Новая характеризация функций, интегрируемых по Риману

B. K. 3AXAPOB

Московский государственный университет им. М. В. Ломоносова e-mail: valeri@zaharov.mccme.ru

А. А. СЕРЕДИНСКИЙ

Московский государственный университет им. М. В. Ломоносова e-mail: aleksandrs@aksion.com

УЛК 517.518.121+517.987.1+517.518.2

Ключевые слова: равномерные функции, интеграл Римана, характеризация.

Аннотация

В работе даётся описание функций, интегрируемых по Риману, с помощью нового класса равномерных функций. Это описание позволяет прояснить «счётную» природу отношения между пространством функций, интегрируемых по Риману, и пространством непрерывных функций. Изложение ведётся для произвольного топологического пространства T с ограниченной радоновской мерой μ , носитель которой совпадает с T.

Abstract

V. K. Zakharov, A. A. Seredinskii, A new characterization of Riemann-integrable functions, Fundamentalnaya i prikladnaya matematika, vol. 10 (2004), no. 3, pp. 73—83.

In this paper, we describe Riemann-integrable functions with the help of a new class of $uniform\ functions$. This description allows us to uncover the "countable" nature of the relation between the space of Riemann-integrable functions and the space of continuous functions. The argumentation is performed for any given topological space T with limited Radon measure μ the support of which coincides with T.

Введение

В 1904 году Лебегом [4] и независимо от него Витали [5] была дана знаменитая характеризация функций, интегрируемых по Риману: ограниченная функция $f\colon [a,b]\to\mathbb{R}$ является интегрируемой по Риману тогда и только тогда, когда множество точек разрыва функции f имеет меру нуль. Несмотря на кажущуюся простоту описания функций, интегрируемых по Риману, отношение между пространством этих функций и подпространством непрерывных функций оказалось весьма загадочным.

Фундаментальная и прикладная математика, 2004, том 10, № 3, с. 73—83. © 2004 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

В данной работе даётся другое описание функций, интегрируемых по Риману, с помощью нового класса равномерных функций, введённых в [2, 3, 6] (следствие 3 теоремы 3). Это описание позволяет прояснить «счётную» природу отношения между указанными выше пространствами (предложение 2). Изложение ведётся для произвольного топологического пространства T с ограниченной радоновской мерой μ , носитель которой совпадает с T. Однако такое обобщение нисколько не усложняет доказательства по сравнению с классическим случаем отрезка [a,b] с мерой Лебега λ , порождённой длиной интервалов $l(|x,y|) \equiv y-x$. Результаты являются новыми и для классического случая. Авторы выражают благодарность Б. С. Кашину, Т. П. Лукашенко и В. А. Скворцову за плодотворное обсуждение.

1. Основные понятия

Пусть (T,\mathcal{G}) — тихоновское топологическое пространство и μ — положительная ограниченная радоновская мера на T, то есть σ -аддитивная функция $\mu\colon \mathcal{B}\to [0,a]\subset \mathbb{R}$, определённая на σ -алгебре \mathcal{B} всех борелевских множеств пространства T, такая что $\mu B=\sup\{\mu K\mid K\subset B$ и K — компактное множество $\}$ для любого $B\in \mathcal{B}$. Через \mathcal{LN}_{μ} обозначим σ -идеал всех μ -пренебрежимых множеств из T. Кроме того, будем считать, что T является носителем меры μ , то есть $\mu G\neq 0$ для любого открытого множества G.

Рассмотрим множество Δ всех конечных разбиений $\varkappa\equiv (Q_k\in\mathcal{G}\cup\mathcal{LN}_\mu\mid k\in K)$ множества T, состоящих из открытых множеств и μ -пренебрежимых множеств. Скажем, что разбиение $\lambda\equiv (R_l\in\mathcal{G}\cup\mathcal{LN}_\mu\mid l\in L)$ является более тонким, чем разбиение \varkappa ($\lambda\geqslant \varkappa$), если для любого $k\in K$ существует такое $L'\subseteq L$, что $Q_k=\bigcup (R_l\in\mathcal{G}\cup\mathcal{LN}_\mu\mid l\in L')$.

Относительно этого порядка Δ является направленным вверх. Для каждого разбиения $\varkappa \in \Delta$ рассмотрим нижнюю $s(f,\varkappa) \equiv \sum (\inf(f(t) \mid t \in Q_k)\mu Q_k \mid k \in K)$ и верхнюю $S(f,\varkappa) \equiv \sum (\sup(f(t) \mid t \in Q_k)\mu Q_k \mid k \in K)$ суммы Дарбу ограниченной функции $f\colon T \to \mathbb{R}$. Ясно, что $(s(f,\varkappa) \mid \varkappa \in \Delta)$ возрастает, $(S(f,\varkappa) \mid \varkappa \in \Delta)$ убывает и $s(f,\varkappa) \leqslant S(f,\varkappa)$.

Ограниченная функция f называется μ -интегрируемой по Риману, если

$$\sup(s(f,\varkappa)\mid\varkappa\in\Delta)=\inf(S(f,\varkappa)\mid\varkappa\in\Delta).$$

То, что данное определение является обобщением обычного определения для отрезка [a,b] с мерой Лебега λ , порождённой длиной интервалов $l(|x,y|) \equiv y-x$, будет следовать из теоремы 2, следствия 1 теоремы 3 и характеризации Лебега—Витали (см. следствие 2 теоремы 3).

Множество всех ограниченных μ -интегрируемых по Риману функций $f\colon T\to\mathbb{R}$ обозначим через RI_μ . Это множество является линейным решёточным пространством. Рассмотрим его фактор-множество $R_\mu\equiv\mathrm{RI}_\mu/\mathcal{LN}_\mu$. Оно тоже является линейным решёточным пространством. Класс эквивалентности функции $f\in\mathrm{RI}_\mu$ относительно идеала \mathcal{LN}_μ будем обозначать через $\bar{f} \bmod \mathcal{LN}_\mu$.

