FUNDAMENTALNAYA I PRIKLADNAYA MATEMATIKA

(FUNDAMENTAL AND APPLIED MATHEMATICS)

2013, VOLUME 18, NUMBER 2, PAGES 119-124

Estimates for the Steiner--Gromov ratio of Riemannian manifolds

V. A. Mishchenko

Abstract

View as HTML     View as gif image

The Steiner--Gromov ratio of a metric space X characterizes the ratio of the minimal filling weight to the minimal spanning tree length for a finite subset of X. It is proved that the Steiner--Gromov ratio of an arbitrary Riemannian manifold does not exceed the Steiner--Gromov ratio of the Euclidean space of the same dimension.

Main page Contents of the journal News Search

Location: http://mech.math.msu.su/~fpm/eng/k13/k132/k13209h.htm
Last modified: January 7, 2014