О мягкости отображений единичного шара борелевских мер*

Ю. В. САДОВНИЧИЙ

Московский государственный университет им. М. В. Ломоносова e-mail: uvs@mail333.com

УДК 515.12

Ключевые слова: функтор, мягкое отображение, AE(0)-пространство, абсолютный экстензор, аксиома Mартина.

Аннотация

Основным результатом работы являются две теоремы. Первая из них утверждает, что функтор U_{τ} переводит 0-мягкие отображения пространств веса $\leqslant \omega_1$ на польские пространства в мягкие отображения. Вторая теорема, являющаяся следствием первой, утверждает, что функтор U_{τ} переводит AE(0)-пространства веса $\leqslant \omega_1$ в AE-пространства. Эти теоремы доказываются в предположении аксиомы Мартина $MA(\omega_1)$.

Распространить эти результаты на пространства веса $\geqslant \omega_2$ нельзя. Для пространств веса ω_1 эти утверждения нельзя получить без дополнительных теоретико-множественных предположений. Так, вопрос о том, является ли пространство $U_{\mathcal{T}}(\mathbb{R}^{\omega_1})$ абсолютным экстензором, нельзя разрешить в аксиоматике ZFC.

Основной результат нельзя перенести на функтор U_R единичного шара радоновых мер. В самом деле, $U_R(\mathbb{R}^{\omega_1})$ не является вещественно полным пространством и, следовательно, $U_R(\mathbb{R}^{\omega_1}) \notin \mathrm{AE}(0)$.

Abstract

Yu. V. Sadovnichii, On soft mappings of the unit ball of Borel measures, Fundamentalnaya i prikladnaya matematika, vol. 9 (2003), no. 4, pp. 41—54.

The main result of this paper is two theorems. One of them asserts that the functor U_{τ} takes the 0-soft mappings between spaces of weight $\leqslant \omega_1$ and Polish spaces to soft mappings. The other theorem, which is a corollary to the first one, asserts that the functor U_{τ} takes the AE(0)-spaces of weight $\leqslant \omega_1$ to AE-spaces. These theorems are proved under Martin's axiom MA(ω_1).

The results cannot be extended to spaces of weight $\geqslant \omega_2$. For spaces of weight ω_1 , these results cannot be obtained without additional set-theoretic assumptions. Thus, the question as to whether the space $U_{\tau}(\mathbb{R}^{\omega_1})$ is an absolute extensor cannot be answered in ZFC

The main result cannot be transferred to the functor U_R of the unit ball of Radon measures. Indeed, the space $U_R(\mathbb{R}^{\omega_1})$ is not real-compact and, therefore, $U_R(\mathbb{R}^{\omega_1}) \notin AE(0)$.

^{*}Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 03-01-00706).

Введение

Основным результатом работы являются теоремы 3.4 и 3.5. Первая из них утверждает, что функтор U_{τ} переводит 0-мягкие отображения пространств веса $\leqslant \omega_1$ на польские пространства в мягкие отображения. Теорема 3.5, являющаяся следствием теоремы 3.4, утверждает, что функтор U_{τ} переводит AE(0)-пространства веса $\leqslant \omega_1$ в AE-пространства. Эти теоремы доказываются в предположении аксиомы Мартина $MA(\omega_1)$. Для функтора P_{τ} соответствующие утверждения доказаны в [6].

Распространить эти результаты на пространства веса $\geqslant \omega_2$ нельзя (замечание 3.6). Для пространств веса ω_1 эти утверждения нельзя получить без дополнительных теоретико-множественных предположений. Так, из предложения 3.7 вытекает, что вопрос о том, является ли пространство $U_{\tau}(\mathbb{R}^{\omega_1})$ абсолютным экстензором, нельзя разрешить в аксиоматике ZFC.

Теоремы 3.4 и 3.5 нельзя перенести на функтор U_R единичного шара радоновых мер. В самом деле, в [5] показано, что $U_R(\mathbb{R}^{\omega_1})$ не является вещественно полным пространством и, следовательно, $U_R(\mathbb{R}^{\omega_1}) \notin AE(0)$.

Параграфы 1 и 2 носят предварительный характер. Здесь приводятся сведения, необходимые для доказательства основных результатов. В частности, в § 2 утверждения теорем 3.4 и 3.5 получены для пространств со счётной базой (теоремы 2.10 и 2.11).

Все пространства предполагаются тихоновскими, все отображения, как правило, непрерывны. Компактами называются бикомпактные хаусдорфовы пространства. Через |A| обозначается мощность множества A. Порядковое число отождествляется с множеством всех предыдущих порядковых чисел.

§ 1. Функтор $U_{ au}$

Пусть $\mathcal{B}(X)-\sigma$ -алгебра всех борелевских множеств пространства X. Борелевской мерой на X называется счётно-аддитивная функция $\mu\colon \mathcal{B}(X)\to [0,+\infty)$. Множество всех борелевских мер на X обозначается через M(X). В дальнейшем борелевские меры будем называть просто мерами. Для $\mu\in M(X)$ мы полагаем $\|\mu\|=\mu(X)$. Мера $\mu\in M(X)$ называется

- 1) вероятностной, если $\|\mu\| = 1$,
- 2) paдоновой, если $\mu(B)=\sup\{\mu(K)\colon K\subset B$ и K есть компакт $\}$ для любого борелевского множества $B\in\mathcal{B}(X)$,
- 3) τ -аддитивной, если $\mu(G_0) = \sup\{\mu(G) \colon G \in \mathcal{G}_0\}$ для любого открытого множества G_0 и любого направленного вверх семейства \mathcal{G}_0 открытых подмножеств X, дающего в сумме множество G_0 ,
- 4) регулярной, если $\mu(B) = \sup \{ \mu(F) \colon F \subset B \text{ и } F \text{ замкнуто} \}.$
- **1.1. Предложение ([10]).** Всякая радонова мера τ -аддитивна, а всякая τ -аддитивная мера регулярна.

