Аффинные группы симметрии в двумерных квазикристаллах

Б. А. ДОЛГИХ

Московский государственный индустриальный университет e-mail: badolg@rol.ru

УДК 512.54

Ключевые слова: квазикристалл, симметрия квазикристалла, метод разрезов и проекций.

Аннотация

Статья посвящена математическому описанию возможных конечных аффинных групп симметрии в двумерных квазикристаллах.

Abstract

B. A. Dolgikh, Affine symmetry groups in 2D-quasicrystals, Fundamentalnaya i prikladnaya matematika, vol. 13 (2007), no. 2, pp. 117—122.

This paper is devoted to the mathematical description of possible finite affine symmetry groups in two-dimensional quasicrystals.

1. Введение

В основе математической теории кристаллографии лежит представление об упорядоченном периодическом расположении в кристалле составляющих его частиц, которые образуют кристаллическую решётку. Основной целью теории является выявление и классификация всех типов симметрии кристаллов. Описание симметрии кристалла задаётся его кристаллографической группой. Классификация всех плоских (двумерных) и пространственных (трёхмерных) кристаллографических групп была получена в конце XIX в. Е. С. Фёдоровым [3] и А. Шёнфлисом [6].

С середины XX в. в веществах разных классов были обнаружены области конденсированной фазы с пентагональной либо икосаэдрической симметрией, запрещённой для трёхмерного кристалла. В дальнейшем физиками были обнаружены материалы с осями симметрии восьмого, десятого и двенадцатого порядков, не являющиеся кристаллами. Твёрдые фазы с некристаллографическим упорядочиванием атомов были названы квазикристаллами [7]. Квазикристаллы характеризуются несоразмерной квазипериодической структурой, которая может обладать некристаллографической симметрией.

Фундаментальная и прикладная математика, 2007, том 13, № 2, с. 117—122. © 2007 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

Открытие квазикристаллов побудило к построению различных теорий квазикристаллов. В настоящее время общепринятого подхода к квазикристаллам не существует. Наиболее распространённым является рассмотрение квазикристаллов как трёхмерного образа некоторых периодических структур («гиперкристаллов»), заданных в n-мерном евклидовом пространстве с n > 3.

Целью настоящей статьи является описание возможных аффинных групп симметрии в двумерных квазикристаллах.

В основе математического описания симметрий кристаллов лежат следующие определения.

Определение 1. *Группой симметрий* $\operatorname{Sym} M$ множества M в евклидовом пространстве E называется множество всех таких движений пространства E, которые отображают множество M на себя.

Определение 2. Дискретная подгруппа A в аддитивной группе евклидова пространства E называется pememkoŭ в E, если её ранг равен размерности пространства E.

Определение 3. Подгруппа Γ в группе движений $\mathrm{Iso}(E)$ евклидова пространства E называется κ ристаллографической или пространственной группой, если выполняются следующие условия:

- 1) её аддитивная подгруппа $A(\Gamma) \subset \Gamma$ является решёткой в E;
- 2) $\Gamma/A(\Gamma)$ является конечной группой в группе $\mathrm{O}(E)$ всех ортогональных преобразований евклидова пространства E.

Определение 4 (Делоне [2]). Подмножество K евклидова пространства E есть *кристалл*, если группа его симметрий $\mathrm{Sym}(K)$ удовлетворяет следующим условиям:

- 1) для данной точки A существует такое число d(A) > 0, что неравенство $\|\Phi(A) A\| < d(A)$ для некоторого $\Phi \in \operatorname{Sym} K$ влечёт равенство $\Phi(A) = A$;
- 2) существует такое фиксированное положительное число D>0, что для любых двух точек $A,\ B$ можно найти преобразование $\Psi\in {\rm Sym}\, K,$ для которого $\|\Psi(A)-B\|< D.$

Первое из этих условий представляет собой свойство $\partial u c \kappa p e m h o c m u$ кристалла. Второе — свойство $o \partial h o p o \partial h o c m u$.

Утверждение 1.1 (Шёнфлис—Бибербах). Группа симметрий кристалла *К* является кристаллографической.

2. Симметрии квазикристаллов

Приведём определение квазикристалла так называемым методом *разрезов и проекций* [5].

