Оценки тригонометрических сумм по модулю p^2

Ю. В. МАЛЫХИН

Московский государственный университет им. М. В. Ломоносова e-mail: jura05@narod.ru

УДК 511.321

Ключевые слова: тригонометрические суммы, метод Степанова.

Аннотация

В работе рассматриваются тригонометрические суммы по подгруппам $G\subset \mathbb{Z}_q^*$. С помощью метода Степанова получены нетривиальные оценки тригонометрических сумм в случае, когда q есть квадрат простого числа.

Abstract

Yu. V. Malykhin, Bounds for exponential sums modulo p^2 , Fundamentalnaya i prikladnaya matematika, vol. 11 (2005), no. 6, pp. 81–94.

In this paper we consider exponential sums over subgroups $G\subset \mathbb{Z}_q^*$. Using Stepanov's method, we obtain nontrivial bounds for exponential sums in the case, where q is a square of a prime number.

1. Введение

1.1. Для натурального q через \mathbb{Z}_q мы будем обозначать кольцо вычетов по модулю q, а через \mathbb{Z}_q^* — мультипликативную группу этого кольца. Для $x\in\mathbb{Z}_q$ обозначим $e_q(x):=e^{2\pi ix/q}$.

Пусть G — подгруппа \mathbb{Z}_q^* , $\#G=t,\,a\in\mathbb{Z}_q.$ Тригонометрическими суммами по подгруппе G называются суммы вида

$$S(a,G) := \sum_{x \in G} e_q(ax).$$

Положим

$$S(G) := \max_{a \in \mathbb{Z}_q^*} |S(a, G)|.$$

Наша задача будет состоять в оценке величины S(G) в случае, когда q есть квадрат простого числа: $q=p^2$ (здесь и далее p обозначает простое число, большее 2). Заметим, что в этом случае группа \mathbb{Z}_q^* циклична, так что G однозначно определяется по t.

Фундаментальная и прикладная математика, 2005, том 11, № 6, с. 81—94. © 2005 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

При достаточно больши́х t оценки тригонометрических сумм по подгруппам $G\subset \mathbb{Z}_q^*$ основаны на оценке величин

$$T_k(G) := \#\{(x_1, \dots, x_{2k}) : x_1 + \dots + x_k = x_{k+1} + \dots + x_{2k} \pmod{q}, \ x_i \in G\}.$$

Имеет место следующая лемма.

Лемма (основное неравенство). Для любых натуральных k и l

$$S(G) \leq (qT_k(G)T_l(G))^{1/2kl}t^{1-1/k-1/l}.$$

Оценки такого типа установлены И. М. Виноградовым для тригонометрических сумм Вейля (см. $[4, \S 15]$). Также такие оценки встречались в работах А. А. Карацубы [1,2]. В явном виде неравенство сформулировано и доказано в [11].

Замечание. $S(G)\leqslant \min(t,\sqrt{q}).$ Неравенство $S(G)\leqslant t$ очевидно, неравенство $S(G)\leqslant \sqrt{q}$ получается из основного неравенства при k=l=1 (так как $T_1(G)=t).$

1.2. Наиболее хорошо исследован случай простого q=p. Заметим, что в этом случае суммы Гаусса

$$S_n(a,p) := \sum_{x=1}^p e_p(ax^n)$$

легко выражаются через суммы по подгруппам. Действительно, взяв $G = \{x^n \colon x \in \mathbb{Z}_p^*\}$, получим, что

$$S_n(a, p) = 1 + (n, p - 1)S(a, G).$$

Пользуясь методом С. А. Степанова [5] для оценки T_2 , Д. Р. Хиф-Браун и С. В. Конягин [10] получили следующие оценки тригонометрических сумм для $G \subset \mathbb{Z}_p^*$:

$$S(G) \ll \begin{cases} p^{1/8}t^{5/8}, & p^{1/3} < t < p^{1/2}, \\ p^{1/4}t^{3/8}, & p^{1/2} < t < p^{2/3}. \end{cases}$$

Таким образом, при $t>p^{1/3+\varepsilon}$ выполняется неравенство $S(G)\ll tp^{-\delta(\varepsilon)}$, т. е. имеется нетривиальная по порядку оценка на S(G). До этого аналогичное неравенство было известно при $t>p^{3/7+\varepsilon}$ (И. Е. Шпарлинский [6]).

Используя T_k для всех $k\in\mathbb{N},$ С. В. Конягин [3] доказал, что при $t>p^{1/4+\varepsilon}$ выполнено неравенство

$$S(G) < C(\varepsilon)tp^{-\delta(\varepsilon)} \tag{1}$$

(для некоторых функций $C(\varepsilon)>0$ и $\delta(\varepsilon)>0$). Существенное продвижение было сделано в работе Ж. Бургейна и С. В. Конягина [8]: используя дополнительные комбинаторные соображения, они доказали (1) при $t>p^{\varepsilon}$.

Оказывается, оценка типа (1) верна и для тригонометрических сумм по про-извольному модулю.

Теорема (Бургейн [7]). Пусть $G\subset \mathbb{Z}_q^*,\ \varepsilon>0$ таковы, что $t>q^{\varepsilon}.$ Тогда

$$S(G) < C(\varepsilon)tq^{-\delta(\varepsilon)}$$
.

Замечание. В [7,8] показатель δ достаточно мал, так что можно ожидать, что оценки, полученные методом Степанова при достаточно больших t, не перекрываются.

Методы из [3,10] будут использованы в этой работе для получения аналогичных оценок по модулю p^2 .

1.3. Оценки для $q=p^2$ проводились в основном для подгрупп порядка p-1, т. е. для $G=\{x^p\colon x\in \mathbb{Z}_{p^2}^*\}.$ Точнее, изучалась сумма Хейльбронна

$$H_p(a) := \sum_{x=1}^p e_{p^2}(ax^p)$$

(ясно, что $H_p(a)=S(a,G)+1$). Долгое время было неизвестно, верно ли, что $|H_p(a)|=o(p),\ p\to\infty$. С помощью оценки $T_2(G)$ Д. Р. Хиф-Браун [9] ответил на этот вопрос, доказав, что $|H_p(a)|\ll p^{11/12}$. В [8] эта оценка была улучшена до $|H_p(a)|\ll p^{7/8}$.

