FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

2006, VOLUME 12, NUMBER 3, PAGES 141-150

Distributive extensions of modules

A. A. Tuganbaev

Abstract

View as HTML     View as gif image

Let X be a submodule of a module M. The extension X Í M is said to be distributive if X Ç (Y + Z) = X Ç Y + X Ç Z for any two submodules Y and Z of M. We study distributive extensions of modules over not necessarily commutative rings. In particular, it is proved that the following three conditions are equivalent: (1) XA Í MA is a distributive extension; (2) for any submodule Y of the module M, no simple subfactor of the module X/(X Ç Y) is isomorphic to any simple subfactor of Y/(X Ç Y) (3) for any two elements x Î X and m Î M, there does not exist a simple factor module of the cyclic module xA/(X Ç mA) that is isomorphic to a simple factor module of the cyclic module mA/(X Ç mA).

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/k06/k063/k06308h.htm
Last modified: July 22, 2006