Дистрибутивные расширения модулей

А. А. ТУГАНБАЕВ

Московский энергетический институт (технический университет) e-mail: askar@diar.ru

УДК 512.55

Ключевые слова: дистрибутивное расширение, дистрибутивный модуль.

Аннотация

Пусть X- подмодуль модуля M. Расширение $X\subseteq M$ называется ∂ истрибутивным, если $X\cap (Y+Z)=X\cap Y+X\cap Z$ для любых подмодулей Y и Z модуля M. Мы изучаем дистрибутивные расширения модулей над не обязательно коммутативными кольцами. В частности, доказано, что следующие три условия равносильны: 1) $X_A\subseteq M_A$ — дистрибутивное расширение; 2) для любого подмодуля Y модуля M никакой простой подфактор модуля $X/(X\cap Y)$ не изоморфен никакому простому подфактору модуля $Y/(X\cap Y)$; 3) для любых элементов $x\in X$ и $m\in M$ не существует простого фактор-модуля циклического модуля $xA/(X\cap mA)$, изоморфного простому фактор-модулю циклического модуля $mA/(X\cap mA)$.

Abstract

A. A. Tuganbaev, Distributive extensions of modules, Fundamentalnaya i prikladnaya matematika, vol. 12 (2006), no. 3, pp. 141–150.

Let X be a submodule of a module M. The extension $X\subseteq M$ is said to be distributive if $X\cap (Y+Z)=X\cap Y+X\cap Z$ for any two submodules Y and Z of M. We study distributive extensions of modules over not necessarily commutative rings. In particular, it is proved that the following three conditions are equivalent: (1) $X_A\subseteq M_A$ is a distributive extension; (2) for any submodule Y of the module Y, no simple subfactor of the module $Y(X\cap Y)$ is isomorphic to any simple subfactor of $Y/(X\cap Y)$ (3) for any two elements $X\in X$ and $X\in M$, there does not exist a simple factor module of the cyclic module $X/(X\cap M)$ that is isomorphic to a simple factor module of the cyclic module $X/(X\cap M)$.

Все кольца предполагаются ассоциативными и с ненулевой единицей, модули и подкольца — унитарными. Пусть X — подмодуль модуля M. Расширение $X\subseteq M$ называется ∂ истрибутивным, если $X\cap (Y+Z)=X\cap Y+X\cap Z$ для любых подмодулей Y и Z модуля M. Ясно, что если M — ∂ истрибутивнаний модуль (т. е. решётка всех подмодулей модуля M дистрибутивна), то для любого подмодуля X модуля M расширение $X\subseteq M$ дистрибутивно. Кроме того, если модуль X сравним по включению с любым подмодулем модуля M, то расширение $X\subseteq M$ дистрибутивно. В частности, при X=M или X=0 расширение $X\subseteq M$ дистрибутивно. В случае коммутативных колец дистрибутивные расширения изучались в работах [6; 2; 1; 5; 3; 4; 7, § II.5].

Фундаментальная и прикладная математика, 2006, том 12, № 3, с. 141—150. © 2006 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

В данной работе мы изучаем дистрибутивные расширения модулей над не обязательно коммутативными кольцами. Любой фактор-модуль произвольного подмодуля модуля M называется $nod\phi$ актором модуля M. Основными результатами являются теоремы 1 и 2.

Теорема 1. Пусть M — правый модуль над кольцом A и X — подмодуль модуля M. Тогда равносильны следующие условия:

- 1) $X \subseteq M$ дистрибутивное расширение;
- 2) для любого подмодуля Y модуля M никакой простой подфактор модуля $X/(X\cap Y)$ не изоморфен никакому простому подфактору модуля $Y/(X\cap Y)$;
- 3) для любых элементов $x \in X$ и $m \in M$ не существует простого фактор-модуля циклического модуля $xA/(X \cap mA)$, изоморфного простому фактор-модулю циклического модуля $mA/(X \cap mA)$.

Дистрибутивное расширение $X\subseteq M$ называется максимальным дистрибутивным расширением модуля X, если f(M)=Y для любого такого дистрибутивного расширения $X\subseteq Y$, что существует мономорфизм $f\colon M\to Y$, действующий тождественно на модуле X. Подмодуль N модуля M называется существенным, если $N\cap X\neq 0$ для каждого ненулевого подмодуля X модуля M. В этом случае M называется существенным расширением модуля N.