Пусть евклидово пространство E размерности n имеет ортогональное разложение $E=U\oplus V$, где $\dim U=d< n$. Пространство E называется $\mathit{еunepnpo-сmpahcmbom},\ U-\phi \mathit{изическим}$ пространством, а $V=U^\perp-\phi \mathit{азовым}$ пространством. Пусть e_1,\ldots,e_n — фиксированный ортонормированный базис в E. Тогда

 $M=\mathbb{Z}e_1\oplus\ldots\oplus\mathbb{Z}e_n$ является решёткой в E. Будем предполагать, что M имеет нулевое пересечение как с U, так и с V.

Рассмотрим единичный куб

$$P = \left\{ \sum_{i=1}^{n} x_i e_i \mid 0 \leqslant x_i \leqslant 1 \right\}. \tag{1}$$

Ортогональную проекцию K куба P в фазовое пространство V назовём $o\kappa$ ном. Kвазикристалл Q определяется как ортогональная проекция $M\cap (P+U)$ в физическое пространство U. При этом считается, что U так «повёрнуто» относительно базиса e_1,\ldots,e_n , что проекция M в U биективна. Кроме того, предполагается, что 0 принадлежит окну вместе с некоторой окрестностью.

Определение 5. *Симметрия квазикристалла* — это такое аффинное преобразование евклидова пространства E, которое отображает $M\cap (P+U)$ биективно в себя.

Симметрии квазикристалла образуют группу, обозначаемую $\operatorname{Sym} Q$ [1, гл. 6]. В [4] показано, что симметрии квазикристалла являются линейными операторами, при действии которых как U, так и M инвариантны. В [5] рассмотрен случай, когда $\dim U = \dim V = 2$. С помощью матричного представления симметрий классифицированы все возможные конечные подгруппы Fynn $\operatorname{Sym} Q$, причём под $\operatorname{Sym} Q$ в [5] понималась подгруппа группы $\operatorname{GL}(E)$ всех линейных обратимых операторов в E, таких что как U, так и M инвариантны при действии каждого элемента из $\operatorname{Sym} Q$. При этом было опущено требование биективности отображения множества $M \cap (P+U)$ при действии оператора симметрии. В дальнейшем под $\operatorname{Sym} Q$ будем понимать, как и в [1], подмножество в группе $\operatorname{Aff} E$, состоящую из таких аффинных преобразований Φ гиперпространства E, которыми множество $M \cap (P+U)$ биективно отображается на себя. Найдём конечные подгруппы в $\operatorname{Sym} Q$, которые могут существовать. Все эти подгруппы, очевидно, являются также подгруппами, перечисленными в [5].

3. Группы симметрии квазикристалла

Пусть A — матрица оператора $\mathcal{A}\in \mathrm{Sym}\,Q$ в фиксированном базисе (e_1,\dots,e_n) , причём $A\in \mathrm{GL}(n,\mathbb{Z}).$

Допустим, что (u_1,\dots,u_d) — базис в U, а (u_{d+1},\dots,u_n) — базис в V. Предположим, что

$$(u_1,\ldots,u_n)=(e_1,\ldots,e_n)C, C\in \mathrm{GL}(n,\mathbb{R}).$$

Пусть G — конечная подгруппа в $\mathrm{Sym}\,Q$ и $\mathcal{A}\in G$. Согласно [5] в E существуют скалярное произведение [x,y] и обратимая матрица C, такие что

$$CAC^{-1} = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, \quad A_1 \in \mathcal{O}(d, \mathbb{R}), \quad A_2 \in \mathcal{O}(n-d, \mathbb{R}).$$

Отображения $A \to A_1, \ A \to A_2$ определяют групповые гомоморфизмы

$$\mu_1 \colon \operatorname{Sym} Q \to \operatorname{O}(n-d,\mathbb{R}).$$

В этом случае G — подгруппа прямого произведения $\mu_1(G) \times \mu_2(G)$, где $\mu_1(G)$, $\mu_2(G)$ — конечные подгруппы в $\mathrm{O}(d,\mathbb{R})$ и $\mathrm{O}(n-d,\mathbb{R})$ соответственно. Пусть W — ортогональное дополнение U относительно [x,y]. Операторы из $\mu_1(G)$ действуют в U, а операторы из $\mu_2(G)$ действуют в проекции n-мерного единичного куба на подпространство W, в частности переводят проекцию множества $M\cap (P+U)$ на подпространство W в себя.

