Заметки о нестандартной теории классов

К. ХРБАЧЕК

Нью-йоркский городской университет, США e-mail: khrbacek@ccny.cuny.edu

УДК 510.223

Ключевые слова: нестандартная теория множеств, NCT, теория множеств Гёделя—Бернайса, теория множеств Келли—Морса, аксиома хроматических классов, элементарное вложение, ультрапроизведение.

Аннотация

Статья отвечает на несколько остававшихся открытыми вопросов, касающихся классов в нестандартной теории множеств.

Abstract

K. Hrbacek, Some remarks on nonstandard theory of classes, Fundamentalnaya i prikladnaya matematika, vol. 11 (2005), no. 5, pp. 233—255.

In the paper, we discuss several hitherto open problems concerning classes in non-standard set theory.

Аксиоматическая нестандартная теория классов была предложена в [3, 9] в качестве основания практики нестандартного анализа и распространения классической теории множеств на больший универсум, содержащий бесконечно большие натуральные числа, бесконечно малые вещественные числа и другие «нестандартные» объекты. Подробное изложение нестандартной теории множеств и её достижений можно найти в [8].

Большинство аксиоматических систем для нестандартной теории множеств постулируют некоторый универсум *множеств*, двуместное отношение *принадлежности* \in и одноместный предикат *стандартности* \circ в тих теориях используются неформально, для обозначения расширений формул. Однако имеется несколько веских причин для того, чтобы рассматривать нестандартные теории, в которых классы фигурируют формально, как примитивное понятие, аналогично тому, как это происходит в теории NBG фон Неймана—Бернайса—Гёделя.

1. Нестандартные теории множеств можно разделить на два вида. Внутренние теории, подобные BST или IST, аксиоматизируют только стандартные и внутренние множества. Внешние теории, подобные HST, пытаются аксиоматизировать также и внешние множества. Не удивительно, что внешние теории, как правило, более сложны. Для многих практических целей нужны лишь внешние подмножества универсума внутренних множеств; разумный компромисс состоит в том, чтобы сделать их классами в аксиоматической теории классов, надеясь,

с одной стороны, сохранить простоту внутренних теорий множеств и, с другой стороны, расширить область их применения. По-видимому, это и было причиной создания NCT (сокращение от nonstandard class theory), нестандартной теории классов Андреева и Гордона [1]. Изучение метаматематических свойств NCT и её вариантов является предметом настоящей статьи.

- 2. Неформальное употребление классов позволяет иметь дело только с *определимыми* классами. Последние, как оказывается, обладают особыми свойствами. Так, в BST любой определимый класс может быть определён некоторой $\Sigma_2^{\rm st}$ -формулой. Хотя этот результат имеет множество фундаментальных и полезных следствий, он накладывает и ограничения, поскольку из него следуют отрицания различных желательных свойств. Например, в BST имеются бесконечные (внутренние) множества x, y, для которых нет взаимно-однозначного класса-отображения x на y [8, теорема 5.5.8 (iv) и её доказательство]. Следовательно, свойство изоморфизма Хенсона полезный инструмент нестандартного анализа не может иметь места в BST. В теории NCT аксиома хроматичности постулирует аналогичное ограничение. Однако свойство изоморфизма совместно с теорией NCT вариантом NCT, о котором будет идти речь ниже.
- 3. Универсум нестандартной теории множеств содержит много *подуниверсу-мов* классов, удовлетворяющих только фрагменту всей теории, а также, быть может, дополнительным полезным аксиомам. Определимые классы ограничивают возможности таких подуниверсумов. Например, в BST или NCT каждый разреженный подуниверсум изоморфен предельной ультрастепени стандартного универсума. Но обратное может быть неверно: можно (по меньшей мере в предположении существования сколь угодно больших измеримых кардиналов) сконструировать разреженное элементарное расширение стандартного универсума, не изоморфное никакому определимому универсуму BST [4]. Это можно считать ещё одним проявлением недостаточности определимых классов.
- 4. Кановей и Реекен [8] разработали метод форсинга для нестандартной теории множеств. Для определённых целей нужно, чтобы вынуждающие условия были собственными классами.
- 5. В отличие от ZFC, теория NBG конечно аксиоматизируема. Можно ожидать, что это останется верным и для нестандартных теорий классов.
- В настоящей статье рассматриваются некоторые вопросы, связанные с нестандартной теорией классов Андреева и Гордона. В разделе 1 мы приводим аксиомы NCT и рассматриваем наряду с ней более слабую теорию NCT $^-$, полученную удалением из NCT аксиомы хроматичности классов. Андреев и Гордон [1] определили внутренние классы в NCT и поставили вопрос о том, являются ли все локально внутренние классы внутренними. В разделе 2 мы показываем, что локально внутренние классы обладают многими желательными свойствами внутренних классов, и доказываем, что положительный ответ на этот вопрос совместен с NCT (в предположении совместности слабо компактных кардиналов). В разделе 3 мы показываем, что для каждой модели $\mathbb H$ теории HST найдётся такая модель $\mathcal N$ теории NCT $^-$, что множества (полумножества) модели $\mathcal N$ являются в точности внутренними множествами (соот-

ветственно подмножествами внутреннего универсума) модели Н. В качестве следствия мы получаем ответ на другой вопрос Андреева и Гордона: аксиома хроматичности классов строго сильнее насыщенности. Ещё одним следствием является совместность принципа изоморфизма с теорией NCT⁻. Раздел 4 посвящён теории NKM, которая относится к NCT так же, как KM (теория множеств Келли—Морса) относится к NBG. Отвечая на вопрос Кановея, мы показываем, что NKM является непротиворечивой теорией (относительно КМ), и изучаем некоторые её дальнейшие расширения. В [8] Кановей и Реекен поставили вопрос, можно ли определить предикат стандартности st какой-либо ∈-формулой в HST. В разделе 5 получен отрицательный ответ на этот вопрос и аналогичный вопрос для NCT.

1. Нестандартная теория классов Андреева и Гордона

Теория множеств фон Неймана—Бернайса—Гёделя NBG формулируется в языке с предикатом принадлежности \in и переменными X, Y, \ldots , принимающими значения классов. Множества определяются как члены классов: $Set(X) \equiv$ $\equiv (\exists Y)(X \in Y)$, и строчные буквы используются для переменных, принимающих значения множеств. Формула является нормальной, если в ней присутствуют кванторы только по переменным для множеств. Запись $\varphi(X_1,\ldots,X_n)$ указывает, что все свободные переменные формулы φ встречаются среди X_1, \ldots, X_n . Запись вида \bar{X}, \ldots мы используем для обозначения конечных списков переменных, как, например, X_1, \ldots, X_n .

Аксиомы NBG таковы:

```
аксиома экстенсиональности:
   (\forall X)(\forall Y)((\forall u)(u \in X \iff u \in Y) \implies X = Y);
аксиома свёртывания для нормальных формул: пусть \varphi(u, \bar{X}) есть нор-
   мальная формула, тогда (\forall \bar{X})(\exists Y)(\forall u)(u \in Y \iff \varphi(u, \bar{X}));
аксиома пары: (\forall x, y)(\exists z)(z = \{x, y\});
аксиома объединения: (\forall x)(\exists y)(y = \bigcup x);
аксиома степени: (\forall x)(\exists y)(y = \mathcal{P}(x));
аксиома бесконечности: (\exists x)[\varnothing \in x \land (\forall y \in x)(y \cup \{y\} \in x)];
аксиома выделения: (\forall X)(\forall x)(\exists y)(y=x\cap X);
аксиома собирания:
   (\forall X)(\forall x)(\exists y)(\forall u \in x)[(\exists v)(\langle u, v \rangle \in X) \implies (\exists v \in y)(\langle u, v \rangle \in X)];
аксиома выбора: каждое множество непустых множеств имеет функцию
аксиома регулярности: (\forall x \neq \varnothing)(\exists u \in x)(x \cap u = \varnothing).
Замечания.
```

1. Для удобства мы постулируем свёртку в виде схемы аксиом. Её можно заменить на конечное число аксиом (его группа В).

- 2. Мы разделяем аксиому С4 Гёделя (подстановка) на аксиомы выделения и собирания.
- 3. Мы предполагаем только локальный, а не глобальный выбор, допускаемый аксиомой Е Гёделя. Регулярность также постулируется только для множеств (однако регулярность для классов является следствием наших аксиом для NBG).

П. В. Андреев и Е. И. Гордон [1] предложили теорию NCT (нестандартную теорию классов), которая относится к NBG примерно так же, как IST [9] (или, более точно, BST [8]) относится к ZFC. Язык NCT есть язык NBG плюс унарный предикат стандартности \mathbf{st} ; $\mathbf{st}(X)$ означает «класс X стандартнон».

Сначала мы приведём аксиомы более слабой теории NCT $^-$. Они включают все аксиомы NBG за исключением аксиомы выделения. Теперь понятно, что свёртка допускает любые нормальные \in -st-формулы. В частности, существует класс $\mathbb{S}:=\{x\colon \mathbf{st}(x)\}$ всех стандартных множеств и класс $\mathbb{I}:=\{x\colon x=x\}$ всех множеств. Для любого класса X определяем $^\circ X:=X\cap \mathbb{S}$.

Если φ есть \in -формула, то формула $\varphi^{\mathbf{st}}$ получается заменой каждого вхождения $(\exists X)$ $[(\forall X)]$ в φ на $(\exists^{\mathbf{st}}X)$ [соответственно $(\forall^{\mathbf{st}}X)]$, где $(\exists^{\mathbf{st}}X)(\ldots) \equiv (\exists X)(\mathbf{st}(X) \wedge \ldots)$ и $(\forall^{\mathbf{st}}X) \equiv (\forall X)(\mathbf{st}(X) \Longrightarrow \ldots)$.

Остальные аксиомы NCT таковы:

```
стандартная аксиома свёртывания для нормальных ∈-формул:
```

```
пусть \varphi(u, \bar{X}) — нормальная \in-формула, тогда (\forall^{\mathbf{st}}\bar{X})(\exists^{\mathbf{st}}Y)(\forall u)(u\in Y\iff \varphi(u, \bar{X}));
```

аксиома выделения для стандартных классов:

```
(\forall^{\mathbf{st}} X)(\forall^{\mathbf{st}} x)(\exists y)(y = x \cap X);
```

аксиома ограниченности $(\forall x)(\exists^{st}a)(x \in a);$

аксиома переноса: $(\forall^{st}X)((\exists x)(x \in X) \implies (\exists^{st}x)(x \in X));$

аксиома стандартизации: $(\forall X)(\exists^{st}Y)(\forall^{st}u)(u \in Y \iff u \in X);$

аксиома ограниченной идеализации:

```
(\forall x)(\forall^{\mathbf{st}}a)[(\forall a_0\in{}^{\circ}\mathcal{P}^{\mathrm{fin}}(a))(\exists y\in x)(a_0\subseteq y)\iff (\exists y\in x)({}^{\circ}a\subseteq y)], где \mathcal{P}^{\mathrm{fin}}(a) есть множество всех конечных подмножеств a.
```

Легко видеть, что сформулированная здесь теория NCT^- эквивалентна теории NCTиз [1] с изъятой аксиомой хроматичности классов.