1.4. Пусть теперь G — произвольная подгруппа $\mathbb{Z}_{p^2}^*$, #G=t. Ниже будет показано, что если $t\geqslant p$, то S(G)=0, поэтому нас будет интересовать случай t< p. В данной работе доказываются следующие утверждения.

Теорема 1.

$$T_2(G) \ll p^{1/2}t^2$$
 при $p^{1/2} < t < p$.

Теорема 2.

$$T_3(G) \ll egin{cases} p^{3/4}t^{7/2} & ext{при } p^{1/2} < t < p^{3/4}(\log p)^{-1}, \ t^{9/2}\log p & ext{при } p^{3/4}(\log p)^{-1} < t < p. \end{cases}$$

Как следствие этих теорем и основного неравенства получается теорема 3.

Теорема 3.

$$S(G) \ll \begin{cases} (p^7 t^{26})^{1/36} & \text{при } p^{7/10} < t < p^{3/4} (\log p)^{-1}, \\ p^{1/9} t^{5/6} (\log p)^{1/9} & \text{при } p^{3/4} (\log p)^{-1} < t < p^{7/9}, \\ (p^5 t^{17})^{1/24} (\log p)^{1/12} & \text{при } p^{7/9} < t < p^{4/5}, \\ p^{3/8} t^{1/2} & \text{при } p^{4/5} < t < p. \end{cases}$$

2. Оценка $T_2(G)$

2.1. Пусть G — подгруппа $\mathbb{Z}_{p^2}^*$ порядка t. Тогда $t \mid p(p-1) = \#\mathbb{Z}_{p^2}^*$. Предположим, что $p \mid t$, т. е. $t = t_1 p$, $(p, t_1) = 1$. Рассмотрим подгруппу $G_1 \subset \mathbb{Z}_p^*$ порядка t_1 . Ясно, что множество $\{x \in \mathbb{Z}_{p^2} \colon x \bmod p \in G_1\}$ является подгруппой, причём порядка t. Так как порядок однозначно определяет подгруппу, то это

множество и есть G. Поэтому $x \in G$ тогда и только тогда, когда $x+p \in G$, откуда

$$S(a,G) = \sum_{x \in G} e_{p^2}(ax) = \sum_{x \in G} e_{p^2}(a(x+p)) = S(a,G)e_{p^2}(ap).$$

Так как $ap \neq 0 \pmod{p^2}$, получаем S(a, G) = 0.

Рассмотрим случай $t\mid p-1$. Пусть $G'\!:=\!G\bmod p$. Это подгруппа \mathbb{Z}_p^* порядка t, причём $G=\{x^p\colon x\in G'\}$ (поскольку $x=y\pmod p$ тогда и только тогда, когда $x^p=y^p\pmod p^2$), то запись корректна). Пусть g_1,g_2,\ldots,g_d —представители смежных классов G'_1,\ldots,G'_d группы \mathbb{Z}_p^* по G' (можно считать $g_1=1$).

Пусть R— ассоциативное кольцо с единицей, R^* — его мультипликативная группа. Назовём смежными классами кольца R по подгруппе $H \subset R^*$ множества вида xH, $x \in R$. Ясно, что представители смежных классов \mathbb{Z}_p по G'— это $0, q_1, \ldots, q_d$.

Представителями смежных классов \mathbb{Z}_{p^2} по G являются $0,\ pg_i,\ g_i^p+pj$ $(i=1,\dots,d,\ j=1,\dots,p)$. Для доказательства этого утверждения сначала проверим, что эти элементы лежат в разных смежных классах. Пусть $g\in G,\ g':=g\bmod p,\ g'\in G'$. Имеем

$$(g_i^p + pj)g = (g_k^p + pl) \pmod{p^2} \Longrightarrow$$

 $\Longrightarrow g_i g' = g_k \pmod{p} \Longrightarrow i = k, g' = 1 \Longrightarrow j = l.$

Доказательства для остальных представителей аналогичны этому. Теперь заметим, что каждый смежный класс, кроме нулевого, состоит ровно из t элементов. Всего получилось $1+dt+dpt=1+p-1+p(p-1)=p^2$ элементов, т. е. всё кольно

Исходя из этого, назовём (i,j)-м смежный класс $G_{i,j}$ элемента g_i^p+pj . Смежный класс элемента pg_i назовём i-м смежным классом G_i . $\{0\}$ назовём нулевым смежным классом G_0 (здесь и далее i и j обозначают ненулевые числа). В итоге получаем

$$\mathbb{Z}_{p^2} = G_0 \sqcup \bigsqcup_{i=1,\dots,d} G_i \sqcup \bigsqcup_{\substack{i=1,\dots,d\\j=1,\dots,p}} G_{i,j}, \quad \mathbb{Z}_{p^2}^* = \bigsqcup_{\substack{i=1,\dots,d\\j=1,\dots,p}} G_{i,j}, \quad G = G_{1,p}.$$

2.2. Далее везде будем считать, что $t > p^{1/2}$.

Возьмём фиксированное $u \in G_\beta$ (β может обозначать как один индекс, так и пару). Обозначим

$$n_{\beta} := N_2(u, G) := \#\{(x_1, x_2) : x_1 + x_2 = u \pmod{p^2}, x_1, x_2 \in G\}$$

(такое определение корректно, т. е. если $u_1,u_2\in G_\beta$, то $N_2(u_1,G)=N_2(u_2,G)$). Ясно, что

$$T_2(G) = \sum_{u \in \mathbb{Z}_{n^2}} N_2(u, G)^2 = n_0^2 + t \sum_i n_i^2 + t \sum_{i,j} n_{i,j}^2.$$
 (2)

Далее мы выразим числа $n_{i,j}$ через мощности некоторых подмножеств $M_{i,j} \subset \mathbb{Z}_p$. Мощность $M_{i,j}$ оценим с помощью метода Степанова.

