p
∣∣∣
2



+ ϕ−5 |∇∆p|2 +

+ϕ−3 |∆p|2 +

4∑

k=0

∑

|α|=k

|Dα
xp|2 ϕ−2k



 e−2αλ

dxdt ≤

≤ c

∫

Q

ϕ−6e−2αλ |g|2 dxdt+

∫

Qω′

(
1 + λ13

)
ϕp2e−2αλ

dxdt. (7.47)

Proof. Set

∆p (t, x) = z (t, x) , f = g −B∗
2 (ψ, p) −B∗

1 (p, ψ) . (7.48)

Then, by virtue of (7.45),(7.46) the functions z and f satisfy (7.1) and The-
orem 7.1 implies inequality (7.7) holds with s = 3. Since p and z satisfy
(7.50),(7.46), by virtue of Theorem 7.2 the estimate (7.43) holds with s = 3/2.
The inequalities (7.7) with s = 3 and (7.43) with s = 3/2 imply the estimate

J0(p) ≡
∫

Q

e−2α



ϕ−7



λ−1 |∂t∆p|2 +

2∑

i,j=1

∣∣∣∂2
xixj

∆p
∣∣∣
2



+ λϕ−5 |∇∆p|2 +

+λ4ϕ−3 |∆p|2 + ϕ−4
2∑

i,j=1

∣∣∣∂2
xixj

∆p
∣∣∣
2

+ λϕ−2 |∇p| + λ4 |p|2


 dxdt ≤

≤ c




∫

Q

e−2α
(
|f |2 ϕ−6 + |∆p|2 ϕ−3

)
dxdt

+

∫

Qω′

e−2α
(
λ4 |p|2 + λ4ϕ−3 |∆p|2

)
dxdt



 . (7.49)
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Let ρ (x) ∈ C∞
0 (ω) , ρ (x) ≡ 1 for any x ∈ ω′. The relation holds

∫

Qω′

λ4ϕ−3 |∆p|2 e−2αdxdt ≤
∫

Qω

ρλ4ϕ−3e−2α |∆p|2 dxdt =

=

∫

Qω

λ4p∆
(
ρϕ−3e−α∆p

)
dxdt ≤ (7.50)

≤ c

∫

Qω

(
λ6ϕ−1 |p∆p| + λ5 |p| |∇∆p|ϕ−2 +

∣∣p∆2p
∣∣λ4ϕ−3

)
e−2αdxdt ≤

c

∫

Qω

e−2α
[
ε
(
λ4ϕ−3 |∆p|2 + λϕ−5 |∇∆p|2 + ϕ−7

∣∣∆2p
∣∣2
)
+

1

ε

(
λ8 + λ9

)
ϕp2

]
dxdt.

Substituting (7.50) to the right part of the inequality (7.49), taking in the
obtained inequality parameter ε sufficiently small, and increasing parameter
λ if it would be necessary we get the estimate

J0 (p) ≤ c




∫

Q

e−2αϕ−6 |f |2 dxdt+

∫

Qω

e−2αϕλ9p2dxdt



 , (7.51)

where functional J0 defined in (7.49).
To estimate terms in last sum from the left side of the inequality (7.47)

we write out the identities

∆
(
ϕ−3e−αp

)
= f1,

(
ϕ−3e−αp

)∣∣
Σ

= 0, (7.52)

where

f1 = ϕ−3e−α∆p+ 2
(
∇
(
ϕ−3e−α

)
,∇p

)
+ ∆

(
ϕ−3e−α

)
p. (7.53)

Applying a priori estimates for the Dirichlet boundary problem (7.52) we
have

∫

Q

∑

|α|=3

∣∣Dα
x

(
ϕ−3e−αp

)∣∣2 dxdt ≤ c ‖f1‖2
L2(0,T ;W 1

2 (Ω)) ≤ cλJo (p) . (7.54)
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The Leibnitz rule of the differentiation of functions product applied to the
left side of (7.54) and simple calculations give inequality

∫

Q

e−2αϕ−6
∑

|α|=3

|Dα
xp|2 dxdt ≤ cλ2Jo (p) . (7.55)

By similar argument, substituting ϕ−4 instead of ϕ−3 in (7.52), and summing
with respect to |α| = 4 instead of |α| = 3 in (7.54), we obtain

∫

Q

e−2αϕ−8
∑

|α|=4

|Dα
xp|2 dxdt ≤ cλ4Jo (p) . (7.56)

By estimates (7.51),(7.55),(7.56) for the functional J0(p), defined in (7.49),
imply the inequality

J (p) ≤ c




∫

Q

e−2α
(
1 + λ4

)
ϕ−6 |f |2 dxdt+

∫

Qω

e−2α
(
1 + λ13

)
ϕp2dxdt



 ,

(7.57)
where c depends on λ.

Now we estimate the term B∗
2 +B∗

1 from the definition (7.48) of the func-
tion f . Differentiation of the product in (3.5),(3.6) and short calculation
gives the equation

B∗
1 (p, ψ) +B∗

2 (ψ, p) = (∂x1
∆p) ∂x2

ψ − (∂x2
∆p) ∂x1

ψ+

+2 ((∇∂x1
p) (∇∂x2

ψ) − (∇∂x2
p) (∇∂x1

ψ)) . (7.58)

By virtue of imbedding theorem
∫

Q

e−2αϕ−6
(
1 + λ4

)
|∇∆p|2 |∇ψ|2 dxdt ≤

≤ c ‖ψ‖W 1,2(2)(Q)

∫

Q

e−2αϕ−6
(
1 + λ4

)
|∇∆p|2 dxdt. (7.59)

Applying imbedding theorem again we obtain
∫

Q

e−2αϕ−6
(
1 + λ4

) ∣∣∣∂2
xixj

p
∣∣∣
2 ∣∣∂2

xixk
ψ
∣∣2 dxdt ≤
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≤
(
1 + λ4