Всюду в § 1 предполагаем, что Y есть подпространство пространства X. Пусть $B \in \mathcal{B}(Y)$. Для $\mu \in M(X)$ положим

$$r_Y^X(\mu)(B) = \inf\{\mu(C) \colon C \in \mathcal{B}(X) \text{ и } B \subset C\}.$$
 (1.1)

1.2. Предложение ([10]). Определённая формулой (1.1) функция $r_Y^X(\mu)$ есть мера на Y .

Меру $r_Y^X(\mu)$ будем называть ограничением меры μ на множество Y, а отображение $r_Y^X\colon M(X)\to M(Y)$ — оператором ограничения. Для $\mu\in M(Y)$ и $B\in \mathcal{B}(X)$ положим

$$e_X^Y(\mu)(B) = \mu(B \cap Y). \tag{1.2}$$

1.3. Предложение ([10]). Определённая формулой (1.2) функция $e_X^Y(\mu)$ есть мера на X, причём $\|e_X^Y(\mu)\| = \|\mu\|$.

Меру $e_Y^X(\mu)$ будем называть npoдолжением меры μ с множества Y на множество X, а отображение $e_X^Y\colon M(Y)\to M(X)-$ оператором npoдолжения. Следующее равенство очевидно:

$$r_Y^X \circ e_X^Y = \mathrm{id}_{M(Y)}. \tag{1.3}$$

1.4. Предложение ([10]). Мера $\mu \in M(Y)$ τ -аддитивна тогда и только тогда, когда τ -аддитивна мера $e_X^Y(\mu)$.

Обозначим через $M_{\tau}(X)$, $U_{\tau}(X)$ и $P_{\tau}(X)$ соответственно множество всех τ -аддитивных мер на X, множество всех τ -аддитивных мер на X с $\|\mu\|\leqslant 1$ и множество всех τ -аддитивных вероятностных мер на X. Символы $M_R(X)$, $U_R(X)$ и $P_R(X)$ будут обозначать соответствующие множества радоновых мер на X, а символы $M_r(X)$, $U_r(X)$ и $P_r(X)$ — множества регулярных мер.

на X, а символы $M_r(X)$, $U_r(X)$ и $P_r(X)$ — множества регулярных мер. В силу предложения 1.4 отображение $e_X^Y\colon M(Y)\to M(X)$ порождает отображение $e_X^Y\colon U_\tau(Y)\to U_\tau(X)$. Положим $U_Y^*(X)=\{\mu\in U_\tau(X)\colon \mu(B)=0$ для любого $B\in\mathcal{B}(X)$ с $B\cap Y=\varnothing\}$.

1.5. Предложение ([4]). Верно равенство $e_X^Y \circ r_Y^X|_{U_v^*(X)} = \mathrm{id}$.

Из предложений 1.4 и 1.5 вытекает

$$e_X^Y(U_\tau(Y)) = U_Y^*(X).$$
 (1.4)

Из (1.3) и (1.4) следует

$$r_{\mathbf{V}}^{X}(U_{\mathbf{V}}^{*}(X)) = U_{\tau}(Y).$$
 (1.5)

Пространство X называется абсолютно борелевским множеством, если X является борелевским подмножеством любого (какого-нибудь) своего компактного расширения. Примерами абсолютно борелевских множеств являются локально компактные пространства. Другой класс абсолютно борелевских множеств образуют польские пространства, т. е. сепарабельные пространства, метризуемые полной метрикой. Польское пространство, как и всякое пространство, метризуемое полной метрикой, по теореме Чеха является абсолютным G_δ -множеством.

Вытекающее из (1.4) равенство $e^X_{\beta X}(M_{\tau}(X))=M^*_X(\beta X)$, где βX — стоун-чеховское расширение пространства X, имеет своим следствием следующее утверждение.

1.6. Предложение. Если X — абсолютно борелевское множество, то $M_R(X) = M_{\tau}(X)$ и, следовательно, $U_R(X) = U_{\tau}(X)$ и $P_R(X) = P_{\tau}(X)$.

Для мер на компакте K понятия регулярности, τ -аддитивности и радоновости совпадают. Множество $U_R(K)=U_\tau(K)=U_\tau(K)$ будем обозначать через U(K). Напомним, что *-слабая топология на U(K) задаётся вложением $U(K)\to \mathbb{R}^{C(K)}$, которое отождествляет меру μ с её интегральным представлением $\int :C(K)\to \mathbb{R}$.

Отображения $e^X_{\beta X}\colon U_{ au}(X) \to U^*_X(\beta X)$ и $r^{\beta X}_X\colon U^*_X(\beta X) \to U_{ au}(X)$ обозначим через e^X и r_X соответственно. Из (1.3) вытекает, что отображение e^X является теоретико-множественным вложением. Определим *-слабую топологию на $U_{ au}(X)$, считая e^X топологическим вложением.

Пусть $f\colon X\to Z$ — непрерывное отображение, $\mu\in M(X)$ и $B\in\mathcal{B}(Z)$. Полагая

$$M_{\tau}(f)(\mu)(B) = \mu(f^{-1}(B)),$$
 (1.6)

получаем меру $M_{\tau}(f)(\mu)$ на Z. Равенство (1.6) определяет отображение

$$M(f): M(X) \to M(Z).$$

Очевидно, что $M(f)(U_{\tau}(X))\subset U_{\tau}(Z)$ и $M(f)(U_R(X)\subset U_R(Z))$. Следовательно, равенство (1.6) определяет отображения $U_{\tau}(f)\colon U_{\tau}(X)\to U_{\tau}(Z)$ и $U_R(f)\colon U_R(X)\to U_R(Z)$. Ясно также, что

$$||U_{\tau}(f)(\mu)|| = ||\mu||. \tag{1.7}$$

Кроме того,

$$U_{\tau}(f)(t\mu) = tU_{\tau}(f)(\mu)$$
 для любого $t \in [0,1].$ (1.8)

Отображения $U_{\tau}(f)$ и $U_{R}(f)$ непрерывны. Более того, имеет место следующая теорема.