Легко видеть, что $n_0 \leqslant t$. Покажем, что $n_i = 0$. Пусть $x_1 + x_2 = pg_i \pmod{p^2}$. Возьмём $m, n \in G'$ так, чтобы $x_1 = m^p$, $x_2 = n^p$. Тогда

$$m^p + n^p = pg_i \pmod{p^2} \implies m + n = 0 \pmod{p} \implies m^p = -n^p \pmod{p^2}.$$

Противоречие с условием $g_i \neq 0 \pmod{p}$.

Теперь рассмотрим основной случай. Пусть $u=g_i^p+pj$. Рассмотрим равенство $x_1+x_2=u\ (\mathrm{mod}\ p^2)$. Так как $x_1=m^p,\ x_2=n^p,$ где $m,n\in G',$ получаем $m+n=g_i\ (\mathrm{mod}\ p)$. Решения имеют вид $m=g_ib,\ n=g_i(1-b),$ где $b\in\mathbb{Z}_p$ такие, что $b\in(g_i^{-1})G',\ 1-b\in(g_i^{-1})G'.$ Подставляя m и n в исходное равенство, получаем цепочку равенств

$$\begin{split} g_i^p b^p + g_i^p (1-b)^p &= g_i^p + pj \pmod{p^2} \iff \\ &\iff 1 + (b-1)^p - b^p = -pjg_i^{-p} \pmod{p^2} \iff \\ &\iff pf(b) = -pjg_i^{-p} \pmod{p^2} \iff f(b) = -jg_i^{-1} \pmod{p}, \end{split}$$

где
$$f(X) = X + \frac{X^2}{2} + \ldots + \frac{X^{p-1}}{p-1}.$$
 Итак, мы получили, что

$$n_{i,j} = \# M_{i,j},$$

где

$$M_{i,j} := \{ b \in \mathbb{Z}_p : b \in g_i^{-1}G', \ 1 - b \in g_i^{-1}G', \ f(b) = -jg_i^{-1} \pmod{p} \}.$$

Лемма 1. Пусть $(i_{\sigma}, j_{\sigma})_{\sigma=1}^{s}$ — различные пары чисел. Тогда

$$\sum_{\sigma=1}^{s} n_{i_{\sigma}, j_{\sigma}} \ll \min(p^{1/3} t^{1/3} s^{2/3}, t).$$

Доказательство. Ясно, что

$$n_{i,j} = \#\{(x,y) \colon 1 + x = y, \ x \in G, \ y \in G_{i,j}\},\$$

откуда

$$\sum_{i,j} n_{i,j} \leqslant t,$$

поэтому при $s > tp^{-1/2}$ неравенство выполнено.

Пусть теперь $s < tp^{-1/2}$. Заметим, что множества $M_{i,j}$ не пересекаются, поэтому

$$\sum_{\sigma=1}^{s} n_{i_{\sigma},j_{\sigma}} = \sum_{\sigma=1}^{s} \# M_{i_{\sigma},j_{\sigma}} = \# \bigcup_{\sigma=1}^{s} M_{i_{\sigma},j_{\sigma}}.$$

Применим метод Степанова для оценки числа элементов

$$M := \bigcup_{\sigma=1}^{s} M_{i_{\sigma}, j_{\sigma}}.$$

Рассмотрим полином $\Phi(X,Y,Z)\in \mathbb{Z}_p[X,Y,Z]$. Пусть $\deg_X\Phi < A$, $\deg_Y\Phi < B$, $\deg_Z\Phi < C$. Подберём $\Phi \neq 0$ так, чтобы $\Psi(X)=\Phi(X,f(X),X^t)$ имел нули порядка D в каждой точке $x\in M$ (кроме, возможно, 0 и 1). Отсюда получим $D\#M \ll \deg \Psi(X) < A+pB+Ct$ при условии $\Psi \neq 0$.

Пусть

$$\Phi(X,Y,Z) = \sum \lambda_{a,b,c} X^a Y^b Z^c.$$

Тогда

$$\Psi(X) = \sum \lambda_{a,b,c} X^a f(X)^b X^{ct}.$$

Заметим, что

$$X^q rac{d^q}{dX^q} X^a = rac{a!}{(a-q)!} X^a$$
 (при $q < a$), $X^u rac{d^u}{dX^u} X^{ct} = rac{(ct)!}{(ct-u)!} X^{ct}$ (при $u < ct$).

Из [9, лемма 2] следует, что для всякого натурального r найдутся многочлены $q_r(X)$ и $l_r(X)$, такие что

$$\{X(1-X)\}^r \frac{d^r}{dX^r} f(X) = q_r(X) + (X^p - X)l_r(X), \quad \deg q_r \leqslant r + 1.$$

Отсюда (мы обозначили $\bar{r} = (r_1, \dots, r_b)$)

$$\begin{split} \{X(1-X)\}^n \frac{d^n}{dX^n} (X^a f(X)^b X^{ct}) &= \\ &= \{X(1-X)\}^n \sum_{\substack{q+r_1+\ldots+r_b+u=n\\q,r_i,u\geqslant 0}} C_{q,\bar{r},u} \frac{d^q}{dX^q} X^a \frac{d^u}{dX^u} X^{ct} \prod_{j=1}^b \frac{d^{r_j}}{dX^{r_j}} f(X) &= \\ &= (X^p - X) l_{a,b,c}(X) + \\ &+ \sum_{\substack{q+r_1+\ldots+r_b+u=n\\q,r_i,u\geqslant 0}} C_{a,b,c,q,\bar{r},u} X^a X^{ct} (1-X)^{q+u} f(X)^{b-\#\{j: r_j\neq 0\}} \prod_{j: r_j\neq 0} q_{r_j}(X). \end{split}$$

