О кратных интегралах, представимых в виде линейной формы от $1, \zeta(3), \zeta(5), \ldots, \zeta(2k-1)$

В. Х. САЛИХОВ, А. И. ФРОЛОВИЧЕВ

Брянский государственный технический университет e-mail: nathality@yandex.ru

УДК 511.36

Ключевые слова: кратные интегралы, кратные ряды, нечётные дзета-значения, линейные формы.

Аннотация

В работе доказана теорема о представимости кратного интеграла в виде линейной формы над $\mathbb Q$ от $1,\zeta(3),\zeta(5),\ldots,\zeta(2k-1)$. Эта теорема уточняет недавно полученные результаты Д. Васильева, В. Зудилина и С. Злобина.

Abstract

V. Kh. Salikhov, A. I. Frolovichev, On multiple integrals represented as a linear form in $1, \zeta(3), \zeta(5), \ldots, \zeta(2k-1)$, Fundamentalnaya i prikladnaya matematika, vol. 11 (2005), no. 6, pp. 143–178.

A theorem on the presentability of a multiple integral as a linear form in $1,\zeta(3),\zeta(5),\ldots,\zeta(2k-1)$ over $\mathbb Q$ is proved. This theorem refines the results recently obtained by D. Vasiliev, V. Zudilin, and S. Zlobin.

Рассмотрим интеграл

$$J_{2k-1} = \int_{[0,1]^{2k-1}} \frac{\prod_{j=1}^{2k-1} x_j^{\alpha_j - 1} (1 - x_j)^{\beta_j - 1} dx_1 \dots dx_{2k-1}}{(1 - x_1 + x_1 x_2 - x_1 x_2 x_3 + \dots + x_1 x_2 \dots x_{2k-2} - x_1 x_2 \dots x_{2k-1})^{\alpha_0}},$$
(1)

где $k \geqslant 2$, все α_j , β_i принадлежат \mathbb{N} .

Теорема 1. Пусть для параметров интеграла (1) выполняются следующие условия:

$$\alpha_0 \leqslant \alpha_1; \tag{2}$$

$$\alpha_r + \beta_r \leqslant \beta_{r+1} + \alpha_{r+2} \text{ при } r = 0, \dots, 2k - 3,$$
 (3)

где для единообразия положим $\beta_0 = 0$;

$$\max(\alpha_{2j-1}, \alpha_{2j}) < \min(\alpha_{2j} + \beta_{2j}, \alpha_{2j+1} + \beta_{2j+1})$$
 при $j = 1, \dots, k-1;$ (4)

Фундаментальная и прикладная математика, 2005, том 11, № 6, с. 143—178. © 2005 Центр новых информационных технологий МГУ,

Издательский дом «Открытые системы»

если $\alpha_0 > \beta_1$, то

$$\beta_1 + \beta_3 + \ldots + \beta_{2k-1} \geqslant \alpha_0 + 1.$$
 (5)

Тогда для некоторых $r_1,\ldots,r_k\in\mathbb{Q}$

$$J_{2k-1} = r_1 + r_2\zeta(3) + r_3\zeta(5) + \ldots + r_k\zeta(2k-1).$$
(6)

Интегралы вида (1) рассматривались многими авторами начиная с Ф. Бейкерса, у которого в [5] k=2, все параметры α_i , β_j — равные натуральные числа. В этой же ситуации для параметров при k=3 результат, аналогичный теореме 1, был доказан Д. Васильевым [3]. Эти результаты обобщил в 2002 г. В. Зудилин [7] для произвольного k. В его работе представление (6) доказано при выполнении в (3) равенств для $r=1,\ldots,2k-3$. Все эти результаты содержатся в теореме 1. В [4] получен результат, аналогичный теореме 1, но при более обременительных условиях на параметры интеграла (1).

Замечание 1. Из (3) и (4) совсем просто следует неравенство вида

$$\alpha_d + \beta_1 + \beta_3 + \ldots + \beta_{2r-1} \geqslant \alpha_0 + 1$$
 при $r = 2, \ldots, k+1, d \in \{2r-1, 2r\}.$ (4')

Действительно, если r=2, d=3, то $\alpha_3+\beta_1+\beta_3\geqslant \alpha_0+1$ (см. (4) при j=1 и (3) при r=0); если r=2, d=4, то $\alpha_4+\beta_1+\beta_3\geqslant \alpha_2+\beta_2+\beta_1\geqslant \beta_2+\alpha_0+1$; если r>2, то

- 1) $\alpha_{2r-1} + \beta_{2r-1} \geqslant \alpha_{2r-2}$ ввиду (4), и (4') выполняется по индукции;
- 2) $\alpha_{2r}+\beta_{2r-1}\geqslant \alpha_{2r-2}+\beta_{2r-2}$ ввиду (3), и (4') снова выполняется по индукции

Замечание 2. Условие (2) не является обязательным. В конце работы мы приводим более общие, но более громоздкие условия на параметры α_i , β_j , чем (2)—(5), обеспечивающие равенство (6).

Для доказательства теоремы 1 мы применяем кратные ряды специального вида. Многие результаты будут доказаны в несколько большей общности, чем это необходимо для доказательства теоремы 1. Их можно применять для вычисления других кратных интегралов. Впервые в подобной ситуации двукратные ряды использовал Д. Васильев [3] для представления интеграла J_5 в виде (6). Наконец, заметим, что метод доказательства теоремы 1 позволил А. И. Фроловичеву получить соответствующий результат для интеграла J_{2k} :

$$J_{2k} = r_0 + r_1 \zeta(2) + r_2 \zeta(4) + \ldots + r_k \zeta(2k).$$

1. Кратные ряды, представляющие линейные формы от $1, \zeta(3), \zeta(5), \ldots, \zeta(2m+1)$ над $\mathbb Q$

Пусть $m \in \mathbb{N}$,

$$Q_j(x) = \prod_{i=1}^{d_j} (x + a_{j,i})^{
u_{j,i}}$$
 при $j = 1, \dots, m,$

где d_j и все $a_{j,i}$ принадлежат $\mathbb{N}, a_{j,1}, \ldots, a_{j,d_i}$ различны,

$$\nu_{j,i} \in \{1,2\}$$
 при $j = 1, \dots, m, i = 1, \dots, d_j,$ (7)

 $\bar{Q}_m = \{Q_1, \dots, Q_m\}, \ q_i = \deg Q_i, \ j = 1, \dots, m.$ Обозначим

$$\begin{split} A_j &= \{\alpha_{j,1}, \dots, \alpha_{j,d_j}\}, \quad A_{j2} &= \{\alpha_{j,i} \in A_j \mid \nu_{j,i} = 2\}, \ A_{j2} \neq \varnothing, \quad A_{j1} = A_j \setminus A_{j2}; \\ e_j &= \min_{A_j} a_{j,i}, \quad f_j = \max_{A_j} a_{j,i}, \quad E_j = \min_{A_{j2}} \alpha_{j,i}, \quad F_j = \max_{A_{j2}} \alpha_{j,i}. \end{split}$$

Очевидно, что $e_j \leqslant E_j \leqslant F_j \leqslant f_j$. Пусть, далее,

$$P=P_m\in \mathbb{Q}[x_1,\ldots,x_m], \ \ q_j=\deg_{x_j}P_m, \ \ p_j=\deg_{x_j}P_m$$
 при $j=1,\ldots,m,$

$$R_m = \frac{P_m}{Q_1(x_1)\dots Q_m(x_m)},$$

 $\lambda_2, \ldots, \lambda_m \in \mathbb{Z}, \ \bar{\lambda}_{m-1} = (\lambda_2, \ldots, \lambda_m).$

Обозначим

$$(I) = I(P, \bar{Q}_m) = \{p_i \leqslant q_i - 2 \text{ при } j = 1, \dots, m\},$$

$$(II) = II(\bar{Q}_m) = \{f_{i-1} < E_i + \lambda_i \text{ при } j = 2, \dots, m\}.$$

$$(III) = III(\bar{Q}_m) = \{F_{j-1} < e_j + \lambda_j \text{ при } j = 2, \dots, m\}.$$

Соответствующие неравенства при фиксированном j обозначим ${\rm I}_j,\,{\rm II}_j,\,{\rm III}_j$ или, более подробно, ${\rm I}_i(P,\bar{Q}_m)$ и т. д.

Рассмотрим кратный ряд вида

$$\Sigma_{m}(P, \bar{Q}_{m}, \bar{\lambda}_{m-1}) = \Sigma_{m}(R_{m}) = \Sigma_{m} =$$

$$= D_{\sigma} \sum_{l=1}^{m} \sum_{\bar{q}_{m}} \sum_{s \in \mathbb{Z}^{+}} \frac{(-1)^{m-l} P_{m}(t_{1}, \dots, t_{m})}{Q_{1}(t_{1}) \dots Q_{m}(t_{m})}, \quad (8)$$

где оператор D_{σ} определяется формулой

$$D_{\sigma}(f(\sigma)) = f'(0);$$

суммирование в (8) проходит по 2^{m-1} векторам $\bar{\rho}_m=(\rho_1,\rho_2,\ldots,\rho_m),\; \rho_1=1,$ $\rho_j\in\{1,2\}$ при $j=2,\ldots,m;\; l=l(\bar{\rho}_m)$ — число координат вектора $\bar{\rho}_m$, равных 1;

$$t_{j} = \begin{cases} s_{1} + \sigma, & \text{если } j = 1, \\ s_{j}, & \text{если } j = 2, \dots, m, \ \rho_{j} = 1, \\ t_{j-1} + s_{j} + \lambda_{j}, & \text{если } j = 2, \dots, m, \ \rho_{j} = 2. \end{cases}$$
 (9)

Определение 1. Вектор $\bar{\lambda}_{m-1} \in \mathbb{Z}^{m-1}$ назовём допустимым для $R_m \in \mathbb{Q}(x_1,\ldots,x_m)$, если для всех $\bar{\rho}_m,s_1,\ldots,s_m \in \mathbb{Z}^+$ и t_1,\ldots,t_m , определённых по формулам (9) при $\sigma=0$, рациональная функция R_m не имеет полюса в точке (t_1,\ldots,t_m) .

Определение 2. Вектор $\bar{\lambda}_{m-1} \in \mathbb{Z}^{m-1}$ является допустимым для \bar{Q}_m , если для всех $j=2,\ldots,m,\ r=2,\ldots,j$ справедливо неравенство

$$\lambda_r + \ldots + \lambda_i + e_i \geqslant 1. \tag{10}$$

Покажем, что, если вектор $\bar{\lambda}_{m-1}$ допустим для \bar{Q}_m , то он допустим для

$$R_m = \frac{P_m(x_1, \dots, x_m)}{Q_1(x_1) \dots Q_m(x_m)}.$$

Действительно, $t_1=s_1\in\mathbb{Z}^+,\ Q_1(t_1)\neq 0.$ Если $j\geqslant 2$, то при $\rho_j=1$ из (9) получим $t_j=s_j\in\mathbb{Z}^+,\ Q_j(t_j)\neq 0,$ при $\rho_j=2$ определим такое $r\in\{2,\ldots,j\},$ что $\rho_{r-1}=1,\ \rho_r=\ldots=\rho_j=2.$ Тогда из (9) получим

$$t_j = s_{r-1} + \ldots + s_j + \lambda_r + \ldots + \lambda_j \geqslant \lambda_r + \ldots + \lambda_j,$$

 $Q_i(t_i) \neq 0$ (см. (10) и определение e_i).

Покажем, наконец, что из набора неравенств $\mathrm{III}(\bar{Q}_m)$ следует неравенство (10). Из $\mathrm{III}(\bar{Q}_m)$ имеем

$$\lambda_r + \ldots + \lambda_j + e_j > \lambda_r + \ldots + \lambda_{j-1} + F_{j-1} \geqslant$$

$$\geqslant \lambda_r + \ldots + \lambda_{j-1} + e_{j-1} \geqslant \ldots \geqslant \lambda_r + e_r \geqslant F_{r-1} \geqslant 1,$$

и (10) выполнено.

Нам будет полезно далее следующее утверждение о сохранении свойств (7), $\mathrm{II}(\bar{Q}_m)$ и $\mathrm{III}(\bar{Q}_m)$ при некоторых преобразованиях системы многочленов \bar{Q}_m .

Лемма 1. Пусть для \bar{Q}_m и $\bar{\lambda}_{m-1} \in \mathbb{Z}^{m-1}$ выполнены свойства (7), $\mathrm{II}(\bar{Q}_m)$, $\mathrm{III}(\bar{Q}_m)$. Тогда эти же свойства выполнены для \bar{Q}'_{m-1} и $\bar{\lambda}'_{m-1}$ в следующих четырёх ситуациях:

1)
$$Q_j'(x) = \begin{cases} Q_j(x), & \text{если } j = 1, \dots, \nu - 2, \\ Q_{\nu-1}(x)Q_{\nu}(x+i+\lambda_{\nu}), & \text{если } j = \nu - 1, \\ Q_{j+1}(x), & \text{если } j = \nu, \dots, m-1, \end{cases}$$

$$\lambda_j' = \begin{cases} \lambda_j, & \text{если } j = 2, \dots, \nu - 1, \\ \lambda_{\nu} + i + \lambda_{i+1}, & \text{если } j = \nu, \\ \lambda_{j+1}, & \text{если } j = \nu + 1, \dots, m-1, \end{cases}$$

$$\text{где } \nu \in \{2, \dots, m\}, \ i \in \mathbb{Z}, \ i > \max(f_{\nu-1} - E_{\nu} - \lambda_{\nu}, F_{\nu-1} - e_{\nu} - \lambda_{\nu});$$

$$2) \quad Q_j'(x) = \begin{cases} Q_2(x+i+\lambda_2), & \text{если } j=1, \\ Q_{j+1}(x), & \text{если } j=2,\dots,m-1, \end{cases}$$

$$\lambda_j' = \begin{cases} i+\lambda_2+\lambda_3, & \text{если } j=2, \\ \lambda_{j+1}, & \text{если } j=3,\dots,m-1, \end{cases}$$
 где $i \in \mathbb{Z}, \ i+\lambda_2+e_2 \geqslant 1;$

3)
$$Q_j'(x) = \begin{cases} Q_j(x), & \text{если } j = 1, \dots, \nu - 2, \\ Q_{\nu-1}(x)(x+i+\lambda_{\nu}), & \text{если } j = \nu - 1, \\ Q_{j+1}(x), & \text{если } j = \nu, \dots, m-1, \end{cases}$$

$$\lambda_j' = \begin{cases} \lambda_j, & \text{если } j=2,\dots,\nu-1, \\ \lambda_\nu + \lambda_{\nu+1}, & \text{если } j=\nu, \\ \lambda_{j+1}, & \text{если } j=\nu+1,\dots,m-1, \end{cases}$$

где
$$\nu \in \{2, \dots, m\}$$
, $i \in A_{\nu}$;

4)
$$Q_j'(x) = \begin{cases} Q_j(x), & \text{если } j = 1, \dots, \nu - 2, \\ (x+i)(x+a_{\nu}+\lambda_{\nu})^2, & \text{если } j = \nu - 1, \\ (x+\alpha_{j+1})^2, & \text{если } j = \nu, \dots, m - 1, \end{cases}$$

$$\lambda_j' = \begin{cases} \lambda_j, & \text{если } j = 2, \dots, \nu - 1, \\ \lambda_{\nu} + \lambda_{\nu+1}, & \text{если } j = \nu, \\ \lambda_{j+1}, & \text{если } j = \nu + 1, \dots, m - 1, \end{cases}$$
 гле $\nu \in \{2, \dots, m\}, \ j \in A_{\nu-1}, \ a_{\nu} \in A_{\nu}, \ k = \nu, \dots, m \end{cases}$

Доказательство. Все четыре случая рассматриваются практически одинаково. Везде при $j\leqslant \nu-2$ и при $j>\nu$ (во втором случае при j>2) $\mathrm{II}_j(Q'_{m-1})$ и $\mathrm{III}_j(ar{Q}'_{m-1})$ являются автоматическими следствиями из $\mathrm{II}(ar{Q}_m)$ и $\mathrm{III}(ar{Q}_m)$, а при $j \in \{\nu - 1, \nu\}$ (во втором случае при j = 1) доказательство превращается в рутинную проверку. Мы приведём доказательства для случаев 1)-4) без особых комментариев.

1) Имеем $j + \lambda_{\nu} + e_{\nu} > F_{\nu-1}$, т. е. $i + \lambda_{\nu} + e_{\nu} \notin A_{\nu-1,2}$, $i + \lambda_{\nu} + E_{\nu} > f_{\nu-1}$, откуда следует (7) для $\bar{Q}'_{\nu-1}(x)$, так как многочлены $Q_{\nu-1}(x)$ и $Q_{\nu}(x+i+\lambda_{\nu})$ могут иметь общие корни только кратности 1 для каждого многочлена. Кроме того, очевидно, что $e'_{\nu}-1=e_{\nu}-1,\; E'_{\nu}-1=E'_{\nu}-1,\; F'_{\nu-1}=i+\lambda_{\nu}+F_{\nu},$ $f'_{\nu-1}=i+\lambda_{
u}+f_{
u}$. Поэтому выполнены $\Pi_{
u-1}(ar{Q}'_{m-1})$ и $\Pi_{
u-1}(ar{Q}'_{m-1})$.

Далее, ввиду $\Pi_{\nu+1}(Q_m)$ выполнено неравенство

$$i + \lambda_{\nu} + f_{\nu} < E_{\nu+1} + i + \lambda_{\nu} + \lambda_{\nu+1}$$

которое имеет место тогда и только тогда, когда

$$f'_{\nu-1} < E'_{\nu} + \lambda'_{\nu}$$

т. е. справедливо $\Pi_{\nu}(\bar{Q}'_{m-1})$.