Множество всех непрерывных ограниченных функций на пространстве (T,\mathcal{G}) обозначим через C. Рассмотрим отображение $u\colon C\to R_\mu$, такое что $uc\equiv \bar{c} \bmod \mathcal{LN}_\mu$. Функционально-факторное расширение $u\colon C\mapsto R_\mu$ называется расширением Римана линейного решёточного пространства C.

2. Описание функций, μ -интегрируемых по Риману

Множество конуль-множеств $\cos f \equiv \{t \in T \mid f(t) \neq 0\}$ всех непрерывных функций f на (T, \mathcal{G}) обозначим через \mathcal{G}^0 .

 σ -идеал \mathcal{LN}_{μ} является слишком большим для семейства RI_{μ} , поэтому понадобится ввести более подходящий идеал множеств.

Далее будем считать меру μ продолженной на семейство \mathcal{LM}_{μ} всех множеств, μ -измеримых по Лебегу. μ -измеримое множество X будем называть множеством полной меры, если $T\setminus X\in\mathcal{LN}_{\mu}$.

Семейство $\{U \in \mathcal{G}^0 \mid T \setminus U \in \mathcal{LN}_\mu\}$ всех конуль-множеств полной меры обозначим через \mathcal{U}^0_μ . Оно порождает идеал множеств $\mathcal{R}_\mu \equiv \{R \subset T \mid \exists U \in \mathcal{U}^0_\mu \ (R \subset T \setminus U)\}$. Этот идеал является *тощим*, то есть непустые открытые множества ему не принадлежат. Этот идеал не является σ -идеалом. Ясно, что $\mathcal{N}_\mu \subset \mathcal{LN}_\mu$.

Множество X из T назовём S_{μ} -множеством, если $X=G\cup R$ для некоторых множеств $G\in \mathcal{G}^0$ и $R\in \mathcal{N}_{\mu}$. Семейство всех S_{μ} -множеств из T обозначим \mathcal{SP}_{μ} . Оно является решёткой относительно объединений и пересечений, а также содержит края \varnothing и T.

Для того чтобы описать функции, μ -интегрируемые по Риману, нам потребуется не пространство измеримых функций, а совсем другое функциональное пространство, которое мы введём ниже.

Пусть S — произвольное семейство множеств на множестве T. Напомним, что функция $f\colon T\to\mathbb{R}$ называется S-измеримой, если $f^{-1}[G]\in\mathcal{S}$ для любого открытого множества G из \mathbb{R} . Множество всех таких функций на T обозначим через $M(T,\mathcal{S})$. Эти функции были введены Лебегом в начале 20-го века. Множество $M(T,\mathcal{S})$ является линейным решёточным пространством, если \mathcal{S} является σ -аддитивным мультипликативным ансамблем с краями \varnothing и T. Это условие на \mathcal{S} является очень стесняющим. Поэтому в [2,3,6] было введено другое семейство функций на T. Функцию $f\colon T\to\mathbb{R}$ назовём S-равномерной, если для любого $\varepsilon>0$ существует конечное покрытие $\sigma\equiv(S_i\in\mathcal{S}\mid i\in I)$ множества T, такое что колебание $\omega(f,S_i)\equiv\sup(|f(s)-f(t)|\mid s,t\in S_i)$ функции f на каждом множестве S_i меньше ε . Семейство всех S-равномерных функций на T обозначим через $U(T,\mathcal{S})$. Оно является линейным решёточным пространством, если S является мультипликативным ансамблем с краями \varnothing и T. Ясно, что $M_b(T,\mathcal{S})\subset U(T,\mathcal{S})$.

Имея решёточное семейство \mathcal{SP}_{μ} всех S_{μ} -множеств на T, мы можем рассмотреть линейное решёточное пространство $U(T,\mathcal{SP}_{\mu})$ всех равномерных функций относительно этого семейства.

Лемма 1. Пусть $f \in M(T, \mathcal{LM}_{\mu})$ и $|f| \leqslant z\mathbf{1}$. Тогда множество $\mathcal{X} \equiv \{f^{-1}(y) \mid y \in [-z,z] \text{ и } f^{-1}(y) \notin \mathcal{LN}_{\mu} \}$ счётное.

Доказательство. По условию $\mu M\leqslant a$ для любого $M\in\mathcal{LM}_{\mu}$ и некоторого $a\in\mathbb{R}_{+}$. Возьмём $\mathcal{X}_{n}\equiv\{X\in\mathcal{X}\mid \mu X>1/n\}$. Тогда $\mathcal{X}=\bigcup(\mathcal{X}_{n}\mid n\in\mathbb{N})$. Предположим, что хотя бы одно \mathcal{X}_{n} бесконечно. Тогда существует инъективное отображение $u\colon\omega\to X_{n}$. Пусть $X_{i}\equiv u(i)\in\mathcal{X}_{n}$ и $L=\bigcup(X_{i}\in\mathcal{X}_{n}\mid i\in([a]+2)n)$. Если $i\neq j$, то $X_{i}\neq X_{j}$, и, значит, $X_{i}\cap X_{j}=\varnothing$. Поэтому в силу аддитивности меры μ мы получаем $\mu L=\sum(\mu X_{i}\mid i\in([a]+2)n)\geqslant (1/n)([a]+2)n=[a]+2>a$. С другой стороны, $\mu L\leqslant a$. Значит, все \mathcal{X}_{n} конечны, а \mathcal{X} счётное.

Следствие. В условиях предыдущей леммы множество $\mathcal{Y} \equiv \{y \in [-z,z] \mid f^{-1}(y) \notin \mathcal{LN}_{\mu}\}$ счётное.

