Нормальные подгруппы голоморфов абелевых групп и почти голоморфный изоморфизм

и. э. гриншпон

Томский государственный университет систем управления и радиоэлектроники e-mail: irina-grinshpon@yandex.ru

УДК 512.541

Ключевые слова: голоморф, группа автоморфизмов, почти голоморфный изоморфизм, голоморфная разложимость, ранг, характеристическая подгруппа, нормальная подгруппа.

Аннотация

Две группы называются почти голоморфно изоморфными, если каждая из них изоморфна нормальной подгруппе голоморфа другой группы. В статье изучаются нормальные подгруппы голоморфов абелевых групп и выделяются некоторые группы без кручения, для которых почти голоморфный изоморфизм влечёт изоморфизм. Рассматривается также вопрос об определяемости группы своим голоморфом.

Abstract

I. E. Grinshpon, Normal subgroups of holomorphs of Abelian groups and almost holomorphic isomorphism, Fundamentalnaya i prikladnaya matematika, vol. 13 (2007), no. 3, pp. 9-16.

Two groups are said to be almost holomorphically isomorphic if each of them is isomorphic to a normal subgroup of the holomorph of the other group. In this paper, we study normal subgroups of holomorphs of Abelian groups and highlight some torsion-free groups for which almost holomorphic isomorphism implies isomorphism. In addition, we consider the problem of determinateness of a group by its holomorph.

Пусть G — абелева группа, $\Gamma(G)$ — её голоморф, т. е. полупрямое расширение группы G с помощью группы её автоморфизмов $\operatorname{Aut}(G)$. Для групповой операции в группе $\operatorname{Aut}(G)$ пользуемся мультипликативной записью, а для групповых операций в G и $\Gamma(G)$ — аддитивной записью. Группу $\Gamma(G)$ можно рассматривать как множество всех упорядоченных пар (g,φ) , где $g\in G$, $\varphi\in\operatorname{Aut}(G)$. Групповая операция в $\Gamma(G)$ определяется по правилу $(g,\varphi)+(h,\psi)=(g+\varphi h,\varphi \psi)$ для любых $(g,\varphi),(h,\psi)\in\Gamma(G)$. Нейтральным элементом в $\Gamma(G)$ является элемент $(0,\varepsilon)$ (ε — тождественный автоморфизм), а элементом, противоположным элементу (g,φ) , — элемент $(-\varphi^{-1}g,\varphi^{-1})$. Элементы вида (g,ε) образуют в голоморфе $\Gamma(G)$ нормальную подгруппу, изоморфную группе G, а элементы вида $(0,\varphi)$ — подгруппу, изоморфную группе $\operatorname{Aut}(G)$. Будем отождествлять эти подгруппы с группами G и $\operatorname{Aut}(G)$ соответственно. Понятно, что $G\cap\operatorname{Aut}(G)=\{(0,\varepsilon)\}$.

Фундаментальная и прикладная математика, 2007, том 13, № 3, с. 9—16. © 2007 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

Часто вместо того чтобы обозначать элементы группы $\Gamma(G)$ через (g,ε) и $(0,\varphi)$, будем писать просто g и φ соответственно.

В данной работе рассматриваются вопросы, связанные с определяемостью абелевых групп своим голоморфом.

Группы с изоморфными голоморфами называются голоморфно изоморфными. Голоморфно изоморфные группы не обязательно изоморфны. Исследованию голоморфно изоморфных групп посвящён ряд работ И. Х. Беккера (см., например, [1-4]).

Будем говорить, что группа G определяется в классе \Re своим голоморфом, если для любой группы H из этого класса из голоморфного изоморфизма групп G и H (т. е. из изоморфизма голоморфов $\Gamma(G)$ и $\Gamma(H)$) следует изоморфизм самих групп G и H.

Обобщением понятия голоморфного изоморфизма является почти голоморфный изоморфизм групп. Две группы называются почти голоморфно изоморфными, если каждая из них изоморфна нормальной подгруппе голоморфа другой группы, т. е. группы G и H почти голоморфно изоморфны, если $G\cong H'$, $H\cong G'$, где G' и H'— нормальные подгруппы групп $\Gamma(G)$ и $\Gamma(H)$ соответственно. Почти голоморфно изоморфные конечно порождённые абелевы группы рассматривались в [7].