Ввиду $\mathrm{III}_{\nu+1}(ar{Q}_m)$ выполнено неравенство

$$i + \lambda_{\nu} + F_{\nu} < e_{\nu+1} + i + \lambda_{\nu} + \lambda_{\nu+1}$$

которое имеет место тогда и только тогда, когда

$$F'_{\nu-1} < e'_{\nu} + \lambda'_{\nu},$$

т. е. справедливо $\mathrm{III}_{
u}(\bar{Q}'_{m-1})$. Тем самым утверждение леммы в случае 1) дока-

2) Необходимо проверить лишь справедливость $II_2(\bar{Q}'_{m-1})$ и $III_2(\bar{Q}'_{m-1})$. Ввиду $II_3(Q_m)$ справедливо неравенство

$$i + \lambda_2 + f_2 < E_3 + i + \lambda_2 + \lambda_3$$

которое выполняется тогда и только тогда, когда

$$i + \lambda_2 + f_2 < E_2' + \lambda_2',$$

т. е. имеет место $II_2(\bar{Q}'_{m-1})$.

Ввиду $\mathrm{III}_3(Q_m)$ имеем неравенство

$$i + \lambda_2 + F_2 < e_3 + i + \lambda_2 + \lambda_3,$$

которое справедливо тогда и только тогда, когда

$$i + \lambda_2 + F_2 < e_2' + \lambda_2'$$

т. е. имеет место $\mathrm{III}_2(\bar{Q}'_{m-1})$. Наконец, $i+\lambda_2+e_2\geqslant 1$, т. е. корни многочлена $Q'_1(x)=Q_2(x+i+\lambda_2)$ отрицательны, $A'_1\subset\mathbb{N}$.

3) Так как $i \in A_{\nu}$, то

$$\lambda_{\nu} + i \geqslant \lambda_{\nu} + e_{\nu} > F_{\nu-1},$$

т. е. для многочлена $Q'_{\nu-1}(x)$ выполнено (7), кроме того, $e'_{\nu-1}=e_{\nu-1},$ $E'_{\nu-1}=E_{\nu-1}.$ Поэтому выполнены $\mathrm{II}_{\nu-1}(\bar{Q}'_{m-1})$ и $\mathrm{III}_{\nu-1}(\bar{Q}'_{m-1}).$ Имеем $f'_{\nu-1}=\max(f_{\nu-1},\lambda_{\nu}+i).$ Далее,

$$E'_{\nu} + \lambda'_{\nu} = E_{\nu+1} + \lambda_{\nu+1} + \lambda_{\nu} > f_{\nu} + \lambda_{\nu} \geqslant i + \lambda_{\nu}, E'_{\nu} + \lambda'_{\nu} > f_{\nu} + \lambda_{\nu} \geqslant E_{\nu} + \lambda_{\nu} > f_{\nu-1}.$$

Но тогда $E'_
u+\lambda'_
u>f'_{
u-1}$, т. е. имеет место $\Pi_
u(ar Q'_{m-1})$. Имеем $F'_{
u-1}=F_{
u-1}$, а тогда

$$e'_{\nu} + \lambda'_{\nu} = e_{\nu+1} + \lambda_{\nu+1} + \lambda_{\nu} > F_{\nu} + \lambda_{\nu} \geqslant E_{\nu} + \lambda_{\nu} > f_{\nu-1} \geqslant F_{\nu-1},$$

 $e'_{\nu} + \lambda'_{\nu} > F'_{\nu-1},$

- т. е. справедливо $\mathrm{III}_{
 u}(ar{Q}'_{m-1})$. Рассмотрение случая 3) завершено.
- 4) Имеем $a_{\nu}+\lambda_{\nu}\geqslant E_{\nu}+\lambda_{\nu}>f_{\nu-1}\geqslant i$, так как $a_{\nu}\in A_{\nu2},\ i\in A_{\nu-1}.$ Следовательно, $e'_{\nu-1}=i,\ E'_{\nu-1}=f'_{\nu-1}=a_{\nu}+\lambda_{\nu}.$

Необходимо проверить справедливость четырёх неравенств.

Имеем

$$a_{\nu} + \lambda_{\nu} + \lambda_{\nu-1} \geqslant E_{\nu} + \lambda_{\nu} + \lambda_{\nu-1} > E_{\nu-1} + \lambda_{\nu-1} > f_{\nu-2},$$

а $f_{\nu-2} < a_{\nu} + \lambda_{\nu} + \lambda_{\nu-1}$ справедливо тогда и только тогда, когда $f'_{\nu-2} < < E'_{\nu-2} + \lambda'_{\nu-2}$, т. е. имеет место $\mathrm{II}_{\nu-1}(\bar{Q}'_{m-1})$.

Имеем

$$i + \lambda_{\nu-1} \geqslant e_{\nu-1} + \lambda_{\nu-1} > F_{\nu-2},$$

а $F_{\nu-2} < i + \lambda_{\nu-1}$ справедливо тогда и только тогда, когда $F'_{\nu-2} < e'_{\nu-1} + \lambda'_{\nu-1}$, т. е. имеет место $III_{\nu-1}(\bar{Q}'_{m-1})$.

Имеем

$$a_{\nu+1} + \lambda_{\nu+1} \geqslant E_{\nu+1} + \lambda_{\nu+1} > f_{\nu} \geqslant F_{\nu} \geqslant a_{\nu},$$

а $a_{\nu}+\lambda_{\nu}< a_{\nu+1}+\lambda_{\nu}+\lambda_{\nu+1}$ справедливо тогда и только тогда, когда $f'_{\nu-1}<< E'_{\nu}+\lambda'_{\nu}$, т. е. имеет место $\Pi_{\nu}(\bar{Q'}_{m-1})$.

Неравенство $F'_{\nu-1} < e'_{\nu} + \lambda'_{\nu}$ справедливо тогда и только тогда, когда $a_{\nu} + \lambda_{\nu} < a_{\nu+1} + \lambda_{\nu} + \lambda_{\nu+1}$, но последнее неравенство следует из $\Pi_{\nu}(\bar{Q}'_{m-1})$. Таким образом, имеет место $\Pi_{\nu}(\bar{Q}'_{m-1})$.

Лемма доказана.

Обозначим

$$\Omega_m = \{ r_0 + r_1 \zeta(3) + r_2 \zeta(5) + \ldots + r_m \zeta(2m+1) \mid r_i \in \mathbb{Q} \}.$$
 (11)

Сформулируем основной результат данной работы о кратных рядах и начнём его доказательство (оно будет завершено в разделе 4). Из этого результата легко выводится теорема 1 (см. раздел 5).

Теорема 2. При выполнении условий (7) и (I)—(III) $\Sigma_m(P, \bar{Q}_m, \bar{\lambda}_{m-1}) \in \Omega_m$.

Доказательство. Докажем теорему индукцией по m. При m=1, опуская везде для краткости индекс j=1, получим разложение $\frac{P(t)}{Q(t)}$ в сумму простейших дробей:

$$\frac{P(t)}{Q(t)} = \sum_{i=E}^{F} \frac{b_i}{(t+i)^2} + \sum_{i=e}^{f} \frac{c_i}{t+i},$$
(12)

где все b_i , c_i принадлежат \mathbb{Q} , $b_i=0$ при $i\notin A_{1,2}$, $c_i=0$ при $j\notin A_1$.

Из (7) при j=1 получим, что $\deg P \leqslant \deg Q - 2$, а тогда

$$\sum_{i=e}^{f} c_i = 0. \tag{13}$$

Из (8), (9), (12) и (13) аналогично, например, [6] имеем

$$\Sigma_{1} = D_{\sigma} \sum_{s=0}^{\infty} \left(\sum_{i=E}^{F} \frac{b_{i}}{(s+i+z)^{2}} + \sum_{i=e}^{f} \frac{c_{i}}{s+i+z_{1}} \right) =$$

$$= -2 \left(\sum_{i=E}^{F} b_{j} \right) \zeta(3) + 2 \sum_{i=E}^{F} b_{i} \sum_{k=1}^{i-1} \frac{1}{k^{2}} - \sum_{i=e}^{f-1} \left(\sum_{k=e}^{f-1} c_{k} \right) \frac{1}{i^{2}} = r_{1} + r_{2}\zeta(3),$$

где $r_1, r_2 \in \mathbb{Q}$, и утверждение теоремы 2 выполняется при m=1.

Везде далее предполагается, что $m\geqslant 2$ и для каждого $n=1,\dots,m-1$ справедливо следующее утверждение:

если выполнены условия (7) и (I)—(III), то
$$\Sigma_n \in \Omega_n$$
. (U_n)

Для доказательства теоремы необходимо показать справедливость (U_m) . Сначала установим (U_m) для важнейшего частного случая сумм Σ_m , когда $P=1,\ Q_j(x)=(x+a_j)^2$ (здесь $a_j\in\mathbb{N},\ d_j=1,\ q_j=2,\ \rho_j=0,\ e_j=E_j=F_j=f_j=a_j$, условия (II) и (III) совпадают и сводятся к неравенствам

$$a_{j-1} < a_j + \lambda_j$$
 при $j = 2, \dots, m$. (14)

Утверждение (U_m) принимает следующий вид.

Предложение 1. Пусть $m \geqslant 2$, $\bar{a}_m = (a_1, \ldots, a_m) \in \mathbb{N}^m$, $\bar{\lambda}_{m-1} \in \mathbb{Z}^{m-1}$, выполнены неравенства (14) и справедливы все утверждения $(U_1), \ldots, (U_{m-1})$,

$$S_m = S_m(\bar{a}_m, \bar{\lambda}_{m-1}) = D_\sigma \sum_{l=1}^m \sum_{\bar{a}_m} \sum_{\substack{c \in \mathbb{Z}^+ \\ c \in \mathbb{Z}^+}} \frac{(-1)^{m-l}}{(t_1 + a_1)^2 \dots (t_m + a_m)^2}, \quad (15)$$

где $l,\, \bar{\rho}_m$ определены как в (8), а t_j определены по формулам (9). Тогда

- 1) $S_m(\bar{a}_m, \bar{\lambda}_{m-1}) \in \Omega_m;$
- 2) в представлении $S_m(\bar{\alpha}_m, \bar{\lambda}_{m-1})$ в виде (11) r_m равно -2.

Для доказательства предложения 1 нам потребуется ряд вспомогательных утверждений.

Лемма 2. Пусть $a \in \mathbb{Z}$, $R_m \in \mathbb{Q}[x_1, \dots, x_m]$, $\bar{\lambda}_{m-1} \in \mathbb{Z}^{m-1}$,

$$S_m = S_m(a, R_m, \bar{\lambda}_{m-1}) = \sum_{l=1}^m \sum_{\bar{\rho}_m} \sum_{\substack{s_2, \dots, s_m \in \mathbb{Z}^+ \\ s_1 = a}} (-1)^{m-l} R_m(t_1, \dots, t_m), \quad (16)$$

где (t_1,\ldots,t_m) определены по формулам (9) при $\sigma=0$, R_m не имеет полюсов в точках (a,t_2,\ldots,t_m) при всех $s_2,\ldots,s_m\in\mathbb{Z}^+$. Тогда $S_m(a,R_m,\bar{\lambda}_{m-1})\in\mathbb{Q}$.

Доказательство. Проведём индукцию по m. При m=1 имеем $S_1=R_1(\alpha)\in \mathbb{Q}$. Пусть утверждение леммы верно для $S_{m-1},\ m\geqslant 2$. Докажем его для S_m . Пусть $\alpha\in\mathbb{Z}$. Введём обозначения

$$i_0(\alpha) = \min(0, \alpha), \quad i_1(\alpha) = \max(0, \alpha) - 1.$$
 (17)

Как обычно, $\sum\limits_{i=i_1}^{i_2}a_i=0$, если $i_1>i_2$. Покажем, что

$$S_m(a, R_m, \bar{\lambda}_{m-1}) = \pm \sum_{i=i_0(\alpha)}^{i_1(\alpha)} S_{m-1}(i, R_{m-1}^*, \bar{\lambda}_{m-2}^*), \tag{18}$$

где знак плюс выбираем в случае $\alpha > 0$, знак минус в случае $\alpha < 0$,

$$R_{m-1}^* = R_m(a, x_1, \dots, x_{m-1}), \quad \bar{\lambda}_{m-2}^* = (\lambda_3, \dots, \lambda_m).$$

Утверждение леммы следует из (18) даже в более точной форме: S_m есть конечная линейная комбинация значений функций R_m в некотором наборе точек $\bar{b} \in \mathbb{Z}^m$ с коэффициентами ± 1 .

Рассмотрим 2^{m-2} пар векторов $\{ar{
ho}_m^{(1)},ar{
ho}_m^{(2)}\}$, где

$$\bar{\rho}_m^{(1)} = (1, 1, \rho_3, \dots, \rho_m), \quad \bar{\rho}_m^{(2)} = (1, 2, \rho_3, \dots, \rho_m).$$

Пусть $l=l(\bar{\rho}_m^{(1)})$. Тогда $l(\bar{\rho}_m^{(2)})=l-1,\ l\geqslant 2$. Пусть $\rho_3=\ldots=\rho_{r+1}=2$ для (r-1) координат, где $r\in\{1,\ldots,m-1\},\ r=1,$ если $\rho_3=1.$ Для векторов $\bar{\rho}_m^{(1)}$ из $(9)\ t_2^{(1)}=s_2;$ при $j\in\{3,\ldots,r+1\}$ имеем $t_j^{(1)}=s_2+\ldots+s_j+\lambda_3+\ldots+\lambda_j,$ $t_{r+2}^{(1)}=s_{r+2}.$ Для векторов $\bar{\rho}_m^{(2)}$ аналогично $t_2^{(2)}=s_1+s_2+\lambda_2=s_2+a+\lambda_2;$ при

Кратные интегралы, представимые в виде линейной формы от $1, \zeta(3), \zeta(5), \ldots, \zeta(2k-1)$ 151

$$j\in\{3,\ldots,r+1\}$$
 $t_j^{(2)}=a+\lambda_2+s_2+\ldots+s_j+\lambda_3+\ldots+\lambda_j,$ $t_{r+2}^{(2)}=t_{r+2}^{(1)}=s_{r+2}$ при $r\leqslant m-2.$

Производя суммирование в (16) по переменной s_2 получим

$$S_{m} = S_{m}(a, R_{m}, \bar{\lambda}_{m-1}) =$$

$$= \sum_{l=2}^{m} \sum_{\bar{\rho}_{m}} \sum_{s_{2}, \dots, s_{m} \in \mathbb{Z}^{+}} (-1)^{m-l} (R_{m}(a, s_{2}, s_{2} + s_{3} + \lambda_{3}, \dots) -$$

$$- R_{m}(a, a + \lambda_{2} + s_{2}, a + \lambda_{2} + s_{2} + s_{3} + \lambda_{3}, \dots)) =$$

$$= \pm \sum_{i=i_{0}(\alpha+\lambda_{2})}^{i_{1}(\alpha+\lambda_{2})} \sum_{l=2}^{m} \sum_{\substack{\bar{\rho}_{m}^{(1)} \\ s_{2}=i}} \sum_{s_{2}, \dots, s_{m} \in \mathbb{Z}^{+}} (-1)^{m-l} R_{m}(\alpha, s_{2}, s_{2} + s_{3} + \lambda_{3}, \dots). \quad (19)$$

Очевидно, что $\bar{\rho}_m^{(1)}=(1,\bar{\rho}_{m-1}')$, где $\bar{\rho}_{m-1}'$ пробегает все возможные векторы $\bar{\rho}_{m-1},\ l'=l(\bar{\rho}_{m-1}')=l-1$. Проведём замену $(s_j',\lambda_j',t_j')=(s_j,\lambda_j,t_j)$ при $j=1,\ldots,m-1$. Из (19) получим

$$S_m(a, R_m, \bar{\lambda}_{m-1}) =$$

$$= \pm \sum_{i=i_0(\alpha+\lambda_2)}^{i_1(\alpha+\lambda_2)} \sum_{l'=1}^{m-1} \sum_{\substack{\bar{\rho}'_{m-1} \\ s'_1=i}} \sum_{\substack{s'_2, \dots, s'_m \in \mathbb{Z}^+ \\ s'_1=i}} (-1)^{m-1-l'} R_m(a, s'_1, t'_2, \dots, t'_{m-1}),$$

что соответствует (18), и лемма доказана.

Замечание 3. Из доказательства леммы видно, что при любом способе определения частичных сумм кратного ряда (треугольном, прямоугольном или сферическом) ряд S_m сходится, так как его частичные суммы стабилизируются и ряд сводится к конечной сумме.

Замечание 4. Из (I) следует, что ряды в (8) и (15) (до применения оператора D_{σ}) сходятся абсолютно и равномерно для $\sigma \in \left[-\frac{1}{2}; \frac{1}{2}\right]$, так как они мажорируются для некоторого C>0 рядом

$$\sum_{s_1,\ldots,s_m\in\mathbb{Z}^+} \frac{C}{(s_1+\frac{1}{2})^2(s_2+1)^2\ldots(s_m+1)^2},$$

который сходится при любом способе определения частичных сумм. Это же верно для ряда, полученного из (8) почленным применением оператора $\frac{\partial}{\partial \sigma}$. Поэтому законны любые перестановки членов ряда, а также почленное применение оператора D_{σ} .

Нам будут полезны следующие преобразования рядов (8): пусть $\alpha, \beta \in \mathbb{Z}$, $\nu \in \{1, \dots, m\}$. Введём обозначение

$$T_{\nu,\alpha,\beta}(\Sigma_m) = D_{\sigma} \sum_{l=1}^{m-1} \sum_{\substack{\bar{\rho}_m \\ \rho_{\nu}=1}} \sum_{\substack{s_1,\dots,s_m \in \mathbb{Z}^+ \\ s_{\nu} \geqslant \alpha}} (-1)^{m-l} R_m(t_1,\dots,t_m) + D_{\sigma} \sum_{\substack{l=1 \\ \rho_{\nu}=2}} \sum_{\substack{\bar{\rho}_m \\ s_{\nu} \geqslant \beta}} (-1)^{m-l} R_m(t_1,\dots,t_m), \quad (20)$$

где в случае $\nu=1$ второй ряд отсутствует, так как $\rho_1=1$. Соответствующий оператор при $\nu=1$ обозначим $T_{1,\alpha}$.