Поскольку на M_{i_σ,j_σ} многочлены X^t и f(X) постоянны, то при $x\in M_{i_\sigma,j_\sigma}$

$$\{X(1-X)\}^n \frac{d^n}{dX^n} X^a f(X)^b X^{ct} \bigg|_{X=x} = P_{n,\sigma,a,b,c}(x),$$

где $P_{n,\sigma,a,b,c}(X)$ — многочлен степени ниже A+2D. Отсюда при $x\in M_{i_\sigma,j_\sigma}$

$$\{X(1-X)\}^n \frac{d^n}{dX^n} \Psi(X) \Big|_{X=x} = P_{n,\sigma}(x),$$

где коэффициенты полиномов $P_{n,\sigma}$ суть линейные функции от коэффициентов Φ и $\deg P_{n,\sigma}(X) < A+2D$. Равенство этих полиномов нулю при всех n < D и $1 \leqslant \sigma \leqslant s$ даёт sD(A+2D) линейных уравнений на коэффициенты Φ , поэтому если sD(A+2D) < ABC, то найдётся $\Phi \neq 0$ с нужными нам свойствами. Как

следует из [9, доказательство леммы 3], условие $\Psi \neq 0$ будет выполнено, если $AB \leqslant t$. Нам подходят следующие A, B, C, D:

$$\begin{split} A = \lfloor \, p^{1/3} t^{1/3} s^{-1/3} \rfloor, \quad B = \lfloor \, p^{-1/3} t^{2/3} s^{1/3} \rfloor, \quad C = \lfloor \, p^{2/3} t^{-1/3} s^{1/3} \rfloor, \\ D = \left\lfloor \, \frac{1}{8} p^{1/3} t^{1/3} s^{-1/3} \, \right\rfloor. \end{split}$$

Остаётся проверить, что A,B,C,D>0, но при достаточно большом p это следует из неравенств $t>p^{1/2}$ и $s< tp^{-1/2}$.

Замечание к лемме 1. При доказательстве мы использовали в определении множеств $M_{i,j}$ лишь первое и третье условия. Возможно, использовав второе условие, можно будет получить $\#M \ll (ts)^{2/3}$. Впрочем, при $s < p^3 t^{-4}$ это неравенство вытекает из первого и второго свойств (см. [10]).

Доказательство теоремы 1. Переупорядочим числа $n_{i,j}$ в порядке убывания: $n_{i_1,j_1}\geqslant n_{i_2,j_2}\geqslant \ldots \geqslant n_{i_{pd},j_{pd}}.$ Из леммы 1 следует, что

$$n_{i_s,j_s} \ll \min(p^{1/3}t^{1/3}s^{-1/3},ts^{-1}).$$
 (3)

Обозначим $s_0 := tp^{-1/2}$. Имеем

$$\sum n_{i,j}^2 = \sum_{s=1}^{pd} n_{i_s,j_s}^2 = \sum_{s < s_0} n_{i_s,j_s}^2 + \sum_{s > s_0} n_{i_s,j_s}^2 \ll$$

$$\ll p^{2/3} t^{2/3} \sum_{s < s_0} s^{-2/3} + t^2 \sum_{s > s_0} s^{-2} \ll p^{2/3} t^{2/3} s_0^{1/3} + t^2 s_0^{-1} = 2p^{1/2} t.$$

Поскольку $n_0^2 \leqslant t^2 < p^{1/2}t^2$, то нужная оценка T_2 получена.

3. Оценка $T_3(G)$

3.1. Возьмём фиксированное $u \in G_{\beta}$. Обозначим

$$a_{\alpha}^{\beta} := \#\{(x_1, x_2) \colon x_1 + x_2 = u, \ x_1 \in G, \ x_2 \in G_{\alpha}\}.$$

Напомним, что α — это 0, i или (i,j). Аналогично β — это 0, i или (i,j). (Как и раньше, i и j обозначают ненулевые числа.) Ясно, что определение корректно. Легко установить следующие свойства.

Свойства.

- 1. $a_{1,p}^{\beta} = n_{\beta}$.
- 2. При $\beta \neq 0$ имеем

$$a_{\alpha}^{\beta} = \#\{(x,y) \colon 1 + x = y, \ x \in G_{\alpha}, \ y \in G_{\beta}\}.$$
 (4)

3. Вырожденные случаи: пусть $-1 \in G'_{i_0} \subset \mathbb{Z}_p$, т. е. $-1 = g_{i_0}g' \pmod p$ для $g' \in G'$, откуда $-1 = (-1)^p = g^p_{i_0}(g')^p \pmod p^2$), значит, $-1 \in G_{i_0,p} \subset \mathbb{Z}_{p^2}$.

Кроме $a_{i,j}^{k,l}$, ненулевыми являются лишь следующие числа:

$$a_{i(l)}^{1,l}=1 \quad (l\neq p), \quad a_{i_0,j}^{k(j)}=1 \quad (j\neq p), \quad a_0^{1,p}=1, \quad a_{i_0,p}^0=t \qquad \ (5)$$

(для некоторых функций $i(l), k(j): \{1, \dots, p-1\} \rightarrow \{1, \dots, d\}$).

Доказательство. Свойства 1 и 2 очевидны. Рассмотрим свойство 3. Найдём, например, чему равны числа вида $a_i^{k,l}$. Если $x_1 \in G$, то $x_1 = m^p$, где $m \in G'$. Если $x_2 \in G_i$, то $x_2 = pg_i n^p$, где $n \in G'$. Отсюда

$$x_1 + x_2 = g_k^p + pl \pmod{p^2} \implies m = g_k \pmod{p} \implies$$

$$\implies pg_i n^p = pl \pmod{p^2} \implies g_i n = l \pmod{p}.$$

Значит, если $l \notin G_i'$, то последнее равенство невозможно, т. е. $a_i^{k,l}=0$. Если же $l \in G_i'$, что равносильно тому, что i=i(l)= «номер смежного класса l», то n находится однозначно. Так как $m \in G'$, то k=1, и m определяется однозначно, и в этом случае получаем $a_i^{k,l}=1$. Аналогично находятся остальные ненулевые a_{α}^{β} .