Будем рассматривать голоморфы абелевых групп. Всякая абелева группа G является максимальной абелевой нормальной подгруппой в своём голоморфе. Действительно, пусть в голоморфе $\Gamma(G)$ существует такая абелева подгруппа G', что $G \subset G'$, $G \neq G'$. Тогда в G' существует элемент (g,σ) , не принадлежащий G, и, значит, $\sigma \neq \varepsilon$. Имеем $(-g,\varepsilon)+(g,\sigma)=(0,\sigma)\in G'$. В силу коммутативности G' для всякого элемента $a\in G$ справедливо $(a,\varepsilon)+(0,\sigma)=(0,\sigma)+(a,\varepsilon)$, т. е. $a=\sigma a$ и σ —тождественный автоморфизм. Получили противоречие. Итак, G—максимальная абелева подгруппа своего голоморфа (см. также [7]).

В дальнейшем будут использоваться следующие утверждения.

Лемма 1 ([7]). Если S — нормальная абелева подгруппа в $\Gamma(G),\ (a,\sigma)\in S,\ g\in G,\ au o$

$$\sigma a - a \in S, \quad (2a, \varepsilon) \in S, \quad (0, \sigma^2) \in S;$$
 (1)

$$\sigma g - g \in S; \tag{2}$$

$$\sigma(\sigma g - g) = \sigma g - g; (3)$$

$$\sigma^n g = g + n(\sigma g - g); \tag{4}$$

$$n(a,\sigma) = \left(na + \frac{n(n-1)}{2}(\sigma a - a), \sigma^n\right); \tag{5}$$

$$2(\sigma a - a) = 0. ag{6}$$

Лемма 2. Если S — нормальная абелева подгруппа в голоморфе $\Gamma(G)$ абелевой группы без кручения G, то S — группа без кручения.

Доказательство. Действительно, пусть $(a,\sigma)\in S$ и $(a,\sigma)\neq (0,\varepsilon)$. Тогда справедлива формула (5) леммы 1

$$n(a,\sigma) = \left(na + \frac{n(n-1)}{2}(\sigma a - a), \sigma^n\right).$$

Так как G — группа без кручения, то из равенства (6) следует, что $\sigma a - a = 0$, и формула (5) принимает вид

$$n(a,\sigma) = (na,\sigma^n). \tag{7}$$

Если $a\neq 0$, то $na\neq 0$ и $n(a,\sigma)\neq (0,\varepsilon)$. Если a=0, то $\sigma\neq \varepsilon$. Тогда $n(0,\sigma)==(0,\sigma^n)$. Покажем, что σ^n- нетождественный автоморфизм. По формуле (4) $\sigma^ng=g+n(\sigma g-g)$. Если для некоторого n $\sigma^n=\varepsilon$, то для любого $g\in G$ имеем $\sigma^ng=g$. Следовательно, $n(\sigma g-g)=0$, и так как G — группа без кручения, то $\sigma g-g=0$, т. е. σ — тождественный автоморфизм. Таким образом, если $\sigma\neq \varepsilon$, то $\sigma^n\neq \varepsilon$. Значит, S — группа без кручения.

Пусть S — нормальная абелева подгруппа в $\Gamma(G)$. Обозначим через S_1 и Φ_1 множества всех первых и вторых компонент элементов группы S соответственно (см. [4]).

Лемма 3 ([8]). S_1 — характеристическая подгруппа группы G, Φ_1 — нормальная подгруппа группы $\operatorname{Aut}(G)$.

Лемма 4. Если $S \neq 0$, то $S_1 \neq 0$.

Доказательство. Пусть $(a,\sigma)\in S$ и $(a,\sigma)\neq (0,\varepsilon)$. Если $\sigma\neq \varepsilon$, то существует такой элемент $g\in G$, что $\sigma g-g\neq 0$. В силу равенства (2) имеем $\sigma g-g\in S$, значит, $\sigma g-g\in S_1$. Следовательно, $S_1\neq 0$. Если $\sigma=\varepsilon$, то $a\neq 0$ и, значит, $S_1\neq 0$.

Предложение 5. Пусть S — нормальная абелева подгруппа голоморфа абелевой группы G без элементов порядка 2. Тогда

1) для любых элементов $g \in S_1$ и $\varphi \in \Phi_1$ выполняется

$$\varphi g = g; \tag{8}$$

2) S_1 содержится в централизаторе подгруппы S в группе $\Gamma(G)$ ($S_1\subset Z_{\Gamma(G)}(S)$).