Теорема 2. Пусть X — правый модуль над кольцом A и E — инъективная оболочка модуля X. Тогда равносильны следующие условия:

- 1) каждое дистрибутивное расширение $X \subseteq M_A$ является существенным расширением;
- 2) для каждого дистрибутивного расширения $X \subseteq M_A$ модуль M изоморфен подмодулю модуля E;
- 3) существует такая мощность \aleph , что $\operatorname{card}(M) \leqslant \aleph$ для каждого дистрибутивного расширения $X \subseteq M_A$;
- 4) модуль X обладает максимальным дистрибутивным расширением;
- 5) каждый простой правый A-модуль изоморфен подфактору модуля X.

1. Доказательство теоремы 1

Лемма 1.1. Пусть M — правый модуль над кольцом A и X — подмодуль модуля M. Тогда равносильны следующие условия:

- 1) $X \subseteq M$ дистрибутивное расширение;
- 2) для любого такого подмодуля M' модуля M, что $X \subseteq M'$, расширение $X \subseteq M'$ дистрибутивно;
- 3) $(X + Y) \cap (X + Z) = X + Y \cap Z$ для любых подмодулей Y и Z модуля M;
- 4) $X \cap (yA + zA) = X \cap yA + X \cap zA$ для любых элементов y и z модуля M.

Доказательство. Импликация $1 \implies 4$ и эквивалентность условий 1 и 2 проверяются непосредственно.

Докажем импликацию $1 \implies 3$. По модулярному закону

$$(X+Y) \cap (X+Z) = X+Y \cap (X+Z).$$

Пусть $y=x+z\in Y\cap (X+Z)$, где $x\in X$ и $z\in Z$. Тогда

$$x = y - z \in X \cap (Y + Z) = X \cap Y + X \cap Z.$$

Поэтому $x = x_1 + x_2$, где $x_1 \in X \cap Y$ и $x_2 \in X \cap Z$. Тогда

$$y - x_1 = x_2 + z \in Y \cap Z$$
, $y = x_1 + (y - x_1) \in X + Y \cap Z$,

откуда

$$X + Y \cap (X + Z) \subseteq X + Y \cap Z \subseteq X + Y \cap (X + Z).$$

Докажем импликацию $3 \implies 1$. Пусть Y и Z — подмодули модуля M и $x=y+z\in X\cap (Y+Z)$, где $y\in Y$ и $z\in Z$. Тогда

$$y = x - z \in Y \cap (X + Z) \subseteq (X + Y) \cap (X + Z) = X + Y \cap Z,$$

$$z = x - y \in (X + Y) \cap Z \subseteq (X + Y) \cap (X + Z) = X + Y \cap Z.$$

Поэтому $y = x_1 + y_1$ и $z = x_2 + z_1$, где $x_1, x_2 \in X$ и $y_1, z_1 \in Y \cap Z$. Тогда

$$x_1 = y - y_1 \in X \cap Y$$
, $x_2 = z - z_1 \in X \cap Z$,

$$x = y + z = x_1 + y_1 + x_2 + z_1 = x_1 + x_2 + y_1 + z_1 \in X \cap Y + X \cap Z + Y \cap Z.$$

Поэтому

$$X \cap (Y + Z) \subseteq X \cap Y + X \cap Z + Y \cap Z$$
.

Используя модулярный закон, получаем

$$X \cap (Y+Z) = (X \cap (Y+Z)) \cap (X \cap Y + X \cap Z + Y \cap Z) =$$

= $X \cap Y + X \cap Z + X \cap (Y+Z) \cap Y \cap Z = X \cap Y + X \cap Z.$

Докажем импликацию $4 \implies 1$. Пусть Y и Z — подмодули модуля M и $x=y+z\in X\cap (Y+Z)$, где $y\in Y$ и $z\in Z$. Тогда

$$x \in X \cap (yA + zA) = X \cap yA + X \cap zA \subseteq X \cap Y + X \cap Z,$$
$$X \cap (Y + Z) \subseteq X \cap Y + X \cap Z \subseteq X \cap (Y + Z).$$

Для подмножеств X и Y правого модуля M над кольцом A подмножество $\{a\in A\mid Xa\subseteq Y\}$ кольца A обозначается через (Y:X).

