FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

2005, VOLUME 11, NUMBER 1, PAGES 141-158

Kähler geometry of hyperbolic type on the manifold of nondegenerate m-pairs

V. V. Konnov

Abstract

View as HTML     View as gif image

A nondegenerate m-pair (A, X) in an n-dimensional projective space RPn consists of an m-plane A and an (n - m - 1)-plane X in RPn, which do not intersect. The set $\mathfrak Nmn$ of all nondegenerate m-pairs RPn is a 2(n - m)(n - m - 1)-dimensional, real-complex manifold. The manifold $\mathfrak Nmn$ is the homogeneous space $\mathfrak Nmn = GL(n + 1, R)/GL(m + 1, R) × GL (n - m, R)$ equipped with an internal Kähler structure of hyperbolic type. Therefore, the manifold $\mathfrak Nmn$ is a hyperbolic analogue of the complex Grassmanian CGm,n = U(n + 1)/U(m + 1) × U(n - m). In particular, the manifold of 0-pairs $\mathfrak N0n = GL(n + 1, R)/GL(1, R) × GL(n, R)$ is a hyperbolic analogue of the complex projective space CPn = U(n + 1)/U(1) × U(n). Similarly to CPn, the manifold $\mathfrak N0n$ is a Kähler manifold of constant nonzero holomorphic sectional curvature (relative to a hyperbolic metrics). In this sense, $\mathfrak N0n$ is a hyperbolic spatial form. It was proved that the manifold of 0-pairs $\mathfrak N0n$ is globally symplectomorphic to the total space T*RPn of the cotangent bundle over the projective space RPn. A generalization of this result is as follows: the manifold of nondegenerate m-pairs $\mathfrak Nmn$ is globally symplectomorphic to the total space T*RGm,n of the cotangent bundle over the Grassman manifold RGm,n of m-dimensional subspaces of the space RPn.

In this paper, we study the canonical Kähler structure on $\mathfrak Nmn$. We describe two types of submanifolds in $\mathfrak Nmn$, which are natural hyperbolic spatial forms holomorphically isometric to manifolds of 0-pairs in RPm+1 and in RPn - m, respectively. We prove that for any point of the manifold $\mathfrak Nmn$, there exist a 2(n - m)-parameter family of 2(m + 1)-dimensional hyperbolic spatial forms of first type and a 2(m + 1)-parameter family of 2(n - m)-dimensional hyperbolic spatial forms of second type passing through this point. We also prove that natural hyperbolic spatial forms of first type on $\mathfrak Nmn$ are in bijective correspondence with points of the manifold $\mathfrak Nm+1n$ and natural hyperbolic spatial forms of second type on $\mathfrak Nmn$ are in bijective correspondence with points of the manifolds $\mathfrak Nm-1n$.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/k05/k051/k05105h.htm
Last modified: April 27, 2005