Лемма 3. Пусть $\alpha + e_{\nu} \geqslant 1$, где $\nu \in \{1, \ldots, m\}$, $\beta > f_{\nu-1} - E_{\nu} - \lambda_{\nu}$, $\beta > F_{\nu-1} - e_{\nu} - \lambda$, где $\nu \in \{2, \ldots, m\}$. Тогда в условиях теоремы 2 и в предположении, что выполнены $(\mathrm{U}_1), \ldots, (\mathrm{U}_{m-1})$,

$$T_{\nu,\alpha,\beta}(\Sigma_m) - \Sigma_m \in \Omega_{m-1}, \quad \nu = 2, \dots, m,$$
 (21)

$$T_{1,\alpha}(\Sigma_m) - \Sigma_m \in \Omega_{m-1}. \tag{22}$$

Доказательство.

1. Начнём с самого простого случая: докажем (21) при $\nu=m$. Пусть $\bar{\rho}_m^{(1)}==(\bar{\rho}_{m-1}',1),\; \bar{\rho}_m^{(2)}=(\bar{\rho}_{m-1}',2),\;$ где $\bar{\rho}_{m-1}'-$ произвольный вектор $\bar{\rho}_{m-1}$. В первом случае из (9) имеем $t_m=s_m$, во втором $t_m=s_m+t_{m-1}+\lambda_m$. Из (8) и (20), производя суммирование по переменной s_m , получим

$$T_{m,\alpha,\beta}(\Sigma_{m}) - \Sigma_{m} =$$

$$= -\operatorname{sign}(\alpha) \sum_{i=i_{0}(\alpha)}^{i_{1}(\alpha)} \sum_{l'=1}^{m-1} \sum_{\bar{\rho}'_{m-1}} \sum_{s_{2},\dots,s_{m-1} \in \mathbb{Z}^{+}} (-1)^{m-1-l'} \times$$

$$\times \frac{P_{m}(t_{1},\dots,t_{m-1},i)}{Q_{1}(t_{1})\dots Q_{m-1}(t_{m-1})Q_{m}(i)} +$$

$$+ \operatorname{sign}(\beta) \sum_{i=i_{0}(\beta)}^{i_{1}(\beta)} \sum_{l'=1}^{m-1} \sum_{\bar{\rho}'_{m-1}} \sum_{s_{1},\dots,s_{m-1} \in \mathbb{Z}^{+}} (-1)^{m-1-l'} \times$$

$$\times \frac{P_{m}(t_{1},\dots,t_{m-1},t_{m-1}+i+\lambda_{m})}{Q_{1}(t_{1})\dots Q_{m-2}(t_{m-2})Q_{m-1}(t_{m-1})Q_{m}(t_{m-1}+i+\lambda_{m})}, \quad l' = l(\bar{\rho}'_{m-1}).$$
(23)

При фиксированном i каждое слагаемое первой суммы имеет вид

$$\Sigma_{m-1}\left(\frac{1}{Q_m(i)}P_m(t_1,\ldots,t_{m-1},i);\bar{Q}_{m-1};\bar{\lambda}_{m-2}\right),$$

все условия (7), (I)—(III) для него выполнены тривиально; $Q_m(i) \neq 0$, так как при $i \geqslant 0$ это очевидно, а в случае $\alpha < 0, i \in \{\alpha, \dots, -1\}$ имеем $i + e_m \geqslant \alpha + e_m \geqslant 1$. Поэтому по утверждению (\mathbf{U}_{m-1}) все слагаемые первой суммы — элементы Ω_{m-1} .

Каждое слагаемое второй суммы при фиксированном i имеет знаменатель вида 1) из леммы 1 при $\nu=m$, поэтому выполнены условия (7), $\mathrm{II}(\bar{Q}'_{m-1})$ и $\mathrm{III}(\bar{Q}'_{m-1})$. Остаётся проверить справедливость $\mathrm{I}(P'_{m-1},\bar{Q}'_{m-1})$, где $P'_{m-1}=P_m(x_1,\ldots,x_{m-1},x_{m-1}+i+\lambda_m)$. Имеем очевидные соотношения $\rho'_j\leqslant\rho_j$ при $j=1,\ldots,m-2$, $\rho'_{m-1}\leqslant\rho_{m-1}+\rho_m$, $q'_j=q_j$ при $j=1,\ldots,m-2$, $q'_{m-1}=q_{m-1}+q_m$, откуда следует $\mathrm{I}(P'_{m-1},\bar{Q}'_{m-1})$. По утверждению (U_{m-1}) все слагаемые второй суммы в (23) — элементы Ω_{m-1} , т. е. (21) справедливо при $\nu=m$.

2. Докажем теперь (21) при $\nu \in \{2,\dots,m-1\}$. Обозначим $\bar{\rho}_m^{(1)} = \{\bar{\rho}_m \mid \rho_\nu = 1\}$, $\bar{\rho}_m^{(2)} = \{\bar{\rho}_m \mid \rho_\nu = 2\}$, $\bar{\rho}_m^{(1)} = (\bar{\rho}_{\nu-1}', \bar{\rho}_{m-\nu+1}^*)$, где $\bar{\rho}_{\nu-1}'$ и $\bar{\rho}_{m-\nu+1}^* -$ произвольные векторы $\bar{\rho}_{\nu-1}$ и $\bar{\rho}_{m-\nu+1}$ соответственно; $l' = l(\bar{\rho}_{\nu-1}')$, $l^* = l(\bar{\rho}_{m-\nu+1}^*)$, $l' + l^* = l = l(\bar{\rho}_m^{(1)})$, $l \geqslant 2$.

Аналогично (23) получим

$$T_{\nu,\alpha,\beta}(\Sigma_m) - \Sigma_m = \sigma_1 + \sigma_2, \tag{24}$$

$$\sigma_1 = -\operatorname{sign}(\alpha) \sum_{i=i_0(\alpha)}^{i_1(\alpha)} \frac{1}{Q_{\nu}(i)} \sigma_{1,i}, \quad \sigma_2 = -\operatorname{sign}(\beta) \sum_{i=i_0(\beta)}^{i_1(\beta)} \sigma_{2,i},$$
 (25)

$$\sigma_{1,i} = D_{\sigma} \sum_{l'=1}^{\nu-1} \sum_{\bar{\rho}'_{l'-1}} \sum_{s_1, \dots, s_{\nu-1} \in \mathbb{Z}^+} \frac{(-1)^{\nu-1-l'}}{Q_1(t_1) \dots Q_{\nu-1}(t_{\nu-1})} \times$$

$$\times \left[\sum_{l^*=1}^{m-\nu+1} \sum_{\substack{\bar{\rho}_{m-\nu+1}^* \ s_{\nu}=i}} \sum_{\substack{s_{\nu+1},\dots,s_m \in \mathbb{Z}^+ \\ s_{\nu}=i}} (-1)^{m-\nu+1-l^*} \frac{P_m(t_1,\dots,t_{\nu-1},s_{\nu},t_{\nu+1},\dots,t_m)}{Q_{\nu+1}(t_{\nu+1})\dots Q_m(t_m)} \right],$$
(26)

$$\sigma_{2,i} = D_{\sigma} \sum_{l=1}^{m-1} \sum_{\substack{\bar{\rho}_m^{(2)} \\ s_1, \dots, s_m \in \mathbb{Z}^+}} \frac{(-1)^{m-l} P_m(t_1, \dots, t_m)}{Q_1(t_1) \dots Q_m(t_m)}.$$
 (27)

Рассмотрим $\sigma_{1,i}$. Имеем, как в пункте 1, $Q_{\nu}(i) \neq 0$ ввиду $\alpha + e_{\nu} \geqslant 1$. Как при рассмотрении (10), из $\mathrm{III}(\bar{Q}_m)$ получим $Q_j(t_j) \neq 0$ при $j > \nu$.

Проведём суммирование по переменным $s_{\nu+1},\ldots,s_m$ в (26). По лемме 2 (см. также замечание 3) получим, что сумма в квадратных скобках есть некоторый многочлен $P_{\nu-1,i}^*(t_1,\ldots,t_{\nu-1}),\ P_{\nu-1,i}^*\in\mathbb{Q}[x_1,\ldots,x_{\nu-1}],\ \deg_{x_j}P_{\nu-1,i}^*\leqslant p_j$ при $j=1,\ldots,\nu-1$. Все условия (7), (I)—(III) для $\sigma_{1,i}=\Sigma_{\nu-1}(P_{\nu-1,i}^*,Q_{\nu-1},\bar{\lambda}_{\nu-2})$ выполнены ввиду (7), (I)—(III) для Σ_m . Поэтому по утверждению (U $_{\nu-1}$) получаем, что $\sigma_{1,i}\in\Omega_{\nu-1}$, а тогда и $\sigma_1\in\Omega_{\nu-1}$ (см. (25)).

Рассмотрим (27). Имеем
$$l(\bar{\rho}_m^{(2)})=l,\ t_{\nu}=t_{\nu-1}+i+\lambda_{\nu}.$$
 Если $\rho_{\nu+1}=2,$ то
$$t_{\nu+1}=t_{\nu}+s_{\nu+1}+\lambda_{\nu+1}=t_{\nu-1}+s_{\nu+1}+i+\lambda_{\nu}+\lambda_{\nu+1}.$$

Проведём замену $(\rho_j, \lambda_j, Q_j, s_j, t_j) \to (\rho'_j, \lambda'_j, Q'_j, s'_j, t'_j)$, где Q'_j, λ'_j определены как в пункте 1) леммы 1,

$$(\rho'_j, s'_j, t'_j) = \begin{cases} (\rho_j, s_j, t_j), & \text{если } j = 1, \dots, \nu - 1, \\ (\rho_{j+1}, s_{j+1}, t_{j+1}), & \text{если } j = \nu, \dots, m - 1. \end{cases}$$
(28)

Обозначим

$$P_{m-1,i} = P(x_1, \dots, x_{\nu-1}, x_{\nu-1} + i + \lambda_{\nu}, x_{\nu}, \dots, x_{\nu-1}).$$

Из неравенств для β следуют аналогичные для i, т. е. условия пункта 1) леммы 1 выполнены (если $i\geqslant 0$, то всё ясно, так как из Π_{ν} и Π_{ν} следует, что $f_{\nu-1}-E_{\nu}-\lambda_{\nu}<0$, $F_{\nu-1}-e_{\nu}-\lambda_{\nu}<0$; если же i<0, то $\beta<0$, $i\geqslant\beta$). После замены (28) получим, что $\sigma_{2,i}=-\Sigma_{m-1}(P_{m-1,i},\bar{Q}'_{m-1},\bar{\lambda}'_{m-2})$, по лемме 1 выполнены (7), $\Pi(\bar{Q}'_{m-1})$ и $\Pi(\bar{Q}'_{m-1})$.

Остаётся проверить, что имеет место $\mathrm{I}(\bar{Q}'_{m-1})$. Аналогично пункту 1 $p'_j\leqslant p_j$ при $j=1,\ldots,\nu-2,$ $p'_{\nu-1}\leqslant p_{\nu-1}+p_{\nu},$ $p'_j\leqslant p_{j+1}$ при $j=\nu,\ldots,m-1;$ $q'_j=q_j$ при $j=1,\ldots,\nu-2,$ $q'_{\nu-1}=q_{\nu-1}+q_{\nu},$ $q'_j=q_{j+1}$ при $j=\nu,\ldots,m-1$. Поэтому $\mathrm{I}(\bar{Q}'_{m-1})$ следует из $\mathrm{I}(Q_m)$. Итак, по утверждению (U_{m-1}) получаем, что $\sigma_{2,i}\in\Omega_{m-1}$. Из (25) следует, что $\sigma_2\in\Omega_{m-1}$, из (24) имеем (21), так как $\sigma_1\in\Omega_{\nu-1}$.

3. Докажем (22). Пусть

$$\bar{\rho}_m = (1, \underbrace{2, \dots, 2}_{r-1}, 1, \rho_{r+2}, \dots, \rho_m), \quad r \in \{1, \dots, m\}.$$

Производя суммирование по переменной s_1 , имеем

$$T_{1,\alpha}(\Sigma_m) - \Sigma = -\operatorname{sign}(\alpha) \sum_{i=i(\alpha)}^{i_1(\alpha)} D_{\sigma} \sum_{l=1}^{m} \sum_{\bar{\rho}_m} \sum_{\substack{s_2, \dots, s_m \in \mathbb{Z}^+ \\ s_1 = i}} (-1)^{m-1} \times \frac{P_m(t_1, \dots, t_m)}{Q_1(s_1 + \sigma)Q_2(t_2) \dots Q_m(t_m)}, \quad (29)$$

где $t_1=s_1+\sigma=i+\sigma,\, t_j=s_2+\ldots+s_j+\lambda_2+\ldots+\lambda_j+i+\sigma$ при $j=2,\ldots,r,$ $t_{\nu+1}=s_{\nu+1},\, t_j$ при $j=r+2,\ldots,m$ определены по формулам (9).

Так как в рассматриваемой ситуации

$$D_{\sigma}(R(t_1,\ldots,t_m)) = \left. \frac{\partial R}{\partial x_1}(t_1,\ldots,t_m) \right|_{\sigma=0} + \sum_{\nu=2}^r \left. \frac{\partial R}{\partial x_{\nu}}(t_1,\ldots,t_m) \right|_{\sigma=0},$$

где второе слагаемое отсутствует при r=1, то из (29) следует, что

$$T_{1,\alpha}(\Sigma_m) - \Sigma_m = -\operatorname{sign}(\alpha) \sum_{i=i_0(\alpha)}^{i_1(\alpha)} \sigma_{1,i} - \operatorname{sign}(\alpha) \sum_{i=i_0(\alpha)}^{i_1(\alpha)} \frac{1}{Q_1(i)} \sigma_{2,i}, \tag{30}$$

где

$$\sigma_{1,i} = \sum_{l=1}^{m} \sum_{\bar{\rho}_m} \sum_{\substack{s_2, \dots, s_m \in \mathbb{Z}^+ \\ s_1 = i}} (-1)^{m-l} \frac{\partial}{\partial t_1} \left(\frac{P_m(t_1, \dots, t_m)}{Q_1(t_1) \dots Q_m(t_m)} \right), \tag{31}$$

 $t_1 = s_1, t_j$ определены по формулам (9) при j = 2, ..., m,

$$\sigma_{2,i} = D_{\sigma} \sum_{l=1}^{m-1} \sum_{\substack{\bar{\rho}_m \\ r > 1}} \sum_{s_2, \dots, s_m \in \mathbb{Z}^+} (-1)^{m-l} \frac{P(i, t_2, \dots, t_m)}{Q_2(t_2) \dots Q_m(t_m)}, \tag{32}$$

 $t_2=s_2+i+\lambda_2+\sigma,\ t_j=s_2+\ldots+s_j+i+\lambda_2+\ldots+\lambda_j+\sigma$ при $j=3,\ldots,r,$ $t_{r+1}=s_{r+1},\ t_j$ при $j=r+2,\ldots,m$ определены по формулам (9).

Рассмотрим сначала (31). Ввиду условия $\alpha+e_1\geqslant 1$ стандартным образом имеем $Q_1(i)\neq 0$. Для $j=2,\ldots,r$, как при рассмотрении (10), получим, что $Q_j(t_j)\neq 0$, так как

$$t_i + e_i = s_2 + \ldots + s_i + \lambda_2 + \ldots + \lambda_i + e_i + i \ge i + e_1.$$

Следовательно, рациональная функция в сумме (31) удовлетворяет условиям леммы 2, т. е. для всех i

$$\sigma_{1,i} \in \mathbb{Q}.$$
 (33)

В (32) проведём стандартный сдвиг вида (28): $\bar{\rho}'_{m-1}=(\rho_1,\rho_3,\ldots,\rho_m)$, $\bar{Q}'_{m-1}=(Q_2(x+i+\lambda_2),Q_3(x),\ldots,Q_m(x))$, $\bar{\lambda}'_{m-2}=(\lambda_3+i+\lambda_2,\lambda_4,\ldots,\lambda_m)$, $s'_j=s_{j+1}$ при $j=1,\ldots,m-1$, $t'_1=s'_1+\sigma$, t'_j определены формулами (9), где произведена замена $(s_j,t_j,\lambda_j)\to (s'_j,t'_j,\lambda'_j)$. По пункту 2) леммы 1 выполнены условия (7), $\mathrm{II}(\bar{Q}'_{m-1})$, $\mathrm{III}(\bar{Q}'_{m-1})$. Из (32) ввиду того, что $l(\bar{\rho}'_{m-1})=l(\rho_m)$ (так как r>1, то $\rho_2=2$), получим

$$\sigma_{2,i} = -\sum_{m-1} (P_m(i, x_1 + i + \lambda_2, x_2, \dots, x_{m-1}), \bar{Q}'_{m-1}, \bar{\lambda}'_{m-2}).$$

Условия $\mathrm{I}(P'_{m-1},\bar{Q}'_{m-1})$ проверяются тривиально. Поэтому по утверждению (U_{m-1}) для всех i

$$\sigma_{2,i} \in \Omega_{m-1}. \tag{34}$$

Из (30), (33) и (34) следует (22), и лемма доказана.

Теперь докажем лемму, фрагменты которой уже присутствовали в доказательстве леммы 3.

Лемма 4. Пусть $\alpha, \beta \in \mathbb{Z}$ и для них выполнены те же условия, что и в лемме 3, $\nu \in \{1, \dots, m\}$. Тогда

$$T_{\gamma,\alpha,\beta}(\Sigma_m(R_m,\bar{\lambda}_{m-1})) = \Sigma_m(R'_m,\bar{\lambda}'_{m-1}),\tag{35}$$

где

$$R'_{m} = R_{m}(x_{1}, \dots, x_{\nu-1}, x_{\nu} + \alpha, x_{\nu+1}, \dots, x_{m}), \tag{36}$$

$$\bar{\lambda}'_{m-1} = (\lambda_2, \dots, \lambda_{\nu-1}, \lambda_{\nu} + \beta - \alpha, \lambda_{\nu+1} + \alpha, \lambda_{\nu+2}, \dots, \lambda_m), \tag{37}$$

при $\nu=1$ $T_{\nu,\alpha,\beta}$ есть $T_{1,\alpha}$, в (37) отсутствует $\lambda_{\nu}+\beta-\alpha$; при $\nu=m$ в (37) отсутствует $\lambda_{\nu+1}+\alpha$.

Доказательство.