Лемма 1.2. Пусть M — правый модуль над кольцом A и X — подмодуль модуля M. Тогда равносильны следующие условия:

- 1) $X \subseteq M$ дистрибутивное расширение;
- 2) $x \in X \cap (x-m)A + X \cap mA$ для любых элементов $x \in X$ и $m \in M$;

- 3) для любых элементов $x \in X$ и $m \in M$ существуют такие элементы a и b кольца A, что 1 = a + b и $xa, mb \in X \cap mA$;
- 4) (mA:x) + (X:m) = A для любых элементов $x \in X$ и $m \in M$.

Доказательство. Эквивалентность условий 3 и 4 проверяется непосредственно.

Проверим импликацию $1 \implies 2$. Так как x = (x - m) + m, то

$$xA \subseteq X \cap ((x-m)A + mA) = X \cap (x-m)A + X \cap mA.$$

Докажем импликацию $2 \implies 3$. Пусть $x \in X$ и $m \in M$. Тогда

$$x=(x-m)+m\in X\cap ((x-m)A+mA)=X\cap (x-m)A+X\cap mA.$$

Поэтому существуют такие элементы b и c кольца A, что x=(x-m)b+mc, где $(x-m)b, mc \in X$. Обозначим через a элемент 1-b кольца A. Тогда 1=a+b, $xa=x(1-b)=m(c-b)\in X\cap mA$ и $mb=xb-(x-m)b\in X\cap mA$.

Проверим, что справедлива импликация $3 \implies 2$. Пусть $x \in X$ и $m \in M$. По условию 4 существуют такие элементы a и b кольца A, что 1 = a + b и $xa, mb \in X \cap mA$. Тогда $(x-m)b = xb - mb \in X \cap (x-m)A$ и

$$x = xa + xb = (x - m)b + (xa + mb) \in X \cap (x - m)A + X \cap mA.$$

Докажем импликацию $2\Longrightarrow 1.$ Пусть Y и Z- подмодули модуля M и $x=y+m\in X\cap (Y+Z),$ где $y\in Y$ и $m\in Z.$ Так как x=(x-m)+m, то

$$x \in xA \cap ((x-m)A + mA) \subseteq X \cap ((x-m)A + mA) =$$
$$= X \cap (x-m)A + X \cap mA \subseteq X \cap Y + X \cap Z.$$

Поэтому

$$X \cap (Y+Z) \subseteq X \cap Y + X \cap Z \subseteq X \cap (Y+Z).$$

Предложение 1.3. Пусть M — правый модуль над кольцом A и $\mathcal{F}(M)$ — множество всех таких подмодулей X модуля M, что расширение $X\subseteq M$ дистрибутивно.

- 1. Если $X \in \mathcal{F}(M)$, то для каждого модульного эпиморфизма $h \colon M \to h(M)$ расширение $h(X) \subseteq h(M)$ дистрибутивно.
- 2. $X \cap X', X + X' \in \mathcal{F}(M)$ для всех $X, X' \in \mathcal{F}(M)$.

Следовательно, $\mathcal{F}(M)$ — подрешётка решётки всех подмодулей модуля M.

- 3. Пусть X такой подмодуль модуля M, что для любого элемента $x \in X$ существует такой подмодуль Y_x модуля X, что $x \in Y_x \in \mathcal{F}(M)$. Тогда $X \in \mathcal{F}(M)$.
- $4. \sum_{i \in I} X_i \in \mathcal{F}(M)$ для любого подмножества $\{X_i\}_{i \in I}$ множества $\mathcal{F}(M)$.
- 5. $\bigcup_{i \in I} X_i \in \mathcal{F}(M)$ для любого линейно упорядоченного по включению подмножества $\{X_i\}_{i \in I}$ множества $\mathcal{F}(M)$.

6. Пусть X — подмодуль модуля M и $\mathcal{G}(X,M)$ — множество всех таких подмодулей M' модуля M, что расширение $X\subseteq M'$ дистрибутивно. Тогда множество $\mathcal{G}(X,M)$ не пусто и для любого линейно упорядоченного по включению подмножества $\{M_i\}_{i\in I}\subseteq \mathcal{G}(X,M)$ расширение $X\subseteq\bigcup_{i\in I}M_i$ дистрибутивно. Следовательно, непустое множество $\mathcal{G}(X,M)$ содержит хотя бы один максимальный элемент.

