FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

1999, VOLUME 5, NUMBER 2, PAGES 411-416

On singularity of solution to inverse problems of spectral analysis expressed with equations of mathematical physics

V. V. Dubrovsky
L. V. Smirnova

Abstract

View as HTML     View as gif image    View as LaTeX source

The inverse problem for the Laplacian under the Robin's boundary conditions is considered. We prove the following

Theorem. If qp, p=1,2, are real twice continuously differentiable functions on $ \bar {\Omega } $ and there exists a subsequence ik of positive integers such that || vik(qp) ||L2(S) £ const |lik| b, where vi(qp) are orthonormal eigenfunctions of the operator - D +q in the case of Robin's boundary conditions with the eigenvalues l i, i Î N, and 0 £ b < 4-1 then there exists an infinite subsequence iklm of positive integers such that the conditions

l i (q1) = li (q2),   i ¹ iklm,
vi(q1)|S = vi(q2)|S,   i ¹ iklm,

imply q1=q2.

All articles are published in Russian.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/99/992/99204h.htm
Last modified: July 6, 1999