FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

2002, VOLUME 8, NUMBER 1, PAGES 307-312

$ A^{\land} $-integration of Fourier transformations

Anter Ali Alsayad

Abstract

View as HTML     View as gif image    View as LaTeX source

The following theorems are proved.

\textbf{Theorem 1.} Let $f$ be a function of bounded variation on $\mathbb R$, $f(x) \to 0$ ($x \to \pm\infty$), and $\varphi \in L(\mathbb R)$ be a bounded function. Then
$$
(A^{\land})\int\limits_{\mathbb R} \hat f(x) \Bar{\Hat\varphi}(x)\,dx =
(L)\int\limits_{\mathbb R} f(x) \bar\varphi(x)\,dx.
$$

\textbf{Theorem 2.} Let $f(x) = \sum\limits_{n=-\infty}^{+\infty} \alpha_k e^{ikx}$, where $\alpha_k \in \mathbb C$, $\{ \alpha_k \}$ is a sequence with bounded variation, $\alpha_k \to 0$ ($k \to \pm\infty$), and let $g(x) = \sum\limits_{j=-\infty}^{+\infty} \beta_j e^{ijx}$, where $\sum\limits_{j=-\infty}^{+\infty} |\beta_j| < \infty$. Then
$$
(A)\int\limits_{0}^{2\pi} f(x) \bar g(x)\,dx = \sum_{m=-\infty}^{+\infty} \alpha_m \bar\beta_m
$$
and
$$
(A)\int\limits_{0}^{2\pi} f(x) g(x)\,dx = \sum_{m=-\infty}^{+\infty} \alpha_m \beta_{-m}.
$$

All articles are published in Russian.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/k02/k021/k02124t.htm.
Last modified: July 5, 2002