Доказательство. 1. Пусть $h(x) \in h(X)$ и $h(m) \in h(M)$, где $x \in X$ и $m \in M$. По лемме 1.2 существуют такие элементы a и b кольца A, что 1 = a + b и $xa, mb \in X \cap mA$. Тогда

$$h(x)a, h(m)b \in h(X) \cap h(m)A.$$

По лемме 1.2 расширение $h(X) \subseteq h(M)$ дистрибутивно.

2. Пусть Y и Z — подмодули модуля M. Тогда

$$X \cap X' \cap (Y+Z) = X \cap (X' \cap Y + X' \cap Z) = X \cap X' \cap Y + X \cap X' \cap Z).$$

Поэтому расширение $X \cap X' \subseteq M$ дистрибутивно. Кроме того, по лемме 1.1

$$(X + X' + Y) \cap (X + X' + Z) = X + (X' + Y) \cap (X' + Z) = X + X' + Y \cap Z.$$

Поэтому расширение $X+X'\subseteq M$ дистрибутивно.

- 3. Пусть $x \in X$ и $m \in M$. По условию существует такой подмодуль Y_x модуля X, что $x \in Y_x \in \mathcal{F}(M)$. Так как $x \in Y_x \subseteq X$, то по лемме 1.2 существуют такие элементы a и b кольца A, что 1 = a + b и $xa, mb \in Y_x \cap mA \subseteq X \cap mA$. По лемме $1.2 \ X \in \mathcal{F}(M)$.
- 4. Обозначим через X подмодуль $\sum\limits_{i\in I}X_i$ модуля M. Пусть $x\in X$. Существует такое конечное подмножество J множества I, что $x\in \sum\limits_{j\in J}X_j=Y_x\subseteq X$. Из утверждения 2 следует, что $Y_x\in \mathcal{F}(M)$. Из утверждения 3 следует, что $X\in \mathcal{F}(M)$.
- 5. Так как множество $\{X_i\}_{i\in I}$ является линейно упорядоченным по включению, то $\bigcup_{i\in I}X_i=\sum_{i\in I}X_i$. Из утверждения 4 следует, что $\bigcup_{i\in I}X_i\in\mathcal{F}(M)$.
- 6. Так как $X \in \mathcal{G}(X,M)$, то множество $\mathcal{G}(X,M)$ не пусто. Пусть $x \in X$, $M' = \bigcup_{i \in I} M_i$ и $m \in M'$. Тогда $m \in M_i$ для некоторого $i \in I$. По лемме 1.2 существуют такие элементы a и b кольца A, что 1 = a + b и $xa, mb \in X \cap mA$. По лемме 1.2 расширение $X \subseteq M'$ дистрибутивно.

Лемма 1.4. Пусть M — правый модуль над кольцом A и X — такой подмодуль модуля M, что расширение $X \subseteq M$ дистрибутивно.

- 1. $\operatorname{Hom}_A(X,Y)=\operatorname{Hom}_A(Y,X)=0$ для любого такого подмодуля Y модуля M, что $X\cap Y=0$.
- 2. Если $h \colon M \to \overline{M}$ эпиморфизм и \overline{Y} такой подмодуль модуля \overline{M} , что $h(X) \cap \overline{Y} = 0$, то $\operatorname{Hom}_A(h(X), \overline{Y}) = \operatorname{Hom}_A(\overline{Y}, h(X)) = 0$.

- 3. $\operatorname{Hom}_A(X/(X\cap Y),Y/(X\cap Y))=\operatorname{Hom}_A(Y/(X\cap Y),X/(X\cap Y))=0$ для любого подмодуля Y модуля M.
- 4. $\operatorname{Hom}_A(M/X, M/Y) = \operatorname{Hom}_A(M/Y, M/X) = 0$ для любого такого подмодуля Y модуля M, что X + Y = M.
- 5. $\operatorname{Hom}_A(h(X),h(Y)) = \operatorname{Hom}_A(h(Y),h(X)) = 0$ для любого эпиморфизма $h \colon M \to h(M)$ и каждого такого подмодуля Y модуля M, что $h(M) = h(X) \oplus h(Y)$.