)
T∫

0

∥∥∥e−αϕ−3∂2
xixj

p
∥∥∥

2

L4(Ω)

∥∥∂2
xixk

ψ
∥∥2

L4(Ω)
dt ≤

c
(
1 + λ4

)
‖ψ‖2

L∞(0,T ;W 3
2 (Ω))

T∫

0

∥∥∥e−αϕ−3∂2
xixj

p
∥∥∥

W 1
2 (Ω)

∥∥∥e−αϕ−3∂2
xixj

p
∥∥∥

L2(Ω)
dt

≤ c
(
1 + λ4

)
‖ψ‖2

W 1,2(2)(Q)



ελ
∫

Q

e−2α
3∑

k=2

∑

|α|=k

|Dα
xp|2 ϕ−2kdxdt+

+
1

ε

∫

Q

e−2αϕ−6
∣∣∣∂2

xixj
p
∣∣∣
2

dxdt



 . (7.60)

Substitution the expression for f from (7.48) into the right side of (7.57) and
then, application of (7.58) and estimates (7.59),(7.60) yield the inequality

J (p) ≤ c




∫

Q

e−2α
(
1 + λ4

)


ϕ−6 |g|2 + c1ελ

3∑

k=2

∑

|α|=k

|Dα
xp|2 ϕ−2k+

+
c1
ε
ϕ−6

∑

|α|=2

|Dα
xp|2



 dxdt+

∫

Qω

e−2α
(
1 + λ13

)
ϕp2dxdt



 . (7.61)

Taking ε sufficiently small in (7.61) and keeping in mind definition (7.47) of
the functional J we get:

J (p) ≤ c2




∫

Q

e−2α
(
1 + λ4

)


ϕ−6 |g|2 +
c1
ε
ϕ−6

∑

|α|=2

|Dα
xp|2



 dxdt+

+

∫

Qω

e−2α
(
1 + λ13

)
ϕp2dxdt



 . (7.62)

Taking into account (7.47) function’s ϕ definition (7.6) and increasing, if
it would be necessary parameter λ in (7.62), we get from (7.62) inequality
(7.47).�
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We set the initial condition at t0 ∈ (0, T ):

p|t=t0
= p0, (7.63)

for the (7.45), (7.46) where p0 ∈W 3
2 (Ω) satisfies compatibility conditions

p0|∂Ω = ∆p0|∂Ω = 0, (7.64)

and consider the problem (7.45),(7.46),(7.63) in the domain (t, x) ∈ (0, t0)×
Ω.

Lemma 7.2. Let Ω ⊂ R2, ψ ∈ W 1,2(2)(Q), f ∈ L2(Q), p0 ∈ W 3
2 (Ω) and

satisfy (7.64). Then there exists the unique solution p ∈W 1,2(2)((0, t0) × Ω)
of the problem (7.45),(7.46),(7.63) which satisfy the estimate

‖p‖W 1,2(2)((0,t0)×Ω) ≤ c
(
‖p0‖W 3

2 (Ω) + ‖f‖L2((0,t0)×Ω)

)
, (7.65)

where the constant c is independent on p0 and f .

The proof of Lemma 7.2 is similar to Lemma’s 4.4 proof.

Proof of the Theorem 3.1. Denote by R (p) e−2ηλ

the expression in
the left side of equality (3.9):

Iλ (p) ≡
∫

Q

R (p) (t, x) e−2ηλ(t,x)dtdx, (7.66)

where Iλ (p) defined in (3.9). Let T0 ∈ R1 defined in (7.2). For t ∈ (0, T−T0)
functions (T − t) and ηλ from (2.26) are bounded from above and below by
positive constants, which depends on λ only. Therefore, by virtue of (3.2),
(3.3) and estimate (7.65) we have

Iλ (p) =

T∫

T−T0

∫

Ω

R (p) (t, x) e−2ηλ(t,x)dtdx+ ‖p‖2
W 1,2(2)((0,T−T0)×Ω) ≤ (7.67)

≤
T∫

T−T0

∫

Ω

R (p) (t, x) e−2ηλ(t,x)dtdx+c
(
‖p (T − T0, ·)‖2

W 3
2 (Ω) + ‖w‖2

L2((0,T−T0)×Ω)

)
.
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Denote by R1 (p) e−2αλ

the integrand in the left hand side of inequality (7.47)
:

J (p) =

∫

Q

R1 (p) (t, x) e−2αλ(t,x) dxdt, (7.68)

where the functional J(p) defined in (7.47). Relation (7.64) and estimates
for the Dirichlet boundary problem for the Laplace operator we obtain the
inequality

‖p0‖2
W 3

2 (Ω) ≤ c ‖∆p0‖2
W 1

2 (Ω) .

This estimate, trace theorem and definition (7.68) of the function R1 yields

‖p (T − T0, ·)‖2
W 3

2 (Ω) ≤ ‖∆p‖2
W 1,2(2)((T−T0−ε,T−T0)×Ω) ≤

≤
T−T0∫

0

∫

Ω

R1 (p) (t, x) e−2αλ(t,x) dxdt. (7.69)

By virtue of (7.67), (7.69), compearing definitions (2.26), (7.6), of the func-
tions η and α, as well as definitions (7.66),(7.68) of the functions R(p) and
R1(p) we obtain

Iλ (p) ≤ c
(
J(p) + ‖w‖2

L2((0,T−T0)×Ω)

)
. (7.70)

By virtue of (7.45), (3.2) we can replace g by

−e2ηλ(t,x)w/ (T − t)
6

in the estimate (7.47). Then applying the new esti-
mate to the right-hand-side of (7.70) we get (7.49).�


