FUNDAMENTALNAYA
I PRIKLADNAYA MATEMATIKA
(FUNDAMENTAL AND APPLIED MATHEMATICS)
2005, VOLUME 11, NUMBER 2, PAGES 101-113
S. A. Ilyasov
Abstract
View as HTML
View as gif image
In this paper, we consider the problem of algorithmically constructing the left syzygy module for a finite system of elements in an automaton monomial algebra. The class of automaton monomial algebras includes free associative algebras and finitely presented algebras. In such algebras the left syzygy module for a finite system of elements is finitely generated. In general, the left syzygy module in an automaton monomial algebra is not finitely generated. Nevertheless, the generators of the left syzygy module have a recursive specification with the help of regular sets. This allows one to solve many algorithmic problems in automaton monomial algebras. For example, one can solve linear equations, recognize the membership in a left ideal, and recognize zero-divisors.
Main page | Contents of the journal | News | Search |
Location: http://mech.math.msu.su/~fpm/eng/k05/k052/k05207h.htm
Last modified: June 9, 2005