Для удобства мы используем рукописные буквы для обозначения совокупностей классов — неформальных представлений расширений формул. В частности, $\mathcal{S} := \{X \colon \mathbf{st}(X)\}$ есть совокупность всех стандартных классов (стандартный универсум NCT $^-$). Иногда мы пишем $\mathcal{S} \models \varphi$ вместо формулы $\varphi^{\mathbf{st}}$. В более общем случае, если \mathcal{C} есть некоторая совокупность классов, то $\mathcal{C} \models \varphi$ есть формула, полученная из φ путём замены $(\exists X) \ [(\forall X)]$ на $(\exists X \in \mathcal{C})$ [соответственно $(\forall X \in \mathcal{C})$].

Следующие результаты из [1] верны в NCT⁻:

Принцип переноса ([1, теорема 3.1] и обычная индукция): пусть $\varphi(\bar{x}, \bar{X})$ — любая нормальная \in -формула, тогда $(\forall^{\mathbf{st}}\bar{x}, \bar{X})(\varphi^{\mathbf{st}}(\bar{x}, \bar{X}) \iff \varphi(\bar{x}, \bar{X}))$.

Одно из следствий принципа переноса состоит в том, что $\mathcal{S} \vDash \text{NBG}$. Имеет место также теорема 3.8 из [1]: $(\forall X)[X \in \mathcal{S} \iff (\forall a \in \mathbb{S})(a \cap X \in \mathbb{S})]$, т. е. локально стандартные классы стандартны.

Мы заключаем этот обзор NCT формулировкой аксиомы хроматичности классов. Для любого класса X и множества p положим $(X)_p := \{x : \langle p, x \rangle \in X\}$. Следуя [1], класс X назовём p-стандартным, если $(\exists^{\mathbf{st}}Y)(X = (Y)_p)$. Пусть $S[p] := \{X : X$ p-стандартен $\}$. Класс $\mu_p(x) := \bigcap \{a \in S[p] : x \in a\}$ есть p-монада множества x. Класс X называется p-хроматичным, если $(\forall x \in X)(\mu_p(x) \subseteq X)$. Класс x-роматичен, если он x-хроматичен для некоторого x-

Аксиома хроматичности классов (АСС): все классы хроматичны.

Теория NCT есть NCT $^-$ с ACC. Одним из следствий ACC является аксиома насыщенности [1, теорема 4.7]. Класс X имеет $cman\partial apmный pasmep$, если существует класс-функция F и стандартное множество a, такие что $X=F[a\cap \mathbb{S}]$. Множество x S-конечно, если существуют функция f и стандартное $n\in \omega$, такие что x=f[n].

Аксиома насыщенности: если класс X имеет стандартный размер и $\bigcap x \neq \emptyset$ для всех S-конечных $x \subseteq X$, то $\bigcap X \neq \emptyset$.

Теорема ([1, теорема 5.1]). Теория NCT есть консервативное расширение NBG. Другими словами, для любого \in -предложения φ NBG $\vdash \varphi$, если и только если NCT $\vdash \varphi^{\mathbf{st}}$.

2. Внутренние классы в NCT

В этом разделе мы исследуем внутренние классы в NCT $^-$. Следуя Андрееву и Гордону, мы говорим, что класс X является *внутренним*, если выполнено $(\exists p)(\exists^{\mathbf{st}}Y)(X=(Y)_p); \mathcal{I}$ есть совокупность всех внутренних классов.

Доказательства следующих результатов Андреева и Гордона не используют ${\sf ACC}$ и потому верны в ${\sf NCT}^-$:

- 1) свёртка для нормальных \in -формул выполняется в \mathcal{I} [1, теорема 3.5.1];
- 2) выделение для внутренних классов:

$$(\forall^{\mathbf{int}} X)(\forall x)(\exists y)(y = x \cap X)$$

(внутренние классы являются локально внутренними) [1, теорема 3.7];

- 3) $\mathcal{I} \models NBG [1, \text{ теорема } 3.9];$
- 4) принцип идеализации: пусть $\varphi(u,y,\bar{X})$ есть нормальная \in -формула. Для всех $\bar{X}\in\mathcal{I}$ и любого стандартного a справедливо

$$(\forall a_0 \in {}^{\circ}\mathcal{P}^{\mathrm{fin}}(a))(\exists y)(\forall u \in a)\varphi(u,y,\bar{X}) \iff (\exists y)(\forall u \in {}^{\circ}a)\varphi(u,y,\bar{X})$$
 [1, теорема 3.10].

Определение внутренних классов в NCT мотивировано аксиомой ACC. Другим допустимым кандидатом для этого понятия являются локально внутренние классы, и в NCT этот второй подход, быть может, более оправдан. Мы говорим, что класс X является локально внутренним, если $(\forall x)(\exists y)(y=x\cap X)$, и обозначаем через $\mathcal L$ совокупность всех локально внутренних классов. Согласно пункту 2) (выделение для внутренних классов) $\mathcal I\subseteq\mathcal L$. Мы покажем, что $\mathcal L$ является альтернативным вариантом совокупности «внутренних» классов в NCT . Результаты 1)—4) справедливы также для $\mathcal L$.

Андреев и Гордон [1] ставили вопрос о том, являются ли в NCT все локально внутренние классы внутренними, т. е. верно ли, что $\mathcal{I}=\mathcal{L}$. В этом разделе мы доказываем, что $\mathcal{I}=\mathcal{L}$ совместно с NCT в предположении совместности слабо компактных кардиналов. Вопрос о том, совместно ли утверждение $\mathcal{I}\neq\mathcal{L}$ с NCT или даже с NCT $^-$, открыт. В частности, верно ли это утверждение в «минимальной» модели NCT, полученной добавлением к модели BST \in -st-определимых классов? Ниже приводится эквивалентное утверждение стандартной теории множеств.

Следующая лемма является слабым вариантом принципа отражения; она используется здесь и в разделе 3. Через $\langle V_\alpha\colon \alpha\in \mathbb{O}n\rangle$ обозначена стандартная кумулятивная иерархия фон Неймана. Нормальная формула $\varphi(\bar{x},\bar{X})$ называется *строго нормальной*, если переменные для классов X_i встречаются в ней только справа от символа \in . В NCT $^-$ каждая нормальная формула эквивалентна некоторой строго нормальной (ср. первый абзац доказательства теоремы 4.1).

Лемма 2.1 (в предположении NCT $^-$). Пусть

$$\varphi(\bar{x}, \bar{X}) \equiv (Q_1 y_1) \dots (Q_k y_k) \ \psi(\bar{x}, \bar{y}, \bar{X})$$

есть нормальная \in -st-формула в предварённой форме. Для любого стандартного ординала α_0 найдутся такие стандартные ординалы $\alpha_0 \leqslant \alpha_1 \leqslant \ldots \leqslant \alpha_k$, что для любых $\bar{x} \in V_{\alpha_0}$ имеет место эквивалентность

$$\varphi(\bar{x}, \bar{X}) \iff (Q_1 y_1 \in V_{\alpha_1}) \dots (Q_k y_k \in V_{\alpha_k}) \ \psi(\bar{x}, \bar{y}, \bar{X} \cap V_{\alpha_k}).$$

Доказательство. Рассуждаем индукцией по сложности φ . Если данная формула $\varphi(\bar{x},\bar{X}) \equiv \psi(\bar{x},\bar{X})$ бескванторная, то эквивалентность

$$(\forall \bar{x} \in V_{\alpha_0})(\varphi(\bar{x}, \bar{X}) \iff \psi(\bar{x}, \bar{X} \cap V_{\alpha_0}))$$

очевидна.

На шаге индукции мы предполагаем без ограничения общности, что Q_1 есть \exists . Применив аксиому собирания к классу

$$R := \{ \langle \bar{x}, y_1 \rangle \colon (Q_2 y_2) \dots (Q_k y_k) \ \psi(\bar{x}, y_1, \dots, \bar{X}) \}$$

и используя ограниченность, получим такой стандартный ординал $\alpha_1 \geqslant \alpha_0$, что

$$(\forall \bar{x} \in V_{\alpha_0})[(\exists y_1)(Q_2y_2)\dots(Q_ky_k) \ \psi(\bar{x},\bar{y},\bar{X}) \Longrightarrow (\exists y_1 \in V_{\alpha_1})(Q_2y_2)\dots(Q_ky_k) \ \psi(\bar{x},\bar{y},\bar{X})].$$

П

Предположение индукции, применённое к ординалу α_1 и формуле

$$(Q_2y_2)\dots(Q_ky_k) \ \psi(\bar{x},y_1,y_2\dots,\bar{X}),$$

даёт такие стандартные $\alpha_1 \leqslant \alpha_2 \leqslant \ldots \leqslant \alpha_k$, что для всех $\bar{x}, y_1 \in V_{\alpha_1}$

$$(Q_2y_2)\dots(Q_ky_k)\ \psi(\bar{x},\bar{y},\bar{X})\iff (Q_2y_2\in V_{\alpha_2})\dots(Q_ky_k\in V_{\alpha_k})\ \psi(\bar{x},\bar{y},\bar{X}\cap V_{\alpha_k}).$$

Тогда ясно, что

$$(\forall \bar{x} \in V_{\alpha_0})[(\exists y_1)(Q_2y_2)\dots(Q_ky_k) \ \psi(\bar{x},\bar{y},\bar{X}) \iff \\ \iff (\exists y_1 \in V_{\alpha_1})(Q_2y_2 \in V_{\alpha_2})\dots(Q_ky_k \in V_{\alpha_k}) \ \psi(\bar{x},\bar{y},\bar{X} \cap V_{\alpha_k})],$$

что и требовалось.

Замечание. Отметим, что для доказательства не требуется вся сила схемы аксиом стандартной свёртки; достаточно лишь знать, что $\mathbb{S} \models \mathsf{ZFC}$ (чтобы иметь возможность определить стандартную кумулятивную иерархию и доказать, что она обладает обычными свойствами).

Теорема 2.2 (в предположении NCT $^-$ **).** Пусть φ — нормальная \in -формула. Если \bar{X} — локально внутренние классы, то $X:=\{x\colon \varphi(x,\bar{X})\}$ — локально внутренний класс (свёртка в \mathcal{L}).

