Разложимость линделёфовых пространств

М. А. ФИЛАТОВА

Уральский государственный университет e-mail: Maria.Filatova@usu.ru

УДК 515.122.24+515.122.29

Ключевые слова: разложимое пространство, au-разложимое пространство, дисперсионный характер, финально компактное пространство.

Аннотация

В работе доказана ω -разложимость наследственно финально компактного пространства несчётного дисперсионного характера. Также доказана разложимость пространства со свойством Линделёфа, дисперсионный характер которого несчётен.

Abstract

M. A. Filatova, Resolvability of Lindelöf spaces, Fundamentalnaya i prikladnaya matematika, vol. 11 (2005), no. 5, pp. 225—231.

We prove the ω -resolvability of hereditarily finally compact spaces and the resolvability of Lindelöf spaces whose dispersion character is uncountable.

Введение

Понятия разложимого, τ -разложимого и неразложимого топологических пространств были введены Хьюиттом [5]. Пространство X разложимо (τ -разложимо), если X можно представить в виде дизъюнктного объединения двух (τ) плотных в X множеств. Дисперсионным характером $\Delta(X)$ называется минимум мощностей непустых открытых подмножеств пространства X. Пространство X максимально разложимо, если оно $\Delta(X)$ -разложимо.

Топологическое пространство X называется финально компактным, если из каждого открытого покрытия этого пространства можно выделить счётное подпокрытие. Если при этом X регулярно, то говорят, что X — линделёфово пространство, или пространство со свойством Линделёфа [3].

В. И. Малыхин (см., например, [1,4]) поставил следующую проблему: разложимо ли регулярное финально компактное пространство несчётного дисперсионного характера?

Требование несчётности дисперсионного характера вполне естественно, поскольку существуют счётные тихоновские неразложимые пространства (такие примеры построил ещё Хьюитт в [5]).

Фундаментальная и прикладная математика, 2005, том 11, № 5, с. 225—231. © 2005 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

- В. И. Малыхиным в [6] доказана максимальная разложимость финально компактных групп несчётного дисперсионного характера, а в [1] построен пример неразложимого хаусдорфова финально компактного пространства несчётного дисперсионного характера.
- О. Павловым доказана ω -разложимость регулярного финально компактного пространства, дисперсионный характер которого больше ω_1 , а также, в предположении отрицания континуум-гипотезы, доказана (максимальная) ω -разложимость связного (наследственно) финально компактного пространства (см. [7]). О. Павловым, в частности, сформулирован следующий вопрос: существуют ли в предположении континуум-гипотезы неразложимые наследственно финально компактные пространства несчётного дисперсионного характера?

В работе доказывается ω -разложимость наследственно финально компактного пространства несчётного дисперсионного характера. Тем самым получен отрицательный ответ на вопрос О. Павлова. В [2] вопрос о разложимости линделёфова пространства сведён к вопросу о разложимости регулярного наследственно финально компактного пространства несчётного дисперсионного характера. Таким образом, поскольку ω -разложимое пространство очевидно разложимо, получено положительное решение проблемы В. И. Малыхина.

Все рассматриваемые в работе пространства предполагаются плотными в себе (без изолированных точек). Замыкание множества A обозначается [A]. Если не оговорено противное, мы не предполагаем никаких аксиом отделимости.

Нам потребуется следующее утверждение.

Критерий разложимости Хьюитта. Пространство X разложимо (τ -разложимо) тогда и только тогда, когда всякое его открытое подмножество содержит плотное в себе разложимое (τ -разложимое) подпространство.

Из критерия Хьюитта, в частности, следует, что при доказательстве разложимости достаточно ограничиться случаем, когда $\Delta(X) = |X|$.

Разложимость наследственно финально компактного пространства

Следующее определение задаёт ключевое понятие данной работы.