Доказательство. 1. Пусть $f\in \operatorname{Hom}_A(Y,X),\ m\in Y$ и $x=f(m)\in X$. По лемме 1.1 существуют такие элементы a и b кольца A, что 1=a+b и $xa,mb\in X\cap M$

$$x = xa + xb = 0 + f(m)b = f(mb) = f(0) = 0, \quad f \equiv 0, \quad \text{Hom}_A(Y, X) = 0.$$

Теперь пусть $g\in \operatorname{Hom}_A(X,Y)$ и $h\colon M\to M/\operatorname{Ker}(g)$ — естественный эпиморфизм. Тогда $h(X)\cap h(g(X))=0$ и существует изоморфизм $\bar f\colon h(g(X))\to h(X)$. Так как по утверждению 1 леммы 1.2 расширение $h(X)\subseteq h(M)$ дистрибутивно, то по доказанному выше $\operatorname{Hom}_A(h(g(X)),h(X))=0$. Поэтому $h(X)=\bar f(h(g(X)))=0$. Тогда $X=\operatorname{Ker}(g),\ g=0$ и $\operatorname{Hom}_A(X,Y)=0$.

- 2. По утверждению 1 леммы 1.2 расширение $h(X)\subseteq \bar{M}$ дистрибутивно. Поэтому утверждение 2 следует из утверждения 1.
- 3. Утверждение следует из утверждения 2, применённого к естественному эпиморфизму $h\colon M\to M/(X\cap Y)$.
 - 4. Так как X + Y = M, то

$$M/X = (X+Y)/X \cong Y/(X \cap Y), \quad M/Y = (X+Y)/Y \cong X/(X \cap Y).$$

Теперь применяем утверждение 3.

Окончание доказательства теоремы 1. Докажем импликацию $1 \implies 2$. Допустим, что условие 2 не выполнено. Тогда существуют такие подмодули X_1 , X_2 , Y_1 , Y_2 модуля M, что

$$X \cap Y \subseteq X_2 \subseteq X_1 \subseteq X$$
, $X \cap Y \subseteq Y_2 \subseteq Y_1 \subseteq Y$,

 X_1/X_2 и Y_1/Y_2 — простые модули, $X_1/X_2\cong Y_1/Y_2$. Пусть $h\colon M\to M/(X_2+Y_2)$ — естественный эпиморфизм. Так как

$$X_1 \cap (X_2 + Y_2) = X_2 + X_1 \cap Y_2 \subseteq X_2 + X \cap Y = X_2,$$

 $Y_1 \cap (X_2 + Y_2) = Y_2 + Y_1 \cap X_2 \subseteq Y_2 + X \cap Y = Y_2,$

то $h(X_1)$ и $h(Y_1)$ — изоморфные простые модули и $h(X_1)\cap h(Y_1)=0$. Это противоречит утверждению 2 леммы 1.4.

Для доказательства импликации $2 \Longrightarrow 3$ заметим, что утверждение 3 следует из 2 при Y = mA.

Докажем импликацию $3\Longrightarrow 1$. Допустим, что расширение $X\subseteq M$ не дистрибутивно. По лемме 1.2 существуют такие элементы $x\in X$ и $m\in M$, что $(mA:x)+(X:m)\neq A$. Пусть $h\colon M\to M/(X\cap mA)$ — естественный эпиморфизм. Собственный правый идеал (mA:x)+(X:m) содержится в некотором

максимальном правом идеале P кольца A. Так как $x(1-p) \notin X \cap mA$ для всех $p \in P$, то $h(x)P \neq h(x)A$. Поэтому циклический модуль h(xA) имеет простой фактор-модуль, изоморфный модулю $(A/P)_A$. Кроме того, $r(m) \subseteq (X:m) \subseteq P$ и $X \cap mA = m(X:m) \subseteq mP \neq mA$. Поэтому циклические модули h(xA) и h(mA) имеют простые фактор-модули, изоморфные модулю $(A/P)_A$. Получено противоречие.

Следствие 1.5. Пусть M — правый модуль над кольцом A и X — подмодуль модуля M.

- 1. Если все простые подфакторы модуля M изоморфны, то дистрибутивность расширения $X\subseteq M$ равносильна тому, что модуль X сравним по включению с любым подмодулем модуля M.
- 2. Если A/J(A) простое артиново кольцо, то дистрибутивность расширения $X\subseteq M$ равносильна тому, что модуль X сравним по включению с любым подмодулем модуля M.