Доказательство. Не ограничивая общности, мы предполагаем, что φ имеет предварённую форму. Достаточно показать, что $X \cap V_{\alpha_0}$ есть множество для всех стандартных α_0 . По лемме 2.1

$$x \in X \cap V_{\alpha_0} \iff x \in V_{\alpha_0} \land (Q_1 y_1 \in V_{\alpha_1}) \dots (Q_k y_k \in V_{\alpha_k}) \ \psi(\bar{x}, \bar{y}, \bar{X} \cap V_{\alpha_k}) \equiv \chi(x).$$

Пересечения $X_i \cap V_{\alpha_k}$ — множества, $\mathbb{I} \vDash \mathsf{ZFC}$, и выделение для (классов, заданных посредством) \in -формул с параметрами-множествами имеет место в ZFC. Поэтому $X \cap V_{\alpha_0} = \{x \in V_{\alpha_0} \colon \chi(x)\}$ есть множество.

Следствие 2.3 (в предположении NCT $^-$ **).** \mathcal{L} удовлетворяет NBG.

Доказательство. Теорема 2.2 показывает, что $\mathcal L$ удовлетворяет схеме свёртки для нормальных \in -формул. Экстенсиональность следует из включения $\mathbb I\subseteq \mathcal L$. Выделение заложено в определении $\mathcal L$. Остальные аксиомы $\mathcal L$ наследует от NCT $^-$.

Следствие 2.4 (в предположении NCT $^-$ **).** \mathcal{L} удовлетворяет принципу идеализации.

Доказательство точно такое же, как доказательство в [1, теорема 3.10].

Следующая теорема показывает, что $\mathcal{I} = \mathcal{L}$ совместно с NCT, и даёт частичный ответ на вопрос из [1].

Теорема 2.5. NCT $+ S \vDash$ «класс $\mathbb{O}n$ слабо компактен», и в этой теории все локально внутренние классы являются внутренними.

Замечание. Модель этой теории можно получить, взяв $V_{\kappa+1}$, где κ — некоторый слабо компактный кардинал, в качестве модели $\mathcal N$ теории NBGи расширив её до модели NCT методом из [1, раздел 5]. На самом деле это будет модель теории NKM + «выбор для классов в $\mathcal S$ », о которой пойдёт речь в разделе 4.

Доказательство. Пусть X- локально внутренний p-хроматичный класс. Для любого стандартного α $X\cap V_{\alpha}$ есть p-хроматичное множество. Согласно [1, предложение 4.1] множество p-хроматично, если и только если оно p-стандартно. Поэтому $X\cap V_{\alpha}=(x)_p$ для некоторого стандартного $x\subseteq V_{\alpha}$. Пусть

$$T := {}^{s} \{ \langle x, \alpha \rangle \colon x \subseteq V_{\alpha} \land (x)_{p} = X \cap V_{\alpha} \}.$$

Mы упорядочиваем T посредством

$$\langle x, \alpha \rangle \leq \langle y, \beta \rangle \equiv \alpha \leqslant \beta \land x = y \cap V_{\alpha}.$$

T и \preceq — стандартные классы, а $\langle T, \preceq \rangle$ — дерево, где каждая вершина $\langle x, \alpha \rangle$ имеет уровень α . Таким образом, каждый уровень T есть множество, и у T имеются ветви длины α для всех α . В силу слабой компактности $\mathbb{O}n$ T имеет ветвь B (стандартный класс) длины $\mathbb{O}n$. Положим

$$Y := \bigcup \{x \colon (\exists \alpha)(\langle x, \alpha \rangle \in B)\}.$$

Класс Y стандартен, и $(Y)_p = X$.

Общая задача сводится к следующему комбинаторному вопросу об ультрапроизведениях.

Вопрос. Пусть U — ультрафильтр над I. Существует ли для данного класса $\langle A_{\alpha} \colon \alpha \in \mathbb{O}n \rangle$, где $A_{\alpha} = \langle A_{\alpha}(i) \colon i \in I \rangle$, $A_{\alpha}(i) \subseteq V_{\alpha}$ для всех $i \in I$ и из $\alpha < \beta$ следует $\{i \in I \colon A_{\alpha}(i) = V_{\alpha} \cap A_{\beta}(i)\} \in U$, такой класс A, что для всех $\alpha \in \mathbb{O}n$ выполняется $\{i \in I \colon A_{\alpha}(i) = V_{\alpha} \cap (A)_i\} \in U$?

В модели $\mathcal N$ теории NCT все локально внутренние классы являются внутренними тогда и только тогда, когда в её универсуме $\mathcal S$ стандартных классов ответ на этот вопрос положителен для всех ультрафильтров U и всех таких классов $\langle A_{\alpha} \colon \alpha \in \mathbb On \rangle$, как описано выше.

3. NCT сильнее, чем NCT плюс насыщенность

Андреев и Гордон [1] поставили вопрос о том, можно ли доказать аксиому хроматичности в теории NCT^- плюс насыщенность. Мы даём отрицательный ответ. В этом разделе символ \models имеет своё обычное значение в смысле теории моделей.

Теорема 3.1. Пусть $(\mathbb{H}, \varepsilon, \mathbb{S})$ есть некоторая модель HST, и пусть

$$\mathbb{I} := \{x \in \mathbb{H} : (\mathbb{H}, \varepsilon, \mathbb{S}) \models «x - внутреннее множество»\}.$$

Найдётся модель $(\mathcal{N}, \varepsilon, \mathcal{S})$ теории NCT^- + насыщенность и отображение Φ , которое сохраняет ε , отображает $\mathbb S$ на класс стандартных множеств модели \mathcal{N} , $\mathbb I$ — на класс всех множеств $\mathcal N$, а подмножества $\mathbb I$ в $(\mathbb H, \varepsilon, \mathbb S)$ — на полумножества $\mathcal N$.

Мы отождествляем x и $\Phi(x)$, когда (как мы надеемся) это не приводит к недоразумениям.

Доказательство. Пусть $(\mathbb{H}, \varepsilon, \mathbb{S})$ — модель HST. Отношение принадлежности ε этой модели не обязательно совпадает $c \in$, но, как в [8, 7.1.1], мы предполагаем, не ограничивая общности, что для $x \in \mathbb{H} \setminus \mathbb{I}$ и $y \in \mathbb{H}$ выполнено $y \in x \iff y \in x$. Пусть

$$\mathcal{E} := \{ x \in \mathbb{H} \colon (\mathbb{H}, \varepsilon, \mathbb{S}) \vDash x \subseteq \mathbb{I} \};$$

в частности, $\mathbb{I} \subseteq \mathcal{E}$. При изучении структуры $(\mathcal{E}, \varepsilon, \mathbb{S})$ мы используем соглашения и терминологию в стиле NCT. В частности, переменные, записанные строчными буквами, пробегают \mathbb{I} («множества»), а записанные прописными буквами (E_1, E_2, \ldots) пробегают \mathcal{E} («полумножества»).

Пусть $\mathcal{N}-$ совокупность всех классов $X\subseteq\mathbb{I}$, определимых в $(\mathcal{E},\varepsilon,\mathbb{S})$ некоторой нормальной \in -st-формулой φ с параметрами из \mathcal{E} . Подразумевается, что всякий класс X, совпадающий с расширением некоторого множества (т. е. $(\exists x\in\mathbb{I})(\forall y\in\mathbb{I})(y\ \varepsilon\ x\iff y\in X))$, отождествляется с этим множеством. Таким образом, $\mathcal{E}\subseteq\mathcal{N}$, и отношение ε на \mathcal{E} имеет продолжение на \mathcal{N} , также обозначаемое через ε . Заметим, что $(\mathcal{N},\varepsilon)\models$ «X есть множество» тогда и только тогда, когда $X\in\mathbb{I}$.

Отметим также, что $(\mathcal{E}, \varepsilon, \mathbb{S}) \models \varphi(x, \overline{E})$ (где $\overline{E} \in \mathcal{E}$) эквивалентно $(\mathbb{H}, \varepsilon, \mathbb{S}) \models \psi(x, \overline{E})$ для подходящей \in -st-формулы ψ , так что все $X \in \mathcal{N}$ также \in -st-определимы в \mathbb{H} . Согласно выделению в \mathbb{H} всякое \in -st-определимое подмножество $a \in \mathbb{I}$ есть множество в \mathbb{H} и, следовательно, принадлежит \mathcal{E} . Отсюда вытекает, что полумножества в $(\mathcal{N}, \varepsilon, \mathbb{S})$ — в точности элементы \mathcal{E} . Простые рассуждения показывают, что $(\mathcal{N}, \varepsilon)$ удовлетворяет аксиомам NBG (аксиома собирания следует из аксиомы собирания в \mathbb{H}). Кроме того, $(\mathbb{S}, \varepsilon) \models Z$ FC и аксиома переноса в виде $(\mathbb{S}, \varepsilon) \models \varphi \iff (\mathbb{I}, \varepsilon) \models \varphi$ для любой \in -формулы φ с параметрами из \mathbb{S} наследуются от \mathbb{H} .

Пусть \mathcal{S} есть совокупность всех локально стандартных классов из \mathcal{N} , т. е.

$$X \in \mathcal{S} \equiv (\forall a \in \mathbb{S})(\exists b \in \mathbb{S})((\mathcal{N}, \varepsilon) \vDash \langle a \cap X = b \rangle)$$

для $X \in \mathcal{N}$. Теперь мы работаем в $(\mathcal{N}, \varepsilon, \mathcal{S})$, снова используя соглашения NCT. Ясно, что $(\mathcal{N}, \varepsilon, \mathcal{S}) \vDash «x$ есть стандартное множество», если и только если $x \in \mathbb{S}$. Итак,

x стандартно в $(\mathcal{N}, \varepsilon, \mathcal{S})$, если и только если $x \in \mathbb{S}$;

x есть множество в $(\mathcal{N}, \varepsilon, \mathcal{S})$, если и только если $x \in \mathbb{I}$;

X есть полумножество $(\mathcal{N}, \varepsilon, \mathcal{S})$, если и только если $X \in \mathcal{E}$.

Выделение для стандартных классов выполняется в $(\mathcal{N}, \varepsilon, \mathcal{S})$ по определению \mathcal{S} . $(\mathcal{N}, \varepsilon, \mathcal{S})$ наследует от \mathbb{H} аксиомы ограниченности, идеализации и

насыщенности. Определение S даёт нам возможность заменить произвольную нормальную \in -st-формулу на эквивалентную ей строго нормальную формулу (ср. первый абзац доказательства теоремы 4.1), поэтому имеет место свёртка для всех нормальных \in -st-формул. Докажем оставшиеся аксиомы. Мы рассужлаем в C.