Лемма 2. Рассмотрим функцию $f\colon T\to \mathbb{R}$, для которой $|f|\leqslant z\mathbf{1}$. Тогда равносильны следующие утверждения:

- 1) $f \in U(T, \mathcal{SP}_{\mu});$
- 2) для любого $\varepsilon > 0$ существуют конуль-множество полной меры $U \in \mathcal{U}_{\mu}^0$ и его конечное покрытие $(G_k \in \mathcal{G}^0 \mid k \in K)$, такие что $\omega(f, G_k) < \varepsilon$.

Доказательство. Импликация 1) \implies 2) очевидна.

Докажем импликацию 2) \Longrightarrow 1). Для каждого $n \in \mathbb{N}$ разобьём интервал, содержащий множество значений функции f, точками x_{ni} так, чтобы $x_{ni+1}-x_{ni} < 1/4n$. Рассмотрим множества $Q_{ni} \equiv f^{-1}\big[]x_{ni-1},x_{ni+1}\big[]$, $H_{ni} \equiv \bigcup \{G_{nk} \in \mathcal{G}^0 \mid G_{nk} \cap Q_{ni} \neq \varnothing\}$ и $R_{ni} \equiv (T \setminus U_n) \cap Q_{ni}$. Тогда S_μ -множество $X_{ni} \equiv H_{ni} \cup R_{ni}$ образует искомое покрытие T и $\omega(f,X_{ni}) < 1/n$.

Теорема 1. $U(T, \mathcal{SP}_{\mu}) \subset \mathrm{RI}_{\mu}$.

Доказательство. Рассмотрим множества

$$Y\equiv f^{-1}\big[]x,y[\big]\quad \text{if}\quad Y_n\equiv f^{-1}\big[]x+1/n,y-1/n[\big].$$

Тогда $Y=\bigcup X_n$, где $X_n\equiv\bigcup\{X_{nk}\in\mathcal{SP}_\mu\mid X_{nk}\cap Y_n\neq\varnothing\}$ и $(X_{nk}\in\mathcal{SP}_\mu\mid k\in K_n)$ — конечные покрытия T, такие что $\omega(f,X_{nk})<1/n$. Следовательно, $Y=G\cup I$ для некоторых непересекающихся $G\in\mathcal{G}$ и $I\in\mathcal{LN}_\mu$. Это означает, что $Y\in\mathcal{LM}_\mu$. Поэтому $f^{-1}(x)\in\mathcal{LM}_\mu$ для любого $x\in\mathbb{R}$. Пусть f принимает значения в интервале [-z,z]. По следствию леммы 1 множество $\mathcal{Y}\equiv\{y\in[-z,z]\mid f^{-1}(y)\notin\mathcal{LN}_\mu\}$ является счётным. Поэтому для каждого n найдётся конечная последовательность

$$y_{n0} \equiv -(z+1) < \ldots < y_{ni} < \ldots < y_{np} \equiv z+1,$$

такая что $y_{ni}-y_{ni-1}<1/n$ и $y_{ni}\notin\mathcal{Y}$. Действительно, предположим, что для некоторого $n\in\mathbb{N}$ не существует такого набора y_{ni} . Это означает, что существует такой интервал $[a,b]\subset[-(z+1),z+1]$, что $f^{-1}(y)\notin\mathcal{LN}_{\mu}$ для любого $y\in[a,b]$. Отсюда $[a,b]\subset\mathcal{Y}$, что противоречит счётности множества \mathcal{Y} . Рассмотрим разбиение T, состоящие из множеств $X_{ni}\equiv f^{-1}\big[\big]y_{ni-1},y_{ni}\big[\big]$ и $J_{ni}\equiv f^{-1}(y_{ni})\in\mathcal{LN}_{\mu}$. Как установлено выше, X_{ni} разбивается на множества $G_{ni}\in\mathcal{G}$ и $I_{ni}\in\mathcal{LN}_{\mu}$.

Разбиение $(G_{ni} \in \mathcal{G}, \ I_{ni} \in \mathcal{LN}_{\mu}, \ J_{ni} \in \mathcal{LN}_{\mu} \mid i \in I)$ обозначим через \varkappa_n . Имеем $S(f,\varkappa) - s(f,\varkappa) < \mu T/n$. Значит, $f \in \mathrm{RI}_{\mu}$.

Поскольку идеал \mathcal{N}_{μ} не является σ -идеалом, нам потребуется несколько иное определение эквивалентности функций относительно этого идеала.

Функции f и g на T называются эквивалентными относительно идеала \mathcal{N}_{μ} , если $\{t \in T \mid |f(t) - g(t)| \geqslant \varepsilon\} \in \mathcal{N}_{\mu}$ для любого $\varepsilon > 0$. Обозначим это отношение эквивалентности так: $f \sim g \mod \mathcal{N}_{\mu}$.

Следствие. Пусть $f,g\in U(T,\mathcal{SP}_{\mu})$. Тогда равносильны следующие утверждения:

- 1) $f \sim g \mod \mathcal{LN}_{\mu}$;
- 2) $f \sim g \mod \mathcal{N}_{\mu}$.

Доказательство. Докажем импликацию 1) \implies 2). Рассмотрим функцию $h \equiv f - g \in U(T, \mathcal{SP}_{\mu})$. Пусть |h(t)| < 1/n для любого $t \notin I_n \in \mathcal{LN}_{\mu}$. По лемме 2 существуют $U_n \in \mathcal{U}^0_{\mu}$ и $(G_{nk} \in \mathcal{G}^0 \mid k \in K_n)$, такие что $\omega(h, G_{nk}) < 1/n$. Пусть $t \in U_n$. Тогда $t \in G_{nk}$ для некоторого k. Возьмём некоторую точку $s \in G_{nk} \setminus I_n$. Так как |h(s)| < 1/n, то |h(t)| < 2/n, следовательно, $f \sim g \mod \mathcal{N}_{\mu}$. Импликация 2) \implies 1) очевидна.

Это означает, что $\bar{f} \mod \mathcal{LN}_{\mu} = \bar{f} \mod \mathcal{N}_{\mu}$.