Определение 1. Пространство X назовём ортогонально τ -разбиваемым, если $\Delta(X)=|X|$ и найдётся τ разбиений $\{\mathscr{A}^{\gamma}=\{A^{\gamma}_{\alpha}\mid \alpha<|X|\},\ \gamma\leqslant\tau\}$ множества X, обладающих следующими свойствами:

- 1) $|A_{\alpha'}^{\gamma'}\cap A_{\alpha''}^{\gamma''}|\leqslant 1$ для всех $\gamma'\neq\gamma''$ и $\alpha',\alpha''<|X|$ (малая мощность пересечений);
- 2) $\Delta(A^{\gamma}_{\alpha})=|X|$ для всех $\gamma\leqslant \tau,\ \alpha<|X|$ (большой дисперсионный характер подпространств A^{γ}_{α}).

Если пространство ортогонально 2-разбиваемо, то будем говорить, что оно ортогонально разбиваемо.

Следующая очевидная лемма полезна при доказательстве теоремы 1.

Лемма 1. Пусть $A \subset X$ и $\Delta(A) = |X|$, тогда для всякого $B \subset A$, такого что $|A \setminus B| < |X|$, имеют место равенство $\Delta(B) = |X|$ и включение $A \subset [B]$.

Теорема 1. Ортогонально τ -разбиваемое пространство регулярной мощности τ -разложимо.

Доказательство. Пусть $X=\{x_\alpha\mid \alpha<|X|\}.$ Заметим, что для всех $\delta<|X|$, $\gamma\leqslant \tau$ найдётся такой индекс $\alpha(\delta,\gamma)$, что $x_\delta\in A_{\alpha(\delta,\gamma)}^\gamma.$

Сначала докажем теорему для случая $\tau < \Delta(X)$. Индукций по α построим такие множества $D_{\alpha}^{\gamma}, \ \gamma \leqslant \tau$, что $x_{\alpha} \in [D_{\alpha}^{\gamma}]$ для $\gamma \leqslant \tau$ и $D_{\alpha}^{\gamma'} \cap D_{\alpha}^{\gamma''} = \varnothing$ при $\gamma' \neq \gamma''$. Кроме того, D_{α}^{γ} образуют монотонное по α семейство множеств.

База индукции. Для $x_1\in X$ найдутся такие множества $A_{\alpha(1,\gamma)}^{\gamma}$, что $x_1\in A_{\alpha(1,\gamma)}^{\gamma}$, $\gamma\leqslant \tau$. Положим $C_1^{\gamma}=D_1^{\gamma}=A_{\alpha(1,\gamma)}^{\gamma}\setminus\{x_1\}$. Тогда пересечение $D_1^{\gamma'}\cap D_1^{\gamma''}$ пусто при $\gamma'\neq \gamma''$ в силу условия 1) определения 1 и $x_1\in [D_1^{\gamma}]$ для всех $\gamma\leqslant \tau$ по лемме 1.

Шаг индукции. Предположим, что для всех $\beta<\delta<|X|$ построены множества $C^\gamma_\beta,\ D^\gamma_\beta,\ \gamma\leqslant au,$ удовлетворяющие следующим условиям:

- а) семейство $\{C^{\gamma}_{\beta}\mid\gamma\leqslant\tau,\;\beta<\delta\}$ дизъюнктно;
- б) если $C^{\gamma}_{\beta}=\varnothing$ для некоторого $\gamma\leqslant \tau$, то $x_{\beta}\in C^{\gamma}_{\beta'}$ для некоторого $\beta'<\beta$;
- в) если $C^{\gamma}_{\beta} \neq \emptyset$ для некоторого $\gamma \leqslant \tau$, то $C^{\gamma}_{\beta} \subset A^{\gamma}_{\alpha(\beta,\gamma)}$ и мощность разности $A^{\gamma}_{\alpha(\beta,\gamma)} \setminus C^{\gamma}_{\beta}$ меньше |X|, при этом $x_{\beta} \in A^{\gamma}_{\alpha(\beta,\gamma)}$, $x_{\beta} \notin C^{\gamma}_{\beta}$ (из этого условия и условия 2) определения 1 в силу леммы 1 следует, что $x_{\beta} \in [C^{\gamma}_{\beta}]$);
- $\Gamma) D_{\beta}^{\gamma} = \bigcup_{\beta' \leqslant \beta} C_{\beta}^{\gamma}.$

Из перечисленных условий и условия 1) определения 1 следует, что множества $\{D_{\beta}^{\gamma} \mid \gamma \leqslant \tau\}$ образуют при фиксированном β дизъюнктное семейство и $x_{\beta'} \in [D_{\beta}^{\gamma}]$ для $\beta' \leqslant \beta$, $\gamma \leqslant \tau$.