- **1.7. Теорема ([3]).** Конструкции U_{τ} и U_{R} являются ковариантными функторами, действующими в категории *Tych* и продолжающими функтор $U: \mathit{Comp} \to \mathit{Comp}$.
- **1.8.** Предложение ([4]). Пусть γX компактификация пространства X. Тогда отображения $e^X_{\gamma X}$ и $r^{\gamma X}_X|_{U^*_X(\gamma X)}$ являются взаимно обратными гомеоморфизмами.

Из определения (1.6) вытекает, что если $Y\subset X$ и $i_X^Y\colon Y\to X$ — тождественное вложение, то

$$U_{\tau}(i_X^Y) = e_X^Y. \tag{1.9}$$

Следствием равенства (1.9) и ковариантности функтора U_{τ} является следующее утверждение.

1.9. Предложение. Пусть $f\colon X\to Z$ — непрерывное отображение, а $X_0\subset X$ и $Z_0\subset Z$ — такие подпространства, что $f(X_0)\subset Z_0$. Тогда справедливо равенство $e_Z^{Z_0}\circ U_{\tau}(f_0)=U_{\tau}(f)\circ e_X^{X_0}$, где $f_0=f|_{X_0}$.

Из предложений 1.8 и 1.9 следует утверждение 1.10.

- **1.10.** Предложение. Пусть $f\colon X\to Z$ непрерывное отображение, $\gamma f\colon \gamma X\to \gamma Z$ какая-то его компактификация. Тогда верно равенство $U_{\tau}(f)=r_Z^{\gamma Z}\circ U(\gamma f)\circ e_{\gamma X}^X.$
 - **1.11. Теорема ([3]).** Функтор U_{τ} сохраняет (замкнутые) вложения.

Пусть $\{X_{\alpha},p_{\alpha}^{\beta},A\}$ — обратный спектр, $X=\varprojlim S$, а $\pi_{\alpha}\colon X\to X_{\alpha}$ — предельные проекции спектра S. По теореме 1.7 семейства $U_{\tau}(S)=\{U_{\tau}(X_{\alpha}),U_{\tau}(\pi_{\alpha}^{\beta}),A\}$ и $U_{R}(S)=\{U_{R}(X_{\alpha}),U_{R}(p_{\alpha}^{\beta}),A\}$ также являются обратными спектрами. Обозначим через $R_{S}\colon U_{\tau}(X)\to \varprojlim U_{\tau}(S)$ предел отображений $U_{\tau}(\pi_{\alpha}),\ \alpha\in A$. Аналогично определяется отображение $R_{S}'\colon U_{R}(X)\to \varprojlim U_{R}(S)$.

1.12. Теорема ([3]). Отображения R_S и R_S' являются вложениями. Если $\pi_{\alpha}(X)$ всюду плотно в X_{α} для всякого $\alpha \in A$, то $R_S(U_{\tau}(X))$ всюду плотно в $\varprojlim U_{\tau}(S)$, а $R_S'(U_R(X))$ всюду плотно в $\varprojlim U_R(S)$. Если, кроме того, A счётно, то R_S' является гомеоморфизмом.

Пусть $\mu_0\in U_{\tau}(X)$ и V_1,\dots,V_k — открытые подмножества пространства X. Для $\varepsilon>0$ положим

$$N(\mu_0, V_1, \dots, V_k, \varepsilon) = \{ \mu \in M_\tau(X) \colon \mu(V_i) > \mu_0(V_i) - \varepsilon, \ |\mu(X) - \mu_0(X)| < \varepsilon \}.$$

1.13. Предложение ([2, часть II, п. 2, замечание III]). Множества $N(\mu_0, V_1, \dots, V_k, \varepsilon)$ образуют базу пространства $M_{\tau}(X)$.

Из предложения 1.13 непосредственно вытекает следующее утверждение.

1.14. Предложение. Множества $M_{\tau}^{<\frac{1}{n}}(X) = \left\{ \mu \in U_{\tau}(X) \colon \|\mu\| < \frac{1}{n} \right\}$ образуют базу окрестностей нулевой меры $\bar{0}$.

Говорят, что точка $z\in Z$ есть точка замкнутости отображения $f\colon X\to Z$, если для всякой окрестности $Of^{-1}(z)$ множество $f^\#Of^{-1}(z)$ открыто.

1.15. Предложение. Если отображение $P_{\tau}(f) \colon P_{\tau}(X) \to P_{\tau}(Z)$ является эпиморфизмом, то $\bar{0} \in U_{\tau}(Z)$ является точкой замкнутости отображения $U_{\tau}(f)$.

Доказательство. Пусть O- окрестность меры $\bar{0}=U_{\tau}(f)^{-1}(\bar{0}).$ Согласно предложению 1.14 существует такое n, что $M_{\tau}^{<\frac{1}{n}}(X)\subset O.$ В силу того же предложения 1.14 достаточно показать, что

$$M_{\tau}^{<\frac{1}{n}} \subset U_{\tau}(f)^{\#} M_{\tau}^{<\frac{1}{n}}(X).$$
 (1.10)

Пусть $\mu \in M_{\tau}^{<\frac{1}{n}}(Z)$, т. е. $\|\mu\| < \frac{1}{n}$. Если $\|\mu\| = 0$, т. е. $\mu = \bar{0}$, то $U_{\tau}(f)^{-1}(\mu) = \bar{0}$ $\subset M_{\tau}^{<\frac{1}{n}}(Z)$. Предположим теперь, что $\|\mu\| > 0$. Поскольку $P_{\tau}(f)$ —

эпиморфизм, существует такая мера $\nu \in P_{\tau}(X)$, что $P_{\tau}(f)(\nu) = \frac{\mu}{\|\mu\|}$. Полагая $\nu' = \|\mu\| \cdot \nu$, получаем, что $U_{\tau}(f)(\nu') = \mu$. Для любой другой меры $\lambda \in U_{\tau}(f)^{-1}(\mu)$ имеем в силу (1.7) $\|\lambda\| = \|\mu\|$, и значит, $\lambda \in M_{\tau}^{<\frac{1}{n}}(X)$. Предложение доказано.