Доказательство. 1. Если модуль X сравним по включению с любым подмодулем модуля M, то расширение $X\subseteq M$ дистрибутивно. Поэтому утверждение 1 вытекает из теоремы 1.

2. Утверждение вытекает из утверждения 1 и того, что в данном случае все простые A-модули изоморфны друг другу.

2. Доказательство теоремы 2

Лемма 2.1. Пусть M- модуль и X- такой подмодуль модуля M, что $X\subseteq M-$ дистрибутивное расширение. Тогда равносильны следующие условия:

- 1) X существенный подмодуль модуля M;
- 2) не существует такого ненулевого подмодуля Y модуля M, что $X \cap Y = 0$ и никакой простой подфактор модуля X не изоморфен никакому простому подфактору модуля Y.

Доказательство. Импликация $1 \implies 2$ следует из того, что $X \cap Y \neq 0$ для любого ненулевого подмодуля Y модуля M.

Докажем импликацию $2\Longrightarrow 1$. Допустим, что существует такой ненулевой подмодуль Y модуля M, что $X\cap Y=0$. По теореме 1 никакой простой подфактор модуля X не изоморфен никакому простому подфактору модуля Y. Это противоречит условию 2.

Лемма 2.2. Пусть M — модуль и X — такой подмодуль модуля M, что расширение $X\subseteq M$ дистрибутивно и множество всех простых подфакторов модуля X содержит изоморфные копии всех простых подфакторов модуля M. Тогда X — существенный подмодуль модуля M.

Лемма 2.2 вытекает из леммы 2.1.

Лемма 2.3. Пусть X и Y — такие модули, что никакой простой подфактор модуля X не изоморфен никакому простому подфактору модуля Y. Тогда $Z = X \cap Z \oplus Y \cap Z$ для любого подмодуля Z модуля M.

Доказательство. Пусть $M=X\oplus Y$ и $h\colon M\to M/(X\cap Z\oplus Y\cap Z)$ — естественный эпиморфизм. Тогда $h(M)=h(X)\oplus h(Y)$ и существуют естественные проекции $\pi_x\colon h(M)\to h(X)$ и $\pi_y\colon h(M)\to h(Y)$. Так как $h(Z)\cap h(X)=0$ и $h(Z)\cap h(Y)=0$, то $\pi_x(h(Z))\cong h(Z)\cong \pi_y(h(Z))$. Поскольку никакой простой подфактор модуля X не изоморфен никакому простому подфактору модуля Y, то никакой простой подфактор модуля $\pi_x(h(Z))$ не изоморфен никакому простому подфактору модуля $\pi_x(h(Z))$. Кроме того, $\pi_x(h(Z))\cong \pi_x(h(Z))$. Поэтому $\pi_x(h(Z))=0$ и $\pi_y(h(Z))=0$. Следовательно, h(Z)=0 и H(X)=0 и

Лемма 2.4. Пусть M — модуль и $M = X \oplus Y$. Тогда равносильны следующие условия:

- 1) $X \subseteq M$ дистрибутивное расширение;
- 2) никакой простой подфактор модуля X не изоморфен никакому простому подфактору модуля Y.

Доказательство. Импликация $1 \implies 2$ следует из теоремы 1.

Докажем импликацию 2 \implies 1. Пусть Z_1 и Z_2 — подмодули модуля M. По лемме 2.3

$$Z_1 = X \cap Z_1 \oplus Y \cap Z_1$$
, $Z_2 = X \cap Z_2 \oplus Y \cap Z_2$.

Используя модулярный закон, получаем, что

$$X \cap (Z_1 + Z_2) = X \cap [(X \cap Z_1 + X \cap Z_2) \oplus (Y \cap Z_1 + Y \cap Z_2)] =$$

= $X \cap Z_1 + X \cap Z_2 + X \cap (Y \cap Z_1 + Y \cap Z_2) = X \cap Z_1 + X \cap Z_2$. \square

Лемма 2.5. Пусть X — такой правый модуль над кольцом A, что существует хотя бы один простой правый A-модуль, не изоморфный подфактору модуля X. Обозначим через $\{S_i\}_{i\in I}$ какое-нибудь непустое множество представителей классов всех простых правых A-модулей, которые не изоморфны подфактору модуля X. Тогда для любого кардинального числа \aleph расширение $X \subseteq X \oplus \left(\bigoplus_{i \in I} S_i\right)^{(\aleph)}$ дистрибутивно.