1. Рассмотрим в (20) сначала первую сумму, в которой $\rho_{\nu}=1$. Так как $s_{\nu}\geqslant \alpha$, то $s_{\nu}=s'_{\nu}+\alpha$, $s'_{\nu}\in\mathbb{Z}^+$. Пусть $s'_{j}=s_{j}$ при $j=1,\ldots,m,\ j\neq \nu;\ t'_{j}$ определяются по формулам (9), где сделана замена $(s_{j},\lambda_{j})\to(s'_{j},\lambda'_{j}),\ \lambda'_{j}$ определены в (37). Тогда

$$\Sigma'_{m} = \Sigma_{m}(R'_{m}, \bar{\lambda}'_{m-1}) = D_{\sigma} \sum_{l=1}^{m} \sum_{\bar{\rho}_{m}} \sum_{s'_{1}, \dots, s'_{m} \in \mathbb{Z}^{+}} (-1)^{m-l} R'_{m}(t'_{1}, \dots, t'_{m}).$$
 (38)

Покажем, что множество членов ряда (38) идентично множеству членов ряда (20) при таких $\bar{\rho}_m$, что $\rho_{\nu}=1$.

1.1. Пусть $\rho_{\nu+1}=1$. Тогда

$$t_{\nu}' = s_{\nu}', \quad t_{\nu+1}' = s_{\nu+1}', \quad t_{\nu} = t_{\nu}' + \alpha, \quad t_{\nu+1} = t_{\nu+1}'.$$

Из (37) имеем $t_j = t_j'$ при $j = 1, \dots, m, \, j \neq \nu$, т. е.

$$R'_m(t'_1,\ldots,t'_m) = R_m(t'_1,\ldots,t'_{\nu-1},t'_{\nu}+\alpha,t'_{\nu+1},\ldots,t'_m) = R_m(t_1,\ldots,t_m).$$

1.2. Пусть $\rho_{\nu+1}=2$. Тогда

$$t'_{\nu} = s'_{\nu},$$

$$t'_{\nu+1} = s'_{\nu+1} + t'_{\nu} + \lambda'_{\nu+1} = s_{\nu+1} + s_{\nu} - \alpha + \lambda_{\nu+1} + \alpha = t_{\nu+1},$$

$$t'_{\nu} = s_{\nu} - \alpha = t_{\nu} - \alpha.$$

Из (37) опять имеем $t_j=t_i'$ при $j=1,\ldots,m,\ j\neq \nu$ и, как в 1.1,

$$R'_m(t'_1,\ldots,t'_m) = R_m(t_1,\ldots,t_m).$$

- 2. Рассмотрим теперь в (20) вторую сумму, в которой $\rho_{\nu}=2$, и докажем аналогичное пункту 1 утверждение леммы (здесь $s_{\nu}=s'_{\nu}+\beta,\,s'_{\nu}\in\mathbb{Z}^+$, остальное как в пункте 1).
 - 2.1. Пусть $\rho_{\nu+1} = 1$. Тогда

$$t_{\nu} = t_{\nu-1} + s_{\nu} + \lambda_{\nu},$$

$$t'_{\nu} = t'_{\nu-1} + s'_{\nu} + \lambda'_{\nu} = t_{\nu-1} + s_{\nu} - \beta + \lambda_{\nu} + \beta - \alpha = t_{\nu} - \alpha.$$

т. е., как в 1.1, $t_{\nu}=t'_{\nu}+\alpha$. Далее, $t_{\nu+1}=s_{\nu+1}=s'_{\nu+1}=t'_{\nu+1}$, т. е., как в 1.1, $t_j=t'_j$ при $j\neq \nu$,

$$R'_m(t'_1,\ldots,t'_m) = R_m(t_1,\ldots,t_m).$$

2.2. Пусть $\rho_{\nu+1} = 2$. Как в пункте 2.1, $t_{\nu} = t'_{\nu} + \alpha$. Имеем

$$t_{\nu+1} = t_{\nu} + s_{\nu+1} + \lambda_{\nu+1},$$

$$t'_{\nu+1} = t'_{\nu} + s'_{\nu+1} + \lambda'_{\nu+1} = t_{\nu} - \alpha + s_{\nu+1} + \lambda_{\nu+1} + \alpha = t_{\nu+1},$$

аналогично предыдущему

$$R'_m(t'_1,\ldots,t'_m) = R_m(t_1,\ldots,t_m),$$

и лемма доказана.

2. Представление кратных интегралов в виде кратных рядов

В этом разделе мы представим интеграл (1) в виде ряда (8). Ряд доказываемых лемм будет полезен для вычисления других кратных интегралов, в частности J_{2k} . Кроме того, мы докажем ещё один вспомогательный результат (лемма 9), необходимый для доказательства предложения 1. Существенную роль будет играть гипергеометрическая функция Гаусса

$$F(a,b,c,z) = \sum_{s=0}^{\infty} \frac{\Gamma(s+a)\Gamma(s+b)\Gamma(c)z^s}{\Gamma(a)\Gamma(b)\Gamma(s+1)\Gamma(s+c)}.$$

Лемма 5. Пусть $a, b, c \in \mathbb{Z}^+$, $a + b \geqslant c$, $z \in (0; 1)$. Тогда

$$\int_{0}^{1} \frac{x^{a}(1-x)^{b} dx}{(1-xz)^{c+1}} = \frac{(-1)^{b+c+1}}{\Gamma(c+1)\Gamma(a+b+1-c)} \times$$

$$\times D_{\sigma} \sum_{t=\min(n,l)}^{\infty} (t-l+1+\sigma) \dots (t+\sigma)(t-n+1+\sigma) \dots (t+m+\sigma)(1-z)^{t-n+\sigma},$$
(39)

где $n = \min(a, c)$, $m = \max(a, c) - \min(a, c)$, $l = a + b - \max(a, c)$.

Доказательство. По формуле Эйлера [1, с. 72, формула (10)]

$$\int_{a}^{1} \frac{x^{a}(1-x)^{b} dx}{(1-xz)^{c+1}} = \frac{\Gamma(a+1)\Gamma(b+1)}{\Gamma(a+b+2)} F(c+1, a+1, a+b+2, z). \tag{40}$$

По [1, с. 82, формула (4)] для $n, m, l \in \mathbb{Z}^+$

$$F(c+1,a+1,a+b+2,z) = F(n+1,n+m+1,n+m+l+2,z) = \frac{(-1)^{m+1}(n+m+l+1)!}{l! \, n! \, (n+m)! \, (n+l)!} \, \frac{d^{n+m}}{dz^{n+m}} \left[(1-z)^{m+l} \frac{d^l}{dz^l} \left(\frac{\ln(1-z)}{z} \right) \right], \quad (41)$$

где $n=\min(a,c)\in\mathbb{Z}^+,\, m=\max(a,c)-\min(a,c)\in\mathbb{Z}^+,\, l=a+b-\max(a,c)\in\mathbb{Z}^+$ ввиду $a+b\geqslant c,\, b\in\mathbb{Z}^+.$

При фиксированном $z \in (0,1)$ имеем

$$\ln(1-z) = D_{\sigma}(1-z)^{\sigma}, \quad \frac{1}{z} = \sum_{t=0}^{\infty} (1-z)^{t}.$$

Обозначим

$$\lambda = \frac{(-1)^{m+1}(n+m+l+1)!}{n! \, l! \, (m+l)! \, (n+m)!}.$$
(42)

Из (41) и (42) имеем последовательно

$$F(c+1, a+1, a+b+2, z) = \lambda D_{\sigma} \frac{d^{n+m}}{dz^{n+m}} \left[(1-z)^{m+l} \frac{d^{l}}{dz^{l}} \sum_{t=0}^{\infty} (1-z)^{t+\sigma} \right] =$$

$$= \lambda (-1)^{l} D_{\sigma} \frac{d^{n+m}}{dz^{n+m}} \sum_{t=0}^{\infty} (t-l+1+\sigma) \dots (t+\sigma) (1-z)^{t+m+\sigma} =$$

$$= \lambda (-1)^{m+n+l} D_{\sigma} \sum_{t=\min(n,l)}^{\infty} (t-l+1+\sigma) \dots (t+\sigma) \times$$

$$\times (t-n+1+\sigma) \dots (t+m+\sigma) (1-z)^{t-n+\sigma}. \tag{43}$$

Мы воспользовались тем, что слагаемые ряда(43) обращаются в нуль при применении оператора D_{σ} для $0 < t < \min(n, l)$.

Далее, $n!(m+n)!=\Gamma(a+1)\Gamma(c+1),\ l!(m+l)!=\Gamma(b+1)\Gamma(a+b+1-c),$ $(-1)^{l+n+1}=(-1)^{b+c+1}.$ Поэтому из (42) имеем

$$(-1)^{m+n+l}\lambda = \frac{(-1)^{b+c+1}\Gamma(a+b+2)}{\Gamma(a+1)\Gamma(b+1)\Gamma(c+1)\Gamma(a+b+1-c)},$$

а тогда из (40) и (43) следует (39).

Лемма 6. Пусть $\mu, \nu \in \mathbb{Z}^+$, $t \in \mathbb{R}$, $t \neq -1, -2, ..., z \in (0, 1)$,

$$J_{\mu,\nu,t}(z) = \int_{0}^{1} x^{\nu} (1-x)^{\mu} (1-xz)^{t} dx.$$

Тогда

$$J_{\mu,\nu,t}(z) = \frac{(-1)^{\mu}}{(t+1)\dots(t+\nu+\mu+1)} \times \left(\sum_{s=0}^{\infty} (s-t-\mu)\dots(s-t-1)(s+1)\dots(s+\nu)(1-z)^{s} - \sum_{s=0}^{\infty} (t+s+\mu+2)\dots(t+s+\mu+\nu+1)(s+1)\dots(s+\mu)(1-z)^{s+t+\mu+1}\right).$$
(44)

Доказательство. Везде далее считаем, что $t \in \mathbb{R} \setminus \mathbb{Z}$. Если $t \in \mathbb{Z}^+$, t = N, то, полагая в (44) $t = N + \varepsilon$, $\varepsilon \in (0;1)$, можно сделать стандартный переход $\varepsilon \to 0+0$.

Применим одно из двадцати соотношений Куммера для гипергеометрической функции Гаусса (см. [1, с. 115, формула (33)]):

$$F(a,b,c,z) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}F(a,b,a+b+1-c;1-z) + \frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}(1-z)^{c-a-b}F(c-a,c-b,c+1-a-b;1-z).$$
(45)

По формуле Эйлера, уже применявшейся в лемме 5,

$$J_{\mu,\nu,t}(z) = \frac{\Gamma(\nu+1)\Gamma(\mu+1)}{\Gamma(\nu+\mu+2)}F(-t,\nu+1,\nu+\mu+2;z).$$
(46)

Полагая в (45) $a=-t,\ b=\nu+1,\ c=\nu+\mu+2,\$ получим

$$F(-t, \nu + 1, \nu + \mu + 2; z) = \frac{\Gamma(\nu + \mu + 2)\Gamma(t + \mu + 1)}{\Gamma(t + \mu + \nu + 2)\Gamma(\mu + 1)} \times$$

$$\times \sum_{s=0}^{\infty} \frac{\Gamma(-t + s)\Gamma(\nu + s + 1)}{\Gamma(-t)\Gamma(\nu + 1)\Gamma(s + 1)} \frac{\Gamma(-t - \mu)}{\Gamma(-t - \mu + s)} (1 - z)^{s} +$$

$$+ \frac{\Gamma(\nu + \mu + 2)\Gamma(-t - \mu - 1)}{\Gamma(-t)\Gamma(\nu + 1)} \times$$

$$\times \sum_{s=0}^{\infty} \frac{\Gamma(t + \mu + \nu + 2 + s)\Gamma(\mu + 1 + s)}{\Gamma(t + \mu + \nu + 2)\Gamma(\mu + 1)\Gamma(s + 1)} \frac{\Gamma(t + \mu + 2)}{\Gamma(t + \mu + 2 + s)} (1 - z)^{s + t + \mu + 1}.$$
 (47)

Сократим ряд отношений гамма-функций в (47) с использованием следующих восьми дробей (по четыре на каждое слагаемое (47)):

1)
$$\frac{\Gamma(-t+s)}{\Gamma(-t-\mu+s)} = (-t-\mu+s)\dots(-t+s-1) = (s-t-\mu)\dots(s-t-1);$$

2)
$$\frac{\Gamma(\nu+s+1)}{\Gamma(s+1)} = (s+1)\dots(s+\nu);$$

3)
$$\frac{\Gamma(-t-\mu)}{\Gamma(-t)} = \frac{1}{(-t-1)\dots(-t-\mu)} = \frac{(-1)^{\mu}}{(t+1)\dots(t+\mu)};$$

4)
$$\frac{\Gamma(t+\mu+1)}{\Gamma(t+\mu+\nu+2)} = \frac{1}{(t+\mu+1)\dots(t+\mu+\nu+1)};$$

5)
$$\frac{\Gamma(t+\mu+\nu+2+s)}{\Gamma(t+\mu+2+s)} = (t+s+\mu+2)\dots(t+s+\mu+\nu+1);$$

6)
$$\frac{\Gamma(\mu+1+s)}{\Gamma(s+1)} = (s+1)\dots(s+\mu);$$

7)
$$\frac{\Gamma(t+\mu+2)}{\Gamma(t+\mu+\nu+2)} = \frac{1}{(t+\mu+2)\dots(t+\mu+\nu+1)};$$

8)
$$\frac{\Gamma(-t-\mu-1)}{\Gamma(-t)} = \frac{1}{(-t-\mu-1)\dots(-t-1)} = \frac{(-1)^{\mu+1}}{(t+1)\dots(t+\mu+1)}.$$

Тогда из (47) и (46) получим (44), и лемма доказана.

Определим для $z \in (0;1]$ функцию (ср. (1))

$$f_{2k-1}(z) = \prod_{j=1}^{2k-1} x_j^{\alpha_j - 1} (1 - x_j)^{\beta_j - 1} dx_1 \dots dx_{2k-1}$$

$$= \int_{[0,1]^{2k-1}} \frac{1}{(1 - x_1 + x_1 x_2 - x_1 x_2 x_3 + \dots + x_1 x_2 \dots x_{2k-2} - z x_1 x_2 \dots x_{2k-1})^{\alpha_0}},$$
(48)

где $k \geqslant 2$.

Из (1) и (48) имеем

$$J_{2k-1} = f_{2k-1}(1). (49)$$

Обозначим

$$P_{10}(x)=(x+lpha_0-eta_1+1)\dots(x+lpha_0-1),$$
 $P_{i1}(x)=(x+1)\dots(x+lpha_{2i-1}-1)$ при $j=1,\dots,k;$

для j = 1, ..., k - 1

$$P_{j2}(x) = (x + \alpha_{2j}) \dots (x + \alpha_{2j} + \beta_{2j} - 1),$$

$$P_{j3}(x) = (x + \alpha_{2j-1}) \dots (x + \alpha_{2j+1} + \beta_{2j+1} - 1),$$

$$G_{j}(x) = (x + 1) \dots (x + \beta_{2j-1} - 1);$$

$$R_{1}(x) = \frac{P_{10}(x)}{P_{12}(x)P_{13}(x)};$$

$$\Lambda_{2k-1} = \frac{(-1)^{\alpha_{0} + \beta_{1} + \beta_{3} + \dots + \beta_{2k-1} - k} \Gamma(\beta_{2})\Gamma(\beta_{4}) \dots \Gamma(\beta_{2k-2})}{\Gamma(\alpha_{0})\Gamma(\alpha_{1} + \beta_{1} - \alpha_{0})}.$$

Везде далее $\sigma\in\left[-\frac{1}{2},0\right)\cup\left(0;\frac{1}{2}\right],\ D^*_{\sigma}(f(\sigma))=\lim_{\sigma\to 0}f'(\sigma).$ Очевидно, что для функций $f(\sigma)$, имеющих непрерывную в нуле производную,

$$D_{\sigma}^*(f(\sigma)) = D_{\sigma}(f(\sigma)).$$

Пусть, наконец, при $k \geqslant 3, j \in \{2, ..., k-1\}$

$$R_j(x_{j-1}, x_j) = \frac{G_j(x_j - x_{j-1} - \beta_{2j-1})}{P_{j2}(x_j)P_{j3}(x_j)}.$$

Все эти обозначения далее именуются обозначениями леммы 7.

Лемма 7. Пусть для параметров α_j , β_i функции $f_{2k-1}(z)$ выполнены условия (2)—(5) и $z\in(0;1]$. Тогда

$$f_{2k-1}(z) = \Lambda_{2k-1} D_{\sigma} \sum_{l=1}^{k} \sum_{\bar{\rho}_k} \sum_{s_1, \dots, s_k \in \mathbb{Z}^+} (-1)^{k-l} \bar{R}_k(t_1, \dots, t_k) (1-z)^{t_k},$$
 (50)

где оператор D_{σ} можно заменить на D_{σ}^* , для всех $z \in (0;1]$ ряд в (50) сходится абсолютно и равномерно по $\sigma \in \left[-\frac{1}{2};\frac{1}{2}\right]$, l, $\bar{\rho}_k$ определены как в (8) при m=k,

$$t_{j} = \begin{cases} s_{1} + \mu_{0} + \sigma, & \text{если } j = 1, \ \mu_{0} = \min(0, \beta_{1} - \alpha_{0}), \\ s_{j}, & \text{если } j = 2, \dots, k, \ \rho_{j} = 1, \\ t_{j-1} + s_{j} + \beta_{2j-1}, & \text{если } j = 2, \dots, k, \ \rho_{j} = 2, \end{cases}$$
 (51)

$$\bar{R}_k(x_1,\ldots,x_k) = R_1(x_1)R_2(x_1,x_2)\ldots R_{k-1}(x_{k-2},x_{k-1})G_k(x_k-x_{k-1}-\beta_{2k-1})P_{k1}(x_k).$$

Ряд (50) сходится при любом из классических способов определения частичных сумм (треугольном, прямоугольном или сферическом).