Зафиксируем произвольный индекс γ . Если $x_\delta = \bigcup_{\beta < \gamma} D_\beta^\gamma$, положим $C_\delta^\gamma = \varnothing$.

В противном случае найдётся такое множество $A_{\alpha(\delta,\gamma)}^{\gamma}\in\mathscr{A}^{\gamma}$, что $x_{\delta}\in A_{\alpha(\delta,\gamma)}^{\gamma}$. В этом случае положим

$$C_{\delta}^{\gamma} = A_{\alpha(\delta,\gamma)}^{\gamma} \setminus \left(\bigcup_{\beta < \delta, \, \gamma' \leq \tau} D_{\beta}^{\gamma'} \cup \{x_{\delta}\} \right).$$

Поскольку мощность пересечения

$$A_{\alpha(\delta,\gamma)}^{\gamma} \cap \left(\bigcup_{\beta < \delta, \, \gamma' \leqslant \tau} D_{\beta}^{\gamma'} \cup \{x_{\delta}\}\right)$$

меньше мощности X (это следует из условия 1) определения 1, условий в), г) и регулярности |X|), то условие в) выполнено в силу условия 2) определения 1 и

леммы 1. Из построения следует, что условия а) и б) также выполнены. Положим

$$D^{\gamma}_{\delta} = \bigcup_{\beta \leqslant \gamma} C^{\gamma}_{\beta},$$

тогда D^γ_δ дизъюнктны по γ и $x_\beta\in[D^\gamma_\delta]$ для всех $\beta\leqslant\delta,\ \gamma\leqslant\tau.$ Процесс построения завершён.

Положим

$$X_{\gamma} = \bigcup_{\delta < |X|} D_{\delta}^{\gamma}.$$

Тогда X_{γ} дизъюнктны и плотны в X.

Теперь рассмотрим случай, когда $\tau = |X|$. В этой ситуации нам удобно перенумеровать семейства \mathscr{A}^{γ} следующим образом: $\{\mathscr{A}^{\gamma} \mid \gamma < |X|\}$.

Индукцией по $\alpha < |X|$ построим множества C_{α}^{γ} .

База индукции. Для $x_1\in X$ найдётся такое множество $A^1_{\alpha(1,1)}$, что $x_1\in A^1_{\alpha(1,1)}$. Положим $C^1_1=A^1_{\alpha(1,1)}\setminus \{x_1\}$. Очевидно, что $x_1\in [C^1_1]$.

Шаг индукции. Пусть для всех $\beta,\ \gamma<\delta<|X|$, построены множества $C^\gamma_\beta,$ обладающие следующими свойствами:

- а) семейство $\{C_{\beta}^{\gamma} \mid \gamma \leqslant \beta, \ \beta < \delta\}$ дизъюнктно;
- б) если $C^{\gamma}_{\beta}=\varnothing$, то $x_{\beta}\in C^{\gamma}_{\beta'}$ для некоторого $\beta'<\beta;$
- в) если $C_{\beta}^{\gamma} \neq \emptyset$, то $x_{\beta} \in [C_{\beta}^{\gamma}].$

Для $x_1\in X$ найдётся такое множество $A_{\alpha(1,\delta)}^\delta\in\mathscr{A}^\delta$, что $x_1\in A_{\alpha(1,\delta)}^\delta$. Положим

$$C_1^{\delta} = A_{\alpha(1,\delta)}^{\delta} \setminus \left(\bigcup_{\beta < \delta, \, \gamma < \delta} C_{\beta}^{\gamma} \cup \{x_1\}\right).$$

