FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

2010, VOLUME 16, NUMBER 5, PAGES 93-101

On inhomogeneous Diophantine approximation and Hausdorff dimension

M. Laurent

Abstract

View as HTML     View as gif image

Let G =ZA+Zn Ì Rn be a dense subgroup of rank n+1 and let $ \hat {\omega }(A) $ denote the exponent of uniform simultaneous rational approximation to the generating point A. For any real number $ v\geq \hat {\omega }(A) $, the Hausdorff dimension of the set Bv of points in Rn that are v-approximable with respect to G is shown to be equal to 1/v.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/k10/k105/k10508h.htm
Last modified: May 30, 2011