Доказательство. Докажем первое утверждение. По лемме 1 для любого элемента $g \in S_1$ имеем, что $(2g;\varepsilon) \in S$. Так как $\varphi \in \Phi_1$, то существует такой элемент $s \in S_1$, что $(s,\varphi) \in S$. Тогда $(2g;\varepsilon) + (s,\varphi) = (s,\varphi) + (2g;\varepsilon)$, или $(2g+s,\varphi) = (s+2\varphi g,\varphi)$. Отсюда следует, что $2g+s=s+2\varphi g$, или $2g=2\varphi g$. Так как группа S не содержит элементов порядка 2, получаем, что $g=\varphi g$ и равенство (8) верно.

Докажем второе утверждение. Пусть $g \in S_1$. Элемент $(g; \varepsilon)$ принадлежит $Z_{\Gamma(G)}(S)$, если он перестановочен с каждым элементом из S, т. е. для любого элемента $(a,\sigma) \in S$ справедливо равенство $(g;\varepsilon)+(a,\sigma)=(a,\sigma)+(g;\varepsilon)$. Имеем $(g+a,\sigma)=(a+\sigma g,\sigma)$. Применив формулу (8), получим верное равенство $(g+a,\sigma)=(a+g,\sigma)$. Значит, исходное равенство верно и $S_1\subset Z_{\Gamma(G)}(S)$.

Следствие 6. Пусть S — нормальная абелева подгруппа голоморфа абелевой группы G без кручения. Тогда для любых элементов $g \in S_1$ и $\varphi \in \Phi_1$ выполняется $\varphi g = g$.

Подгруппа S голоморфа $\Gamma(G)$ называется голоморфно разложимой, если для любого элемента $(g,\varphi)\in S$ имеем $(g,\varepsilon)\in S$ и $(0,\varphi)\in S$, т. е. $S=S_1\oplus\Phi_1$.

Теорема 7. Всякая максимальная абелева нормальная подгруппа голоморфа абелевой группы без элементов порядка 2 голоморфно разложима.

Доказательство. Пусть G — абелева группа без элементов порядка 2, S — максимальная абелева нормальная подгруппа голоморфа $\Gamma(G), S_1$ и Φ_1 — множества всех первых и вторых компонент элементов группы S соответственно, $Z_{\Gamma(G)}(S)$ — централизатор подгруппы S в группе $\Gamma(G)$.

Очевидно, что $S\subset Z_{\Gamma(G)}(S)$. Предположим, что включение строгое, т. е. существует такой элемент $(b,\psi)\in Z_{\Gamma(G)}(S)$, что $(b,\psi)\notin S$. Тогда $S\subset \langle S,(b,\psi)\rangle$ и подгруппа $\langle S,(b,\psi)\rangle$ абелева. Получили противоречие. Значит, $S=Z_{\Gamma(G)}(S)$.

Рассмотрим подгруппу $\langle S_1, \Phi_1 \rangle$. Включение $S \subset \langle S_1, \Phi_1 \rangle$ очевидно. Докажем, что $\langle S_1, \Phi_1 \rangle \subset S$. Пусть $g \in S_1$. Тогда существует такой элемент $\varphi \in \Phi_1$, что $(g, \varphi) \in S$. Из предложения 5 следует, что $(g, \varepsilon) \in Z_{\Gamma(G)}(S)$. Так как подгруппа S совпадает с $Z_{\Gamma(G)}(S)$, то $(g, \varepsilon) \in S$. Имеем $(0, \varphi) = -(g, \varepsilon) + (g, \varphi) \in S$. Следовательно, $S = \langle S_1, \Phi_1 \rangle$, и так как $G \cap \operatorname{Aut}(G) = \{(0, \varepsilon)\}$, то $G = S_1 \oplus \Phi_1$. \square

Лемма 8. Всякая характеристическая подгруппа группы G является нормальной подгруппой голоморфа $\Gamma(G)$.

Доказательство. Пусть G' — характеристическая подгруппа группы G. Покажем, что она является нормальной подгруппой в $\Gamma(G)$, т. е. для любых элементов $a \in G'$ и $(g,\sigma) \in \Gamma(G)$ имеем $-(g,\sigma)+(a,\varepsilon)+(g,\sigma) \in G'$. Действительно,

$$\begin{split} &-(g,\sigma) + (a,\varepsilon) + (g,\sigma) = \\ &= (-\sigma^{-1}g,\sigma^{-1}) + (a+g,\sigma) = (-\sigma^{-1}g + \sigma^{-1}a + \sigma^{-1}g,\sigma^{-1}\sigma) = (\sigma^{-1}a,\varepsilon). \end{split}$$

Так как подгруппа G' характеристическая, то $\sigma^{-1}a \in G'$ и $(\sigma^{-1}a, \varepsilon) \in G'$. \square

Теорема 9. Пусть G — абелева группа без кручения с периодической группой автоморфизмов. Подгруппа S голоморфа группы G является абелевой нормальной подгруппой голоморфа тогда и только тогда, когда она является характеристической подгруппой группы G.