C стандартного множества sE , что $({}^sE)\cap \mathbb{S}=E\cap \mathbb{S}$, наследуется от \mathbb{H} . Пусть X — произвольный класс. Согласно свёртке для нормальных формул класс ${}^sX:=\bigcup_{a\in \mathbb{S}}{}^s(a\cap X)$ существует. Поскольку $({}^sX)\cap b={}^s(b\cap X)$ стандартен для всех $b\in \mathbb{S}$, имеем ${}^sX\in \mathcal{S}$.

Перенос. Достаточно показать, что если $X \in \mathcal{S}$ и $\mathbb{S} \subseteq X$, то $\mathbb{I} \subseteq X$. Действительно, при этих предположениях для любого $a \in \mathbb{S}$ выполняется $a \cap \mathbb{S} \subseteq a \cap X$ и $a \cap X$ стандартно, откуда $a = a \cap X \subseteq X$. По ограниченности $\mathbb{I} \subseteq X$.

Стандартная свёртка. Пусть $\bar{X} \in \mathcal{S}$ и $\varphi(x,\bar{X})$ есть нормальная \in -формула. Класс $X:=\{x\colon \varphi(x,\bar{X})\}\in \mathcal{N}$ существует согласно свёртке. Нам нужно доказать, что $X\in \mathcal{S}$. Без ограничения общности можно считать, что формула $\varphi(x,\bar{X})\equiv (Q_1y_1)\dots(Q_ky_k)\; \psi(x,\bar{y},\bar{X})$ находится в предварённой форме. Аксиом NCT $^-$, истинность которых в \mathcal{N} была нами уже установлена, достаточно, чтобы увидеть, что лемма 2.1 имеет место в \mathcal{N} . Рассуждая в \mathcal{N} , имеем, что для каждого стандартного ординала α_0 существуют такие стандартные ординалы $\alpha_0\leqslant\alpha_1\leqslant\ldots\leqslant\alpha_k$, что

$$x \in X \cap V_{\alpha_0} \iff x \in V_{\alpha_0} \land (Q_1 y_1 \in V_{\alpha_1}) \dots (Q_k y_k \in V_{\alpha_k}) \psi(x, \bar{y}, \bar{X} \cap V_{\alpha_k}) \equiv \chi(x).$$

Так как $\bar{X} \in \mathcal{S}$, $X_i \cap V_{\alpha_k}$ — стандартные множества. Формула $\chi(x)$ справа является поэтому \in -формулой со стандартными множествами в качестве параметров. Используя перенос из \mathbb{S} в \mathbb{I} и выделение в \mathbb{S} ((\mathbb{S}, ε) \models ZFC), мы заключаем, что

$$\{x \in V_{\alpha_0} \colon \chi(x)\} = \{x \in V_{\alpha_0} \colon \chi^{\mathbf{st}}(x)\}$$

есть стандартное множество.

Как следствие теоремы 3.1 и работ Кановея и Реекена по форсингу в HST мы получаем ответ на вопрос Андреева и Гордона [1].

Теорема 3.2. Теория $\mathcal{T} \equiv \text{NCT}^- + \text{насыщенность} + \neg \text{ACC}$ является консервативным расширением ZFC.

Доказательство. Мы покажем, что всякая счётная модель $(\mathbb{S}, \varepsilon)$ теории ZFC может быть расширена до модели теории \mathcal{T} . Процедуры расширения $(\mathbb{S}, \varepsilon)$ до $(\mathbb{I}, \varepsilon, \mathbb{S}) \models \mathrm{BST}$ и затем до $(\mathbb{L}[\mathbb{I}], \varepsilon, \mathbb{S}) \models \mathrm{HST}$ описаны в [8]. Используя форсинг, Кановей и Реекен строят дальнейшее расширение $(\mathbb{H}, \varepsilon, \mathbb{S}) \models \mathrm{HST}$, такое что \mathbb{I} есть класс внутренних множеств в \mathbb{H} и $(\exists X \subseteq \mathbb{I})(X \in \mathbb{H} \setminus \mathbb{L}[\mathbb{I}])$. Пусть $(\mathcal{N}, \varepsilon, \mathcal{S})$ есть модель теории NCT^- + насыщенность, соответствующая этому \mathbb{H} в формулировке теоремы 3.1. Тогда X есть полумножество в \mathcal{N} , но X не является хроматическим в \mathcal{N} . (Если бы это было не так, то

 $\mathcal{N}\vDash {}_{*}X=\bigcup_{u\in {}^{\circ}C}\mathfrak{M}_{p}(u)$ для некоторого $p\in \mathbb{I}$ и $C\in \mathbb{S}$ » по [1, теорема 4.16], определение $\mathfrak{M}_{p}(u)$ см. в разделе 4. Но $\mathfrak{M}_{p}(u)$ и ${}^{\circ}C$ в $\mathbb{L}[\mathbb{I}]$ те же, что $\mathfrak{M}_{p}(u)$ и ${}^{\circ}C$ в \mathbb{H} , из чего следовало бы, что $X\in \mathbb{L}[\mathbb{I}]$.

Вопрос о том, можно ли заменить ZFC на NBG в теореме 3.2, является открытым.

Кановей и Реекен сформулировали *свойство изоморфизма* Хенсона для теории HST и показали, что оно совместно с HST [8, теорема 7.3.1]. Их формулировку можно перенести в NCT^- .

Язык L есть класс-функция из $^{\circ}$ к в $^{\circ}\omega$ для некоторого кардинала κ . L-структура есть пара $\langle A,R \rangle$, где A — множество и для каждого $\alpha \in ^{\circ}\kappa$ $(A)_{\alpha}$ есть подмножество $A^{L(\alpha)}$ (т. е. внутреннее $L(\alpha)$ -арное отношение на α). Отношение выполнимости для $\langle A,R \rangle$ требует немного аккуратности (NCT $^-$ не допускает кванторов по полумножествам). Для каждого стандартного конечного $a \subseteq ^{\circ}\kappa$ ограничение $R \upharpoonright a$ есть множество, и выполнимость Sat_a для $\langle A,R \upharpoonright a \rangle$ есть однозначно определённое множество. Мы берём ограничение Sat_a' множества Sat_a на стандартные формулы и полагаем Sat равным объединению Sat_a' по всем стандартным конечным $a \subseteq ^{\circ}\kappa$. Две L-структуры элементарно эквивалентны, если они удовлетворяют одним и тем же стандартным предложениям.

Свойство изоморфизма: для любого языка L всякие две элементарно эквивалентные L-структуры изоморфны.

Рассуждения, проведённые при доказательстве теоремы 3.2, доказывают с использованием [8, теорема 7.3.2] следующую теорему.

Теорема 3.3. *Теория* $NCT^- +$ насыщенность + свойство изоморфизма *есть консервативное расширение теории* ZFC.

Как было отмечено во введении, свойство изоморфизма противоречит АСС.

4. Нестандартная теория множеств Келли-Морса

Схема свёрки теории NBG постулирует существование класса $\{x:\varphi(x)\}$ для любой нормальной формулы φ . Теория множеств Келли—Морса КМ является усилением теории NBG, в котором свёртка постулируется для всех формул. В. Г. Кановей поставил (в частной беседе) вопрос о том, совместна ли свёртка для всех \in -st-формул с нестандартной теорией классов. Положительный ответ на этот вопрос был дан в [5], переработанная версия [5] и составляет настоящий раздел. Впоследствии Кановей [7] передоказал и расширил ряд результатов из [5] путём более традиционных рассуждений в духе BST. В частности, он вывел сильную форму собирания из свойства редукции (следствие 4.10, 5)). С другой стороны, представляется, что методы Кановея не доказывают теоремы 4.1

Мы начнём с результата о теории NCT. В этом разделе переменные u,v,w,\dots используются для обозначения ультрафильтров. Отношение эквивалентности \sim

на ультрафильтрах определяется следующим образом:

$$u \sim v \equiv «u \cap v$$
 есть ультрафильтр»

(см. [1]). Класс $X\sim$ -замкнут, если из $u\in X,\ u\sim v$ следует, что $v\in X.$ Переменные U,V,\ldots принимают значения стандартных \sim -замкнутых классов ультрафильтров.

Если u есть ультрафильтр над $I:=\bigcup u$, а f — функция, определённая на I, то $f(u):=\{a\subseteq f[I]\colon f^{-1}[a]\in u\}$ есть ультрафильтр над f[I]. Мы говорим, что u над I является n-арным, если $I\cap \mathbb{I}^n\in u$. Пусть $\pi_i\colon \mathbb{I}^n\to \mathbb{I}$ есть проекция на i-ю координату; $\pi_i(\langle x_1,\ldots,x_n\rangle)=x_i$.

Если u — стандартный ультрафильтр и p — множество, то

$$\mathfrak{M}(u) := \{ x \colon (\forall^{\mathbf{st}} a \in u) (x \in a) \}$$

есть монада и и

$$\mathfrak{M}_p(u) := \{x \colon \langle p, x \rangle \in \mathfrak{M}(u)\}.$$

Мы пишем $\mathfrak{K}(X,U,p),$ если $X=\bigcup_{u\in {}^{\circ}U}\mathfrak{M}_p(u).$

Если u, v стандартны и $\mathfrak{M}(u) \cap \mathfrak{M}(v) \neq \emptyset$, то $u \sim v$. Кроме того, если $u \sim v$ и $\mathfrak{M}_p(u) \neq \emptyset$, $\mathfrak{M}_p(v) \neq \emptyset$, то $\pi_1(u) \sim \pi_1(v)$.

Аксиома хроматичности классов эквивалентна $(\forall X)(\exists U,p)\mathfrak{K}(X,U,p)$ (ср. [1, теорема 4.16]).

Следующая теорема является вариантом алгоритма редукции Нельсона, в NCT она применима ко всем формулам.