Рассмотрим теперь невырожденные случаи, т. е. $a_{i,j}^{k,l}$. Если $x \in G_{i,j}$, то $x=(g_i^p+pj)m^p, m\in G'$. Поэтому

$$1 + x = y \pmod{p^2} \iff$$

$$\iff 1 + (g_i^p + pj)m^p = (g_k^p + pl)n^p \pmod{p^2} \implies 1 + g_i m = g_k n \pmod{p}.$$

Решения имеют вид $m=g_i^{-1}(b-1),\ n=g_k^{-1}b,$ где $b\in\mathbb{Z}_p$ такие, что $b\in G_k',$ $b-1\in G_i'.$ Подставляя m и n в исходное равенство, получаем цепочку равенств

$$\begin{split} 1 + (g_i^p + pj)g_i^{-p}(b-1)^p &= (g_k^p + pl)g_k^{-p}b^p \; (\text{mod } p^2) \iff \\ \iff 1 + (b-1)^p - b^p &= plg_k^{-p}b^p - pjg_i^{-p}(b-1)^p \; (\text{mod } p^2) \iff \\ \iff f(b) &= (lg_k^{-1} - jg_i^{-1})b + jg_i^{-1} \; (\text{mod } p). \end{split}$$

Итак, мы получили, что

$$a_{i,j}^{k,l} = \#M_{i,j}^{k,l} := \#\{b \in \mathbb{Z}_p \colon b \in G_k', \ b-1 \in G_i', \ f(b) = ub + v\},$$

где
$$u=u(i,j,k,l)=lg_k^{-1}-jg_i^{-1}$$
 и $v=v(i,j,k,l)=jg_i^{-1}$

где $u=u(i,j,k,l)=lg_k^{-1}-jg_i^{-1}$ и $v=v(i,j,k,l)=jg_i^{-1}.$ Заметим, что теперь $M_{i_1,j_1}^{k_1,l_1}$ и $M_{i_2,j_2}^{k_2,l_2}$ уже могут пересекаться, правда лишь при $i_1=i_2$ и $k_1=k_2$, но и тогда не более чем по одному элементу.

Для оценки чисел $a_{i,j,k,l}$ нам понадобится вспомогательная лемма.

Лемма 2. Пусть G'- подгруппа в \mathbb{Z}_p^* порядка $t,\ G'_1,\ldots,G'_d-$ её смежные классы. Обозначим

$$K_{i,k} := \{ x \in \mathbb{Z}_p \colon x \in G'_k, \ x - 1 \in G'_i \}.$$

Tогда при всех i, k выполняется неравенст

$$\#K_{i,k} \ll egin{cases} t^{2/3} & \text{при } p^{1/2} < t < p^{3/4}, \ t^2 p^{-1} & \text{при } p^{3/4} < t. \end{cases}$$

Доказательство. Случай $t < p^{3/4}$ рассмотрен в [10, лемма 5]. Разберём случай $t > p^{3/4}$. Как и раньше, пусть g_1,\dots,g_d — представители смежных классов \mathbb{Z}_p^* по группе G'. Ясно, что

$$\#\{x \colon x \in G'_k, \ x - 1 \in G'_i\} = \#\{(x, y) \colon x - y = 1, \ x \in G'_k, \ y \in G'_i\} =$$

$$= t^{-1} \#\{(x, y, z) \colon g_k x - g_i y = z, \ x, y, z \in G'\}.$$

Воспользовавшись простым тождеством

$$\frac{1}{p} \sum_{a \in \mathbb{Z}_p} e_p(ax) = \begin{cases} 1, & \text{если } x = 0 \pmod{p}, \\ 0, & \text{если } x \neq 0 \pmod{p}, \end{cases}$$

и неравенством

$$\left|\sum_{x \in G'} e_p(ax)\right| \leqslant \sqrt{p}$$
 при $(a,p) = 1$,

получим

$$\#K_{i,k} = (pt)^{-1} \sum_{x,y,z \in G'} \sum_{a \in \mathbb{Z}_p} e_p(a(g_k x - g_i y - z)) =$$

$$= (pt)^{-1} \sum_{a \in \mathbb{Z}_p} S(ag_k, G') S(-ag_i, G') S(-a, G') \leqslant$$

$$\leqslant (pt)^{-1} \left(t^3 + \sqrt{p} \sum_{a \in \mathbb{Z}_p^*} |S(ag_k, G') S(ag_i, G')| \right) \leqslant$$

$$\leqslant t^2 p^{-1} + t^{-1} p^{-1/2} \sum_{a \in \mathbb{Z}_p} |S(a, G')|^2 = t^2 p^{-1} + \sqrt{p}.$$

Последнее равенство имеет место, так как

$$\sum_{a \in \mathbb{Z}_p} |S(a, G')|^2 = \sum_{x, y \in G'} \sum_{a \in \mathbb{Z}_p} e_p(a(x - y)) = pt.$$

Лемма доказана.