Лемма 3. Рассмотрим функцию $f: T \to \mathbb{R}$, такую что $|f| \leqslant z\mathbf{1}$, и множество $G \in \mathcal{G}^0$, такое что $f|_G \in C(G)$. Тогда $f^{-1}[]x,y[] \in \mathcal{G}^0$ для любого интервала]x,y[.

Доказательство. Пусть $G = \cos c$ для некоторой функции $c \in C$ и $h \in C(G)$. Определим функцию $g \in C$, положив $g(t) \equiv h(t)c(t)$ для любого $t \in G$ и $g(t) \equiv 0$ для $t \notin G$. Тогда $\cos g = \cos h \in \mathcal{G}^0$. Положим $h(t) \equiv ((f(t)-x)\vee 0) \wedge ((y-f(t))\vee 0)$. Тогда $f^{-1}[]x,y[] = \cos g \in \mathcal{G}^0$.

Предложение 1. Пусть $f: T \to \mathbb{R}$ — ограниченная функция. Тогда равносильны следующие утверждения:

- 1) $f \in U(T, \mathcal{SP}_{\mu});$
- 2) для любого $n \in \mathbb{N}$ существуют конуль-множество $U_n \in \mathcal{U}_{\mu}^0$ полной меры и функция $f_n \colon T \to \mathbb{R}$, такие что $f_n \mid U_n \in C(U_n)$ и $|f(t) f_n(t)| < 1/n$ для любого $t \in U_n$.

Доказательство. Докажем импликацию 1) \Longrightarrow 2). Рассмотрим для функции f множества $U_n \in \mathcal{U}^0_\mu$ и покрытия $(G_{nk} \in \mathcal{G}^0 \mid k \in K_n)$ из леммы 2. Для них выполняется $\omega(f,G_{nk}) < 1/n$. Зафиксируем число n. Пусть $G_{nk} = \cos f_k$ для некоторой функции $f_k \in C$, такой что $0 < f_k \leqslant 1/2$. Рассмотрим для $i \geqslant 3$ множества $C_{ki} \equiv f_k^{-1} \left[\left[1/(i+1), 1/(i-1) \right] \right]$ и $D_{ki} \equiv f_k^{-1} \left[\left[1/(i+2), 1/(i-2) \right] \right]$. Рассмотрим функции $f_{ki} \equiv ((f_k - 1/(i+2)) \lor 0) \land ((1/(i-2) - f_k) \lor 0)$.

Рассмотрим функции $f_{ki}\equiv ((f_k-\mathbf{1}/(i+2))\vee 0)\wedge ((\mathbf{1}/(i-2)-f_k)\vee 0).$ Иначе говоря, $f_{ki}(t)=0$, если $f_k(t)\leqslant \mathbf{1}/(i+2)$; $f_{ki}(t)=f_k(t)-\mathbf{1}/(i+2)$, если $f_k(t)>\mathbf{1}/(i+2)$ и $f_k(t)-\mathbf{1}/(i+2)\leqslant \mathbf{1}/(i-2)-f_k(t))$; $f_{ki}(t)=(\mathbf{1}/(i-2)-f_k(t))$, если $f_k(t)<(\mathbf{1}/(i-2)$ и $f_k(t)-\mathbf{1}/(i+2)>\mathbf{1}/(i-2)-f_k(t)$); наконец, $f_{ki}(t)=0$,

если $f_k(t)\geqslant \mathbf{1}/(i-2)$ для любого $t\in T.$ Тогда $f_{ki}(t)\geqslant 1/(i+1)(i+2)$ для любого $t\in C_{ki}.$

Теперь рассмотрим функции $g_{ki}\equiv (i+1)(i+2)f_{ki}\wedge \mathbf{1}$ $(g_{ki}(t))$ равняется минимуму из чисел $(i+1)(i+2)f_{ki}(t)$ и 1 для любого $t\in T$). Ясно, что $\cos g_{ki}=D_{ki}$ и $g_{ki}[C_{ki}]=\{1\}$. Положим $x_{ki}\equiv\inf\{f_k(t)\mid t\in C_ki)$. Определим функцию g на T, положив $g(t)\equiv\sup(x_{ki}g_{ki}(t)\mid k\in K_n,\ i\in I)$ для любого $t\in U_n$ и $g(t)\equiv 0$ для $t\notin U_n$. Если $D_{ki}\cap D_{kj}\neq\varnothing$, то $|i-j|\leqslant 4$. Следовательно, покрытие $(D_{ki}\in\mathcal{G}^0\mid k\in K_n)$ множества U_n является локально конечным. Поэтому функция g является непрерывной на U_n . Если $t\in U_n$, то $t\in C_{ki}$ для некоторых индексов $k,i\in\mathbb{N}$, и, следовательно, $f(t)\geqslant g(t)\geqslant x_{ki}\geqslant f(t)-1/n$.

Импликация $2) \implies 1$) является простым следствием лемм 3 и 2.

Установим теперь связь между пространствами C и $U(T,\mathcal{SP}_{\mu})$. Рассмотрим семейство S^0_1 всех ограниченных функций $f\colon T\to\mathbb{R}$, таких что $f^{-1}\big[]x,\infty[\big]\in\mathcal{G}^0$ для любого $x\in\mathbb{R}$. Эти функции будем называть \mathcal{G}^0 -полунепрерывными снизу. Аналогично определим семейство S^0_{u} всех функций, \mathcal{G}^0 -полунепрерывных сверху.

Следствие. Рассмотрим функцию $f \colon T \to \mathbb{R}$, для которой $|f| \leqslant z\mathbf{1}$. Тогда эквивалентны следующие утверждения:

- 1) $f \in U(T, \mathcal{SP}_{\mu});$
- 2) для f существуют функции $g \in S^0_1$ и $h \in S^0_{\mathrm{u}}$, такие что $g \leqslant f \leqslant h$ и $g \sim h \bmod \mathcal{N}_{\mu}$;
- 3) для f существуют функции $g\in S^0_1\cap U(T,\mathcal{SP}_\mu)$ и $h\in S^0_\mathrm{u}\cap U(T,\mathcal{SP}_\mu)$, такие что $g\leqslant f\leqslant h$ и $g\sim h \bmod \mathcal{N}_\mu$.