Теорема 4.1 (в предположении NCT). Пусть $\varphi(x_1,\ldots,x_n,X_1,\ldots,X_k)$ есть \in -st-формула. Найдётся такая \in -формула $\Phi(u,U_1,\ldots,U_k)$ (которую можно эффективно построить по φ), что для любых $x_1,\ldots,x_n,\,X_1,\ldots,X_k,\,p_1,\ldots,p_k$ и стандартных $u,\,U_1,\ldots,U_k$, если выполняется $\mathfrak{K}(X_i,U_i,p_i)$ для всех $1\leqslant i\leqslant k$ и $\langle x_1,\ldots,x_n,p_1,\ldots,p_k\rangle\in\mathfrak{M}(u)$, то

$$\varphi(x_1,\ldots,x_n,X_1,\ldots,X_k) \iff \Phi^{\mathbf{st}}(u,U_1,\ldots,U_k).$$

Доказательство. Прежде всего заменим в φ

каждое вхождение $X \in Y$ на $(\exists x)(x = X \land x \in Y)$; каждое вхождение $X \in y$ на $(\exists x)(x = X \land x \in y)$; каждое вхождение $\mathbf{st}(X)$ на

$$(\forall z)(\mathbf{st}(z) \implies (\exists y)[\mathbf{st}(y) \land (\forall u)(u \in y \iff u \in X \land u \in z)];$$

каждое вхождение X=Y на $(\forall z)(z\in X\iff z\in Y)$ и аналогично для $X=y,\ x=Y,\ x=y.$

Следовательно, мы можем считать, что атомарные подформулы φ могут быть только трёх видов: $x \in y, \ x \in X, \ \mathbf{st}(x).$

Далее мы используем некоторые проектирующие отображения, определённые на \mathbb{I}^{n+k} :

$$\begin{split} \pi_i(\langle c_1,\ldots,c_{n+k}\rangle) &:= c_i \text{ для } 1\leqslant i\leqslant n+k; \\ \tilde{\pi}_{i,j}(\langle c_1,\ldots,c_{n+k}\rangle) &:= \langle c_j,c_i\rangle \text{ для } 1\leqslant i< j\leqslant n+k; \\ \pi_i^*(\langle c_1,\ldots,c_{n+k}\rangle) &:= \langle c_1,\ldots,c_{i-1},c_{i+1},\ldots,c_{n+k}\rangle \text{ для } 1\leqslant i\leqslant n+k. \end{split}$$

Теперь применим индукцию по сложности φ .

1. $\varphi \equiv x_i \in x_j$. Тогда Φ — формула, выражающая утверждение

2. $arphi\equiv x_i\in X_j$. Тогда Φ — формула, выражающая утверждение «u является (n+k)-арным \wedge $\tilde{\pi}_{i,n+j}(u)\in U_j$ ».

3. $\varphi \equiv \mathbf{st}(x_i)$. Тогда Φ — формула, выражающая утверждение «u является (n+k)-арным \wedge ультрафильтр $\pi_i(u)$ главный»,

т. е. $\mathsf{«}(\exists a) \Big(\Big\{ \langle a_1,\dots,a_n,b_1,\dots,b_k \rangle \in \bigcup u \colon a_i = a \Big\} \in u \Big) ».$

4. $\varphi \equiv \neg \psi$. Тогда

$$\Phi \equiv \neg \Psi$$
.

5. $\varphi\equiv\psi_1\vee\psi_2$ (не ограничивая общности, можно принять, что $\psi_1\equiv\psi_1(x_1,\dots,x_n,X_1,\dots,X_k)$ и $\psi_2\equiv\psi_2(x_1,\dots,x_n,X_1,\dots,X_k)$). Тогда

$$\Phi \equiv \Psi_1 \vee \Psi_2.$$

6.
$$\varphi \equiv (\exists y) \ \psi(y, x_1, \dots, x_n, X_1, \dots, X_k)$$
. Тогда

 $\Phi \equiv (\exists v)(v$ является (n+k+1)-арным $\wedge \pi_1^*(v) \sim u \wedge \Psi(v, U_1, \dots, U_k)).$

7.
$$\varphi \equiv (\exists Y) \; \psi(x_1, \dots, x_n, Y, X_1, \dots, X_k)$$
. Тогда

$$\Phi \equiv (\exists v)(\exists V)$$

$$(v$$
 является $(n+k+1)$ -арным \wedge $\pi_{n+1}^*(v) \sim u \wedge \Psi(v,V,U_1,\ldots,U_k)).$

Доказательства корректности шагов 1-6 тривиальны и/или хорошо известны [1,2]. Докажем корректность шага 7.

Предположим, что выполняется $\psi(x_1,\ldots,x_n,Y,X_1,\ldots,X_k)$. Фиксируем такое q и стандартное V, что $\mathfrak{K}(Y,V,q)$, и такое $v\in\mathbb{S}$, что $\langle x_1,\ldots,x_n,q,p_1,\ldots,p_k\rangle\in\mathfrak{M}(v)$. По предположению индукции $\Psi(v,V,U_1,\ldots,U_k)$ выполняется в \mathcal{S} . Кроме того, $\langle x_1,\ldots,x_n,p_1,\ldots,p_k\rangle\in\mathfrak{M}(\pi_{n+1}^*(v))$, значит, $\pi_{n+1}^*(v)\sim u$. Тем самым доказано, что

$$\mathcal{S} \vDash (\exists v)(\exists V)$$

$$[v \ \mathrm{является} \ (n+k+1)\text{-арным} \wedge \pi_{n+1}^*(v) \sim u \wedge \Psi(v,V,U_1,\ldots,U_k)].$$

Чтобы доказать обратное, зафиксируем (n+k+1)-арное $v\in\mathbb{S}$ со свойством $\pi_{n+1}^*(v)\sim u$ и такое $V\in\mathcal{S}$, что $\mathcal{S}\models\Psi(v,V,U_1,\ldots,U_k)$. Воспользуемся предположением индукции и идеализацией, чтобы найти такое множество q,

что $\langle x_1,\ldots,x_n,q,p_1,\ldots,p_k \rangle \in \mathfrak{M}(v)$. Пусть $Y:=\bigcup_{w\in {}^{\circ}V}\mathfrak{M}_q(w)$. Тогда выполняется $\mathfrak{K}(Y,V,q)$. Таким образом, по предположению индукции имеет место $\psi(x_1,\ldots,x_n,Y,X_1,\ldots,X_k)$ и, наконец, выполняется

$$(\exists Y)\psi(x_1,\ldots,x_n,Y,X_1,\ldots,X_k) \equiv \varphi(x_1,\ldots,x_n,X_1,\ldots,X_k). \quad \Box$$

Если класс X стандартен, то можно взять $p=\varnothing$ и определить

$$U_X := \Big\{ u \colon (\exists v)(u \sim v \land \bigcup v \subseteq \{\varnothing\} \times X \Big\}.$$

Тогда выполняется $\mathfrak{K}(X,U,p)$. Отсюда получаем несколько следствий.

Следствие 4.2 (свойство редукции для всех формул). Для каждой \in -st-формулы φ найдётся такая \in -формула Ψ , что

$$\begin{aligned} \text{NCT} &\vdash (\forall^{\mathbf{st}} \bar{X})(\forall x_1, \dots, x_n) \\ &[\varphi(x_1, \dots, x_n, \bar{X}) \iff (\exists^{\mathbf{st}} u)(\forall^{\mathbf{st}} a \in u) \ (\langle x_1, \dots, x_n \rangle \in a \land \Psi^{\mathbf{st}}(u, \bar{X}))]. \end{aligned}$$

Следствие 4.3 (стандартизация для определимых совокупностей классов). Для каждой \in -st-формулы $\varphi(\bar{x}, \bar{X}, Y)$ найдётся такая \in -формула $\Psi(u, \bar{U}, Y)$, что для любых \bar{x} и \bar{X} найдутся такие стандартные u и \bar{U} , что

$$(\forall^{\mathbf{st}} Y)[\varphi(\bar{x}, \bar{X}, Y) \iff \Psi^{\mathbf{st}}(u, \bar{U}, Y)].$$

Доказательство. Зафиксируем \bar{x} и \bar{X} , стандартный \bar{U} и \bar{p} так, что выполняется $\mathfrak{K}(X_i,U_i,p_i)$. Зафиксируем также такое стандартное u, что $\langle \bar{x},\bar{p},\varnothing\rangle\in\mathfrak{M}(u)$. Теперь для стандартных Y

$$\varphi(\bar{x}, \bar{X}, Y) \iff \Phi^{\mathbf{st}}(u, \bar{U}, U_Y) \iff \Psi^{\mathbf{st}}(u, \bar{U}, Y). \quad \Box$$

Hестандартная теория множеств Kелли-Mopca NKM — это теория NCT плюс $\mathcal{S} \vDash$ свёртка для всех \in -формул (откуда $\mathcal{S} \vDash$ KM).

Предложение 4.4. Теория NKM является консервативным расширением теории KM.

Доказательство. Пусть \mathcal{N} — произвольная модель KM. По [1, теорема 5.1] найдётся модель \mathcal{C} теории NCT, в которую \mathcal{N} вложена в качестве совокупности всех стандартных классов. Эта модель \mathcal{C} тогда удовлетворяет NKM.

Теорема 4.5 (в предположении NKM). Свёртка выполняется для всех \in -st-формул.

Доказательство. Пусть $\varphi(x,X_1,\ldots,X_k)$ — произвольная \in -st-формула. Пусть $\Phi(u,U_1,\ldots,U_k)$ — соответствующая \in -формула из теоремы 4.1. Фиксируем такие $U_i\in\mathcal{S},\ p_i,\$ что $\mathfrak{K}(X_i,U_i,p_i).$ Поскольку $\mathcal{S}\vDash \mathrm{KM},\$ существует такой класс $U\in\mathcal{S},\$ что

$$S \vDash (\forall u)(u \in U \iff \Phi(u, U_1, \dots, U_k)).$$

Теперь положим

$$X := \{x \colon (\exists u \in {}^{\circ}U)(\langle x, p_1, \dots, p_k \rangle \in \mathfrak{M}(u))\}.$$

Тогда
$$(\forall x)(x \in X \iff \varphi(x, X_1, \dots, X_k)).$$

Относительно системы NKM возникают дальнейшие естественные вопросы. Выполняется ли в NKM стандартная свёртка для всех \in -формул? Какова ситуация с теоремой переноса и принципом идеализации? В общем случае эти вопросы открыты; однако они имеют положительные ответы в несколько более сильной теории.

Пусть КМ⁺ есть КМ плюс схема аксиом

выбор множества классов: пусть φ — произвольная \in -формула. Для всех $ar{X}$ и всех множеств a

$$(\forall x \in a)(\exists Y) \ \varphi(x, \bar{X}, Y) \implies (\exists Y)(\forall x \in a) \ \varphi(x, \bar{X}, (Y)_x).$$

Пусть NKM^+ есть NKM плюс $\mathcal{S} \vDash \mathsf{выбор}$ множества классов.

Теперь мы будем работать в NKM^+ и докажем некоторые структурные результаты о подуниверсумах NKM^+ , аналогичные фактам, хорошо известным для BST или NCT [8, раздел 6.1, особенно предложение 6.1.9].

Теория NKM $^+$ достаточно сильна для того, чтобы дать возможность строить ультрастепени её стандартного универсума. Пусть u — стандартный ультрафильтр над I. Единственная требующая некоторого внимания техническая деталь состоит в том, что «классозначные функции с областью определения I» должны быть закодированы классами. Итак, для $X,Y \in \mathcal{S}$ определим

$$X =_{u} Y \equiv \{i \in I : (X)_{i} = (Y)_{i}\} \in u, \quad X \in_{u} Y \equiv \{i \in I : (X)_{i} \in (Y)_{i}\} \in u.$$

Ультрастепень стандартного универсума по модулю ультрафильтра u — это структура $\mathcal{U}lt(\mathcal{S},u):=(\mathcal{S},=_u,\in_u)$. Разумеется, \mathcal{S} есть совокупность классов, поэтому речь идёт лишь о неформальном обозначении. $\mathcal{U}lt(\mathcal{S},u) \vDash \varphi$ есть сокращение для формулы, полученной из φ путём замены =, \in на $=_u$, \in_u и ограничения всех кванторов совокупностью \mathcal{S} . Для любого стандартного класса X $\mathfrak{k}(X):=I\times X$ есть постоянная функция со значением X.