Лемма 3. Пусть $(i_\sigma,j_\sigma,k_\sigma,l_\sigma)_{\sigma=1}^s$ — различные четвёрки чисел. Тогда при $s< pt^{-1/2}$ выполнено неравенство

$$\sum_{\sigma=1}^{s} a_{i_{\sigma},j_{\sigma}}^{k_{\sigma},l_{\sigma}} \ll p^{1/3} t^{1/3} s^{2/3}.$$

Доказательство. Пусть сначала $t < p^{3/4}$. Разобьём всю сумму на «пачки» с одинаковыми i, k. По предыдущей лемме для $K_{i,k} := \{b \in \mathbb{Z}_p : b \in G_k', \ b-1 \in G_i'\}$ верно $\#K_{i,k} \ll t^{2/3}$. Поэтому для пачки размера r имеем

$$\sum_{\sigma=1}^{r} a_{i,j_{\sigma}}^{k,l_{\sigma}} \leqslant \# \bigcup_{\sigma=1}^{r} M_{i,j_{\sigma}}^{k,l_{\sigma}} + r^{2} \leqslant \# K_{i,k} + r^{2} \ll t^{2/3} + r^{2}.$$

Следовательно, для пачек размера меньше $t^{1/3}$ справедлива оценка (на сумму элементов) $t^{2/3}$, а для пачек, больших $t^{1/3}$, — оценка $rt^{1/3}$ (достаточно разбить пачку на части размера меньше $t^{1/3}$). Поэтому сумма элементов в больших пачках не больше $st^{1/3}$. Маленькие пачки будем суммировать все вместе. Пусть их h штук, ρ -я пачка размера s_{ρ} . Обозначим $\sigma_{\rho}:=s_1+\ldots+s_{\rho}$. Можно считать, что ρ -я пачка состоит из чисел $a_{i_{\rho},j_{\sigma}}^{k_{\rho},j_{\sigma}}$ с $\sigma\in(\sigma_{\rho-1},\sigma_{\rho}]$. Ясно, что

$$\sum_{\rho=1}^{h} \sum_{\substack{\sigma_{o} < \sigma \leqslant \sigma_{o+1} \\ i_{\rho}, j_{\sigma}}} a_{i_{\rho}, j_{\sigma}}^{k_{\rho}, l_{\sigma}} \leqslant \sum_{\rho=1}^{h} \# \bigcup_{\substack{\sigma_{o} < \sigma \leqslant \sigma_{o+1} \\ \sigma_{o} < \sigma \leqslant \sigma_{o+1}}} M_{i_{\rho}, j_{\sigma}}^{k_{\rho}, l_{\sigma}} + \sum_{\rho=1}^{h} s_{\rho}^{2} \leqslant \# \bigcup_{\sigma=1}^{s} M_{i_{\sigma}, j_{\sigma}}^{k_{\sigma}, l_{\sigma}} + \sum_{\rho=1}^{h} s_{\rho}^{2}.$$

Последняя сумма не больше $(\max s_{\rho}) \sum s_{\rho} \leqslant st^{1/3}$.

Применим метод Степанова для оценки числа элементов

$$M := \bigcup_{\sigma=1}^{s} M_{i_{\sigma}, j_{\sigma}}^{k_{\sigma}, l_{\sigma}}.$$

Рассмотрим полином $\Phi(X,Y,Z)\in\mathbb{Z}_p[X,Y,Z]$. Пусть $\deg_X\Phi< A$, $\deg_Y\Phi< B$, $\deg_Z\Phi< C$. Подберём Φ так, чтобы $\Psi(X)=\Phi(X,f(X),X^t)$ имел нули порядка D в каждой точке $x\in M$ (кроме, возможно, 0 и 1). Отсюда получим $D\#M\ll \deg\Psi(X)$, при условии $\Psi\neq 0$. Аналогично доказательству леммы 1 можно показать, что при $x\in M^{k_\sigma,l_\sigma}_{i_\sigma,j_\sigma}$

$$\left\{X(1-X)\right\}^n \left. \frac{d^n}{dX^n} \Psi(X) \right|_{X=x} = P_{n,\sigma}(x),$$

где коэффициенты полиномов P суть линейные функции от коэффициентов Φ и $\deg P_{n,\sigma}(X) < A+2D+B$. Равенство этих полиномов нулю даёт sD(A+2D+B) линейных уравнений на коэффициенты Φ , поэтому нам достаточно выполнения неравенства sD(A+2D+B) < ABC. Условие $\Psi \neq 0$ будет выполнено, если $AB \leqslant t$. При $s < pt^{-1/2}$ нам подходят те же A, B, C, что и в лемме 1, и D, выбранное так, чтобы

$$p^{1/3}t^{1/3}s^{-1/3} \ll D \ll p^{1/3}t^{1/3}s^{-1/3}$$
.

При больши́х p числа A,~B,~C,~D больше нуля, как и в лемме 1. Значит, как и в лемме 1, $\#M \ll p^{1/3}t^{1/3}s^{2/3}$. Остаётся заметить, что при $s < pt^{-1/2}$ выполнено неравенство $st^{1/3} \ll p^{1/3}t^{1/3}s^{2/3}$.

Случай
$$t>p^{3/4}$$
 рассматривается аналогично. \square

Замечание к лемме 3. При доказательстве мы, как и в лемме 1, использовали в определении множеств $M_{i,j}$ лишь первое и третье условия вместе либо первое и второе условия вместе.

3.2. Возьмём фиксированное $u \in G_{\beta}$. Обозначим

$$b_{\beta} := N_3(u, G) := \#\{(x_1, x_2, x_3) : x_1 + x_2 + x_3 = u, x_1, x_2, x_3 \in G\}.$$

Докажем, что

$$b_{\beta} = \sum_{\alpha} a_{1,p}^{\alpha} a_{\alpha}^{\beta}, \quad T_3(G) = b_0^2 + t \sum_{i} b_i^2 + t \sum_{i,j} b_{i,j}^2.$$
 (6)

Действительно, обозначим через z сумму x_2+x_3 в уравнении $x_1+x_2+x_3=u$. Зафиксируем α . Есть ровно a^β_α таких $(x_1,z)\in G\times G_\alpha$, что $x_1+z=u$. Для каждой такой пары получаем $a^\alpha_{1,p}$ пар $(x_2,x_3)\in G\times G$, таких что $x_2+x_3=z$, т. е. $x_1+x_2+x_3=u$. Всего будет как раз $\sum_\alpha a^\alpha_{1,p} a^\beta_\alpha$ троек (x_1,x_2,x_3) . Вторая формула следует из того, что $T_3(G)=\sum_{u\in\mathbb{Z}_{p^2}}N_3(u,G)^2$, но при $u_1,u_2\in G_\beta$ будет $N_3(u_1,G)=N_3(u_2,G)$. Остаётся учесть, что $\#G_i=\#G_{i,j}=t$, $\#G_0=1$.