Утверждение 3.1. Проекцией n-мерного куба на двумерную плоскость является 2m-угольник c попарно параллельными сторонами, где $m=2,\ldots,n$.

Доказательство. Проведём индукцию по n.

Базис индукции: n=3. Очевидно, что проекцией является либо прямоугольник, либо шестиугольник с попарно параллельными сторонами.

Шаг индукции. Пусть для $n\geqslant 3$ утверждение справедливо. Рассмотрим единичный куб P размерности n в евклидовом пространстве размерности n+1, определяемый формулой (1). Единичный куб размерности n+1 получается из P процедурой прибавления векторов $x_{n+1}e_{n+1}$ ($0\leqslant x_{n+1}\leqslant 1$). При этом к проекции n-мерного куба прибавятся векторы $x_{n+1}u_{n+1}$, где u_{n+1} — проекция e_{n+1} на рассматриваемую плоскость. При этом если u_{n+1} параллелен какой-то паре выпуклого 2m-угольника окна, то количество сторон проекции не изменится. Если нет, то увеличится на две.

Предположим, что $n=4,\ d=2.$ В этом случае окном может являться либо прямоугольник, либо шестиугольник, либо восьмиугольник. Но 0 может находиться внутри окна только в последних двух случаях.

Из [1, предложение 6.5] следует, что вершины многоугольника окна соответствуют элементам квазикристалла. А поскольку $\mu_2(G)$ — конечная подгруппа группы $\mathrm{O}(n-d,\mathbb{R})$, то она должна быть подгруппой группы симметрии многоугольника, так как ортогональные преобразования многоугольника (включая его внутренние точки) в себя обязаны переводить вершины в вершины. Максимально возможные группы симметрии могут реализоваться, если многоугольник окна правильный (в общем случае многогранник размерности n-d). В этом случае это подгруппы групп симметрии правильного шестиугольника и правильного восьмиугольника.

В силу сказанного аналогом теоремы 2.5 из [5] является в нашем случае теорема 3.1.

Теорема 3.1. Пусть G — конечная подгруппа в $\operatorname{Sym} Q$, где $\dim U = 2 = \dim V$. Тогда G является подпрямым произведением одного из следующих трёх типов:

- а) двух циклических групп $\langle a_1 \rangle_{k_1} \times \langle a_2 \rangle_{k_2}$;
- б) циклической группы и группы диэдра $\langle a_1 \rangle_{k_1} \times D_{k_2}$;
- в) двух групп диэдра $D_{k_1} \times D_{k_2}$.

Целые k_1 и k_2 удовлетворяют одному из следующих условий:

- 1) $k_1, k_2 = 1, 2, 3, 4, 6;$
- 2) $k_1 = k_2 = 8$.

Напомним, что группа диэдра D_k является подгруппой группы ортогональных матриц $O(2,\mathbb{R})$, порождённой двумя матрицами

$$a = \begin{pmatrix} \cos\frac{2\pi}{k} & -\sin\frac{2\pi}{k} \\ \sin\frac{2\pi}{k} & \cos\frac{2\pi}{k} \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Отметим, что

$$a^{l} = \begin{pmatrix} \cos\frac{2\pi l}{k} & -\sin\frac{2\pi l}{k} \\ \sin\frac{2\pi l}{k} & \cos\frac{2\pi l}{k} \end{pmatrix}, \quad ba^{l} = \begin{pmatrix} \cos\frac{2\pi}{k} & \sin\frac{2\pi}{k} \\ \sin\frac{2\pi}{k} & -\cos\frac{2\pi}{k} \end{pmatrix}.$$

Более детальную классификацию групп симметрии в случае 2) теоремы 3.1 даёт следующая теорема [5, теорема 2.14].