Доказательство. Докажем импликацию 1) \Longrightarrow 2). Пусть $|f| \leqslant z\mathbf{1}$. Возьмём для $\varepsilon \equiv 1/n$ множества U_n и $(G_{nk} \in \mathcal{G}^0 \mid k \in K_n)$ из леммы 2. Рассмотрим числа $x_{nk} \equiv \inf(f(t) \mid t \in G_{nk})$ и $y_{nk} \equiv \sup(f(t) \mid t \in G_{nk})$. Определим функции $g_{nk} \in S_1^0$, полагая $g_{nk} \equiv -z$ для любого $t \notin G_{nk}$ и $g_{nk} \equiv x_{nk}$ для любого $t \in G_{nk}$. Определим также функции $h_{nk} \in S_{\mathbf{u}}^0$, полагая $h_{nk} \equiv z$ для любого $t \notin G_{nk}$ и $g_{nk} \equiv y_{nk}$ для любого $t \in G_{nk}$. Рассмотрим $g \in S_1^0$ и $h \in S_{\mathbf{u}}^0$, такие что $g(t) \equiv \sup(g_{nk}(t) \mid n \in \mathbb{N}, \ k \in K_n)$ и $h(t) \equiv \inf(h_{nk}(t) \mid n \in \mathbb{N}, \ k \in K_n)$. Тогда $g \leqslant f \leqslant h$ и $0 \leqslant h(t) - g(t) < 1/n$ для любого $t \in U_n$.

Проверим импликацию $2) \Longrightarrow 3$). Возьмём $\varepsilon \equiv 1/n$. Из определения эквивалентности следует, что h(t)-g(t)<1/2n для некоторого множества полной меры $U_n \in \mathcal{U}_\mu^0$ и каждого $t \in U_n$. Разобьём интервал, содержащий множества значений функций f и h, точками x_i так, что $x_{i+1}-x_i=1/2n$. Рассмотрим множества $G_{ni} \equiv g^{-1}\left[|x_{i-1},\infty[]\cap h^{-1}\right]-\infty, x_{i+1}\left[]\cap U_n$. Пусть $t \in U_n$, тогда из того, что $x_{i-1} < g(t) \leqslant x_i$ для некоторого $i \in \mathbb{N}$, следует $t \in G_{ni}$. Следовательно, $U_n = \bigcup (G_{ni} \in \mathcal{G}^0 \mid i \in I)$. Пусть $s,t \in G_{ni}$. Тогда $g(s)-g(t) \leqslant h(s)-g(t) < x_{i+1}-x_{i-1}=1/n$ и $g(s))-g(t) \geqslant g(s)-h(t)>x_{i-1}-x_{i+1}=-1/n$. Это означает, что $\omega(g,G_{ni})<\varepsilon$. Аналогично, $\omega(h,G_{ni})<\varepsilon$. По лемме $2g,h \in U(T,\mathcal{SP}_\mu)$.

Докажем импликацию $3) \implies 1$). Так как $g,h \in U(T,\mathcal{SP}_{\mu})$, то для каждого $\varepsilon > 0$ найдутся конечные покрытия $(Q_k \in \mathcal{SP}_{\mu} \mid k \in K)$ и $(R_l \in \mathcal{SP}_{\mu} \mid l \in L)$, та-

кие что $\omega(g,Q_k)<\varepsilon/2$ и $\omega(h,R_l)<\varepsilon/2$ для всех $k\in K$ и $l\in L$. Из определения эквивалентности следует, что $h(t)-g(t)<\varepsilon/2$ для некоторого конуль-множества полной меры $U\in \mathcal{U}^0_\mu$ и каждого $t\in U$. По определению $Q_k=G_k\cup I_k$ и $R_l=H_l\cup J_l$ для некоторых $G_k,H_l\in\mathcal{G}^0$ и $I_k,J_l\in\mathcal{N}_\mu$. Рассмотрим конуль-множество полной меры

$$V \equiv U \cap \left(\bigcup (G_k \in \mathcal{G}^0 \mid k \in K) \right) \cap \left(\bigcup (H_l \in \mathcal{G}^0 \mid l \in L) \right)$$

и его конечное покрытие $(F_{kl} \in \mathcal{G}^0 \mid (k,l) \in K \times L)$, где $F_{kl} \equiv U \cap G_k \cap H_l$. Тогда

$$f(s) - f(t) \leqslant h(s) - g(t) < h(t) + \varepsilon/2 - g(t) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

И

$$f(s) - f(t) \geqslant g(s) - h(t) > g(s) - (h(s) + \varepsilon/2) > -\varepsilon/2 - \varepsilon/2 = -\varepsilon.$$

Это означает, что $\omega(f, F_{kl}) < \varepsilon$. По лемме $2 \ f \in U(T, \mathcal{SP}_{\mu})$.

Предложение 2. Рассмотрим функцию $f: T \to \mathbb{R}$, для которой $|f| \leqslant z\mathbf{1}$. Тогда эквивалентны следующие утверждения:

- 1) $f \in U(T, \mathcal{SP}_{\mu});$
- 2) для f существуют счётные коллекции $(g_i \in C \mid i \in I)$ и $(h_j \in C \mid j \in J)$, такие что $g_i \leqslant f \leqslant h_j$ для любых i и j, и $g \sim h \bmod \mathcal{N}_{\mu}$, где $g(t) \equiv \sup(g_i(t) \mid i \in I)$ и $h(t) \equiv \inf(h_j(t) \mid j \in J)$ для любого $t \in T$.