Тогда $x_1\in [C_1^\delta]$. Пусть для всех $\nu'<\nu<\delta$ построены $C_{\nu'}^\delta$ с нужными нам свойствами. Если $x_\nu\in C_{\beta'}^\nu$ для некоторого $\beta'<\nu$, то положим $C_\nu^\delta=\varnothing$, иначе положим

$$C_{\nu}^{\delta} = A_{\alpha(\nu,\delta)}^{\delta} \setminus \left(\bigcup_{\beta < \delta, \, \gamma < \delta} C_{\beta}^{\gamma} \cup \bigcup_{\nu' < \nu} C_{\nu'}^{\delta} \cup \{x_{\nu}\} \right).$$

Для x_{δ} и фиксированного $\gamma \leqslant \delta$ построим C_{δ}^{γ} следующим образом:

$$C_{\delta}^{\gamma} = A_{\alpha(\delta,\gamma)}^{\gamma} \setminus \bigg(\bigcup_{\beta < \delta, \, \gamma \leq \delta} C_{\beta}^{\gamma} \cup \{x_{\delta}\}\bigg),$$

если x_δ не принадлежит ни одному из построенных ранее множеств, и $C_\delta^\gamma=\varnothing$ в противном случае. Процесс построения завершён.

Положим

$$X_{\alpha} = \bigcup_{\delta < |X|} C_{\delta}^{\alpha}.$$

Построенные таким образом множества X_{α} дизъюнктны и плотны в X. Теорема доказана.

Теорема 2. Наследственно финально компактное пространство несчётного дисперсионного характера ω -разложимо.

Доказательство. Сперва докажем разложимость пространства X. Для этого покажем, что всякое открытое непустое подмножество пространства X содержит ортогонально разбиваемое подпространство мощности (и дисперсионного характера) ω_1 , и воспользуемся теоремой 1 и критерием разложимости Хьюитта.

Нам потребуется следующая лемма.

Лемма 2. В условиях теоремы пусть $A \subset X$ такое, что $|A| = \omega_1$. Тогда найдётся такое не более чем счётное подмножество $\{x_n\}_{n=1}^{\infty} \subset A$, что разность $B = A \setminus \{x_n\}_{n=1}^{\infty} \subset A$ имеет несчётный дисперсионный характер.

Доказательство. Пусть $A'=\{x\in A\mid \Delta(x,A)\leqslant \omega\}$. Множество A' счётно. Действительно, если A' несчётно, то в каждой точке $x\in A'$ зафиксируем такую окрестность U(x) точки x, что $|U(x)\cap A|\leqslant \omega$. Тогда множества U(x), $x\in A'$, образуют открытое покрытие A', из которого нельзя выделить счётное подпокрытие, что противоречит наследственной финальной компактности пространства X.

Из определения и счётности множества A' следует, что множество $B = A \backslash A'$ имеет несчётный дисперсионный характер. Лемма доказана. \square

Продолжим доказывать теорему.

Пусть U — открытое подмножество X. Поскольку мощность множества U несчётна, то в U найдётся дизъюнктное семейство $\{B_{\alpha} \mid \alpha < \omega_1\}$ таких множеств, что мощность каждого из них равна ω_1 . В силу леммы 2 можно считать, что все множества B_{α} имеют несчётный дисперсионный характер.

В каждом множестве B_{α} возьмём по точке. Из полученного множества точек, пользуясь леммой 2, выделим подмножество C_1 несчётного дисперсионного характера. Пусть для всех $\beta < \tau$ построены такие дизьюнктные множества C_{β} несчётного дисперсионного характера, что $|B_{\alpha} \cap C_{\beta}| \leqslant 1$ для всех $\alpha < \omega_1$, $\beta < \tau$. Если множество индексов

$$\left\{\alpha \mid B_{\alpha} \not\subset \bigcup_{\beta < \tau} C_{\beta}\right\}$$

конечно или счётно, то процесс построения завершён. Если это множество несчётно, то в каждой непустой разности

$$B_{\alpha} \setminus \bigcup_{\beta < \tau} C_{\beta}$$

возьмём по точке и из полученного множества, пользуясь леммой 2, выделим подмножество C_{τ} несчётного дисперсионного характера. Ясно, что описанный выше процесс построения не может завершиться на счётном ординале τ и ограничен сверху числом ω_2 . Результатом этого процесса будет семейство мощности ω_1 множеств C_{β} . Перенумеруем построенное семейство индексами, меньшими ω_1 .

