FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

2008, VOLUME 14, NUMBER 6, PAGES 193-209

Symbol algebras and cyclicity of algebras after a scalar extension

U. Rehmann
S. V. Tikhonov
V. I. Yanchevskii

Abstract

View as HTML     View as gif image

For a field F and a family of central simple F-algebras we prove that there exists a regular field extension E/F preserving indices of F-algebras such that all the algebras from the family are cyclic after scalar extension by E. Let \mathcal A be a central simple algebra over a field F of degree n with a primitive nth root of unity rn. We construct a quasi-affine F-variety Symb(\mathcal A) such that for a field extension L/F Symb(\mathcal A) has an L-rational point if and only if \mathcal A \otimes_F L is a symbol algebra. Let \mathcal A be a central simple algebra over a field F of degree n and K/F be a cyclic field extension of degree n. We construct a quasi-affine F-variety C(\mathcal A, K) such that, for a field extension L/F with the property [KL:L]=[K:F], the variety C(\mathcal A, K) has an L-rational point if and only if KL is a subfield of \mathcal A \otimes_F L.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/k08/k086/k08611h.htm
Last modified: June 4, 2009