Доказательство. Докажем импликацию 1) \Longrightarrow 2). По условию $|f|\leqslant z\mathbf{1}$. Возьмём для $\varepsilon\equiv 1/n$ множества U_n и $(G_{nk}\in\mathcal{G}^0\mid k\in K_n)$ из теоремы 1. Рассмотрим числа $x_{nk}\equiv\inf(f(t)\mid t\in G_{nk})$ и $y_{nk}\equiv\sup(f(t)\mid t\in G_{nk})$. Пусть $G_{nk}=\cos g_{nk}$ для некоторой функции $g_{nk}\in C_+$. Положим $g_{nkm}\equiv\equiv(-z\mathbf{1}+mg_{nk})\wedge x_{nk}\mathbf{1}\in C$. Тогда $g_{nkm}\leqslant f$ и $g_{nkm}\in C$. Определим функцию $g_n\in S_1^0$, полагая $g_n(t)\equiv\sup(g_{nkm}(t)\mid k\in K_n,\ m\in\mathbb{N})$ для любого $t\in U_n$. Аналогично строятся коллекция $h_{nkm}\equiv(z\mathbf{1}-mg_{nk})\vee y_{nk}\mathbf{1}\in C$ и функция $h_n\in S_{\mathbf{u}}^0$, такая что $h_n(t)\equiv\inf(h_{nkm}(t)\mid k\in K_n,\ m\in\mathbb{N})$. Для функций g_n и h_n выполняется неравенство $|h_n-g_n|\leqslant 1/n$ для любого $t\in U_n$. Рассмотрим функции g и h, такие что $g(t)\equiv\sup(g_n(t)\mid n\in\mathbb{N})$ и $h(t)\equiv\inf(h_n(t)\mid n\in\mathbb{N})$. Тогда эти функции эквивалентны относительно \mathcal{N}_μ и $g\leqslant f\leqslant h$.

Рассмотрим счётные множества $I \equiv J \equiv \bigcup (\{n\} \times K_n \times \mathbb{N} \mid n \in \mathbb{N}) \subset \mathbb{N}^3$ и индексы $i \equiv j \equiv (n, (k, m))$, такие что $k \in K_n$. В результате получим искомые счётные коллекции $(g_i \in C \mid i \in I)$ и $(h_j \in C \mid j \in J)$, такие что $g(t) = \sup(g_i(t) \mid i \in I)$ и $h(t) = \inf(h_j(t) \mid j \in J)$ для любого $t \in T$.

Докажем импликацию 2) \Longrightarrow 1). Легко проверить, что $g(t) \in S_1^0$ и $h(t) \in S_{\mathrm{u}}^0$. Так как $g \leqslant f \leqslant h$ и $g \sim h \bmod \mathcal{N}_{\mu}$, то по следствию предложения 1 $f \in U(T, \mathcal{SP}_{\mu})$.

Предложение 2 показывает «счётную» природу отношения между пространством $U(T,\mathcal{SP}_{\mu})$ и его подпространством C.

Покажем, наконец, что определение функций, μ -интегрируемых по Риману, данное в разделе 1, является обобщением обычного определения для отрезка [a,b]. Для этого сначала докажем аналог характеризации Лебега—Витали.

Теорема 2. Рассмотрим функцию $f: T \to \mathbb{R}$, для которой $|f| \leqslant z\mathbf{1}$. Тогда эквивалентны следующие утверждения:

- 1) $f \in U(T, \mathcal{SP}_{\mu});$
- 2) мера μ множества точек разрыва функции f равна нулю.

Доказательство. Докажем импликацию 1) \Longrightarrow 2). По следствию предложения 1 существуют функции $g \in S_1^0 \cap U(T, \mathcal{SP}_\mu)$ и $h \in S_u^0 \cap U(T, \mathcal{SP}_\mu)$, такие что $g \leqslant f \leqslant h$ и $g \sim h \mod \mathcal{N}_\mu$. Положим $E \equiv \{t \in T \mid g(t) = h(t)\}$. Для $t_0 \in E$ выполняется $g(t_0) = f(t_0) = h(t_0) \equiv y$. Для произвольного $\varepsilon > 0$ рассмотрим множества $G \equiv g^{-1}[]y - \varepsilon, \infty[] \in \mathcal{G}^0$ и $H \equiv h^{-1}[]-\infty, y + \varepsilon[] \in \mathcal{G}^0$. Тогда $t_0 \in F \equiv G \cap H \in \mathcal{G}^0$. Для любого $t \in F$ верно, что $y - \varepsilon < g(t) \leqslant f(t) \leqslant k$ 0 $k \in K$ 1. Следовательно, $k \in K$ 2. Определению эквивалентности функций $k \in K$ 3 множество $k \in K$ 4. По определению эквивалентности функций $k \in K$ 4. По определению эквивалентности функций $k \in K$ 5 множество $k \in K$ 6. По определению эквивалентности функций $k \in K$ 6. По определению эквивалентности функций $k \in K$ 3. По определению эквивалентности функций $k \in K$ 4. По определению эквивалентности функций $k \in K$ 4. По определению эквивалентности функций $k \in K$ 5 по определению эквивалентности функций $k \in K$ 6. По определению эквивалению эквивале