Доказательство. Проведём индукцию по k. При k=2 в лемме 5 возьмём $a=\alpha_1-1,\ b=\beta_1-1,\ c=\alpha_0-1$ (ввиду (2) имеем $c\leqslant a$, см. условие леммы 5), тогда $n=\alpha_0-1,\ m=\alpha_1-\alpha_0,\ l=\alpha_1+\beta_1-\alpha_1-1=\beta_1-1.$ Сделаем замену $z\to 1-x_2+x_2x_3z$ и получим из (48)

$$f_{3}(z) = \int_{[0;1]^{2}} \prod_{j \in \{2;3\}} x_{j}^{\alpha_{j}-1} (1-x_{j})^{\beta_{j}-1} \left(\int_{0}^{1} \frac{x_{1}^{\alpha_{1}-1} (1-x_{1})^{\beta_{1}-1} dx_{1}}{(1-x_{1}(1-x_{2}+x_{2}x_{3}z))^{\alpha_{0}}} \right) dx_{2} dx_{3} =$$

$$= \frac{(-1)^{\alpha_{0}+\beta_{1}-1}}{\Gamma(\alpha_{0})\Gamma(\alpha_{1}+\beta_{1}-\alpha_{0})} D_{\sigma}^{*} \sum_{s \geqslant \mu_{0}+\alpha_{0}-1} (s-\beta_{1}+2+\sigma) \dots (s+\sigma) \times$$

$$\times (s-\alpha_{0}+2+\sigma) \dots (s+\alpha_{1}-\alpha_{0}+\sigma) \int_{0}^{1} x_{2}^{s+\alpha_{2}-\alpha_{0}+\sigma} (1-x_{2})^{\beta_{2}-1} dx_{2} \times$$

$$\times \int_{0}^{1} x_{3}^{\alpha_{3}-1} (1-x_{3})^{\beta_{3}-1} (1-x_{3}z)^{s-\alpha_{0}+1+\sigma} dx_{3}. \tag{52}$$

В первом интеграле в (52) $s+\alpha_2-\alpha_0\geqslant 0$ при $s\geqslant \mu_0+\alpha_0-1$. Действительно, при $\beta_1<\alpha_0$ имеем $\mu_0=\beta_1-\alpha_0$ по (51), $\mu_0+\alpha_2-1=\alpha_2+\beta_1-\alpha_0-1\geqslant 0$ ввиду (3) при r=0. При $\beta_1\geqslant \alpha_0$ имеем $\mu_0=0$, $\mu_0+\alpha_2-1\geqslant 0$ ввиду $\alpha_2\in\mathbb{N}$. Поэтому данный бета-интеграл сходящийся. Применим ко второму интегралу в (52) лемму 6, где $t=s-\alpha_0+1+\sigma\notin\mathbb{Z}$. Вычислим бета-интеграл по формуле

$$\frac{\Gamma(\beta_2)\Gamma(t+\alpha_2)}{\Gamma(t+\alpha_2+\beta_2)} = \frac{\Gamma(\beta_2)}{(t+\alpha_2)\dots(t+\alpha_2+\beta_2-1)} = \frac{\Gamma(\beta_2)}{P_{12}(t)},$$

сделаем замену $s \to \mu_0 + \alpha_0 - 1 + s_1$, где $s_1 \in \mathbb{Z}^+$, положим $t_1 = s_1 + \mu_0 + \sigma$ (см. (51)). Тогда $t = t_1$, и (52) представляется в виде

$$f_3(z) = \Lambda_3 D_{\sigma}^* \sum_{s_1 \in \mathbb{Z}^+} \frac{P_{10}(t_1)P_{11}(t_1)}{P_{12}(t_1)(t_1+1)\dots(t_1+\alpha_3+\beta_3-1)} \times \left(\sum_{s_2 \in \mathbb{Z}^+} (s_2+1)\dots(s_2-\alpha_3-1)(s_2-t_1-\beta_3+1)\dots(s_2-t_1+1)(1-z)^{s_2} - \sum_{s_2 \in \mathbb{Z}^+} (t_1+s_2+\beta_3+1)\dots(t_1+s_2+\alpha_3+\beta_3-1) \times \right.$$

$$\times (s_2+1)\dots(s_2+\beta_3-1)(1-z)^{t_1+s_2+\beta_3} \bigg).$$

Произведя сокращение

$$\frac{P_{11}(t_1)}{(t_1+1)\dots(t_1+\alpha_3+\beta_3-1)} = \frac{1}{P_{13}(t_1)}$$

при $\alpha_1\leqslant \alpha_3+\beta_3$ (случай $\alpha_1>\alpha_3+\beta_3$ отложим, см. по этому поводу замечание 7), в обозначениях леммы 7 получим

$$f_3(z) = \Lambda_3 D_{\sigma}^* \left(\sum_{s_1, s_2 \in \mathbb{Z}^+} R_1(t_1) P_{21}(s_2) G_2(s_2 - t_1 - \beta_3) (1 - z)^{s_2} - \sum_{s_1, s_2 \in \mathbb{Z}^+} R_1(t_1) P_{21}(s_2 + t_1 + \beta_3) G_2(s_2) (1 - z)^{t_1 + s_2 + \beta_3} \right).$$
 (53)

Покажем, что ряды в (53) совпадают с рядами в (50). Действительно, для вектора $\bar{
ho}_2$ возможны два варианта:

- 1) $\bar{\rho}_2=(1,1).$ Тогда $l=2,\; (-1)^{k-l}=1,\; t_2=s_2,\;$ и первые слагаемые в (50) и
- 2) $\bar{
 ho}_2=(1,2).$ Тогда $l=1,\,(-1)^{k-l}=-1,\,t_2=t_1+s_2+eta_3$, и вторые слагаемые в (50) и (53) также совпадают.

Проверим сходимость при фиксированном $\sigma \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ ряда в (50), имеющего при k=2 вид

$$\sum_{l=1}^{2} \sum_{\bar{\rho}_{2}} \sum_{S_{1},S_{2} \in \mathbb{Z}^{+}} \frac{(-1)^{l} P_{10}(t_{1}) G_{2}(t_{2} - t_{1} - \beta_{3}) P_{21}(t_{2})}{P_{12}(t_{1}) P_{13}(t_{1})} (1 - z)^{t_{2}}.$$
 (54)

Если $\bar{
ho}_2=(1,1)$, то $t_2=s_2\geqslant 0$. Если $\bar{
ho}_2=(1,2)$, покажем, что

$$t_2 \geqslant s_1 + s_2 + \frac{1}{2}. (55)$$

Из (51) имеем

$$t_2 = s_1 + \mu_0 + \sigma + s_2 + \beta_3 \geqslant s_1 + s_2 + \mu_0 + \beta_3 - \frac{1}{2}.$$

Как при рассмотрении бета-интеграла в (52), проанализируем два случая:

- 1) $\beta_1<\alpha_0$. Тогда $\mu_0=\beta_1-\alpha_0,\ \mu_0+\beta_3-\frac{1}{2}\geqslant\frac{1}{2}$ ввиду (5) при k=2; 2) $\beta_1\geqslant\alpha_0$. Тогда $\mu_0=0,\ \mu_0+\beta_3-\frac{1}{2}\geqslant\frac{1}{2}$ ввиду $\beta_3\in\mathbb{N},$ и неравенство (55) доказано.

Покажем что при любом $z_0 \in (0,1), (z,\sigma) \in [z_0,1] \times \left[-\frac{1}{2},\frac{1}{2}\right]$ ряд (54) мажорируется двойным числовым рядом вида

$$C\sum_{l=1}^{2}\sum_{\bar{\rho}_{2}}\sum_{M_{1},M_{2}\in\mathbb{Z}^{+}}\frac{(M_{1}+1)^{\beta_{1}+\beta_{3}-2}(M_{2}+1)^{\alpha_{3}+\beta_{3}-2}(1-z_{0})^{M_{2}}}{(M_{1}+\frac{1}{2})^{\beta_{2}+\alpha_{3}+\beta_{3}-\alpha_{1}}},$$
 (56)

где C > 0,

$$(M_1,M_2)=egin{cases} (s_1,s_2),& ext{если }
ho_2=1,\ (s_1,s_1+s_2),& ext{если }
ho_2=2. \end{cases}$$

Выпишем тривиальные оценки

$$|P_{10}(t_1)| \le C_1(M_1+1)^{\beta_1-1},$$

 $|G_2(t_2-t_1-\beta_3)| \le C_2(M_1+1)^{\beta_3-1}(M_2+1)^{\beta_3-1},$

Кратные интегралы, представимые в виде линейной формы от $1, \zeta(3), \zeta(5), \ldots, \zeta(2k-1)$ 163

$$|P_{21}(t_2)| \le C_3(M_2+1)^{\alpha_3-1}, \quad |P_{12}(t_1)| \ge C_4 \left(M_1 + \frac{1}{2}\right)^{\beta_2},$$

 $|P_{13}(t_1)| \ge C_5 \left(M_1 + \frac{1}{2}\right)^{\alpha_3 + \beta_3 - \alpha_0},$

где все C_i больше 0 и мы воспользовались тем, что

$$t_1 + \alpha_2 \geqslant M_1 + \alpha_2 + \mu_0 - \frac{1}{2} \geqslant M_1 + \frac{1}{2},$$

$$t_1 + \alpha_1 = M_1 + \min(\alpha_0, \beta_1) + (\alpha_1 - \alpha_0) + \sigma \geqslant M_1 + \frac{1}{2},$$

(см. (2)). Эти оценки доказывают (56). Ввиду

$$(\beta_2 + \alpha_3 + \beta_3 - \alpha_1) - (\beta_1 + \beta_3 - 2) = \beta_2 + \alpha_3 - \alpha_1 - \beta_1 + 2 \ge 2$$

(см. (3) при r=1) ряд (56) сходится. Аналогичные приведённым выше оценки применимы и для ряда, полученного из (54) почленным применением оператора $\left(\frac{\partial}{\partial \sigma}\right)^n$, $n\in\mathbb{N}$. Поэтому ряд в (54) при любом $z\in(0,1]$ представляет собой аналитическую функцию от $\sigma\in\left(-\frac{1}{2};\frac{1}{2}\right)$, т. е. D_σ^* можно заменить на D_σ , и лемма полностью доказана при k=2.

Проведём шаг индукции $k \to k+1$, где $k \geqslant 2$.

Имеем из рекуррентного соотношения (указанного Ю. В. Нестеренко)

$$f_{2k+1}(z) = \int_{[0,1]^2} \prod_{j \in \{2k,2k+1\}} x_j^{\alpha_j - 1} (1 - x_j)^{\beta_j - 1} f_{2k-1} (1 - x_{2k} + x_{2k} x_{2k+1} z) \, dx_{2k} \, dx_{2k+1} dx$$

и (50), справедливого по предположению индукции,

$$f_{2k+1}(z) = \Lambda_{2k+1} D_{\sigma}^* \sum_{l=1}^k \sum_{\bar{\rho}_k} \sum_{s_1,\dots,s_k \in \mathbb{Z}^+} (-1)^{k-l} \bar{R}_k(t_1,\dots,t_k) \times$$

$$\times \int_0^1 x_{2k}^{\alpha_{2k}-1+t_k} (1-x_{2k})^{\beta_{2k}-1} dx_{2k} \times$$

$$\times \int_0^1 x_{2k+1}^{\alpha_{2k+1}-1} (1-x_{2k+1})^{\beta_{2k+1}-1} (1-x_{2k+1}z)^{t_k} dx_{2k+1}.$$
(57)

Исследуем сначала сходимость бета-интеграла в (57). Обозначим

$$\bar{\rho}_k^{(1)} = \left(1, \underbrace{2, \dots, 2}_{k-1}\right).$$

Рассмотрим два случая:

- 1) $\bar{\rho}_k \neq \bar{\rho}_k^{(1)}$. Тогда из (51) следует, что $t_k \geqslant 0$ (если $\rho_k = 1$, то $t_k = s_k \geqslant 0$, если $\rho_k = 2$, то для некоторого $r \in \{2,\ldots,k-1\}$ имеем $\rho_r = 1$, $\rho_{r+1} = \ldots = \rho_k = 2$, $t_k = s_r + \ldots + s_k + \beta_{2r+1} + \ldots + \beta_{2k-1} \geqslant 1$). Следовательно, $\alpha_{2k} 1 + t_k \geqslant 0$, и бета-интеграл сходится;
- 2) $\bar{\rho}_k = \bar{\rho}_k^{(1)}$. Тогда $t_k = s_1 + \ldots + s_k + \mu_0 + \sigma + \beta_3 + \beta_5 + \ldots + \beta_{2k-1}$. Если $\beta_1 \geqslant \alpha_0$, то $\mu_0 = 0$, $t_k \geqslant 0$, и бета-интеграл сходится. Если $\beta_1 < \alpha_0$, то $\mu_0 = \beta_1 \alpha_0$, из (4') при r = k, d = 2k получаем

$$\alpha_{2k} - 1 + t_k \geqslant$$

$$\geqslant s_1 + \ldots + s_k + (\beta_1 + \beta_3 + \ldots + \beta_{2k-1} + \alpha_{2k} - \alpha_0 - 1) - \frac{1}{2} \geqslant$$

$$\geqslant s_1 + \ldots + s_k - \frac{1}{2} \geqslant -\frac{1}{2},$$
(58)

и бета-интеграл в (57) сходится.

Применяя ко второму интегралу в (57) лемму 5, вычисляя бета-интеграл, как в (52) $\left(\frac{\Gamma(\beta_{2k})}{P_{k} \circ (t_k)}\right)$, получим из (57) в обозначениях леммы 7

$$f_{2k+1}(z) = (-1)^{\beta_{2k+1}-1} \Gamma(\beta_{2k}) \Lambda_{2k-1} D_{\sigma}^* \sum_{l=1}^k \sum_{\bar{\rho}_k} \sum_{s_1, \dots, s_k \in \mathbb{Z}^+} (-1)^{k-l} \times \bar{R}_k(t_1, \dots, t_k) \frac{1}{P_{k2}(t_k)(t_k+1) \dots (t_k + \alpha_{2k+1} + \beta_{2k+1} - 1)} \times \left(\sum_{s_{k+1} \in \mathbb{Z}^+} G_{k+1}(s_{k+1} - t_k - \beta_{2k+1}) P_{k+1, 1}(s_{k+1}) (1-z)^{s_{k+1}} - \sum_{s_{k+1} \in \mathbb{Z}^+} G_{k+1}(s_{k+1}) P_{k+1, 1}(t_k + s_{k+1} + \beta_{2k+1}) (1-z)^{t_k + s_{k+1} + \beta_{2k+1}} \right).$$
 (59)

Отметим, что

$$(-1)^{\beta_{2k+1}-1}\Gamma(\beta_{2k})\Lambda_{2k-1} = \Lambda_{2k+1}.$$

После сокращения в (59)

$$\frac{P_{k1}(t_k)}{(t_k+1)\dots(t_k+\alpha_{2k+1}+\beta_{2k+1}-1)} = \frac{1}{P_{k3}(t_k)}$$

(см. структуру \bar{R}_k в (50)) заметим, что первое слагаемое в (59) соответствует $\bar{\rho}_{k+1}=(\bar{\rho}_k,1),$ а второе $-\bar{\rho}_{k+1}=(\bar{\rho}_k,2),$ поэтому формально (50) при $k\to k+1$ выполнено.

Остаётся рассмотреть вопрос о сходимости этого ряда.

Рассмотрим сначала поведение многочленов $P_{k2}(x)$ и $P_{k3}(x)$ при $x=t_k,$ $\sigma\in\left[-\frac{1}{2},\frac{1}{2}\right]$. Из (58) следует, что

$$\alpha_{2k} + t_k \geqslant \frac{1}{2} + s_1 + \dots + s_k.$$
 (60)

Аналогично с помощью (4) при r = k, d = 2k - 1 получим

$$\alpha_{2k-1} + t_k \geqslant \frac{1}{2} + s_1 + \dots + s_k.$$
 (61)

В частности, $P_{k2}(t_k) \neq 0$, $P_{k3}(t_k) \neq 0$. Как при доказательстве (55) и (58), с помощью (5) при $k \to k+1$ получим, что для $\bar{\rho}_{k+1}$, таких что $\rho_{k+1}=2$,

$$t_{k+1} \geqslant \frac{1}{2}. (62)$$

Остаётся построить аналогичный (56) мажорирующий ряд для кратного ряда (50) при $k \to k+1$:

$$C\sum_{l=1}^{k+1}\sum_{\bar{\rho}_{k+1}}\sum_{M_1,\dots,M_{k+1}\in\mathbb{Z}^+}\frac{(M_1+1)^{n_1}\dots(M_{k+1}+1)^{n_{k+1}}(1-z_0)^{M_{k+1}}}{(M_1+\frac{1}{2})^{N_1}\dots(M_1+\frac{1}{2})^{N_k}}.$$
 (63)

Мы воспользовались (60), (61). В (63) C > 0,

$$M_j = \begin{cases} s_j, & \text{если } j = 1, \dots, k+1, \ \rho_j = 1, \\ s_r + \dots + s_j, & \text{если } \rho_r = 1, \ \rho_{r+1} = \dots = \rho_j = 2, \\ j = 2, \dots, k+1, \ r \in 1, \dots, j-1, \end{cases}$$

$$N_j = \beta_{2j} + \alpha_{2j+1} + \beta_{2j-1} - \alpha_{2j-1} \quad \text{при } j = 1, \dots, k,$$

$$n_j = \beta_{2j-1} + \beta_{2j+1} - 2 \quad \text{при } j = 1, \dots, k, \quad n_{k+1} = \alpha_{2k+1} + \beta_{2k+1} - 2.$$

Для всех $j = 1, \ldots, k$ имеем

$$N_i - n_i = \beta_{2i} + \alpha_{2i+1} - \alpha_{2i-1} - \beta_{2i-1} + 2 \ge 2$$

ввиду (3) при r=2j-1. Это доказывает сходимость ряда (63). Как при k=2, оператор D_{σ}^* можно заменить на D_{σ} , и (59) полностью совпадает с (50) при $k\to k+1$. Лемма доказана.