Лемма 4 (о вырожденных случаях).

$$b_0^2 + t \sum_i b_i^2 \ll p^{2/3} t^{8/3}.$$

Доказательство. Вспомнив свойство (5) и лемму 3, получим

$$b_0 = \sum_{\alpha} a_{1,p}^{\alpha} a_{\alpha}^0 = a_{1,p}^{i_0,p} a_{i_0,p}^0 \leqslant t \max a_{i,j}^{k,l} \ll p^{1/3} t^{4/3}.$$

Значит, $b_0^2 \ll p^{2/3} t^{8/3}$. Фиксируем i. Тогда

$$b_i = \sum_{\alpha} a_{1,p}^{\alpha} a_{\alpha}^i \leqslant \sum_{\alpha} a_{1,p}^{\alpha} = a_{1,p}^0 + \sum_{\beta \neq 0} a_{1,p}^{\beta}.$$

Отсюда и из свойств (4) и (5) следует, что b_i не превосходит 2t. Значит,

$$t \sum_{i} b_i^2 \ll td \max_{i} b_i^2 \leqslant 4t^2 p \ll p^{2/3} t^{8/3},$$

поскольку $t > p^{1/2}$.

Перейдём к невырожденным случаям, т. е. числам $b_{k,l}$.

Лемма 5. Пусть $(k_{\sigma}, l_{\sigma})_{\sigma=1}^{s}$ — различные пары чисел. Если

$$s < s_0 := \left(\frac{p}{t}\right)^{3/2} (\log p)^{-3},$$

TC

$$\sum_{\sigma=1}^{s} b_{k_{\sigma}, l_{\sigma}} \ll p^{1/2} t s^{2/3}.$$

Доказательство. Воспользуемся свойством (6):

$$\begin{split} \sum_{\sigma=1}^{s} b_{k_{\sigma},l_{\sigma}} &= \sum_{\sigma=1}^{s} \sum_{\alpha} a_{1,p}^{\alpha} a_{\alpha}^{k_{\sigma},l_{\sigma}} = \\ &= a_{1,p}^{0} \sum_{\sigma=1}^{s} a_{0}^{k_{\sigma},l_{\sigma}} + \sum_{i=1}^{d} \bigg(a_{1,p}^{i} \sum_{\sigma=1}^{s} a_{i}^{k_{\sigma},l_{\sigma}} \bigg) + \sum_{i,j} \bigg(a_{1,p}^{i,j} \sum_{\sigma=1}^{s} a_{i,j}^{k_{\sigma},l_{\sigma}} \bigg). \end{split}$$

Первая сумма, очевидно, не превосходит t. Так как $a_{1,p}^i=0$ всегда, то вторая сумма равна нулю. Оценим теперь последнюю сумму. Упорядочим набор чисел $\{a_{1,p}^{i,j}\}$ по убыванию: $a_{1,p}^{i_1,j_1}\geqslant a_{1,p}^{i_2,j_2}\geqslant\dots$ Из (3) следует, что

 $a_{1,p}^{i_r,j_r} \ll lpha_r := \min(p^{1/3}t^{1/3}r^{-1/3},tr^{-1})$. Поэтому

$$\sum_{i,j} \left(a_{1,p}^{i,j} \sum_{\sigma=1}^{s} a_{i,j}^{k_{\sigma},l_{\sigma}} \right) = \sum_{r=1}^{pd} \left(a_{1,p}^{i_{r},j_{r}} \sum_{\sigma=1}^{s} a_{i_{r},j_{r}}^{k_{\sigma},l_{\sigma}} \right) \ll \sum_{r=1}^{pd} \alpha_{r} S_{r},$$

где

$$S_r = \sum_{\sigma=1}^s a_{i_r,j_r}^{k_\sigma,l_\sigma}.$$

Применяя преобразование Абеля, получаем

$$\sum_{r=1}^{pd} \alpha_r S_r = a_{pd+1} \sum_{\rho=1}^{pd} S_\rho + \sum_{r=1}^{pd} (\alpha_r - \alpha_{r+1}) \sum_{\rho=1}^r S_\rho.$$
 (7)

Обозначим $r_0:=tp^{-1/2},\ r_1:=pt^{-1/2}.$ Разобьём последнюю двойную сумму на три (\sum_1,\sum_2,\sum_3) : в первой $1\leqslant r< r_0$, во второй $r_0< r<\frac{r_1}{s}$, в третьей $\frac{r_1}{s}< r\leqslant pd.$

Так как $s < s_0$, то $rs < r_0 s_0 < r_1 = pt^{-1/2}$ и по лемме 3

$$\sum_{\rho=1}^{r} S_{\rho} \ll p^{1/3} t^{1/3} r^{2/3} s^{2/3}.$$

Поскольку $r < r_0$, то $\alpha_r = p^{1/3} t^{1/3} r^{-1/3}$. Отсюда

$$\sum\nolimits_1 \ll p^{2/3} t^{2/3} s^{2/3} \sum_{r < r_0} r^{-2/3} \ll p^{2/3} t^{2/3} s^{2/3} r_0^{1/3} = p^{1/2} t s^{2/3}.$$

Аналогично

$$\sum_{\rho=1}^{r} S_{\rho} \ll p^{1/3} t^{1/3} r^{2/3} s^{2/3}.$$

Поскольку $r > r_0$, то $\alpha_r = tr^{-1}$. Отсюда

$$\begin{split} \sum\nolimits_2 & \ll p^{1/3} t^{4/3} s^{2/3} \sum_{r_0 < r < \frac{r_1}{s}} (r^{-1} - (r+1)^{-1}) r^{2/3} \ll \\ & \ll p^{1/3} t^{4/3} s^{2/3} \sum_{r_0 < r} r^{-4/3} \ll p^{1/3} t^{4/3} s^{2/3} r_0^{-1/3} = p^{1/2} t s^{2/3}. \end{split}$$

Из леммы 3 следует, что

$$\sum_{\rho=1}^{r} S_{\rho} \ll rst^{1/2}.$$

Опять $\alpha_r = tr^{-1}$. Поэтому

$$\sum_{3} \ll st^{3/2} \sum_{\frac{r_1}{s} < r \leqslant pd} r^{-1} \ll st^{3/2} \log p.$$

Число s_0 и было выбрано для того, чтобы выполнялось $\sum_3 \ll p^{1/2} t s^{2/3}$, как только $s < s_0$.