Доказательство. Необходимость. Пусть S — абелева нормальная подгруппа голоморфа $\Gamma(G)$, $(a,\sigma) \in S$, $(a,\sigma) \neq (0,\varepsilon)$. Так как группа $\operatorname{Aut}(G)$ периодическая, то существует такое натуральное число n, что $\sigma^n = \varepsilon$. По формуле (4) для любого $g \in G$ имеем $\sigma^n g = g + n(\sigma g - g)$. Отсюда $g = g + n(\sigma g - g)$ и, значит, $n(\sigma g - g) = 0$. Так как G — группа без кручения, то $\sigma g - g = 0$, т. е. $\sigma = \varepsilon$. Таким образом, из $(a,\sigma) \in S$ следует, что $\sigma = \varepsilon$ и $S \subset G$. Значит, $S = S_1$, и так как множество первых компонент нормальной подгруппы группы $\Gamma(G)$ является по лемме 3 характеристической подгруппой группы G, получаем, что S — характеристическая подгруппа группы G.

Достаточность. Пусть S — характеристическая подгруппа группы G. По лемме 8 получаем, что S — нормальная подгруппа в $\Gamma(G)$.

Следствие 10. В голоморфе $\Gamma(G)$ абелевой группы без кручения G с периодической группой автоморфизмов не существует максимальных абелевых нормальных подгрупп, отличных от G.

Доказательство. Пусть S — максимальная абелева нормальная подгруппа голоморфа $\Gamma(G)$. Из теоремы 9 следует, что S — подгруппа группы G, т. е. $S \subset G$. Но S — максимальная абелева нормальная подгруппа голоморфа. Поэтому S = G.

Следствие 11. Всякая абелева группа без кручения с периодической группой автоморфизмов характеристична в своём голоморфе.

Теорема 12. Всякая абелева группа без кручения с периодической группой автоморфизмов определяется своим голоморфом в классе всех абелевых групп.

Доказательство. Пусть G — абелева группа без кручения с периодической группой автоморфизмов, H — произвольная абелева группа и $\Gamma(G)\cong\Gamma(H)$. Пусть $\mu\colon\Gamma(H)\to\Gamma(G)$ — данный изоморфизм и $\mu(H)=G'$. Образ группы H будет максимальной абелевой нормальной подгруппой в $\Gamma(G)$. По следствию 10 G'=G, т. е. $\mu(H)=G$ и, значит, $G\cong H$.

Теорема 13. Если две абелевы группы почти голоморфно изоморфны и одна из них без кручения, то делимые части этих групп изоморфны.

Доказательство. Пусть $G\cong H',\ H\cong G',\$ где G' и H'- нормальные подгруппы групп $\Gamma(G)$ и $\Gamma(H)$ соответственно, и G- группа без кручения. Тогда H также группа без кручения. Покажем, что если одна группа из G и H нередуцированная, то и другая группа также нередуцированная.

Пусть G- нередуцированная группа, значит, H' также нередуцированная и $D(H') \neq 0$. Тогда существует $(h,\psi) \in D(H')$, $(h,\psi) \neq (0,\varepsilon)$. Из делимости группы D(H') следует, что для любого натурального числа n существует такой элемент $(a_n,\tau_n) \in D(H')$, что $n(a_n,\tau_n) = (h,\psi)$. Так как H- группа без кручения, то по формуле (7) имеем $n(a_n,\tau_n) = (na_n,\tau_n^n)$, т. е. $h=na_n,\,\psi=\tau_n^n$.

Если $h \neq 0$, то группа H нередуцированная.

Пусть h=0, тогда $\psi\neq\varepsilon$ и $\tau_n^n=\psi\neq\varepsilon$. По лемме 1 для любого элемента $a\in H$ имеем $\psi a-a\in H'$ и существует такой элемент $h_1\in H$, что $\psi h_1-h_1\neq 0$. Из формулы (4) получаем, что $\tau_n^n h_1=h_1+n(\tau_n h_1-h_1)$, или $\psi h_1-h_1=n(\tau_n h_1-h_1)$. Для ненулевого ψh_1-h_1 из группы без кручения H мы получили, что любое уравнение $\psi h_1-h_1=nx$ разрешимо в этой группе. Это означает, что группа H нередуцированная.