Теорема 3.2. Пусть группа G является подпрямым произведением типа a), б), в) из теоремы 3.1, где $k_1=k_2=8$. Тогда

а) если G — подпрямое произведение циклических групп $\langle a_1 \rangle_8 \times \langle a_2 \rangle_8$, то G является прямым произведением двух циклических групп $\langle B \rangle \times \langle a_1^l \rangle$, где

$$B = \begin{pmatrix} a_1 & 0 \\ 0 & a_2^s \end{pmatrix} = \begin{pmatrix} \cos\frac{2\pi}{k_1} & -\sin\frac{2\pi}{k_1} & 0 & 0 \\ \sin\frac{2\pi}{k_1} & \cos\frac{2\pi}{k_1} & 0 & 0 \\ 0 & 0 & \cos\frac{2\pi s}{k_2} & -\sin\frac{2\pi s}{k_2} \\ 0 & 0 & \sin\frac{2\pi s}{k_2} & \cos\frac{2\pi s}{k_2} \end{pmatrix},$$

причём s нечётное, l = 0, 2, 4;

б) если G — подпрямое произведение $\langle a_1 \rangle \times D_8$, то G образуется как полупрямое произведение нормальной подгруппы группы $\langle B \rangle \times \langle a_1^l \rangle$ и циклической группы $\langle b \rangle$ порядка 2, причём s B нечётно, l=0,2,4 и

$$b = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};$$

- в) если G подпрямое произведение $D_8 \times D_8$, то G является одной из следующих групп:
 - 1) полупрямое произведение нормальной подгруппы группы $\langle B \rangle \times \langle a_1^l \rangle$ $(l=2\ u\ s\ \mbox{чётное})\ u\ прямого произведения <math>\langle b_1 \rangle_2 \times \langle b_2 \rangle_2;$
 - 2) полупрямое произведение нормальной подгруппы группы $\langle B \rangle \times \langle a_1^l \rangle$ $(l=2\ u\ s\ \mbox{чётное})$ и циклической группы $\langle H \rangle_2$, где

$$H = \begin{pmatrix} b_1 & 0 \\ 0 & b_2 a_2^j \end{pmatrix}, \quad j = 0, \dots, 8.$$

Сравнивая результаты настоящей работы с результатами [5], мы видим, что наложение дополнительного требования на оператор симметрии квазикристалла приводит к запрету на некоторые группы симметрии, перечисленные в [5]. Так, по [5, теорема 2.5] допускаются случаи, когда k_1 , k_2 равны либо 5, либо 10 и когда $k_1=k_2=12$. В подходе к определению симметрии квазикристалла, принятом в данной работе, требование биективности отображения множества $M\cap (P+U)$ на себя при действии оператора из $\operatorname{Sym} Q$ в гиперпространство E влечёт инвариантность проекции этого множества на фазовое пространство V. При этом в силу того что проекция единичного куба (1) на фазовое пространство V не может быть пятиугольником, а также в рассматриваемом нами случае n-d=2 двенадцатиугольником, значения $k_1=5,12$ исключаются. Разрешены только такие группы симметрии, подгруппами которых являются группы симметрии окна. Это циклические группы $\langle a_2 \rangle_{k_2}$ и группы диэдра D_{k_2} с $k_2=1,2,3,4,6,8,$ что и определяет приведённую выше классификацию групп симметрии квазикристалла в случае $\dim U=2=\dim V.$

Литература

- [1] Артамонов В. А., Словохотов Ю. Л. Группы и их приложения в физике, химии, кристаллографии. M.: Академия, 2005.
- [2] Делоне Б., Падуров Н., Александров А. Математические основы структурного анализа кристаллов. М., 1949.
- [3] Φ ёдоров Е. С. Симметрия и структура кристаллов. Основные работы. M., 1949.
- [4] Artamonov V. A. On symmetries of quasicrystals // Algebraic Structures and Their Representation: XV Colloquio Latinoamericano de Álgebra, Cocoyoc, Morelos, Mexico, July 20—26, 2003 / J. A. de la Pena, E. Vallejo, N. Atakishiev, eds. — Providence: Amer. Math. Soc., 2005. — (Contemp. Math.; Vol. 376). — P. 175—188.
- [5] Artamonov V. A., Sanchez S. Remarks on symmetries of 2D-quasicrystals // Proc. of the Conf. on Computation and Mathematical Methods in Science and Engineering (CMMSE-2006), Univ. Rey Juan Carlos, Madrid, Spain, September 21—25, 2006. P. 59—70.
- [6] Schönflies A. Kristallsysteme und Kristallstruktur. Leipzig, 1891.
- [7] Shechtman D. et al. Metallic phase with long-range orientational order and no translational symmetry // Phys. Rev. Lett. -1984. Vol. 53. P. 1951-1953.