Наконец, первое слагаемое в правой части (7) оценивается таким же образом, как \sum_3 :

$$\alpha_{pd+1} \sum_{\rho=1}^{pd} S_{\rho} \ll st^{3/2}.$$

Лемма доказана.

Доказательство теоремы 2. Покажем, что $\sum\limits_{i,j}b_{i,j}\ll t^2$. Ясно, что $\sum\limits_{\beta}a_{\alpha}^{\beta}\leqslant 2t$ при фиксированном α . Поэтому

$$\sum_{\beta} b_{\beta} = \sum_{\alpha,\beta} a_{1,p}^{\alpha} a_{\alpha}^{\beta} = \sum_{\alpha} \left(a_{1,p}^{\alpha} \sum_{\beta} a_{\alpha}^{\beta} \right) \leqslant 2t \sum_{\alpha} a_{1,p}^{\alpha} \leqslant 4t^{2}.$$

Упорядочим числа $b_{i,j}$ по убыванию: $b_{i_1,j_1} \geqslant b_{i_2,j_2} \geqslant \dots$ Ясно, что $b_{i_s,j_s} \ll t^2 s^{-1}$ при всех s. Используя лемму 5, получаем $b_{i_s,j_s} \ll p^{1/2} t s^{-1/3}$ при $s < s_0 = \left(\frac{p}{t}\right)^{3/2} (\log p)^{-3}$. Эти оценки совпадают при $s = s_1 := t^{3/2} p^{-3/4}$. Если $t < p^{3/4} (\log p)^{-1}$, то $s_1 < s_0$ и мы получаем

$$\sum_{s=1}^{pd} b_{i_s,j_s}^2 = \sum_{s < s_1} b_{i_s,j_s}^2 + \sum_{s > s_1} b_{i_s,j_s}^2 \ll pt^2 \sum_{s < s_1} s^{-2/3} + t^4 \sum_{s > s_1} s^{-2} \ll expt^2 s_1^{1/3} + t^4 s_1^{-1} = 2p^{3/4} t^{5/2}.$$

Если же $t > p^{3/4} (\log p)^{-1}$, то $s_1 > s_0$ и аналогично

$$\sum_{s=1}^{pd} b_{i_s,j_s}^2 = \sum_{s < s_0} b_{i_s,j_s}^2 + \sum_{s > s_0} b_{i_s,j_s}^2 \ll pt^2 s_0^{1/3} + p^{1/2} t s_0^{-1/3} \sum_{s > s_0} b_{i_s,j_s} \ll \\ \ll pt^2 s_0^{1/3} + p^{1/2} t^3 s_0^{-1/3} \ll p^{1/2} t^3 s_0^{-1/3} = t^{7/2} \log p.$$

Теперь из (6) и леммы 4 следует оценка $T_3 \ll t^{9/2} \log p$.

Чтобы доказать теорему 3, нужно применить основное неравенство при k=2 и l=2, при k=2 и l=3, а также при k=3 и l=3.

Можно аналогичным образом оценить $T_k(G)$ для всех натуральных k. Это даст нетривиальную оценку на S(G) при t, несколько меньших $p^{7/10}$.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант № 05-01-00066, и программы поддержки ведущих научных школ, грант № НШ-3004.2003.1.

Литература

[1] Карацуба А. А. Дробные доли специального вида // Изв. РАН. Сер. мат. — 1995. — Т. 59, № 4. — С. 93—102.

- [2] Карацуба А. А. Двойные суммы Клоостермана // Мат. заметки. 1999. Т. 66, № 5. С. 682—687.
- [3] Конягин С. В. Оценки тригонометрических сумм по подгруппам и сумм Гаусса // IV Международная конференция «Современные проблемы теории чисел и её приложения». Актуальные проблемы. Часть III. М., 2002. С. 86—114.
- [4] Коробов Н. М. Тригонометрические суммы и их приложения. М.: Наука, 1984.
- [5] Степанов С. А. О числе точек гиперэллиптической кривой над простым конечным полем // Изв. АН СССР. Сер. мат. -1969.-T. 33. -C. 1171-1181.
- [6] Шпарлинский И. Е. Об оценках сумм Гаусса // Мат. заметки. 1991. Т. 50, № 1. С. 122—130.
- [7] Bourgain J. Exponential sum estimates over subgroups of \mathbb{Z}_q^* , q arbitrary. Preprint.
- [8] Bourgain J., Konyagin S. Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order // C. R. Math. Acad. Sci. Paris. -2003. Vol. 337. P. 75-80.
- [9] Heath-Brown D. R. An estimate for Heilbronn's exponential sum // Analytic Number Theory: Proc. Conf. in Honor of Heini Halberstam. — Boston: Birkhäuser, 1996. — P. 451—463.
- [10] Heath-Brown D. R., Konyagin S. V. New bounds for Gauss sums derived from $k^{\rm th}$ powers, and for Heilbronn's exponential sums // Quart J. Math. 2000. Vol. 51. P. 221—235.
- [11] Konyagin S., Shparlinski I. Character Sums with Exponential Functions. Cambridge: Cambridge University Press, 1999.