Доказательство. Обозначим через Y полупростой модуль $\left(\bigoplus_{i\in I}S_i\right)^{(\aleph)}$. Про-извольный простой подфактор полупростого модуля Y изоморфен одному из простых модулей S_i . По лемме $2.4~X\subseteq X\oplus Y$ — дистрибутивное расширение.

Окончание доказательства теоремы 2. Импликация $1 \implies 2$ следует из того, что для каждого существенного расширения $X \subseteq M_A$ модуль M изоморфен подмодулю модуля E.

Импликация $2 \implies 3$ следует из того, что можно положить $\aleph = \operatorname{card}(E)$.

Докажем импликации $3\Longrightarrow 1$ и $4\Longrightarrow 1$. Допустим, что существует дистрибутивное расширение $X\subseteq M$, не являющееся существенным расширением. Тогда $X\cap Y=0$ для некоторого ненулевого циклического подмодуля Y модуля M. Модуль Y обладает простым фактор-модулем S. Из утверждения 1 предложения 1.3 следует, что расширение $X\subseteq X\oplus S$ дистрибутивно. По лемме 2.5 для любого кардинального числа \aleph расширение $X\subseteq X\oplus S^{(\aleph)}$ дистрибутивно. Это противоречит условию 3 и условию 4.

Убедимся в справедливости импликации $1\Longrightarrow 4$. Пусть $\mathcal{G}(X,E)$ — множество всех таких подмодулей E' модуля E, что расширение $X\subseteq E'$ дистрибутивно. По утверждению 6 предложения 1.3 множество $\mathcal{G}(X,E)$ не пусто и содержит хотя бы один максимальный элемент M. Пусть $X\subseteq Y$ — дистрибутивное расширение и существует мономорфизм $f\colon M\to Y$, действующий тождественно на модуле X. Изоморфизм $f^{-1}\colon f(M)\to M\subseteq E$ действует тождественно на модуле X и продолжается до гомоморфизма $g\colon Y\to E$, поскольку модуль E инъективен. По условию 2 X — существенный подмодуль в Y. Так как $X\cap \mathrm{Ker}(g)=0$, то g — мономорфизм. Кроме того, $X\subseteq g(Y)$ — дистрибутивное расширение и $M=gf(M))\subseteq g(Y)$. Так как M — максимальный элемент множества $\mathcal{G}(X,E)$, то g(Y)=M. Поэтому f(M)=Y и $X\subseteq M$ — максимальное дистрибутивное расширение.

Импликация $5 \implies 1$ следует из леммы 2.2.

Докажем импликацию $1 \Longrightarrow 5$. Допустим, что существует простой правый A-модуль S, который не изоморфен подфактору модуля X. По лемме 2.5 расширение $X \subseteq X \oplus S$ дистрибутивно. Это дистрибутивное расширение не является существенным расширением. Это противоречит условию 1.

Следствие 2.6. Пусть X — правый модуль над кольцом A, содержащий изоморфную копию модуля A_A . Тогда каждое дистрибутивное расширение $X \subseteq M_A$ является существенным расширением.

Доказательство. Так как любой простой правый A-модуль является гомоморфным образом модуля A_A , то утверждение следует из теоремы 2.

Литература

- [1] Barnard A. Distributive extensions of modules // J. Algebra. 1981. Vol. 70, no. 2. P. 303-315.
- [2] Davison T. M. K. Distributive homomorphisms of rings and modules // J. Reine Angew. Math. -1974. Vol. 271. P. 28-34.
- [3] Erdogdu V. Modules with locally linearly ordered distributive hulls // J. Pure Appl. Algebra. -1987.- Vol. 47, no. 2.- P. 119-130.
- [4] Erdogdu V. The distributive hull of a ring // J. Algebra. 1990. Vol. 132, no. 2. P. 263—269.
- [5] Gräter J. Über die Distributivität des Idealverbandes eines kommutativen Ringes // Monatsh. Math. 1985. Vol. 99, no. 4. P. 267—278.

- [6] Jensen C. U. A remark on the distributive law for an ideal in a commutative ring // Proc. Glasgow Math. Assoc. -1966. Vol. 7. P. 193-198.
- [7] Knebusch M., Zhang D. Manis Valuations and Prüfer Extensions. I. Berlin: Springer, 2002. (Lect. Notes Math.; Vol. 1791).