1.16. Предложение. Если пространство X имеет свойство Суслина, то $U_{\tau}(X)$ также имеет свойство Суслина.

Доказательство. Пусть v- дизъюнктная система открытых подмножеств пространства X. Для рационального $r\in(0,1]$ положим $M_{\tau}^{=r}(X)=\{\mu\in U_{\tau}(X):\|\mu\|=r\}$. Пространство $M_{\tau}^{=r}(X)$ гомеоморфно $P_{\tau}(X)$. Но $P_{\tau}(X)$ имеет свойство Суслина (см. [6, предложение 2.20]). Следовательно, семейство $v_r=\{V\in v\colon V\cap M_{\tau}^{=r}(X)\neq\varnothing\}$ счётно. В то же время множество $\bigcup_r M_{\tau}^{=r}(X)$ всюду плотно в $U_{\tau}(X)$. Значит, $v=\bigcup_r v_r$ и, следовательно, v счётно. Предложение доказано.

§ 2. Абсолютные экстензоры в категории *Tych* и обратные спектры

Для отображения $f\colon X\to Y$ полагаем $f^*(C(Y))=\{\varphi\circ f\colon \varphi\in C(Y)\}$. Если $X_0\subset X$, то $C(X)|_{X_0}\equiv \{\varphi|_{X_0}\colon \varphi\in C(X)\}$. Подпространство $X_0\subset X$ называется C-вложенным в X, если $C(X)|_{X_0}=C(X_0)$. Под размерностью подразумевается лебегова размерность, определённая посредством конечных конуль-покрытий, т. е. $\dim X=\dim \beta X$. Следующее определение было дано А. Ч. Чигогидзе.

- **2.1.** Определение. Отображение $f\colon X\to Y$ называется n-мягким (в категории Tych), $n=0,1,\ldots,\infty$, если для любого пространства Z размерности $\leqslant n$, любых двух его подпространств $Z_0\subset Z_1$ и любых отображений $g_0\colon Z_0\to X$ и $h\colon Z_1\to Y$, таких что $g^*(C(X))\subset C(Z)|_{Z_0}$, $h^*(C(Y))\subset C(Z)|_{Z_1}$ и $f\circ g=h|_{Z_0}$, существует такое отображение $k\colon Z_1\to X$, что $f\circ k=h, g=k|_{Z_0}$ и $k^*(C(X))\subset C(Z)|_{Z_1}$. Отображение называется мягким, если оно ∞ -мягко.
- **2.2.** Определение. Пространство X назовём AE(n)-пространством (в категории Tych), пишем $X \in AE(n)$, если его постоянное отображение n-мягко. $AE(\infty)$ -пространства называются AE-пространствами или абсолютными экстензорами.
- **2.3. Предложение** ([7]). Отображение $f: X \to Y$ между польскими пространствами n-мягко тогда и только тогда, когда для любого польского пространства Z размерности $\leqslant n$, любого его замкнутого подпространства Z_0 и любых отображений $g: Z_0 \to X$ и $h: Z \to Y$, удовлетворяющих условию $f \circ g = h|_{Z_0}$, существует такое отображение $k: Z \to X$, что $k|_{Z_0} = g$ и $f \circ k = h$.
- **2.4. Предложение** ([7]). Сепарабельное метризуемое пространство является AE(0)-пространством тогда и только тогда, когда оно польское.

- 2.5. Предложение ([7]). Отображение между польскими пространствами 0-мягко тогда и только тогда, когда оно сюръективно и открыто.
- **2.6. Теорема ([1]).** Если f-0-мягкое отображение между польскими пространствами, то отображение $P_{\tau}(f)$ мягко.

Эта теорема сформулирована ([1, теорема 1.2]) в другой форме, эквивалентной данной ввиду предложений 1.6 и 2.5.

Напомним, что R-вес пространства X (обозначается R-w(X)) определяется как наименьшее кардинальное число κ , для которого X допускает C-вложение в \mathbb{R}^{κ} . Отметим, что R-вес определён для любого пространства X, поскольку отображение вычисления $X \to \mathbb{R}^{C(X)}$ является C-вложением.

- **2.7.** Предложение ([7]). Если $X \in AE(0)$, то wX = R-w(X).
- **2.8. Предложение ([7]).** Если $f: X \to Y n$ -мягкое отображение, то $X \in$ $\in AE(n)$ тогда и только тогда, когда $Y \in AE(n)$.

Следующее вспомогательное утверждение очевидно.

- **2.9. Предложение.** Пусть $f \colon X \to Y$ и $g \colon Y \to Z$ отображения, композиция которых $g\circ f$ непрерывна. Пусть в точке $z\in Z$ отображение g замкнуто и взаимно-однозначно. Тогда отображение f непрерывно во всякой точке $x \in f^{-1}(g^{-1}(z)).$
- **2.10. Теорема.** Если $f: X \to Y 0$ -мягкое отображение между польскими пространствами, то отображение $U_{\tau}(f)$ мягко.

Доказательство. Функтор U_{τ} переводит польские пространства в польские [3]. Следовательно, для доказательства мягкости отображения $U_{\tau}(f)$ достаточно проверить, что оно удовлетворяет критерию мягкости из предложения 2.3.