Предложение 4.6 (теорема Лося). Пусть φ — любая \in -формула. Тогда для любых $X_1,\ldots,X_n\in\mathcal{S}$

$$Ult(\mathcal{S}, u) \models \varphi(X_1, \dots, X_n) \iff \{i \in I : \mathcal{S} \models \varphi((X_1)_i, \dots, (X_n)_i)\} \in u.$$

В частности,

$$Ult(S, u) \vDash \varphi(\mathfrak{k}(X_1), \dots, \mathfrak{k}(X_n)) \iff S \vDash \varphi(X_1, \dots, X_n).$$

Неформально, \mathfrak{k} есть элементарное вложение (S, \in) в $\mathcal{U}lt(S, u)$.

Доказательство. Утверждение доказывается обычным рассуждением с применением принципа выбора множества классов.

Предложение 4.7. Пусть $p \in \mathfrak{M}(u)$. Имеется канонический изоморфизм \mathcal{G}_p между $\mathcal{U}lt(\mathcal{S},u)$ и $\mathcal{S}[p]$, при этом $\mathcal{G}_p(\mathfrak{k}(X)) = X$ для всех $X \in \mathcal{S}$.

Доказательство. Для $X \in \mathcal{S}$ определим $\mathcal{G}_p(X) = (X)_p$.

Предложение 4.8. Для всех $p,\ q\ \mathcal{S}[p]$ является элементарной подмоделью $\mathcal{S}[p,q].$

Доказательство. Фиксируем такие стандартные ультрафильтры u над I и v над $I \times J$, что $p \in \mathfrak{M}(u)$ и $\langle p,q \rangle \in \mathfrak{M}(v)$. Пусть $\pi \colon I \times J \to I$ есть проекция на первую координату. Тогда $u = \pi(v)$, что индуцирует элементарное вложение Π структуры $\mathcal{U}lt(\mathcal{S},u)$ в $\mathcal{U}lt(\mathcal{S},v)$, если положить $(\Pi(X))_{\langle i,j \rangle} = (X)_i$ для $\langle i,j \rangle \in I \times J$. Заметим, что $\Pi(\mathfrak{k}(X)) = \mathfrak{k}(X)$ для всех X. (Выбор множества классов используется в доказательстве того, что вложение Π является элементарным.)

Мы имеем также следующие канонические изоморфизмы: \mathcal{G}_p между $\mathcal{U}lt(\mathcal{S},u)$ и $\mathcal{S}[p]$ и $\mathcal{G}_{p,q}$ между $\mathcal{U}lt(\mathcal{S},v)$ и $\mathcal{S}[p,q]$. Композиция \mathcal{G}_p^{-1} с Π и $\mathcal{G}_{p,q}$ есть, таким образом, элементарное вложение. Легко проверить (используя перенос для нормальных \in -формул), что это просто отображение вложения $\mathcal{S}[p]$ в $\mathcal{S}[p,q]$.

Предложение 4.9. Для всех p структура $(S[p], \in)$ является элементарной подмоделью (\mathcal{I}, \in) . В частности, (\mathcal{S}, \in) есть элементарная подмодель (\mathcal{I}, \in) .

Доказательство. Рассуждаем индукцией по сложности φ одновременно для всех p. Пусть $\varphi \equiv (\exists Y)\psi(Y,\bar{X}), \ \bar{X} \in \mathcal{S}[p], \ \mathcal{I} \models \varphi.$ Фиксируем такой класс $Y \in \mathcal{I}$, что $\mathcal{I} \models \psi(Y,\bar{X})$. По определению $\mathcal{I} \ Y \in \mathcal{S}[q]$ для некоторого q. Тогда $\bar{X},Y \in \mathcal{S}[p,q]$, и по предположению индукции $\mathcal{S}[p,q] \models \psi(Y,\bar{X})$. Значит, $\mathcal{S}[p,q] \models (\exists Y)\psi(Y,\bar{X})$. По предложению 4.8 $\mathcal{S}[p]$ есть элементарная подмодель $\mathcal{S}[p,q]$, так что $\mathcal{S}[p] \models (\exists Y)\psi(Y,\bar{X})$, т. е. $\mathcal{S}[p] \models \varphi$.

Мы пишем φ^{int} вместо $\mathcal{I} \vDash \varphi$.

Следствие 4.10 (в предположении NKM^+).

1. Принцип переноса выполняется для произвольных ∈-формул:

$$(\forall^{\mathbf{st}}\bar{X})(\varphi^{\mathbf{st}}(\bar{X}) \iff \varphi^{\mathbf{int}}(\bar{X})).$$

2. Стандартная свёртка выполняется для произвольных ∈-формул:

$$(\forall^{\mathbf{st}}\bar{X})(\exists^{\mathbf{st}}Y)(\forall x)(x\in Y\iff \varphi^{\mathbf{int}}(x,\bar{X})).$$

- 3. $\mathcal{I} \models KM^+$.
- 4. Принцип идеализации. Пусть $\varphi(x,y,\bar{X})$ любая \in -формула. Для всех $\bar{X}\in\mathcal{I}$ и всех стандартных a

$$(\forall a_0 \in {}^{\circ}\mathcal{P}^{\text{fin}}(a))(\exists y)(\forall x \in a) \ \varphi^{\text{int}}(x, y, \bar{X}) \iff (\exists y)(\forall x \in {}^{\circ}a) \ \varphi^{\text{int}}(x, y, \bar{X}).$$

5. Свойство редукции. Пусть $\varphi(\bar{x}, \bar{X})$ есть \in -st-формула. Найдётся такая \in -формула χ , что

$$(\forall \bar{x})(\varphi(\bar{x}, \bar{X}) \iff (\exists^{\mathbf{st}}u)(\forall^{\mathbf{st}}a) \ \chi^{\mathbf{int}}(\bar{x}, \bar{X}))$$

для всех стандартных \bar{X} .

П

Доказательство. Утверждение 1 есть предложение 4.9. Докажем утверждение 2. Пусть $\varphi(x, \bar{X})$ — произвольная \in -формула и $\bar{X} \in \mathcal{S}$. По свёртке в \mathcal{S} существует такой стандартный класс Y, что

$$(\forall^{\mathbf{st}} x)(x \in Y \iff \varphi^{\mathbf{st}}(x, \bar{X})).$$

По принципу переноса (утверждение 1) тогда имеем

$$(\forall x)(x \in Y \iff \varphi^{\mathbf{int}}(x, \bar{X})).$$

Утверждение 3 имеет место по переносу, а утверждение 4 доказывается так же, как в [1]. Чтобы доказать утверждение 5, отметим, что в обозначениях замечания после доказательства теоремы 4.1 мы имеем

$$(\forall^{\mathbf{st}} u, \bar{X})(\Psi^{\mathbf{st}}(u, \bar{X}) \iff \Psi^{\mathbf{int}}(u, \bar{X})).$$

Положим

$$\chi(u,a,\bar{x},\bar{X})\equiv u$$
 — ультрафильтр \wedge $(a\in u\implies \langle \bar{x}\rangle\in a) \wedge \Psi(u,\bar{X}).$

Теорема 4.11 (в предположении NKM $^+$ **).** (Принцип идеализации классов.) Пусть $\varphi(x,Y,\bar{X})$ — любая \in -формула. Для любых $\bar{X}\in\mathcal{I}$ и любых стандартных a имеем

$$(\forall c \in {}^{\circ}\mathcal{P}^{\mathrm{fin}}(a))(\exists^{\mathbf{int}}Y)(\forall x \in c) \ \varphi^{\mathbf{int}}(x,Y,\bar{X}) \iff (\exists^{\mathbf{int}}Y)(\forall x \in {}^{\circ}a) \ \varphi^{\mathbf{int}}(x,Y,\bar{X}).$$

Доказательство. Импликация справа налево тривиальна. Допустим, что для каждого стандартного конечного $c \subseteq a$ имеет место

$$(\exists^{\mathbf{int}} Y)(\forall x \in c) \ \varphi^{\mathbf{int}}(x, Y, \bar{X}),$$

т. е.

$$(\exists^{\mathbf{st}} W)(\exists p)(\forall x \in c) \ \varphi^{\mathbf{int}}(x, (W)_p, \bar{X}).$$

В силу следствия 4.3 и выбора множества классов (или, как альтернативы, выбора стандартного размера для классов (теорема 4.12) и стандартизации) существует такой стандартный W, что для всех стандартных конечных $c\subseteq a$ выполняется $(\exists p)(\forall x\in c)$ $\varphi^{\mathbf{int}}(x,((W)_c)_p,\bar{X})$. Другими словами,

$$(\forall c \in {}^{\circ}\mathcal{P}^{\text{fin}}(a))(\exists p, b) \ (\forall x \in c)(x \in b \land \varphi^{\text{int}}(x, ((W)_b)_p, \bar{X}).$$

Применяя принцип идеализации из следствия 4.10, получаем

$$(\exists p, b)(\forall x \in {}^{\circ}a)(x \in b \land \varphi^{\mathbf{int}}(x, ((W)_b)_p, \bar{X}).$$

Положив $Y := (W_b)_p$, завершаем доказательство.

Стандартный универсум теории NKM^+ удовлетворяет схеме выбора множества классов. Естественным образом возникает вопрос, выполняется ли аналогичный принцип для всего универсума NKM^+ .

Выбор стандартного размера для классов: пусть $\varphi(x, \bar{X}, Y)$ есть любая \in -st-формула. Для всех \bar{X} и всех стандартных множеств a

$$(\forall^{\mathbf{st}} x \in a)(\exists Y) \ \varphi(x, \bar{X}, Y) \implies (\exists Y)(\forall^{\mathbf{st}} x \in a) \ \varphi(x, \bar{X}, (Y)_x).$$

Теорема 4.12 (в предположении NKM⁺**).** Принцип выбора стандартного размера для классов выполняется.