Проверим импликацию $2) \Longrightarrow 1$). Пусть D — множество точек разрыва функции f. Положим $E \equiv T \setminus D$. Для любого $t \in E$ фиксируем $\varepsilon = 1/m$. Точка t является точкой непрерывности функции f, следовательно, существует такое множество $H_t \in \mathcal{G}$, что $t \in H_t$ и $f[H_t] \subset]f(t) - \varepsilon/4, f(t) - \varepsilon/4[$. Множество H_t является объединением конуль-множеств, поэтому существует такое множество $G_t \in \mathcal{G}^0$, что $t \in G_t$ и $f[G_t] \subset]f(t) - \varepsilon/4, f(t) - \varepsilon/4[$. Рассмотрим множество $V_m \equiv \bigcup (G_t \in \mathcal{G}^0 \mid t \in E) \in \mathcal{G}$. Так как мера μ радоновская, то для любого $n \in \mathbb{N}$ существует компактное множество $K_n \subset V_m$, такое что $\mu(V_m \setminus K_n) \leqslant 1/n$. Из покрытия $(G_t \in \mathcal{G}^0 \mid t \in E)$ множества K_n выделяем конечное подпокрытие $(G_{ni} \in \mathcal{G}^0 \mid i \in I_n)$. Тогда $(G_{ni} \in \mathcal{G}^0 \mid i \in I_n, \ n \in \mathbb{N})$ — покрытие множества $\bigcup (K_n \mid n \in \mathbb{N}) \equiv L$. Рассмотрим множество $U_m \equiv \bigcup (G_{ni} \mid i \in I_n, \ n \in \mathbb{N}) \in \mathcal{G}^0$. Так как $L \subset U_m \subset V_m$ и $\mu L = \mu V_m$, то $\mu U_m = \mu V_m$. Значит, $U_m \in \mathcal{U}_\mu^0$. По условию $f[G_{ni}] \subset]f(t) - \varepsilon/4, f(t) - \varepsilon/4[$. Рассмотрим числа $x_{ni} \equiv \inf(f(t) \mid t \in G_{ni})$ и $y_{ni} \equiv \sup(f(t) \mid t \in G_{ni})$. Для них верно $f[G_{ni}] \subset]x_{ni}, y_{ni}[$ и $|y_{ni} - x_{ni}| < \varepsilon/2$.

Рассмотрим счётное множество $A \equiv \bigcup (\{n\} \times I_n \mid n \in \mathbb{N}) \subset \mathbb{N}^2$ и индексы $\alpha \equiv (n,i) \in A$, такие что $i \in I_n$. Определим функцию $g_\alpha \in S_1^0$, полагая $g_\alpha \equiv -z$ для любого $t \notin G_\alpha$ и $g_\alpha \equiv x_\alpha$ для любого $t \in G_\alpha$. Определим также функции $h_\alpha \in S_{\mathrm{u}}^0$, полагая $h_\alpha \equiv z$ для любого $t \notin G_\alpha$ и $h_\alpha \equiv y_\alpha$ для любого $t \in G_\alpha$. Рассмотрим $g \in S_1^0$ и $h \in S_{\mathrm{u}}^0$, такие что $g(t) \equiv \sup(g_\alpha(t) \mid \alpha \in A)$ и $h(t) \equiv \inf(h_\alpha(t) \mid \alpha \in A)$. Тогда $g \leqslant f \leqslant h$ и $0 \leqslant h(t) - g(t) < 1/m$ для любого $t \in U_m$. Таким образом, $g \sim h \mod \mathcal{N}_\mu$. Отсюда по следствию предложения 1 заключаем, что $f \in U(T, \mathcal{SP}_\mu)$.

Напомним, что функция $f\colon T\to\mathbb{R}$ называется полунепрерывной снизу, если $f^{-1}[]x,\infty[]\in\mathcal{G}$ для любого $x\in\mathbb{R}$. Семейство всех таких ограниченных функций обозначим через S_1 . Аналогично определим семейство S_{u} всех ограниченных полунепрерывных сверху функций.

Определим для ограниченной функции $f\colon T\to\mathbb{R}$ её нижнюю регулярную функцию l(f) и верхнюю регулярную функцию u(f), полагая $l(f)(t)\equiv \sup(\inf(f(s)\mid s\in G)\mid G\in\mathcal{G}_t)$ и $u(f)(t)\equiv\inf(\sup(f(s)\mid s\in G)\mid G\in\mathcal{G}_t)$, где \mathcal{G}_t — множество всех открытых окрестностей точки t. Ясно, что $l(f)\leqslant f\leqslant u(f)$. Согласно [1, глава V, § 1] эти функции обладают следующими свойствами:

- 1) $l(f) \in S_{l} \text{ if } u(f) \in S_{u};$
- 2) если $q \in S_1$ ($h \in S_n$) и $q \leqslant f$ ($f \leqslant h$), то $q \leqslant l(f)$ (соответственно $u(f) \leqslant h$).

Лемма 4. Пусть даны ограниченная функция $f \colon T \to \mathbb{R}$ и некоторое разбиение $\varkappa \in \Delta$ множества T. Тогда $s(f,\varkappa) = s(l(f),\varkappa)$ и $S(f,\varkappa) = S(u(f),\varkappa)$.

Доказательство. Пусть $\varkappa\equiv (Q_k\in\mathcal{G}\cup\mathcal{LN}_\mu\mid k\in K)\in\Delta$. Рассмотрим множество $K_+\equiv\{k\in K\mid Q_k\in\mathcal{G}\setminus\{\varnothing\}\}$. Ясно, что $\mu Q_k=0$ для любого $k\in K\setminus K_+$.

Пусть $k \in K_+$. Тогда

$$x_k \equiv \inf(f(t) \mid t \in Q_k) \geqslant \inf(l(f)(t) \mid t \in Q_k) \geqslant$$
$$\geqslant \inf(\inf(f(t) \mid t \in Q_k)) = \inf(x_k \mid t \in Q_k) = x_k$$

влёчёт $x_k = \inf(l(f)(t) \mid t \in Q_k)$. Аналогично,

$$y_k \equiv \sup(f(t) \mid t \in Q_k) \leqslant \sup(u(f)(t) \mid t \in Q_k) \leqslant$$
$$\leqslant \sup(\sup(f(t) \mid t \in Q_k)) = \sup(y_k \mid t \in Q_k) = y_k$$

влёчёт $y_k = \sup(u(f)(t) \mid t \in Q_k)$. Следовательно,

$$s(f,\varkappa) = \sum (x_k \mu Q_k \mid k \in K_+) = \sum (\inf(l(f(t) \mid t \in Q_k \mid k \in K_+)) = s(l(f),\varkappa)$$

$$S(f,\varkappa) = \sum (y_k \mu Q_k \mid k \in K_+) = \sum (\sup(u(f(t) \mid t \in Q_k \mid k \in K_+)) = S(u(f),\varkappa).$$