Замечание 5. При получении (52) и (57) мы использовали равномерную сходимость рядов (соответственно (39) и (50)) для почленного интегрирования. Однако ряд (39) рассматривался лишь при $z\in(0;1]$. Устраним эту неточность. Ограничимся рассмотрением (52), так как ситуация с (57) полностью аналогична. Ряд (39) при получении (52) рассматривался в точках $z'=1-x_2+x_2x_3z$ (z'=0 при $x_2=1$, $x_3=0$ и z'=1 при $x_2=0$). Проводя по переменным x_2 , x_3 интегрирование по прямоугольнику $\{\varepsilon\leqslant x_2\leqslant 1-\varepsilon,\ 0\leqslant x_3\leqslant 1-\varepsilon\},\ \varepsilon\in (0;\frac12),$ вместо квадрата $[0;1]^2$ получим, что $z'\in [\varepsilon;1-\varepsilon^2]$, т. е. почленное интегрирование в (52) законно. Предельный переход $\varepsilon\to 0+0$ тривиален, поскольку ряд (52) мажорируется рядом (56) (ряд (57) мажорируется рядом (63)).

Замечание 6. Отметим, что при доказательстве леммы 7 условия (3) применялись лишь при нечётных r.

Замечание 7. Если для некоторого $j \in \{1, \dots, k-1\}$ справедливо

$$\alpha_{2i-1} > \alpha_{2i+1} + \beta_{2i+1}$$

то

$$P_{j3}(x) = \frac{\Gamma(x + \alpha_{2j+1} + \beta_{2j+1})}{\Gamma(x + \alpha_{2j-1})} = \frac{1}{(x + \alpha_{2j+1} + \beta_{2j+1}) \dots (x + \alpha_{2j-1} - 1)},$$

в остальном в доказательстве леммы 7 ничего не изменится.

Лемма 8. Пусть для параметров α_j , β_i интеграла (1) выполнены условия (2)—(5), $k \geqslant 2$. Тогда

$$J_{2k-1} = \Lambda_{2k-1}^* D_{\sigma} \sum_{l=1}^{k-1} \sum_{\bar{\rho}_{k-1}} \sum_{s_1, \dots, s_{k-1} \in \mathbb{Z}^+} (-1)^{k-1-l} R_{k-1}^*(t_1, \dots, t_{k-1}), \tag{64}$$

где

$$\Lambda_{2k-1}^* = \frac{(-1)^{\alpha_0+\beta_1+\beta_3+\ldots+\beta_{2k-3}-k+1}\Gamma(\beta_2)\Gamma(\beta_4)\ldots\Gamma(\beta_{2k-2})\Gamma(\alpha_{2k-1})}{\Gamma(\alpha_0)\Gamma(\alpha_1+\beta_1-\alpha_0)},$$

в обозначениях леммы 7

$$R_{k-1}^* = R_1(x_1)R_2(x_1, x_2) \dots R_{k-1}(x_{k-2}, x_{k-1})G_k(x_{k-1}).$$

Доказательство. Применим лемму 7 и равенство (49). Ввиду (62) при z=1 обращаются в нуль все члены ряда (50), кроме тех, в которых $\bar{\rho}_k=(\bar{\rho}_{k-1},1),$ $t_k=s_k=0.$ Заменим в (50) при z=1 $\bar{\rho}_k$ на $\bar{\rho}_{k-1},$

$$l' = l(\bar{\rho}_{k-1}) = l(\bar{\rho}_k) - 1 = l - 1, \quad (-1)^{k-l} = (-1)^{k-1-l'}.$$

Далее,

$$P_{k2}(0) = \Gamma(\alpha_{2k-1}), \quad G_k(-t_{k-1} - \beta_{2k-1}) = (-1)^{\beta_{2n-1}-1}G_k(t_k),$$
$$(-1)^{\beta_{2k-1}-1}\Gamma(\alpha_{2k-1})\Lambda_{2k-1} = \Lambda_{2k-1}^*,$$

и мы получаем (64).

Замечание 8. Отметим равенство (64) при k=2:

$$J_3 = \Lambda_3^* D_\sigma \sum_{s_1 \in \mathbb{Z}^+} \frac{P_{10}(t_1) G_2(t_1)}{P_{12}(t_1) P_{13}(t_1)}.$$
 (65)

Рассматривая, в частности, в (65) случай

$$\alpha_0 = \alpha_1 = \alpha_2 = \alpha_3 = \beta_1 = \beta_2 = \beta_3 = n+1, \quad n \in \mathbb{Z}^+,$$

получим $P_{10}(x)=G_2(x)=(x+1)\dots(x+n),\ \Lambda_3^*=-1,\ P_{12}=P_{13}=(x+n+1)\dots(x+2n+1).$ Условия (2)—(5) выполняются тривиально, т. е. в этом случае

$$J_{3} = J_{3}(n) = -\sum_{s \in \mathbb{Z}^{+}} \frac{d}{ds} \left(\frac{(s+1)\dots(s+n)}{(s+n+1)\dots(s+2n+1)} \right)^{2} =$$

$$= -\sum_{s=1}^{\infty} \frac{d}{ds} \left(\frac{(s-1)\dots(s-n)}{s(s+1)\dots(s+n)} \right)^{2} = r_{1} + r_{2}\zeta(3), \quad r_{1}, r_{2} \in \mathbb{Q},$$

а это знаменитый результат Бейкерса [5].

Выделим ещё один частный случай равенства (64), полезный для доказательства предложения 1.

Лемма 9. Пусть
$$\bar{a}_m^0=\underbrace{\left(\underline{1,\dots,1}\right)}_m$$
, $\bar{\lambda}_{m-1}^0=\underbrace{\left(\underline{1,\dots,1}\right)}_{m-1}$. Тогда $S_m(\bar{a}_m^0,\bar{\lambda}_{m-1}^0)=-2\zeta(2m+1).$

Доказательство. Рассмотрим интеграл (1) $J_{2m+1}=J_{2m+1}(1)$, где все $\alpha_j,\,\beta_i$ равны 1. Тогда для всех j $P_{j1}(x)=G_j(x)=1,\,P_{j2}(x)=P_{j3}(x)=x+1,\,\Lambda_{2m+1}^*=-1,\,$ в (51) $\mu_0=0,\,\lambda_j=\beta_{2j-1}=1$ при $j=2,\ldots,m$. Из (61) при k=m+1 получим $J_{2m+1}(1)=-S_m(\bar{a}_m^0,\bar{\lambda}_{m-1}^0)$. В [2] показано, что $J_{2m+1}(1)==2\zeta(2m+1)$, и лемма доказана.

3. Доказательство предложения 1

Пользуясь обозначениями леммы 9 и (8), запишем

$$S_m(\bar{a}_m^0, \bar{\lambda}_{m-1}^0) = \Sigma_m(R_m^0, \bar{\lambda}_{m-1}^0),$$

где

$$R_m^0 = \frac{1}{(x_1+1)^2 \dots (x_m+1)^2}.$$

Применим к $\Sigma_m(R_m^0, \bar{\lambda}_{m-1}^0)$ оператор

$$T = T_{1,\alpha_1} T_{2,\alpha_2,\beta_2} \dots T_{m,\alpha_m,\beta_m},$$

где $\alpha_{\nu}=a_{\nu}-1\in\mathbb{Z}^+$ при $\nu=1,\ldots,m,\ \beta_{\nu}=\lambda_{\nu}+a_{\nu}-a_{\nu-1}-1$ при $\nu=2,\ldots,m.$ Ввиду (14) все β_{ν} принадлежат \mathbb{Z}^+ , поэтому применимы леммы 3 и 4. Применяя m раз последовательно лемму 4, получим

$$T(\Sigma_m(R_m^0, \bar{\lambda}_{m-1}^0)) = \Sigma_m(R'_m, \bar{\lambda}'_{m-1}),$$

где из (36)

$$R'_m = \frac{1}{(x_1 + a_1)^2 \dots (x_m + a_m)^2},$$

при $\nu = 2, \dots, m$ из (37) получаем

$$\lambda_{\nu}' = \lambda_{\nu}^{0} + \beta_{\nu} - \alpha_{\nu} + \alpha_{\nu-1} = 1 + (\lambda_{\nu} + \alpha_{\nu} - \alpha_{\nu-1} - 1) - \alpha_{\nu} + \alpha_{\nu-1} = \lambda_{\nu},$$

т. е

$$T(\Sigma_m(R_m^0, \bar{\lambda}_{m-1}^0)) = S_m(\bar{a}_m, \bar{\lambda}_{m-1}).$$

Применяя m раз последовательно лемму 3 в сочетании с (35), получим из леммы 9

$$T_{m,\alpha_m,\beta_m} \big(\Sigma_m(R_m^0, \bar{\lambda}_{m-1}^0) \big) = \Sigma_m \big(R_m^{(m)}, \bar{\lambda}_{m-1}^{(m)} \big) = -2 \zeta(2m+1) + w_m,$$

где $w_m\in\Omega_{m-1}$ по лемме 3, $(R_m^m,\bar{\lambda}_{m-1}^m)$ определены в лемме 4 (их явный вид далее не используется). Аналогично,

$$\begin{split} T_{m-1,\alpha_{m-1},\beta_{m-1}} \left(\Sigma_m \left(R_m^{(m)}, \bar{\lambda}_{m-1}^{(m)} \right) \right) &= \\ &= \Sigma_m \left(R_m^{(m-1)}, \bar{\lambda}_{m-1}^{(m-1)} \right) = -2\zeta(2m+1) + w_m + w_{m-1}, \end{split}$$

где $w_{m-1} \in \Omega_{m-1}$ по лемме 3. Наконец,

$$T(\Sigma_m(R_m^0, \bar{\lambda}_{m-1}^0)) = S_m(\bar{a}_m, \bar{\lambda}_m) = -2\zeta(2m+1) + w_m + w_{m-1} + \dots + w_1,$$

где $w_i \in \Omega_{m-1}$ для всех i, и оба утверждения предложения 1 доказаны.

4. Завершение доказательства теоремы 2

Введём отношение эквивалентности на $\mathbb R$ следующим образом: $a\sim b$, если $(a-b)\in\Omega_{m-1}.$

Напомним, что мы доказываем теорему индукцией по m и необходимо провести шаг индукции $\{(\mathrm{U}_1),\dots,(\mathrm{U}_{m-1})\}\to (\mathrm{U}_m).$

Покажем, что (см. (8))

$$\Sigma_m \sim \sum_{\bar{a}} r(\bar{a}_m) S_m(\bar{a}_m, \bar{\lambda}_{m-1}), \tag{66}$$

где $r(\bar{a}_m)\in\mathbb{Q}$ для всех $m,\ \bar{a}_m=(a_1,\ldots,a_m),\ a_j\in A_{j2}$ при $j=1,\ldots,m$. Условия (14) проверяются тривиально.

Тогда справедливость условия (U_m) следует из предложения 1, и утверждение теоремы 2 будет выполнено по индукции.

Доказательство формулы (66) проведём в три этапа.

1. Имеем следующее разложение в сумму простейших дробей по переменной x_m при фиксированных x_1,\dots,x_{m-1} :

$$\frac{P(x_1, \dots, x_m)}{Q_m(x_m)} = \sum_{i=E_m}^{F_m} \frac{B_i}{(x_m + i)^2} + \sum_{i=e_m}^{f_m} \frac{C_i}{x_m + i},$$
(67)

где $B_i,C_i\in\mathbb{Q}[x_1,\dots,x_{m-1}]$ для всех $i,\,B_i=0$ при $i\notin A_{m,2},\,C_i=0$ при $i\notin A_m.$ Ввиду $\mathrm{I}_m(P,\bar{Q}_m)$

$$\sum_{i=e_m}^{f_m} C_i = 0, (68)$$

кроме того, для всех B_i , C_i имеем

$$\deg_{x_i} B_i \leqslant p_j$$
, $\deg_{x_i} C_i \leqslant p_j$ при $j = 1, \dots, m - 1$, (69)

так как

$$B_i = \left. rac{P(x_1,\dots,x_m)(x_m+i)^2}{Q_m(x_m)}
ight|_{x_m=-i},$$
 где $i \in A_{m,2},$ $C_i = \left. rac{P(x_1,\dots,x_m)(x_m+i)^2}{Q_m(x_m)}
ight|_{x_m=-i},$ где $i \in A_{m,1},$

Кратные интегралы, представимые в виде линейной формы от $1, \zeta(3), \zeta(5), \ldots, \zeta(2k-1)$ 169

$$C_i = rac{\partial}{\partial x_m} \left. \left(rac{P(x_1,\dots,x_m)(x_m+i)^2}{Q_m(x_m)}
ight)
ight|_{x_m=-i},$$
 где $i \in A_{m,2}.$

Нам в дальнейшем будет полезно утверждение, аналогичное [3, лемма 7].

Лемма 10. Пусть $e,f\in\mathbb{N},\ e\leqslant f,\ C_e,\dots,C_f\in\mathbb{R},\ \sum\limits_{i=e}^fC_i=0,\ \Delta\in\mathbb{R},$ $\Delta+e\neq 0,-1,-2,\dots$ Тогда

1)
$$\sum_{s=0}^{M} \sum_{i=e}^{f} \frac{C_{i}}{s + \Delta + i} = \sum_{i=e}^{f-1} \left(\sum_{\nu=e}^{i} C_{\nu} \right) \frac{1}{\Delta + i} - \sum_{i=e+1}^{f} \left(\sum_{r=e}^{f-1} C_{\nu} \right) \frac{1}{M + \Delta + i}, \quad M \in \mathbb{Z}^{+},$$
2)
$$\sum_{s=0}^{\infty} \sum_{i=e}^{f} \frac{C_{i}}{s + \Delta + i} = \sum_{i=e}^{f-1} \left(\sum_{\nu=e}^{i} C_{\nu} \right) \frac{1}{\Delta + i}.$$

Доказательство. Докажем 1), тогда 2) следует из 1) при $M \to \infty$. Имеем

$$\begin{split} &\sum_{s=0}^{M} \sum_{i=e}^{f} \frac{C_{i}}{s + \Delta + i} = \sum_{i=e}^{f} C_{i} \left(\sum_{\nu=e}^{M+f} \frac{1}{\nu + \Delta} - \sum_{\nu=e}^{i-1} \frac{1}{\nu + \Delta} - \sum_{\nu=i+1}^{f} \frac{1}{M + \nu + \Delta} \right) = \\ &= -\sum_{i=e+1}^{f} C_{i} \sum_{\nu=e}^{i-1} \frac{1}{\nu + \Delta} - \sum_{i=e}^{f-1} C_{i} \sum_{\nu=i+1}^{f} \frac{1}{M + \nu + \Delta} = \\ &= -\sum_{j=e}^{f-1} \left(\sum_{i=j+1}^{f} C_{i} \right) \frac{1}{\Delta + j} - \sum_{j=e+1}^{f} \left(\sum_{i=e}^{j-1} C_{i} \right) \frac{1}{M + \Delta + j} = \\ &= -\sum_{j=e}^{f-1} \left(\sum_{i=e}^{j} C_{i} \right) \frac{1}{\Delta + j} - \sum_{j=e+1}^{f} \left(\sum_{i=e}^{j-1} C_{i} \right) \frac{1}{M + \Delta + j}, \end{split}$$

и 1), а вместе с ним и лемма доказаны.

Подставляя (67) в (8), получим, что

$$\Sigma_m(P_m, \bar{Q}_m, \bar{\lambda}_{m-1}) = \Sigma_m^{(1)} + \Sigma_m^{(2)}, \tag{70}$$

$$\Sigma_m^{(1)} = \sum_{\substack{i=E_m \ i \in A}}^{F_m} D_{\sigma} \sum_{l=1}^m \sum_{\bar{\rho}_m} \sum_{s_1, \dots, s_m \in \mathbb{Z}^+} \frac{(-1)^{m-l} B_i(t_1, \dots, t_{m-1})}{Q_1(t_1) \dots Q_{m-1}(t_{m-1})(t_m+i)^2}, \tag{71}$$

$$\Sigma_m^{(2)} = D_{\sigma} \sum_{l=1}^m \sum_{\bar{\rho}_m} \sum_{s_1, \dots, s_m \in \mathbb{Z}^+} \frac{(-1)^{m-l}}{Q_1(t_1) \dots Q_{m-1}(t_{m-1})} \sum_{i=e_m}^{f_m} \frac{C_i(t_1, t_{m-1})}{s_m + \Delta + i}, \quad (72)$$

где

$$\Delta = egin{cases} 0, & ext{если }
ho_m = 1, \ t_{m-1} + \lambda_m, & ext{если }
ho_m = 2, \end{cases}$$

в ряде (72), который сходится абсолютно (см. утверждение 1) леммы 10), по-прежнему можно переставлять члены ряда.

Проведём в (72) суммирование по $s_m \in \mathbb{Z}^+$ с помощью леммы 10 (см. (68)). Пусть $\bar{\rho}_m=(\bar{\rho}_{m-1},\rho_m)$. Тогда $l(\bar{\rho}_{m-1})=l$ при $\rho_m=2,\ l\leqslant m-1;\ l(\bar{\rho}_{m-1})=l-1$ при $ho_m=1,\ l\geqslant 2.$ Во втором случае сделаем стандартную замену $l-1\to l.$ Имеем

> $\Sigma_m^{(2)} = D_\sigma \sum_{l=1}^{m-1} \sum_{\bar{\rho}_{m-1}} \sum_{s} \sum_{s \in \mathcal{I}^{\#}} \frac{(-1)^{m-1-l}}{Q_1(t_1) \dots Q_{m-1}(t_{m-1})} \times$ $\times \sum_{i=1}^{f_m-1} \frac{1}{i} \sum_{i=1}^{i} C_{\nu}(t_1, \dots, t_{m-1}) -\sum_{i=e_m}^{f_m-1} D_{\sigma} \sum_{l=1}^{m-1} \sum_{\bar{\varrho}_{m-1}} \sum_{s_{m-1} \in \mathbb{Z}^+} \frac{(-1)^{m-1-l}}{Q_1(t_1) \dots Q_{m-1}(t_{m-1})} \times$ $\times \sum_{\nu=s}^{i} C_{\nu}(t_1,\ldots,t_{m-1}) \frac{1}{t_{m-1}+\lambda_m+i}.$ (73)

Для $i \in \{e_m, \dots, f_{m-1}\}$ обозначим $Q'_{m-1}(x) = Q_{m-1}(x)(x + \lambda_m + i).$

Мы находимся в ситуации 3) леммы 1 при $\nu = m$, поэтому выполнены условия (7), (II) и (III), это же верно и для первой суммы в (73). Условия (I) выполнены ввиду (69). По утверждению (U_{m-1}) получим, что

$$\Sigma_m \sim \Sigma_m^{(1)}. (74)$$

2. Шаг индукции. Пусть для некоторого $d \in \{2, \dots, m-1\}$ уже доказано,

$$\Sigma_m \sim \sum_{\bar{a}_{m-d}^*} D_{\sigma} \sum_{l=1}^m \sum_{\bar{\rho}_m} \sum_{s_1, \dots, s_m \in \mathbb{Z}^+} \frac{(-1)^{m-l} B_{\bar{a}_{m-d}^*}(t_1, \dots, t_d)}{Q_1(t_1) \dots Q_d(t_d) \prod_{j=d+1}^m (t_j + a_j)^2}, \quad (V_d)$$

где $\bar{a}_{m-d}^*=(a_{d+1},\ldots,a_m),\,a_j\in A_{j2}$ при $j=d+1,\ldots,m,$ все $B_{\bar{a}_{m-d}^*}$ принадлежат $\mathbb{Q}[x_1,\ldots,x_d],\ \deg_{x_j}B_{\bar{a}_{m-d}^*}\leqslant p_j$ при $j=1,\ldots,d$.