Пусть Z — польское пространство, Z_0 — его замкнутое подмножество, а отображения $g\colon Z_0 \to U_{ au}(X)$ и $h\colon Z \to U_{ au}(Y)$ удовлетворяют условию

$$U_{\tau}(f) \circ g = h|_{Z_0}. \tag{2.1}$$

Нам надо построить отображение $k \colon Z \to U_{\tau}(X)$, удовлетворяющее следующим двум условиям:

$$k|_{Z_0} = g, (2.2)$$

$$k|_{Z_0} = g,$$
 (2.2)
 $U_{\tau}(f) \circ k = h.$ (2.3)

Для произвольного пространства S определяем отображения

$$q_S \colon U_{\tau}(S) \setminus \{\bar{0}\} \to (0,1],$$

 $\pi_S \colon U_{\tau}(S) \setminus \{\bar{0}\} \to P_{\tau}(S)$

равенствами

$$q_S(\mu) = \|\mu\|,\tag{2.4}$$

$$\pi_S(\mu) = \frac{\mu}{\|\mu\|}.\tag{2.5}$$

Из очевидной непрерывности отображения q_S вытекает непрерывность π_S . Далее, из (1.7) вытекает

$$q_X = q_Y \circ U_\tau(f), \tag{2.6}$$

а из очевидного равенства $U_{ au}(f)(t\mu) = tU_{ au}(f)(\mu)$ для всякого $t \in [0,1]$ вытекает

$$P_{\tau}(f) \circ \pi_X = \pi_Y \circ U_{\tau}(f). \tag{2.7}$$

Положим $A=h^{-1}(\bar{0})$ и определим отображения $\alpha_1\colon Z_0\setminus A\to P_{\tau}(X)$ и $\alpha_2\colon Z\setminus A\to P_{\tau}(Y)$ как композиции

$$\alpha_1 = \pi_X \circ q, \tag{2.8}$$

$$\alpha_2 = \pi_Y \circ h. \tag{2.9}$$

Тогда верно равенство

$$P_{\tau}(f) \circ \alpha_1 = \alpha_2|_{Z_0 \setminus A}. \tag{2.10}$$

В самом деле,

$$\begin{split} P_{\tau}(f) \circ \alpha_1 &= P_{\tau}(f) \circ \pi_X \circ g \stackrel{\text{согласно (2.7)}}{=} \pi_Y \circ U_{\tau}(f) \circ g \stackrel{\text{согласно (2.1)}}{=} \\ &= \pi_Y \circ (h|_{Z_0}) \stackrel{\text{согласно (2.9)}}{=} \alpha_0|_{Z_0 \backslash A}. \end{split}$$

Пространство $Z\setminus A$ является польским как открытое подмножество польского пространства Z. Поэтому согласно (2.10) пара отображений (α_1,α_2) удовлетворяет сформулированному в предложении 2.3 критерию мягкости для отображения $P_{\tau}(f)$. Следовательно, из предложения 2.3 и теоремы 2.6 вытекает существование такого отображения $k_1\colon Z\setminus A\to P_{\tau}(X)$, что

$$k_1|_{Z_0 \setminus A} = \pi_X \circ g, \tag{2.11}$$

$$P_{\tau}(f) \circ k_1 = \pi_Y \circ h. \tag{2.12}$$

Определим отображение $k_2 \colon Z \setminus A \to (0,1]$ равенством

$$k_2 = q_Y \circ h. \tag{2.13}$$

Тогда верно равенство

$$k_2|_{Z_0 \setminus A} = q_X \circ g. \tag{2.14}$$

В самом деле,

$$k_2|_{Z_0\backslash A}\stackrel{\text{согласно (2.13)}}{=}q_Y(h|_{Z_0\backslash A})\stackrel{\text{согласно (2.1)}}{=}q_Y\circ U_\tau(f)\circ g\stackrel{\text{согласно (2.6)}}{=}q_X\circ g.$$

Теперь определим отображение $k \colon Z \to U_{\tau}(X)$ следующим образом:

$$k(A) = \bar{0},\tag{2.15}$$

$$k(z) = k_2(z) \cdot k_1(z)$$
 для $z \notin A$. (2.15₁)

Покажем, что k — искомое отображение. Сначала проверим выполнение условий (2.2) и (2.3). Пусть $z\in Z_0$. Если $z\in A$, то $k(z)=\bar 0$ и $h(z)=\bar 0$. Тогда

 $U_{\tau}(f)(g(z))=\bar{0}$ согласно (2.1), откуда $g(z)=\bar{0}$, поскольку $\bar{0}$ является точкой взаимной однозначности отображения $U_{\tau}(f)$. Если же $z\in Z_0\setminus A$, то

$$\begin{split} k(z) &\stackrel{\text{согласно (2.15_1)}}{=} k_2(z) \cdot k_1(z) \stackrel{\text{согласно (2.14)}}{=} q_X(g(z)) \cdot k_1(z) \stackrel{\text{согласно (2.11)}}{=} \\ &= q_X(g(z)) \cdot \pi_X(g(z)) \stackrel{\text{согласно (2.4) и (2.5)}}{=} \|g(z)\| \cdot \frac{g(z)}{\|g(z)\|} = g(z). \end{split}$$

Таким образом, равенство (2.2) проверено.

Остаётся проверить непрерывность отображения k. Но в точках открытого множества $Z\setminus A$ оно непрерывно, поскольку является произведением непрерывных отображений k_1 и k_2 . Непрерывность же отображения k в точках $z\in A$ вытекает из (2.3) и предложений 2.9 и 1.15. Теорема доказана.

2.11. Теорема. Если X — польское пространство, то $U_{\tau}(X)$ есть абсолютный экстензор.

Доказательство. Пусть $f\colon X\to\{0\}$ — постоянное отображение. Согласно предложению 2.4 имеем, что $X\in AE(0)$. Поэтому по определению 2.1 отображение f 0-мягко. Следовательно, в силу теоремы 2.10 отображение $U_{\tau}(f)$ мягко. Но $U_{\tau}(0)$ естественно гомеоморфно отрезку [0,1]. Значит, $U_{\tau}(X)\in AE$ согласно предложению 2.8. Теорема доказана.