Пусть

$$I = \left\{ \alpha \mid B_{\alpha} \not\subset \bigcup_{\beta < \omega_1} C_{\beta} \right\}.$$

Из построения следует, что I — не более чем счётное множество. Положим

$$V = \bigcup_{\beta < \omega_1} C_\beta \setminus \bigcup_{\alpha \in I} B_\alpha, \quad A^1_\alpha = B_\alpha \cap V, \quad A^2_\alpha = C_\alpha \cap V,$$

то есть из семейства $\{B_{\alpha}\}$ удалили не более чем счётное число множеств, а из каждого множества C_{α} удалили не более чем счётное число точек. Легко видеть, что построенные таким образом семейства

$$\{A^1_{\alpha} \mid \alpha < \omega_1, \ \alpha \notin I\}, \quad \{A^2_{\alpha} \mid \alpha < \omega_1, \ \alpha \notin I\}$$

удовлетворяют условиям 1) и 2) определения 1, следовательно, V — ортогонально разбиваемое подпространство пространства U.

Итак, доказана разложимость наследственно финально компактного пространства несчётного дисперсионного характера.

Теперь докажем ω -разложимость пространства X. Поскольку X разложимо, найдутся такие множества X_1 и Y_1 , что $X \supset X_1 \cup Y_1$, причём X_1 , Y_1 дизъюнктны, плотны в X и дисперсионный характер Y_1 несчётен. Действительно, из доказательства следует, что X_1 и Y_1 являются объединениями множеств несчётного дисперсионного характера, следовательно, дисперсионный характер X_1 и Y_1 несчётен. Пространство Y_1 финально компактно, имеет несчётный дисперсионный характер, а значит, разложимо. Следовательно, существуют такие множества X_2 и Y_2 , что $Y_1 \supset X_2 \cup Y_2$, при этом X_2 , Y_2 дизъюнктны, плотны в Y_1 (значит, плотны в X, так как Y_1 плотно в X) и дисперсионный характер Y_2 несчётен. Продолжив процесс для натуральных чисел n, получим последовательность $X_1, X_2, \ldots, X_n, \ldots$ попарно дизъюнктных плотных в X множеств. Следовательно, пространство X ω -разложимо.

В [2] доказаны следующие два утверждения.

Теорема 3. Регулярное финально компактное пространство X, никакое открытое подмножество которого не является наследственно финально компактным, разложимо.

Утверждение 1. Пусть X — регулярное финально компактное пространство несчётного дисперсионного характера. Тогда найдутся два дизъюнктных множества A_1 , A_2 , объединение которых плотно в X, такие что A_1 удовлетворяет условиям теоремы 3, а множество A_2 локально наследственно финально компактно и имеет несчётный дисперсионный характер.

Из теорем 2, 3, утверждения 1 и критерия разложимости Хьюитта непосредственно следует теорема 4.

Теорема 4. Линделёфово пространство несчётного дисперсионного характера разложимо.

Литература

- [1] Малыхин В. И. Борелевская разложимость компактов и их подпространств // Мат. заметки. -1998.-T. 64, вып. 5.-C. 701-712.
- [2] Филатова М. А. О разложимости финально компактных пространств // Математический и прикладной анализ: сб. науч. тр. Тюмень: Изд-во ТюмГУ, 2003. С. 204—212.
- [3] Энгелькинг Р. Общая топология. М.: Мир, 1986.
- [4] Comfort W. W., Garsia-Ferreira S. Resolvabilitj: a selective curvey and some new result // Topology Appl. 1996. Vol. 74. P. 149—167.
- [5] Hewitt E. A problem of set-theoretic topology // Duke Math. J. $-\,1943.-\,$ Vol. $10.-\,$ P. 309-333.
- [6] Malykhin V. I., Protasov I. V. Maximal resolvability of bounded groups // Topology Appl. 1996. Vol. 73. P. 227-232.
- [7] Pavlov O. On resolvability of topological spaces // Topology Appl. 2002. Vol. 126. P. 37-47.