Доказательство. С помощью теоремы 4.1 мы легко получаем такую \in -формулу $\Phi(x,v,\bar{U},V)$, что если $\langle \bar{p},q \rangle \in \mathfrak{M}(v)$, $\mathfrak{K}(X_i,U_i,p_i)$ для $1\leqslant i\leqslant k$ и $\mathfrak{K}(Y,V,q)$, то

$$(\forall^{\mathbf{st}} x)(\varphi(x, \bar{X}, Y) \iff \Phi^{\mathbf{st}}(x, v, \bar{U}, V)).$$

Фиксируем такие \bar{X} и u, что $\bar{p} \in \mathfrak{M}(u)$. Мы утверждаем, что для стандартных x

$$(\exists Y) \varphi(x, \bar{X}, Y) \iff (\exists^{\mathbf{st}} v) (\exists^{\mathbf{st}} V)$$
 $(v \text{ является } (k+1)\text{-арным} \wedge \pi_{k+1}^*(v) \sim u \wedge \Phi^{\mathbf{st}}(x, v, \bar{U}, V)).$

Импликация слева направо следует из предыдущих рассуждений. Обратно, для данных стандартных v и V, таких что $\pi_{k+1}^*(v) \sim u \wedge \Phi^{\mathbf{st}}(x,v,\bar{U},V)$, мы имеем $\langle \bar{p} \rangle \in \mathfrak{M}(u)$, и из $\pi_{k+1}^*(v) \sim u$ по идеализации получаем такое q, что $\langle \bar{p}, q \rangle \in \mathfrak{M}(v)$. Положим $Y := \bigcup_{w \in {}^{\circ}V} \mathfrak{M}_q(w)$. Тогда $\mathfrak{K}(Y,V,q)$ и выполняется $\varphi(x,\bar{X},Y)$.

Теперь предположим, что $(\forall^{\mathbf{st}} x \in a)(\exists Y)\varphi(x, \bar{X}, Y)$. Тогда

$$(\forall x \in a)(\exists v)(\exists V)(v \text{ является } (k+1)\text{-арным} \wedge \pi_{k+1}^*(v) \sim u \wedge \Phi(x,v,\bar{U},V))$$

есть \in -формула, истинная в \mathcal{S} , и согласно выбору множества классов найдутся стандартный класс V и стандартная последовательность $\langle v_x \colon x \in a \rangle$, такие что

$$(\forall^{\mathbf{st}} x \in a)(v_x$$
 является $(k+1)$ -арным $\wedge \pi_{k+1}^*(v_x) \sim u \wedge \Phi^{\mathbf{st}}(x, v_x, \bar{U}, (V)_x)).$

Согласно выбору стандартного размера существует такая последовательность $\langle q_x \colon x \in {}^{\circ}a \rangle$, что для всех $x \in {}^{\circ}a$ справедливо $\langle \bar{p}, q_x \rangle \in \mathfrak{M}(v_x)$. Пусть

$$Y:=\Big\{\langle x,y\rangle\colon x\in {}^{\circ}\!a\wedge y\in \bigcup_{w\in {}^{\circ}(V)_x}\mathfrak{M}_{q_x}(w)\Big\}.$$

Тогда $\mathfrak{K}((Y)_x,(V)_x,q_x)$ и, значит, $\varphi(x,\bar{X},(Y)_x)$ выполняется для всех $x\in {}^{\circ}a.$

Выбор стандартного размера имеет место в NCT, поскольку он имеет место в EEST [8, теорема 5.2.14], а универсум полумножеств NCT образует модель EEST [1, предложение 4.18].

Следующее усиление принципа выбора множества классов совместно с КМ (ср. модель КМ $^+$, образованную структурой $\langle V_{\kappa+1},\in\rangle$, где κ — строго недостижимый кардинал).

Выбор для классов: пусть $\varphi(x,\bar{X},Y)$ — произвольная \in -формула. Для всех \bar{X}

$$(\forall x)(\exists Y) \ \varphi(x, \bar{X}, Y) \implies (\exists Y)(\forall x) \ \varphi(x, \bar{X}, (Y)_x).$$

По [1, теорема 5.1] выбор для классов в \mathcal{S} можно без противоречия добавить к NKM в качестве аксиомы. Однако, в отличие от его аналога для множества классов, даже простые случаи выбора для классов для \in -st-формул несовместны.

Теорема 4.13. Существует нормальная \in -st-формула $\rho(u, y)$, такая что

$$\mathsf{NCT} \vdash (\forall^{\mathbf{st}} u)(\exists y) \rho(u, y) \land \neg (\exists F)(\forall^{\mathbf{st}} u) \rho(u, F(u)).$$

Доказательство. Мы работаем в NCT. Положим

$$\rho(u,y) \equiv «u$$
 есть ультрафильтр» $\wedge (\forall^{\mathbf{st}} a \in u)(y \in a).$

Для всех стандартных u $\mathfrak{M}(u) \neq \varnothing$ по идеализации, так что $(\exists y) \rho(u,y)$. Пусть F есть функция выбора для ρ . По ACC F является p-хроматичной для какого-то $p \in I$, где множество I стандартно. Для каждого стандартного u F(u) есть p-хроматичное множество и, значит, $F(u) \in \mathbb{S}[p]$ [1, предложение 4.1]. Это противоречие, поскольку для любого равномерного ультрафильтра u на любом стандартном кардинале λ , где $cf(\lambda) > |I|$, имеем $\mathfrak{M}(u) \cap \mathbb{S}[p] = \varnothing$. (Это можно легко усмотреть из канонического изоморфизма между $\mathbb{S}[p]$ и $\mathcal{U}lt(\mathbb{S},u_p)$, где u_p — ультрафильтр на I и $p \in \mathfrak{M}(u_p)$.)

В заключение заметим, что *ограниченная* версия принципа выбора, рассмотренного в теореме 4.13, тем не менее имеет место в NCT.

Теорема 4.14 (в предположении NCT). Пусть R — класс и a — произвольное стандартное множество. Тогда

$$(\exists F)(\forall^{\mathbf{st}}x)[(\exists y \in a)(\langle x, y \rangle \in R) \implies \langle x, F(x) \rangle \in R].$$

Доказательство. Мы можем считать, что $R\subseteq \mathbb{S}\times a$. Из ACC получим $p\in I$, где множество I стандартно, и такой стандартный класс C, что

$$\langle x, y \rangle \in R \iff y \in \bigcup_{\langle x, u \rangle \in {}^{\circ}C} \mathfrak{M}_p(u),$$

где каждое u есть некоторый ультрафильтр над $I \times a$. Пусть u_p — такой стандартный ультрафильтр над I, что $p \in \mathfrak{M}(u_p)$. Пусть

$$b := \{u : u - \mathsf{y}$$
льтрафильтр над $I \times a \wedge \pi_1(u) = v\}.$

b стандартно, и по выбору стандартного размера найдётся такая класс-функция G, определённая на ${}^{\circ}b$, что $G(u)\in\mathfrak{M}_p(u)$ для всех $u\in{}^{\circ}b$. Мы фиксируем некоторый стандартный полный порядок \leqslant на b и определяем $F(x):=G(u^x)$, где u^x есть \leqslant -первый ультрафильтр u в b, такой что $\langle x,u\rangle\in C$.

5. Стандартность не является ∈-определимой

Кановей и Реекен [8] поставили вопрос о том, можно ли в HST определить стандартный универсум посредством какой-либо \in -формулы. Открытая проблема 4 в [2] — аналогичный вопрос для NCT. Здесь мы даём отрицательные ответы на оба этих вопроса.

Теорема 5.1.

1. Пусть $\varphi(x)$ — \in -формула с единственной свободной переменной x (и все переменные пробегают множества). Тогда эквивалентность

$$(\forall x)(\mathbf{st}(x) \iff \varphi(x))$$

недоказуема в HST (в предположении непротиворечивости ZFC).

2. Пусть $\varphi(x)$ — \in -формула с единственной свободной переменной x. Тогда эквивалентность

$$(\forall x)(\mathbf{st}(x) \iff \varphi(x))$$

недоказуема в NCT (в предположении непротиворечивости ZFC).

Нам нужно будет сформулировать и расширить некоторые результаты из [2]. За разъяснением понятий, относящихся к форсингу, мы отсылаем к книге Йеха [6]. Мы работаем в ZFC плюс

аксиома X: V=L[G], где G является \mathcal{B} -генерическим множеством над конструктивным универсумом L, а $\mathcal{B}\in L$ — какая-то слабо однородная безатомная полная булева алгебра.

Мы фиксируем \mathcal{B}, G и (определимое из \mathcal{B}, G) для каждого $b \in \mathcal{B}, b \neq 0$ такое \mathcal{B} -генерическое $G_b \neq G$, что $b \in G_b$ и $V = L[G_b]$. Пусть $I := \mathcal{P}^{\mathrm{fin}}(\mathcal{B})$, и пусть U — такой ультрафильтр над I, что $\{B \in I : b \in B\} \in U$ для каждого $b \in \mathcal{B}$. Полагаем $b^+ := b$, если $b \in G$, в противном случае $b^+ := 1 - b$. Для каждого $B \in I$, $B = \{b_1, \ldots, b_n\}$, пусть

$$\bar{b} := b_1^+ \wedge \ldots \wedge b_n^+ \in G$$

и $G_B:=G_{\bar b}$. Заметим, что для $b\in G$ и $B\in I$ мы имеем $b\in B\implies b\in G_B$. Если $\dot x\in L$ есть имя для x, т. е. $x=i_G(\dot x)$, определим

$$\mathfrak{j}(x) := \langle i_{G_{\mathcal{P}}}(\dot{x}) \colon B \in I \rangle \in V^I.$$

Лемма 5.2 ([2, лемма 6]). Пусть $\mathfrak{k}\colon V\to V^I/U$ есть каноническое элементарное вложение. Существует такое определимое элементарное вложение $\mathfrak{j}\colon V\to V^I/U$, что $\mathrm{ran}\,\mathfrak{k}\nsubseteq\mathrm{ran}\,\mathfrak{j}$ в V^I/U .

Мы отсылаем к [2, лемма 6 и следующее за ним замечание] за определением отображения ј и доказательством его свойств, сформулированных в лемме 5.2.

Лемма 5.3. Если $V^I/U \vDash «j(x) \in L »$, то $x \in L$ и $j(x) =_U \mathfrak{k}(x)$.