Пусть $S=\{X_{\alpha},\pi_{\beta}^{\alpha},\theta\}$ — вполне упорядоченный обратный спектр, и пусть $\gamma<\theta$ — предельный ординал. Положим $S|_{\gamma}=\{X_{\alpha},\pi_{\beta}^{\alpha},\alpha<\gamma\}$. Пусть $\pi_{\alpha,\gamma}\colon \varprojlim(S|_{\gamma})\to X_{\alpha}$ — предельные проекции спектра $S|_{\gamma}$. Тогда существует единственное отображение $\pi^{\gamma}\colon X_{\gamma}\to \varprojlim(S|_{\gamma})$, такое что $\pi_{\alpha,\gamma}\circ\pi^{\gamma}=\pi_{\alpha}^{\gamma},\ \alpha<\gamma$. Спектр S называется *непрерывным*, если для всякого предельного $\gamma<\theta$ отображение π^{γ} является гомеоморфизмом.

Обратный спектр $S=\{X_{\alpha},\pi^{\alpha}_{\beta},A\}$ называется факторизующим, если всякая функция $\varphi\in C(\varprojlim S)$ представляется в виде композиции $\psi\circ\pi_{\alpha}$, где π_{α} предельная проекция спектра $S,\,\psi\in C(X_{\alpha}).$

- **2.12.** Предложение ([8]). Пусть $S = \{X_{\alpha}, \pi^{\alpha}_{\beta}, A\}$ непрерывный спектр, предельные проекции которого сюръективны и открыты, а пространства X_{α} имеют свойство Суслина. Тогда S факторизующий спектр.
- **2.13. Предложение** ([7]). Всякое AE(0)-пространство имеет свойство Суслина.

Говорят, что отображение $f\colon X\to Y$ имеет польское ядро, если существует такое вложение $i\colon X\to Y\times\mathbb{R}^\omega$, что $f=p_Y\circ i$, где $p_Y\colon Y\times\mathbb{R}^\omega\to Y-$ проектирование.

2.14. Теорема ([7]). Пусть $f\colon X\to Y$ — отображение на $\mathrm{AE}(n)$ -пространство со счётной базой. Отображение f является n-мягким тогда и только тогда, когда существует такой факторизующий непрерывный спектр $S_f=\{X_\alpha,\pi_\beta^\alpha,\kappa\}$, что

- (0) $\kappa \leqslant R\text{-}w(X)$,
- (1) $f = \pi_0$,
- (2) $X_{\alpha} \in AE(n)$,
- (3) $\pi_{\alpha}^{\alpha+1}$ *n*-мягко и имеет польское ядро.

Кроме того, можно найти непрерывную направленность $\{A_{\alpha}, \ \alpha \in \kappa\}$ собственных подмножеств κ , вполне упорядоченную по включению, и замкнутые вложения $i_{\alpha}\colon X_{\alpha}\to J^{A_{\alpha}}\times Y$, где J — открытый интервал (0,1), такие что (4) $\pi^{\alpha}_{\beta}=i^{-1}_{\beta}\circ (q^{A_{\alpha}}_{A_{\beta}}\times \mathrm{id}_{Y})\circ i_{\alpha},$

- (5) $A_{\alpha+1} \setminus A_{\alpha}$ счётно.
- **2.15. Теорема ([7]).** Если все короткие проекции $\pi_{\alpha}^{\alpha+1}$ вполне упорядоченного непрерывного спектра n-мягки, то и все его предельные проекции π_{α} n-мягки.

Хорошо известно следующее достаточно очевидное утверждение.

2.16. Предложение. Пусть проекции π^{lpha}_{eta} спектра S открыты. Тогда если его предельные проекции π_{α} сюръективны, то они открыты.

§ 3. Мягкие отображения

Формулировку аксиомы Мартина МА и её версии МА (ω_1) читатель может найти, например, в [6]. Напомним, что аксиома Мартина вытекает из континуум-гипотезы, совместима с её отрицанием, а $MA(\omega_1)$ является следствием $\mathsf{MA} + \neg \mathsf{CH}$. Для кардинального числа κ множество $Y \subset X$ называется G_{κ} -множеством в X, если оно является пересечением $\leqslant \kappa$ открытых множеств. В частности, G_{ω_0} -множества — это G_{δ} -множества.

Обратный спектр S назовём au-непрерывным, если отображение

$$R_S : U_\tau(\lim S) \to \lim U_\tau(S)$$

является гомеоморфизмом.

- **3.1.** Лемма (в предположении МА, [5]). Пусть $S = \{X_{\alpha}, p_{\beta}^{\alpha}, \theta\}$ вполне упорядоченный непрерывный спектр из компактов, где $heta < \mathfrak{c}$ — предельный ординал. Пусть $X=\varprojlim S,\ Y\subset X,\ Y_{\alpha}=p_{\alpha}(Y)$ и $q^{\alpha}_{\beta}=p^{\alpha}_{\beta}|_{Y_{\alpha}}.$ Тогда, если каждое Y_{α} есть $G_{|\theta|}$ -множество в X_{α} и $Y=\bigcap \{p_{\alpha}^{-1}(Y_{\alpha}): \alpha\in\theta\}$, то обратный спектр $T = \{Y_{\alpha}, q_{\beta}^{\alpha}, \theta\}$ является U_{τ} -непрерывным.
- **3.2. Следствие (в предположении МА(\omega_1)).** Утверждение леммы 3.1 справедливо для $\theta = \omega_1$.

Обратный спектр $S' = \{X'_{\alpha}, p'^{\alpha}_{\beta}, A\}$ называется (замкнутым) подспектром спектра $S = \{X_{\alpha}, p_{\beta}^{\alpha}, A\}$, если существует такой морфизм $\Phi = \{\varphi_{\alpha} : \alpha \in A\}$: S' o S, что всякое отображение $\varphi_{\alpha} \colon X'_{\alpha} o X_{\alpha}$ является (замкнутым) вложением. В этом случае отображение

$$\varphi = \underline{\lim} \, \Phi \colon \underline{\lim} \, S' \to \underline{\lim} \, S \tag{3.1}$$

автоматически является замкнутым вложением.

3.3. Лемма. Пусть S' — подспектр спектра S. Тогда

(1) $R_{S'}$ является ограничением отображения R_S на $U_{\tau}(\varprojlim S')$.