В частности, (74) ввиду (71) представляет собой соотношение вида (V_{m-1}) (база индукции). Покажем, что можно перейти от (V_d) к (V_{d-1}) .

При фиксированных $\bar{a}_{m-d}^*, x_1, \dots, x_{d-1}$ имеем разложение на сумму простейших дробей

$$\frac{B(x_1, \dots, x_d)}{Q_d(x_d)} = \sum_{\substack{i=E_d\\i \in A_{d^2}}}^{F_d} \frac{B_i}{(x_d+i)^2} + \sum_{\substack{i=e_d\\i \in A_d}}^{f_d} \frac{C_i}{x_d+i},\tag{75}$$

где для краткости опущен индекс \bar{a}_{m-d}^* и аналогично (67)—(69) $B_i, C_i \in \mathbb{Q}[x_1,\ldots,x_{d-1}],$

$$\sum_{i=e_d}^{f_d} C_i = 0, (76)$$

$$\deg_{x_j} B_i \leqslant p_j$$
, $\deg_{x_j} C_i \leqslant p_j$ при $j = 1, \dots, d - 1$. (77)

Подставляя (75) в (V_d) , получим, что

$$\Sigma_m \sim \left(\Sigma_m^{(1)} + \Sigma_m^{(2)}\right),\tag{78}$$

$$\Sigma_{m}^{(1)} = \sum_{\substack{i=E_d \\ i \in A_{d2}}}^{F_d} \sum_{\bar{a}_{m-d}^*} D_{\sigma} \sum_{l=1}^{m} \sum_{\bar{\rho}_m} \sum_{s_1, \dots, s_m \in \mathbb{Z}^+} \frac{(-1)^{m-l} B_{i, \bar{a}_{m-d}^*}(t_1, \dots, t_{d-1})}{\prod_{j=1}^{d-1} Q_j(t_j) \prod_{j=d}^{m} (t_j + a_j)^2},$$
(79)

$$\Sigma_{m}^{(2)} = \sum_{\bar{a}_{m-d}^{*}} D_{\sigma} \sum_{l=1}^{m} \sum_{\bar{\rho}_{m}} \sum_{s_{1}, \dots, s_{m} \in \mathbb{Z}^{+}} \frac{(-1)^{m-l}}{\prod_{j=1}^{d-1} Q_{j}(t_{j})} \sum_{\substack{i=e_{d} \\ i \in A_{d}}}^{f_{d}} \frac{C_{i, \bar{a}_{m-d}^{*}}(t_{1}, \dots, t_{d-1})}{(\Delta + s_{d} + i) \prod_{j=d+1}^{m} (t_{j} + a_{j})^{2}},$$
(80)

где

$$\Delta = egin{cases} 0, & ext{если }
ho_d = 1, \ t_{d-1} + \lambda_d, & ext{если }
ho_d = 2, \end{cases}$$

как выше, ряд (80) сходится абсолютно.

Покажем, что

$$\Sigma_m^{(2)} \in \Omega_{m-1}. \tag{81}$$

Тогда из (78) и (79) следует искомый переход от (V_d) к (V_{d-1}) .

Рассмотрим при фиксированном \bar{a}_{m-d}^* четыре группы рядов в (80), имеющие фиксированные координаты ρ_d и ρ_{d+1} (далее $\bar{\rho}_m^{(1)},\dots,\bar{\rho}_m^{(4)}$). Снова опустим для краткости индекс \bar{a}_{m-d}^* . Проведём в каждой группе рядов суммирование по переменной s_d . Для краткости выделим лишь множители, зависящие от переменной s_d . Обозначим

$$C^{(1)} = \sum_{i=e_d}^{f_{d-1}} \frac{1}{i} \left(\sum_{\nu=e_d}^{i} C_{\nu} \right), \quad C_i^{(2)} = \sum_{\nu=e_d}^{i-1} C_{\nu}, \quad C_i^{(3)} = \sum_{\nu=e_d}^{i} C_{\nu}.$$
 (82)

I. $\rho_d=\rho_{d+1}=1$ $(\bar{\rho}_m^{(1)})$. Имеем $t_d=s_d,\ t_{d+1}=s_{d+1},\ \Delta=0.$ По лемме 10 и (76)

$$\sum_{s_d=0}^{\infty} \sum_{i=e_d}^{f_d} \frac{C_i}{s_d+i} = C^{(1)}.$$
 (83)

II. $\rho_d=1,\; \rho_{d+1}=2$ $(\bar{\rho}_m^{(2)}).$ Пусть $\rho_{d+1}=\ldots=\rho_{d+r}=2,\; \rho_{d+r+1}=1,$ где $r\in\{1,\ldots,m-d\}.$ Обозначим $M=s_d+s_{d+1},\; M\in\mathbb{Z}^+,\; s_d\in\{0,\ldots,M\}.$ Имеем

$$t_d = s_d, \quad t_{d+1} = M + \lambda_{d+1},$$

$$t_j = t_{j-1} + s_j + \lambda_j$$
 при $j = d+2, \dots, d+r$, $t_{d+r+1} = s_{d+r+1}$.

По лемме 10, где $\Delta=0$, учитывая (82), (83) и (76), имеем

$$\sum_{s_d=0}^{M} \sum_{i=e_d}^{f_d} \frac{C_i}{s_d+i} = C^{(1)} - \sum_{i=e_d+1}^{f_d} C_i^{(2)} \frac{1}{M+i}.$$
 (84)

III. $\rho_d=2,~\rho_{d+1}=1$ $(\bar{\rho}_m^{(3)}).$ Тогда $t_d=t_{d-1}+s_d+\lambda_d,~t_{d+1}=s_{d+1},~\Delta=t_{d-1}+\lambda_d.$ Имеем

$$\sum_{s_d=0}^{\infty} \sum_{i=e_d}^{f_d} \frac{C_i}{s_d + \Delta + i} = \sum_{i=e_d}^{f_d-1} \frac{C_i^{(3)}}{t_{d-1} + \lambda_d + i}.$$
 (85)

IV. $\rho_d = \rho_{d+1} = 2$ $(\bar{\rho}_m^{(4)})$. Имеем для некоторого $r \in \{1, \ldots, m-d\}$ $\rho_d = \ldots = \rho_{d+r} = 2$, $\rho_{d+r+1} = 1$. Как при рассмотрении случая II, положим $M = s_d + s_{d+1}$, $M \in \mathbb{Z}^+$, $s_d \in \{0, \ldots, M\}$,

$$t_d = s_d + \Delta,$$
 где $\Delta = t_{d-1} + \lambda_d,$

$$t_{d+1} = s_{d+1} + t_d + \lambda_{d+1} = M + t_{d-1} + \lambda_d + \lambda_{d+1}$$

 $t_{d+j} = t_{d+j-1} + s_{d+j} + \lambda_{d+j}$ при $j = 2, \dots, r$, $t_{d+r+1} = s_{d+r+1}$,

$$\sum_{s_d=0}^{M} \sum_{i=e_d}^{f_d} \frac{C_i}{s_d + \Delta + i} = \sum_{i=e_d}^{f_d-1} \frac{C_i^{(3)}}{t_{d-1} + \lambda_d + i} - \sum_{i=e_d+1}^{f_d} \frac{C_i^{(2)}}{M + t_{d-1} + \lambda_d + i}$$
(86)

(см. лемму 10, (82), (76)).

Выделим после суммирования по s_d в (80) три слагаемых по наличию в них соответственно $C^{(1)},\,C_i^{(2)},\,C_i^{(3)}$:

$$\Sigma_m^{(2)} = \sigma_1 + \sigma_2 + \sigma_3, \tag{87}$$

где в σ_1 входит (83) и первое слагаемое из (84), в σ_2 — вторые слагаемые из (84) и (86), в σ_3 — (85) и первое слагаемое из (86).

Вычислим σ_1 . Положим $Q_j(x) = (x + a_j)^2$ при $j = d + 1, \dots, m$;

$$(\rho'_j, \lambda'_j, Q'_j, s'_j, t'_j) = \begin{cases} (\rho_j, \lambda_j, Q_j, s_j, t_j), & \text{если } j = 1, \dots, d-1, \\ (\rho_{j+1}, \lambda_{j+1}, Q_{j+1}, s_{j+1}, t_{j+1}), & \text{если } j = d, \dots, m-1, \end{cases}$$

кроме j=1 и j=d при определении λ_j' (λ_1' отсутствует, $\lambda_d'=\lambda_d+\lambda_{d+1}$),

$$\bar{\rho}'_{m-1} = (\rho'_1, \dots, \rho'_{m-1}), \quad \bar{Q}'_{m-1} = (Q'_1, \dots, Q'_{m-1}),$$

$$\bar{\lambda}'_{m-2} = (\lambda'_2, \dots, \lambda'_{m-1}), \quad P'_{m-1} = C^{(1)}(x_1, \dots, x_{d-1}),$$

Кратные интегралы, представимые в виде линейной формы от $1, \zeta(3), \zeta(5), \ldots, \zeta(2k-1)$ 173

$$R'_{m-1} = \frac{P'_{m-1}}{Q'_1(x_1)\dots Q'_{m-1}(x_{m-1})}, \quad \Sigma'_{m-1} = \Sigma_{m-1}(R'_{m-1}, \bar{\lambda}'_{m-2}).$$

Имеем $l' = l(\bar{\rho}'_{m-1}) = l(\bar{\rho}^{(1)}_m) - 1$, $l(\bar{\rho}^{(2)}_m) = l' + 1$,

$$\sigma_{1} = D_{\sigma} \sum_{l'=1}^{m-1} \sum_{\substack{\vec{p}'_{m-1} \\ \vec{p}'_{d}=1}} \left\{ \sum_{s'_{1}, \dots, s'_{m-1} \in \mathbb{Z}^{+}} (-1)^{m-1-l'} R'_{m-1}(t'_{1}, \dots, t'_{m-1}) - \sum_{\substack{s'_{1}, \dots, s'_{m-1} \in \mathbb{Z}^{+} \\ s'_{d} \geqslant \lambda_{d+1}}} (-1)^{m-1-l'} R'_{m-1}(t'_{1}, \dots, t'_{m-1}) \right\},$$

где во второй сумме в обозначения (88) внесены два изменения: $s_d' = M + \lambda_{d+1} \geqslant$

За из въвром сумме в обозначения (об) внесены два изменения. $s_d=M+\lambda_{d+1}\geqslant \lambda_{d+1},\ \rho'_d=1$ (вместо $\rho_{d+1}=2$, тогда из (88) получаем $\rho'_d=2$). Из (20) получим, что $\sigma_1=\Sigma'_{m-1}-T_{d,\lambda_{d+1},0}(\Sigma'_{m-1})$. Для $\alpha=\lambda_{d+1}$ выполнено условие леммы 3 при $\nu=d$: $\alpha+e'_d\geqslant 1$, так как $e'_d=a_{d+1}\geqslant E_{d+1}$ ввиду $a_{d+1}\in A_{d+1,2},\ \alpha+e'_d=\lambda_{d+1}+a_{d+1}\geqslant \lambda_{d+1}+E_{d+1}>f_d\geqslant 1$. Поэтому по лемме 3 $\sigma_1\in\Omega_{m-2}$ (условия (7), (I), (III) проверяются тривиально).

Вычислим $\sigma_2 = -\sum\limits_{i=e_j+1}^{Jd} \sigma_{2,i}.$ Сохраним обозначения (88) со следующими изменениями при j=d: $s_d'=M+\lambda_{d+1}\geqslant \lambda_{d+1},\ Q_d'=(x+i-\lambda_{d+1})(x+a_{d+1})^2,$ $ho_d'=
ho_d,\; \lambda_d'=\lambda_d,\; t_d'=t_d,\;$ где произведена замена $s_d o s_d',\; l'=lig(ar
ho_m'^{(2)}ig)=t_d'$ $=lig(ar{
ho}_m^{(4)}ig)=l(ar{
ho}_{m-1}')$, так как из $ar{
ho}_m$ изъята координата $ho_{d+1}=2$. Поэтому $(-1)^{m-l} = -(-1)^{m-1-l'},$

$$\sigma_{2,i} = -D_{\sigma} \sum_{l'=1}^{m-1} \sum_{\substack{\bar{\rho}'_{m-1} \\ s'_{d} \geqslant \lambda_{d+1}}} \sum_{\substack{s'_{1}, \dots, s'_{m-1} \in \mathbb{Z}^{+} \\ s'_{d} \geqslant \lambda_{d+1}}} \frac{(-1)^{m-1-l'} C_{i}^{(3)}(t'_{1}, \dots, t'_{d-1})}{Q'_{1}(t'_{1}) \dots Q'_{m-1}(t'_{m-1})} =$$

$$= -T_{d, \lambda_{d+1}, \lambda_{d+1}} \left(\sum_{m-1} \left(C_{i}^{(3)}, \bar{Q}'_{m-1}, \bar{\lambda}'_{m-2} \right) \right)$$

(см. (8) и (20)).

Проверим выполнение условий леммы 4 при $\nu=d, \; \alpha=\beta=\lambda_{d+1}.$ Так как $a_{d+1}+\lambda_{d+1}\geqslant E_{d+1}+\lambda_{d+1}>f_d\geqslant i$, то параметры многочлена Q_d' имеют следующие значения: $e'_d=i-\lambda_{d+1},\ E'_d=F'_d=f'_d=a_{d+1}.$ Имеем $\alpha+e'_d=\lambda_{d+1}+i-\lambda_{d+1}\geqslant e_d+1>1,$ далее, $\beta>f_{d-1}-E'_d-\lambda'_d$ тогда и только тогда, когда $\lambda_{d+1}+a_{d+1}+\lambda_d>f_{d-1},$ что очевидно; $\beta>F_{d-1}-e'_d-\lambda'_d$ тогда и только тогда, когда $\lambda_{d+1}+F_{d-1}-(i-\lambda_{d+1})-\lambda_d,$ что равносильно $i+\lambda_d>F_{d-1}.$ Ho $i + \lambda_d > e_d + \lambda_d > F_{d-1}$.

По лемме 4

$$\sigma_{2,i} = -\Sigma_{m-1}(\tilde{C}_i^{(3)}, \bar{Q}_{m-1}'', \bar{\lambda}_{m-2}''), \tag{89}$$

где согласно (35)—(37) $\tilde{C}_i^{(3)}=C_i^{(3)}$, поскольку $C_i^{(3)}\in\mathbb{Q}\{x_1,\ldots,x_{d-1}\},\ Q_d''(x)==Q_d'(x+\lambda_{d+1})=(x+i)(x+a_{d+1}+\lambda_{d+1})^2,\ Q_j''(x)=Q_j'(x)$ при $j\neq d$,

$$\bar{\lambda}_{m-2}'' = (\lambda_2', \dots, \lambda_d', \lambda_{d+1}' + \lambda_{d+1}, \lambda_{d+2}', \dots, \lambda_{m-1}') =$$

$$= (\lambda_2, \dots, \lambda_d, \lambda_{d+1} + \lambda_{d+2}, \lambda_{d+2}', \dots, \lambda_{m-1}').$$

Мы находимся в условиях случая 4) леммы 1, где $\nu=d+1$. Поэтому для $\sigma_{2,i}$ (см. (89)) выполнены условия (7), $\Pi(\bar{Q}''_{m-1})$, $\Pi(\bar{Q}''_{m-1})$. Выполнение условий $\Pi(C_i^{(3)},\bar{Q}''_{m-1})$ следует из (77) и (82). По утверждению (U_{m-1}) $\sigma_{2,i}\in\Omega_{m-1}$ для всех i, а тогда $\sigma_2\in\Omega_{m-1}$.

Вычислим $\sigma_3=\sum\limits_{i=e_d}^{f_d-1}\sigma_{2,i}$. Внесём в обозначения (88) небольшие изменения: $Q'_{d-1}(x)=Q_{d-1}(x)(x+\lambda_d+i),~\lambda'_d=\lambda_d+\lambda_{d+1},$ для первого слагаемого из (86) $M=s'_d\in\mathbb{Z}^+$. Имеем $l'=l(\bar{\rho}'_{m-1})=l(\bar{\rho}^{(3)}_m)=l(\bar{\rho}^{(4)}_m),$ так как $\bar{\rho}'_{m-1}$ получен из $\bar{\rho}_m$ удалением $\rho_d=2,~(-1)^{m-l}=-(-1)^{m-1-l'},$

$$\sigma_{3,i} = -D_{\sigma} \sum_{l'=1}^{m-1} \sum_{\bar{\rho}'_{m-1}} \sum_{s'_1, \dots, s'_{m-1} \in \mathbb{Z}^+} \frac{(-1)^{m-1-l'} C_i^{(3)}(t'_1, \dots, t'_{d-1})}{Q'_1(t'_1) \dots Q'_{m-1}(t'_{m-1})}.$$

Мы находимся в условиях случая 3) леммы 1, поэтому (7), $\Pi(\bar{Q}'_{m-1})$, $\Pi(\bar{Q}'_{m-1})$ выполнены. Условия $\Pi(C_i^{(3)},\bar{Q}'_{m-1})$ выполнены ввиду (77) и (82). По утверждению (U_{m-1}) $\sigma_{3,i}\in\Omega_{m-1}$ для всех i, т. е. $\sigma_3\in\Omega_{m-1}$.