Теорема 3. $RI_{\mu} \subset U(T, \mathcal{SP}_{\mu}).$

Доказательство. Пусть $f\in \mathrm{RI}_\mu$. Для каждого числа a>0 рассмотрим множество $P_a\equiv\{t\in T\mid u(f)(t)-l(f)(t)\geqslant a\}$. Предположим, что $\mu P_a>0$ для некоторого a. Рассмотрим $\varepsilon\equiv a\mu P_a>0$. Предположим, что $S(f,\pi)-s(f,\pi)\geqslant \varepsilon$ для любого $\pi\in\Delta$. Тогда для любых $\rho,\sigma\in\Delta$ справедливо $S(f,\sigma)-s(f,\rho)\geqslant \geqslant S(f,\rho\wedge\sigma)-s(f,\rho\wedge\sigma)\geqslant \varepsilon$, где $\rho\wedge\sigma\equiv\{R\cap S\mid R\in\rho\wedge S\in\sigma\}$. Следовательно, $S(f,\sigma)\geqslant s(f,\rho)+\varepsilon$ влечёт $i_\mu f\equiv\inf(S(f,\sigma)\mid\sigma\in\Delta)\geqslant s(f,\rho)+\varepsilon$. Поэтому $s(f,\rho)\leqslant i_\mu a-\varepsilon$ влечёт $i_\mu f=\sup(s(f,\rho)\mid\rho\in\Delta)\leqslant i_\mu f-\varepsilon$, что невозможно. Из полученного противоречия следует, что существует такое разбиение $\varkappa\equiv(Q_k\mid k\in K)\in\Delta$, что $x\equiv S(f,\varkappa)-s(f,\varkappa)<\varepsilon$.

По лемме 4 выполняется $x=S(u(f),\varkappa)-s(l(f),\varkappa)<\varepsilon$. Рассмотрим непустое множество $K_a\equiv\{k\in K\mid \mu(Q_k\cap P_a)>0\}$. Для него справедливо

$$x \geqslant \sum ((\sup(u(f)(t) \mid t \in Q_k) - \inf(l(f)(t) \mid t \in Q_k))\mu Q_k \mid k \in K_a).$$

Для каждого $k \in K_a$ выберем некоторую точку $t_k \in Q_k \cap P_a$. Тогда

$$\begin{split} x \geqslant \sum ((u(f)(t_k) - l(f)(t_k))\mu(Q_k \cap P_a) \mid k \in K_a) \geqslant \\ \geqslant \sum (a\mu(Q_k \cap P_a) \mid k \in K_a) = a\mu P_a = \varepsilon, \end{split}$$

что противоречит неравенству $x < \varepsilon$.

Из полученного противоречия следует $\mu P_a=0$ для любого a>0. Рассмотрим множество $P\equiv\{t\in T\mid u(f)(t)-l(f)(t)>0\}$. Так как $P=\bigcup(P_{1/n}\mid n\in\mathbb{N})$, то $\mu P=0$. Следовательно, f(t)=l(f)(t)=u(f)(t) для любой точки $t\in Q\equiv T\setminus P$. Поэтому каждая точка $t\in Q$ является точкой непрерывности точки f. Значит, мера μ множества точек разрыва функции f равна нулю. Из теоремы f следует, что $f\in U(T,\mathcal{SP}_{\mu})$.

Следствие 1. $\mathrm{RI}_{\mu} = U(T, \mathcal{SP}_{\mu}).$

Доказательство. Равенство следует из теорем 1 и 3.

Следствие 2. Для ограниченной функции $f: T \to \mathbb{R}$ эквивалентны следующие утверждения:

- 1) $f \in RI_u$;
- 2) $f \in U(T, \mathcal{SP}_u)$;
- 3) мера μ множества точек разрыва функции f равна нулю.

Доказательство. Утверждение является непосредственным следствием из теоремы 2.

Следствие 3. Пусть $T \equiv [a,b] \subset \mathbb{R}$ и λ — мера Лебега на [a,b], порождённая длиной интервалов $l(|x,y|) \equiv y-x$. Тогда для любой ограниченной функции $f\colon T \to \mathbb{R}$ эквивалентны следующие утверждения:

- 1) f является интегрируемой по Риману в обычном смысле;
- 2) $f \in RI_{\lambda}$;
- 3) $f \in U(T, \mathcal{SP}_{\lambda})$.

Доказательство. Эквивалентность утверждений 1) и 3) следует из теоремы 2 и характеризации Лебега—Витали. Эквивалентность утверждений 2) и 3) доказана в следствии 1 теоремы 3.

Это следствие даёт новую характеризацию функций, интегрируемых по Риману в обычном смысле на отрезке [a,b].

Литература

- [1] Вулих Б. З. Введение в теорию полуупорядоченных пространств. M.: Физматгиз, 1961.
- [2] Захаров В. К. Связь между полным кольцом частных кольца непрерывных функций, регулярным пополнением и расширениями Хаусдорфа—Серпинского // Успехи мат. наук. 1990. Т. 45, N 6. С. 133—134.

- [3] Захаров В. К. Счётно-делимое расширение и расширение Бэра кольца и банаховой алгебры непрерывных функций как делимая оболочка // Алгебра и анализ. 1993. Т. 5, \mathbb{N} 6. С. 121—138.
- [4] Lebesgue H. Leçons sur l'intégration et la recherche des fonctions primitives. Paris: Gauthier-Villars, 1904.
- [5] Vitali G. Sulla integrabilità delle funzioni // Ist. Lombardo Accad. Sci. Lett. Rend. (2). 1904.- Vol. 37.- P. 69-73.
- [6] Zakharov V. K. Alexandrovian cover and Sierpin'skian extension // Studia Sci. Math. Hungar. 1989. Vol. 24. P. 93–117.