Если, кроме того, S' замкнут в S, то

(2) $R_{S'}$ есть замкнутое вложение.

Доказательство. Определим отображение $f\colon \varprojlim U_{\tau}(S') \to \varprojlim U_{\tau}(S)$ как предел морфизма $U_{\tau}(\Phi)\colon U_{\tau}(S') \to U_{\tau}(S)$. Поскольку U_{τ} сохраняет (замкнутые) вложения (теорема 1.11), $P_{\tau}(\Phi)$ является (замкнутым) вложением. Тогда согласно (3.1) отображение f является (замкнутым) вложением. В наших обозначениях условие (1) эквивалентно

$$\varphi \circ R_{S'} = R_S \circ U_\tau(\varphi). \tag{3.2}$$

Пусть π_α и π'_α — предельные проекции спектров $U_\tau(S)$ и $U_\tau(S')$. По определению отображений R_S и $R_{S'}$ имеем

$$U_{\tau}(p_{\alpha}) = \pi_{\alpha} \circ R_S, \tag{3.3}$$

$$U_{\tau}(p_{\alpha}') = \pi_{\alpha}' \circ R_{S'}, \tag{3.4}$$

где p_{α} и p'_{α} — предельные проекции спектров S и S'. По определению отображения $\varphi=\varprojlim\Phi$ мы имеем $\varphi_{\alpha}\circ p'_{\alpha}=p_{\alpha}\circ\varphi$ и, значит,

$$U_{\tau}(\varphi_{\alpha}) \circ U_{\tau}(p'_{\alpha}) = U_{\tau}(p_{\alpha}) \circ U_{\tau}(\varphi). \tag{3.5}$$

Наконец,

$$U_{\tau}(\varphi_{\alpha}) \circ \pi'_{\alpha} = \pi_{\alpha} \circ f, \tag{3.6}$$

поскольку $f = \lim_{\tau \to 0} U_{\tau}(\Phi)$. Используя равенства (3.3)—(3.6), мы получаем, что

$$\pi_{\alpha} \circ f \circ R_{S'} = \pi_{\alpha} \circ R_{S} \circ U_{\tau}(\varphi). \tag{3.7}$$

Поскольку отображения π_{α} , $\alpha \in A$, разделяют точки пространства $U_{\tau}(S)$, равенство (3.7) влечёт выполнение условия (1).

Пусть теперь Φ — замкнутое вложение, а R_S — гомеоморфизм. Тогда $U_{\tau}(\varphi)$ является замкнутым вложением. Отсюда в силу (3.2) следует, что $f \circ R_{S'}$ есть замкнутое вложение. Но тогда вложение $R_{S'}$ также замкнуто.

3.4. Теорема (в предположении МА(\omega_1)). Если f-0-мягкое отображение пространства X веса $\leqslant \omega_1$ на польское пространство Y, то $U_{\tau}(f)$ мягко.

Доказательство. Начнём с того, что

$$X \in AE(0) \tag{3.8}$$

в силу предложений 2.4 и 2.8. Если $wX=\omega_0$, то X есть польское пространство ввиду предложения 2.4. Поэтому $U_{\tau}(f)$ мягко по теореме 2.10.

Пусть теперь $wX=\omega_1$. Тогда $R\text{-}w(X)=\omega_1$ согласно (3.8) и предложению 2.7. Значит, мы можем применить теорему 2.14 и представить f как предельную проекцию π_0 факторизующего непрерывного спектра $S_f=\{X_\alpha,\pi_\alpha^{\alpha+1},\omega_1\}$, состоящего из AE(0)-пространств X_α и 0-мягких проекций $\pi_\alpha^{\alpha+1}$ с польским

ядром. Но тогда все элементы X_{α} спектра S_f имеют счётную базу и, следовательно, являются польскими пространствами по предложению 2.4. Из предложения 1.6 и теоремы 1.12 вытекает непрерывность спектра $U_{\tau}(S_f)$. Пространства этого спектра — абсолютные экстензоры по теореме 2.11, короткие проекции мягки по теореме 2.10. Мы докажем, что $U_{\tau}(S_f)$ удовлетворяет достаточным условиям теоремы 2.14 для $n=\infty$, если мы сможем доказать следующие два утверждения.

- 1° . $U_{\tau}(\pi_{0})$ гомеоморфно предельной проекции ψ_{0} : $\varprojlim U_{\tau}(S_{f}) \to U_{\tau}(Y)$. 2° . $U_{\tau}(S_{f})$ факторизующий спектр.
- Применяя теорему 2.14 к отображению f, мы получаем, что существует замкнутое вложение $\Phi = \{\varphi_\alpha \colon \alpha \in \omega_1\} \colon S_f \to T$, где $T = \{J^{A_\alpha} \times Y, q_{A_\beta}^{A_\alpha} \times \operatorname{id}_Y, \omega_1\}$. Положим $S = \{I^{A_\alpha} \times bY, p_{A_\beta}^{A_\alpha} \times \operatorname{id}_{bY}, \omega_1\}$, где bY— компактное расширение. Очевидно, что пара (S,T) удовлетворяет условиям леммы 3.1, значит, R_T гомеоморфизм. Из леммы 3.3 вытекает, что R_{S_f} замкнутое вложение. Предельные проекции π_α спектра S_f сюръективны, поскольку они 0-мягки в силу теорем 2.14 и 2.15. По теореме 1.12 имеем, что R_{S_f} всюду плотное вложение. Значит, R_{S_f} гомеоморфизм.

Обозначим предельные проекции спектра $U_{\tau}(S_f)$ через ψ_{α} . Тогда (3.4) можно записать в виде $U_{\tau}(\pi_{\alpha}) = \psi_{\alpha} \circ R_{S_f}$, откуда вытекает утверждение 1° .

3.4.1. Утверждение. Проекции ψ_{α} сюръективны.