Из (87) и рассмотрений σ_1 , σ_2 , σ_3 следует (81), и проверка индуктивного перехода от (V_d) к (V_{d-1}) завершена.

Тем самым по индукции доказано (V_1) , и нам осталось сделать последний шаг от (V_1) к (66).

3. Докажем (66).

Имеем при фиксированном \bar{a}_{m-1}^*

$$\frac{B(x_1)}{Q_1(x_1)} = \sum_{\substack{i=E_1\\i\in A_{12}}}^{F_1} \frac{B_i}{(x_1+i)^2} + \sum_{\substack{i=e_1\\i\in A_1}}^{f_1} \frac{C_i}{x_1+i},\tag{90}$$

 $B_i, C_i \in \mathbb{Q}$,

$$\sum_{i=e_1}^{f_1} C_i = 0, \tag{91}$$

везде, как обычно, опущен индекс \bar{a}_{m-1}^* . Подставляя (90) в (V₁), получим

$$\Sigma_m \sim \sum_{\bar{a}_m} B_{\bar{a}_m} S_m(\bar{a}_m, \bar{\lambda}_{m-1}) + \Sigma_m^{(3)},$$
 (92)

где \bar{a}_m определён как в (66),

$$\Sigma_m^{(3)} = \sum_{\bar{a}_{m-1}^*} \sigma_{\bar{a}_{m-1}^*},$$

Кратные интегралы, представимые в виде линейной формы от $1, \zeta(3), \zeta(5), \dots, \zeta(2k-1)$ 175

$$\sigma_{a_{m-1}^*} = D_{\sigma} \sum_{l=1}^m \sum_{\bar{\rho}_m} \sum_{s_1, \dots, s_m \in \mathbb{Z}^+} \frac{(-1)^{m-l}}{\prod\limits_{j=2}^m (t_j + a_j)^2} \sum_{i=e_1}^{f_1} \frac{C_{i, a_{m-1}^*}}{t_1 + i}.$$
 (93)

Далее рассмотрим $\sigma_{\bar{a}_{m-1}^*}$ при фиксированном \bar{a}_{m-1}^* , опустим индекс \bar{a}_{m-1}^* и докажем, что

$$\sigma \in \Omega_{m-1}. \tag{94}$$

Тогда из (92) и (93) будет следовать (66), что завершит доказательство теоремы 2.

Рассмотрим, как в пункте 2, два типа $\bar{\rho}_m$.

I. $ho_2=1$ $(ar
ho_m^{(1)})$. Тогда $t_1=s_1+\sigma,\ t_2=s_2$. Обозначим

$$\gamma(\sigma) = \sum_{i=e_1}^{f_1 - 1} \left(\sum_{\nu=e_1}^{i} C_{\nu} \right) \frac{1}{i + \sigma}.$$
 (95)

По лемме 10 с учётом (91) имеем

$$\sum_{s_1=0}^{\infty} \sum_{i=e_1}^{f_1} \frac{C_i}{s_1 + \sigma + i} = \gamma(\sigma).$$
 (96)

II. $\rho_2=2$ $(\bar{\rho}_m^{(2)})$. Для некоторого $r\in\{2,\ldots,m\}$ имеем $\rho_2=\ldots=\rho_r=2$, $\rho_{r+1}=1,\ t_1=s_1+\sigma,\ t_2=s_1+s_2+\lambda_2+\sigma=M+\lambda_2+\sigma,$ где $M=s_1+s_2\in\mathbb{Z}^+,\ s_1\in\{0,\ldots,M\},\ t_j=M+\lambda_2+\sigma+s_3+\ldots+s_j+\lambda_3+\ldots+\lambda_j$ при $j=3,\ldots,r,\ t_{r+1}=s_{r+1}$ в случае r< m. Опять по лемме 10 с учётом (91), (82) и (95)

$$\sum_{s_1=0}^{M} \sum_{i=e_1}^{f_1} \frac{C_i}{s_1 + \sigma + i} = \gamma(\sigma) - \sum_{i=e_1+1}^{f_1} \frac{C_i^{(2)}}{M + i + \sigma}.$$
 (97)

Пусть аналогично пункту 2

$$\sigma = \sigma_1 + \sigma_2, \tag{98}$$

где в σ_1 входит (96) и первое слагаемое из (97), а в σ_2 — второе слагаемое из (97).

Вычислим σ_1 . Опять применим (88) при d=1 со следующими изменениями: $\rho_1'=\rho_1=1$, для $\bar{\rho}_m^{(2)}$ (см. первое слагаемое в (97)) $s_1'=M+\lambda_2\geqslant \lambda_2$, для $\bar{\rho}_m^{(1)}$ (см. (96)) $t_1'=s_1'$. Тогда $l'=l(\bar{\rho}_{m-1}')=l(\bar{\rho}_m^{(2)})=l(\bar{\rho}_m^{(1)})-1$. Итак,

$$\sigma_1 = D_{\sigma} \left(\gamma_1(\sigma) \sum_{l'=1}^{m-1} \sum_{\bar{\rho}'_{m-1}} \left\{ \sum_{\substack{s'_1, \dots, s'_{m-1} \in \mathbb{Z}^+ \\ t'_1 = s'_1}} \frac{(-1)^{m-1-l'}}{(t'_1 + a'_1)^2 \dots (t'_{m-1} + a'_{m-1})^2} \right. - \right.$$

$$-\sum_{\substack{s_1',\ldots,s_{m-1}'\in\mathbb{Z}^+\\t_1'=s_1'\geqslant\lambda_2}}\frac{(-1)^{m-1-l'}}{(t_1'+a_1')^2\ldots(t_{m-1}'+a_{m-1}')^2}\Bigg\}\Bigg)=$$

$$= \gamma'(0)\operatorname{sign}(\lambda_{2}) \sum_{n=i_{0}(\lambda_{2})}^{i_{1}(\lambda_{2})} \sum_{l'=1}^{m-1} \sum_{\bar{\rho}'_{m-1}} \sum_{s'_{1}, \dots, s'_{m-1} \in \mathbb{Z}^{+}} \frac{(-1)^{m-1-l'}}{(t'_{1}+a'_{1})^{2} \dots (t'_{m-1}+a'_{m-1})^{2}} -$$

$$- \gamma(0)D_{\sigma} \sum_{l'=1}^{m-1} \sum_{\bar{\rho}'_{m-1}} \sum_{\substack{s'_{1}, \dots, s'_{m-1} \in \mathbb{Z}^{+} \\ s'_{1} \geq \lambda_{2} \\ t'_{1} = s'_{1} + \sigma}} \frac{(-1)^{m-1-l'}}{(t'_{1}+a'_{1})^{2} \dots (t'_{m-1}+a'_{m-1})^{2}}. \tag{99}$$

Из (95) имеем $\gamma(0), \gamma'(0) \in \mathbb{Q}$. Первый ряд в (99) по лемме 2 есть рациональное число. Второй ряд по лемме 4 имеет вид

$$T_{1,\lambda_2}(\Sigma_{m-1}(\bar{a}'_{m-1},\bar{\lambda}'_{m-2})) = \Sigma_{m-1}(\bar{a}''_{m-1},\bar{\lambda}''_{m-2}),$$

где $a_1''=a_1'+\lambda_2,\ \lambda_2''=\lambda_2'+\lambda_2,$ остальные $a_j'',\ \lambda_j''$ совпадают с $a_j',\ \lambda_j'.$ Условие $\alpha+e_1'\geqslant 1$ леммы 4 выполнено, так как $\lambda_2+a_1'=\lambda_2+a_2\geqslant \lambda_2+E_2>f_1\geqslant 1,$ условия (14) для $\Sigma_{m-1}(\bar{a}_{m-1}'',\bar{\lambda}_{m-2}'')$ проверяются тривиально. Поэтому по предложению 1 второй ряд в (99) — элемент Ω_{m-1} , т. е. окончательно имеем $\sigma_1\in\Omega_{m-1}$.

Вычислим σ_2 . Имеем из (93) и (97) в тех же обозначениях, что и выше,

$$\sigma_{2} = \sum_{i=e_{1}+1}^{f_{1}} C_{i}^{(2)} \sigma_{2,i},$$

$$\sigma_{2,i} = D_{\sigma} \sum_{l'=1}^{m-1} \sum_{\substack{p'_{m-1} \\ s'_{1} = M + \lambda_{2} \geqslant \lambda_{2} \\ t' - s' + \sigma}} \frac{(-1)^{m-1-l'}}{(t'_{1} + i - \lambda_{2}) \prod_{j=1}^{m-1} (t'_{j} + a'_{j})^{2}}.$$

Опять снимем ограничение $s_1' \geqslant \lambda_2$ по лемме 4 заменой

$$(x_1 + i - \lambda_2)(x_1 + a_1')^2 \to (x_1 + i)(x_1 + a_1' + \lambda_2), \quad \lambda_2' \to \lambda_2' + \lambda_2.$$

Условие $\alpha+e_1'\geqslant 1$ принимает в этой лемме вид $i\geqslant 1$, так как $a_1'+\lambda_2\geqslant E_2+\lambda_2>f_1\geqslant i$, следовательно, $i-\lambda_2< a_1',\ e_1'=i-\lambda_2.$ Мы находимся в условиях случая 4) леммы 1 при $\nu=2$, т. е. условия (7), (I)—(III) выполнены. По утверждению $(\mathbf{U}_{m-1})\ \sigma_{2,i}\in\Omega_{m-1}$, а тогда $\sigma_2\in\Omega_{m-1}$.

Из рассмотрения σ_1 и σ_2 и (98) следует (94), и доказательство теоремы 2 завершено.

5. Доказательство теоремы 1

Ввиду леммы 8 для функции R_{k-1}^* в (64) необходимо проверить условия (7) и (I)—(III) при m=k-1 и, кроме этого, привести (51) к виду (9). Тогда теорема 1 будет следовать из теоремы 2. По лемме 4 при $\alpha=\mu_0,\ \nu=1$ из (64) и (51) получим в обозначениях леммы 7

$$J_{2k-1} = \Lambda_{2k-1}^* \Sigma_{k-1}(P, \bar{Q}_{k-1}, \bar{\lambda}_{k-2}),$$

где

$$Q_1(x) = P_{12}(x + \mu_0)P_{13}(x + \mu_0), \quad Q_j(x) = P_{j2}(x)P_{j3}(x), \quad j = 2, \dots, k-1,$$
 (100)

$$P = P(x_1, \dots, x_{k-1}) = P_{10}(x_1 + \mu_0)G_2(x_2 - x_1 - \mu_0 - \beta_3) \times \prod_{j=1}^{k-1} G_j(x_j - x_{j-1} - \beta_{2j-1})G_k(x_{k-1}), \quad (101)$$

$$\bar{\lambda}_{k-2} = (\beta_3 + \mu_0, \beta_5, \dots, \beta_{2k-3}), \text{ rge } k \geqslant 3.$$
 (102)

1. Условие $\alpha+e_1\geqslant 1$ леммы 4 принимает вид $\mu_0+\min(\alpha_1,\alpha_2)\geqslant 1$ и, по сути, было проверено ещё в доказательстве леммы 7 при рассмотрении бета-интеграла в (52). При $\beta_1\geqslant \alpha_0$ всё очевидно ($\mu_0=0$), при $\beta_1<\alpha_0$ и $\alpha_1<\alpha_2$ имеем

$$\mu_0 + \min(\alpha_1, \alpha_2) = \beta_1 - \alpha_0 + \alpha_1 \geqslant \beta_1 \geqslant 1$$

ввиду (2), наконец, в последнем случае при $\beta_1 < \alpha_0$ и $\alpha_2 < \alpha_1$ имеем

$$\mu_0 + \min(\alpha_1, \alpha_2) = \beta_1 - \alpha_0 + \alpha_2 \geqslant 1$$

ввиду (3) при r=0 (именно этот основной случай рассмотрен в лемме 7).

- 2. Из (100) немедленно следует (7), так как сомнения по поводу $A_1 \subset N$ сняты в пункте 1 (см. также структуру многочленов $P_{j2}(x)$, $P_{j3}(x)$ в обозначениях леммы 7).
 - 3. Проверим теперь $\mathrm{I}(P,\bar{Q}_{k-1})$. Из (101) следует, что

$$\deg_{x_j} P = p_j = \beta_{2j-1} + \beta_{2j+1} - 2$$

при $j=1,\dots,k-1$, из (100) получаем $q_j=\beta_{2j}+\alpha_{2j+1}+\beta_{2j+1}-\alpha_{2j-1}$ при $j=1,\dots,k-1$. Поэтому

$$p_i - q_i + 2 = \beta_{2i-1} + \alpha_{2i-1} - \beta_{2i} - \alpha_{2i+1} \le 0$$

ввиду (3) при $r=2j-1,\ j=1,\ldots,k-1,$ т. е. условия $\mathrm{I}(P,\bar{Q}_{k-1})$ выполнены.

4. Проверим $\mathrm{II}(\bar{Q}_{k-1})$ и $\mathrm{III}(\bar{Q}_{k-1})$. Положим для $j=1,\ldots,k-1$

$$e_{j} = \min(\alpha_{2j-1}, \alpha_{2j}), \quad E_{j} = \max(\alpha_{2j-1}, \alpha_{2j}),$$

$$F_{j} = \min(\alpha_{2j} + \beta_{2j} - 1, \alpha_{2j+1} + \beta_{2j+1} - 1),$$

$$f_{j} = \max(\alpha_{2j} + \beta_{2j} - 1, \alpha_{2j+1} + \beta_{2j+1} - 1).$$
(103)

Из (100) получим, что при $j=2,\ldots,k-1$ числа (103) — параметры многочленов $Q_j(x)$, а при j=1 к ним нужно добавить μ_0 . Рассмотрим сначала неравенства $(II)_j$ и $(III)_j$ при $j=3,\ldots,k-1$:

$$\max(\alpha_{2j-2} + \beta_{2j-2} - 1, \alpha_{2j-1} + \beta_{2j-1} - 1) < \max(\alpha_{2j-1}, \alpha_{2j}) + \beta_{2j-1}, \quad (104)$$

$$\min(\alpha_{2j-2} + \beta_{2j-2} - 1, \alpha_{2j-1} + \beta_{2j-1} - 1) < \min(\alpha_{2j-1}, \alpha_{2j}) + \beta_{2j-1}.$$
 (105)

Система неравенств (104) и (105) для $a,b,c\in\mathbb{N}$ имеет вид

$$\max(a, b) < \max(b, c), \tag{106}$$

$$\min(a, b) < \min(b, c). \tag{107}$$

Если a>b, то (106) равносильно $a\leqslant c$, (107) выполнено. Если $a\leqslant b$, то (106) выполнено, а (107) равносильно снова $a\leqslant c$. Таким образом, в обозначениях (104) и (105) эта система равносильна неравенству $\alpha_{2j-2}+\beta_{2j-2}\leqslant\alpha_{2j}+\beta_{2j-1}$, или неравенству (3) при r=2j-2, т. е. Π_j и Π_j выполнены.

Неравенства Π_2 и $\Pi\Pi_2$ приводят к системе, аналогичной (104) и (105) при j=2, так как, как указано выше, к левым частям (104) и (105) следует добавить μ_0 (производятся замены $F_1 \to F_1 + \mu_0$, $f_1 \to f_1 + \mu_0$). Ту же процедуру нужно провести и для правых частей, так как $\lambda_2 = \beta_3 + \mu_0$ (см. (102)). Таким образом, набор неравенств (3) при чётных $r=2,4,\ldots,2k-4$ обеспечивает выполнение $\Pi(\bar{Q}_{k-1})$ и $\Pi(\bar{Q}_{k-1})$ в случае (103).

5. Из симметрии $c \leftrightarrow a$ функции Гаусса в (40) (см. также применение леммы 5 в лемме 7 и её влияние на параметры многочленов (100) и (101)) получим, что в интеграле (1) возможна замена параметров

$$(\alpha_0, \alpha_1, \beta_1) \rightarrow (\alpha_1, \alpha_0, \alpha_1 + \beta_1 - \alpha_0),$$

при которой интеграл (1) умножается на коэффициент

$$\frac{\Gamma(\alpha_0)\Gamma(\alpha_1+\beta_1-\alpha_0)}{\Gamma(\alpha_1)\Gamma(\alpha_0+\beta_1-\alpha_1)}$$

(см. (39)). Поэтому в случае $\alpha_0 > \alpha_1$ можно написать список условий, аналогичный (3)—(5), обеспечивающий (6).

Литература

- [1] Бейтман Г., Эрдейи А. Высшие трансцендентные функции. Т. 1. М.: Наука, 1973.
- [2] Васильев Д. В. Некоторые формулы для значений дзета-функции Римана в целых точках // Вестн. Моск. ун-та. Сер. 1, Математика, механика. 1996. \mathbb{N} 1. С. 81—84.
- [3] Васильев Д. В. О малых линейных формах от значений дзета-функции Римана в нечётных точках. Препринт № 1 (558). Минск: НАН Беларуси, Ин-т математики, 2000.
- [4] Злобин С. А. Разложения кратных интегралов в линейные формы // Мат. заметки. 2005. Т. 77, № 5. С. 683—706.
- [5] Beukers F. A note on the irrationality of $\zeta(2)$ and $\zeta(3)$ // Bull. London Math. Soc. 1979. Vol. 11. P. 268—272.
- [6] Zudilin W. Arithmetics of linear forms involving odd zeta values // J. Théor. Nombres Bordeaux. -2004. Vol. 16, no. 1. P. 251-291.
- [7] Zudilin W. Well-poised hypergeometric transformations of Euler-type multiple-integrals // J. London Math. Soc. (2). -2004. Vol. 70. -P. 215–230.