Доказательство. Пусть $x\in V$, и пусть $\dot{x}\in L$ есть некоторое имя для x. Если существует такое $b\in G$, что $b\leqslant [|\dot{x}\notin L|]^{\mathcal{B}}$, то

$$b \in B \implies b \in G_B \implies i_{G_B}(\dot{x}) \notin L.$$

Поскольку $\{B\in I\colon b\in B\}\in U$, отсюда следует, что $V^I/U\vDash «j(x)\notin L».$

Если существует такое $b \in G$, что $b \leqslant [|\dot{x} \in L|]^{\mathcal{B}}$, то найдутся $b' \in G$, $b' \leqslant b$ и $z \in L$, такие что $b' \leqslant [|\dot{x} = \check{z}|]^{\mathcal{B}}$ (где \check{z} — каноническое имя для z). Следовательно, $x = i_G(\dot{x}) = z \in L$ и

$$b' \in B \implies b' \in G_B \implies i_{G_B}(\dot{x}) = x.$$

Получаем, что

$$\{B \in I : i_{G_B}(\dot{x}) = x\} \supseteq \{B \in I : b' \in B\} \in U,$$

T. e.
$$j(x) =_U \mathfrak{k}(x)$$
.

Обратное тривиально верно: если $x \in L$, то $x = i_G(\check{x})$ и

$$\mathfrak{j}(x)=\langle i_{G_B}(\check{x})\colon B\in I\rangle=\langle x\colon B\in I\rangle=\mathfrak{k}(x).$$

Теперь мы работаем в теории BST + X. Пусть L есть класс конструктивных множеств; $L \cap \mathbb{S}$ будет тогда классом стандартных конструктивных множеств. Используя перенос, зафиксируем стандартные \mathcal{B}, G, U и G_b для $b \in \mathcal{B}, b \neq 0$, и определим \mathfrak{j} как выше. Зафиксируем также $p \in \mathfrak{M}(U)$. Ограничение ультрастепени универсума по модулю U на стандартный универсум $\mathbb{S}^I/U := {}^{\circ}(V^I/U)$ (отметим, что в BST $V = \mathbb{I}$) канонически изоморфно $\mathbb{S}[p]$ посредством отображения \mathfrak{g}_p , где $\mathfrak{g}_p(f) := f(p)$ ([2, предложение 6], [8, предложение 6.1.9]). Отображение $\mathfrak{g}_p \circ \mathfrak{k}$ тождественно на \mathbb{S} ; мы определяем $\mathbb{U} := \mathfrak{g}_p[\mathfrak{j}[\mathbb{S}]]$. Из лемм 5.2 и 5.3 немедленно получается следствие 5.4 (см. [2, следствие 5]).

Следствие 5.4.

- 1. $(\mathbb{I}, \in, \mathbb{U})$ удовлетворяет принципу переноса.
- 2. $\mathbb{U} \neq \mathbb{S}$.
- 3. $L \cap \mathbb{U} = L \cap \mathbb{S}$.

Также легко заметить следующее.

- 4. \mathbb{U} определим в $(\mathbb{I}, \in, \mathbb{S})$ $(\in -\mathbf{st}$ -формулой с параметрами \mathcal{B}, G и p).
- 5. Имеется изоморфизм \mathbb{F} между (\mathbb{U} , \in) и (\mathbb{S} , \in), определимый в (\mathbb{I} , \in , \mathbb{S}).
- 6. ($\mathbb{I}, \in, \mathbb{U}$) удовлетворяет BST.
- 7. Класс \mathbb{S} определим в $(\mathbb{I}, \in, \mathbb{U})$ $(\in -\mathbf{st}$ -формулой с параметрами $\mathcal{B}, G)$.

Для доказательства пункта 5 положим $\mathbb{F} := \mathfrak{g}_p \circ (\mathfrak{j} \upharpoonright \mathbb{S}).$

Докажем пункт 6. Перенос есть первый пункт следствия 5.4.

Ограниченность следует из того, что, согласно замечанию после доказательства леммы 5.3, $\mathbb{S} \cap \mathbb{O} n \subseteq \mathbb{U}$ и, значит, $V_{\alpha} \in \mathbb{U}$ для всех $\alpha \in \mathbb{S} \cap \mathbb{O} n$ по переносу.

Стандартизация немедленно получается из изоморфизма (см. 5) между (\mathbb{U},\in) и (\mathbb{S},\in) и стандартизации в $(\mathbb{I},\in,\mathbb{S})$.

Для проверки *ограниченной идеализации* достаточно показать, что в $(\mathbb{I},\in,\mathbb{U})$ имеет место насыщенность (для определимых X). Пусть X имеет стандартный размер в $(\mathbb{I},\in,\mathbb{U})$. Тогда он имеет стандартный размер также и в $(\mathbb{I},\in,\mathbb{S})$ (согласно 5). Легко видеть, что утверждение «x является S-конечным» выполняется в $(\mathbb{I},\in,\mathbb{S})$ тогда и только тогда, когда оно выполняется в $(\mathbb{I},\in,\mathbb{U})$. Заключение теперь следует из насыщенности в $(\mathbb{I},\in,\mathbb{S})$.

Докажем пункт 7. Пусть $N\subseteq L$ — класс всех имён (элементов $\mathcal B$ -значного универсума, определённого в L). По лемме $5.3\ N\cap \mathbb U=N\cap \mathbb S$. Следовательно, $\mathbb S=\{i_G(\dot x)\colon \dot x\in N\cap \mathbb U\}.$

Резюме. ($\mathbb{I}, \in, \mathbb{S}$) и ($\mathbb{I}, \in, \mathbb{U}$) удовлетворяют BST, класс \mathbb{U} определим в ($\mathbb{I}, \in, \mathbb{S}$), класс \mathbb{S} определим в ($\mathbb{I}, \in, \mathbb{U}$) и $\mathbb{S} \neq \mathbb{U}$.

В завершение докажем теорему 5.1.

Доказательство.

1. Мы работаем в теории HST+ «аксиома X верна в \mathbb{I} », непротиворечивой относительно ZFC. Пусть \mathbb{E} — класс всех элементарных внешних множеств, т. е. подмножеств внутреннего универсума \mathbb{I} , определимых в (\mathbb{I} , \in , \mathbb{S}) (см. [8]). Из резюме следует, что \mathbb{E} есть также класс всех подмножеств внутреннего универсума \mathbb{I} , определимых в (\mathbb{I} , \in , \mathbb{U}). Кроме того, элементарное внешнее множество фундировано в (\mathbb{I} , \in , \mathbb{S}) тогда и только тогда, когда оно фундировано в (\mathbb{I} , \in , \mathbb{U}). Кановей и Реекен [8] показали, как использовать «сборку вдоль фундированных деревьев в \mathbb{E} » для построения наименьшего класса \mathbb{H} , содержащего \mathbb{I} и такого, что (\mathbb{H} , \in , \mathbb{S}) удовлетворяет HST. Используя приведённые выше замечания, можно легко проверить, что (\mathbb{H} , \in , \mathbb{U}) также удовлетворяет HST.

Предположим, что $\operatorname{HST} \vdash (\forall x)(\operatorname{st}(x) \iff \varphi(x))$ для некоторой \in -формулы φ . Пусть $\mathbb C$ есть класс, определённый формулой $\varphi(x)$ в $(\mathbb H, \in)$. Тогда мы имеем

$$(\mathbb{H}, \in, \mathbb{S}) \vDash (\forall x)(\mathbf{st}(x) \iff \varphi(x)),$$

откуда $\mathbb{C} = \mathbb{S}$. Аналогично, выполняется

$$(\mathbb{H}, \in, \mathbb{U}) \vDash (\forall x)(\mathbf{st}(x) \iff \varphi(x)),$$

откуда $\mathbb{C}=\mathbb{U}$. Следовательно, $\mathbb{S}=\mathbb{U}-$ противоречие.

2. Мы следуем соглашениям раздела 3. Пусть $\mathcal{B} := (\mathbb{I}, \varepsilon, \mathbb{S})$ является моделью BST + X. Тогда мы имеем такой класс $\mathbb{U} \neq \mathbb{S}$, что $\mathcal{B}' := (\mathbb{I}, \varepsilon, \mathbb{U})$ также модель BST + X, а совокупность $\mathcal{C} \in \mathbf{st}$ -определимых в \mathcal{B} классов совпадает с совокупностью классов, $\in \mathbf{st}$ -определимых в \mathcal{B}' . Пусть \mathcal{S} (\mathcal{U}) есть совокупность $\in \mathbf{st}$ -определимых в \mathcal{B}') классов с параметрами в \mathcal{S} (соответственно в \mathcal{B}') классов с параметрами в \mathcal{S} (соответственно в \mathcal{S}') для некоторо-

го $C \in \mathcal{S}$ ($C \in \mathcal{U}$)» выполняется в \mathcal{B} (соответственно в \mathcal{B}') для каждого $X \in \mathcal{C}$, по [1, теорема 5.1] получаем, что как ($\mathcal{C}, \varepsilon, \mathcal{S}$), так и ($\mathcal{C}, \varepsilon, \mathcal{U}$) — модели NCT. Как и в доказательстве теоремы 3.1, подразумевается, что любой класс, совпадающий с расширением некоторого множества в \mathbb{I} , отождествляется с этим множеством.]

Предположим, что NCT $\vdash (\forall x)(\mathbf{st}(x) \iff \varphi(x))$. Пусть

$$\mathbb{C} := \{ x \in \mathbb{I} \colon (\mathcal{C}, \varepsilon) \vDash \varphi(x) \}.$$

Рассуждение, аналогичное последнему абзацу доказательства пункта 1, показывает, что $\mathbb{C}=\mathbb{S}$ и $\mathbb{C}=\mathbb{U}-$ противоречие.

По [2, теорема 5] получаем такую формулу $\varphi(x)$, что теория NCT + $+(\forall x)(\mathbf{st}(x) \iff \varphi(x))$ непротиворечива (относительно ZFC). Открыт вопрос,

существует ли такая формула $\varphi(x)$ (в которой все переменные пробегают множества), что теория $\mathrm{HST}+(\forall x)(\mathbf{st}(x)\iff \varphi(x))$ непротиворечива относительно ZFC.

Литература

- [1] Andreev P. V., Gordon E. I. An axiomatics for nonstandard set theory, based on von Neumann-Bernays-Gödel theory // J. Symbolic Logic. 2001. Vol. 66. P. 1321—1341.
- [2] Andreev P. V., Hrbacek K. Standard sets in nonstandard set theory // J. Symbolic Logic. 2004. Vol. 69. P. 165—182.
- [3] Hrbacek K. Axiomatic foundations for nonstandard analysis // Fund. Math. 1978. Vol. 98. P. 1—19; abstract // J. Symbolic Logic. 1976. Vol. 41. P. 285.
- [4] Hrbacek K. Nonstandard objects in set theory // Proc. Conf. "Nonstandard Methods and Applications in Mathematics" (Pisa, 2002).
- [5] Hrbacek K. Nonstandard Kelley-Morse set theory. Preprint. 2004.
- [6] Jech T. Set Theory. New York: Academic Press, 1978.
- [7] Kanovei V. On Kelley–Morse type nonstandard theories. Preprint. 2004.
- [8] Kanovei V., Reeken M. Nonstandard Analysis, Axiomatically. Berlin: Springer, 2004.
- [9] Nelson E. Internal set theory: A new approach to nonstandard analysis // Bull. Amer. Math. Soc. -1977. Vol. 83. P. 1165-1198.