Доказательство. Пусть $\mu \equiv \mu_{\alpha} \in U_{\tau}(X_{\alpha})$. Нам надо найти такую нить $m = \{\mu_{\beta} \colon \beta \in \omega_{1}\}$ спектра $U_{\tau}(S_{f})$, что $\psi_{\alpha}(m) = \mu_{\alpha}$. Для $\beta < \alpha$ положим $\mu_{\beta} = u_{\tau}(\pi^{\alpha}_{\beta})(\mu_{a})$. Меры μ_{β} для $\beta > \alpha$ определяются трансфинитной рекурсией. Предположим, что они определены для всех $\beta < \alpha$. Если $\gamma = (\gamma - 1) + 1$, то отображение $U_{\tau}(\pi^{\gamma}_{\gamma-1})$ сюръективно, поскольку оно мягко по теореме 2.10. Значит, существует такая мера $\mu_{\gamma} \in U_{\tau}(X_{\gamma})$, что $U_{\tau}(\pi^{\gamma}_{\gamma-1})(\mu_{\gamma}) = \mu_{\gamma-1}$.

Если γ — предельное число, то из теоремы 1.12 вытекает, что для нити $\{\mu_{\beta}\colon \beta<\gamma\}$ спектра $U_{\tau}(S_f)|_{\gamma}$ существует мера $\mu_{\gamma}\in U_{\tau}(X_{\gamma})$, удовлетворяющая условию $U_{\tau}(\pi_{\beta}^{\gamma})(\mu_{\gamma})=\mu_{\beta}$ для всех $\beta<\gamma$. Таким образом, нужная нам нить m найдена. Утверждение доказано.

Из предложения 2.16 и утверждения 3.4.1 вытекает следующее утверждение.

- **3.4.2. Утверждение.** Проекции ψ_{α} открыты.
- **3.4.3. Утверждение.** Пространство $U_{\tau}(X)$ имеет свойство Суслина.

Доказательство. Согласно (3.8) все конечные степени X^n являются AE(0)-пространствами и, следовательно, имеют свойство Суслина по предложению 2.13. Применение предложения 1.16 завершает доказательство.

Итак, предельные проекции ψ_{α} спектра $U_{\tau}(S_f)$ сюръективны, открыты, а его предел, гомеоморфный $U_{\tau}(X)$ согласно (1°), имеет свойство Суслина. Поэтому из теоремы 2.14 вытекает, что $U_{\tau}(S_f)$ — факторизующий спектр. Утверждение 2° проверено. Теорема доказана.

Из теоремы 3.4, применённой к постоянному отображению, вытекает следующая теорема.

- **3.5.** Теорема (в предположении $\mathbf{MA}(\omega_1)$). Если $X \in AE(0)$ и $wX \leqslant \omega_1$, то $U_{\tau}(X) \in AE$.
- **3.6.** Замечание. Распространить теорему 3.5 на пространства X веса $\geqslant \omega_2$ нельзя ни при каких теоретико-множественных предположениях. В самом деле, в силу теоремы Дитора и Хэйдона [9] в качестве контрпримера можно взять тихоновский куб I^{ω_2} .

Напомним, что *вещественно полными* называются пространства, гомеоморфные замкнутым подмножествам тихоновских степеней \mathbb{R}^{κ} вещественной прямой.

3.7. Предложение. Пространство $U_{\tau}(\mathbb{R}^{\mathfrak{c}})$ не является абсолютным экстензором.

В самом деле, в [5] доказано, что $U_{\tau}(\mathbb{R}^{\mathfrak{c}})$ не является вещественно полным пространством. В то же время всякий абсолютный экстензор вещественно полон [7].

3.8. Предложение. Если $f\colon X\to Y-$ такое отображение, что прообраз $f^{-1}(y_0)$ некоторой точки $y_0\in Y$ гомеоморфен $\mathbb{R}^{\mathfrak{c}}$, то $U_{\tau}(f)$ не является мягким отображением.

В самом деле, если бы $U_{\tau}(f)$ было мягким, то $U_{\tau}(f)^{-1}(\delta(y_0)) \in AE$, где $\delta(y_0)$ — мера Дирака. Но $U_{\tau}(f)^{-1}(\delta(y_0)) = U_{\tau}(f^{-1}(y_0)) = U_{\tau}(\mathbb{R}^{\mathfrak{c}})$, что противоречит предложению 3.7.

Литература

- [1] Банах Т. О., Радул Т. Н. Геометрия отображений пространств вероятностных мер // Матем. студ. Праці Львівского матем. т-ва. 1999. \mathbb{N} 11. С. 17—30.
- [2] Варадарайн В. С. Меры на топологических пространствах // Мат. сб. 1961. Т. 55, № 1. С. 35—100.
- [3] Садовничий Ю. В. О некоторых категорных свойствах функтора U^{τ} // Вестник Моск. ун-та. Сер. 1, Математика, механика. 1999. № 3. С. 38—42.
- [4] Садовничий Ю. В. Поднятие функторов U_{τ} и U_R на категорию ограниченных метрических пространств и категорию равномерных пространств // Мат. сб. 2000. Т. 191, N 11. С. 79—104.
- [5] Садовничий Ю. В. О свойствах полноты функторов единичного шара борелевских мер // Тр. семинара им. И. Г. Петровского. 2003. Вып. 23. С. 338—357.
- [6] Федорчук В. В. Топологическая полнота пространств мер // Изв. РАН. Сер. мат. 1999. Т. 63, \mathbb{N} 4. С. 207—223.
- [7] Федорчук В. В., Чигогидзе А. Ч. Абсолютные ретракты и бесконечномерные многообразия. М.: Наука, 1992.
- [8] Щепин Е. В. Функторы и несчётные степени компактов // Успехи мат. наук. 1981.-T. 36, вып. 3.-C. 3-62.

- [9] Ditor S., Haydon R. On absolute retracts, P(S) and complemented subspaces of $C(D^{\omega_1})$ // Studia Math. 1976. Vol. 56, no. 3. P. 243-251.
- [10] Gardner R. G., Pfeffer W. F. Borel measures // Handbook of set-theoretic topology. Elsevier, $1984.-P.\ 961-1043.$