Обозначим через $D(G),\ D(H),\ D(G')$ и D(H') делимые части групп $G,\ H,\ G'$ и H' соответственно, а через $\bar{G}_1,\ \bar{\Phi}_1,\ \bar{H}_1$ и $\bar{\Psi}_1$ — множества всех первых и вторых компонент соответственно групп D(G') и D(H').

Имеем, что $D(G') \neq 0$ и $(g,\sigma) \in D(G')$, $(g,\sigma) \neq (0,\varepsilon)$. Тогда для всякого натурального числа n существует такой элемент $(b_n,\omega_n) \in D(G')$, что

 $n(b_n,\omega_n)=(g,\sigma)$, и отсюда следует, что $nb_n=g$ и $\omega^n=\sigma$. Значит, $g\in D(G)$ и $\bar{G}_1\subset D(G)$. Аналогично доказывается, что $\bar{H}_1\subset D(H)$.

Рассмотрим автоморфизм η группы G, действующий следующим образом: $\eta g=2g$, если $g\in D(G)$, и $\eta g=g$, если $g\in R(G)$ $(G=D(G)\oplus R(G))$. Имеем $-(0,\eta)+(2g,\varepsilon)+(0,\eta)=(g,\varepsilon)$, но $(2g,\varepsilon)\in D(G')$. Значит, $(g,\varepsilon)\in D(G')$. Получаем $D(G')=\bar{G}_1\oplus\bar{\Phi}_1$. Аналогично $D(H')=\bar{H}_1\oplus\bar{\Psi}_1$.

D(G') и D(H') — ненулевые нормальные абелевы подгруппы групп $\Gamma(G)$ и $\Gamma(H)$ соответственно. Тогда $\bar{G}_1 \neq 0$, $\bar{H}_1 \neq 0$ (лемма 4). Так как \bar{G}_1 и \bar{H}_1 — характеристические подгруппы групп G и H, то $\bar{G}_1 = D(G)$ и $\bar{H}_1 = D(H)$. Учитывая почти голоморфный изоморфизм групп G и H, имеем $D(G) \cong D(H') = \bar{H}_1 \oplus \bar{\Psi}_1 = D(H) \oplus \bar{\Psi}_1$, значит, $\mathbf{r}(D(G)) \geqslant \mathbf{r}(D(H))$. С другой стороны, $D(H) \cong D(G') = \bar{G}_1 \oplus \bar{\Phi}_1 = D(G) \oplus \bar{\Phi}_1$, отсюда $\mathbf{r}(D(H)) \geqslant \mathbf{r}(D(G))$. Следовательно, $\mathbf{r}(D(G)) = \mathbf{r}(D(H))$, и поэтому $D(G) \cong D(H)$ ($\mathbf{r}(A)$ — ранг группы A).

Учитывая этот результат, в дальнейшем будем рассматривать только редуцированные абелевы группы без кручения.

Две группы A и B называются *почти изоморфными* (почти изоморфными по характеристическим подгруппам), если каждая из них изоморфна подгруппе (характеристической подгруппе) другой группы. Для почти изоморфных групп A и B будем использовать обозначение $A \cong^{\circ} B$.

Замечание. Пусть G и H — почти голоморфно изоморфные группы без кручения с периодическими группами автоморфизмов, $G\cong H'\subset \Gamma(H),\ H\cong G'\subset \Gamma(G),$ где G' и H' — нормальные абелевы подгруппы групп $\Gamma(G)$ и $\Gamma(H)$ соответственно. Так как G и H — группы без кручения, то G' и H' — характеристические подгруппы групп G и H соответственно (теорема 9). Поэтому две абелевы группы без кручения с периодическими группами автоморфизмов почти голоморфно изоморфны тогда и только тогда, когда они почти изоморфны по характеристическим подгруппам.

Для дальнейшего изложения нам понадобятся следующие определение и утверждения.

Группа A называется $\mathit{сильно}$ неразложимой, если A — ненулевая группа и условие $A\cong^{\circ}B\oplus C$ влечёт, что либо B, либо C — нулевая группа [6, определение 2.2].

Теорема 14 ([6, теорема 2.6]). Пусть A_0, A_1, \ldots, A_m , B_0, B_1, \ldots, B_n — сильно неразложимые группы без кручения конечного ранга $u \bigoplus_{i=0}^m A_i \cong {}^o \bigoplus_{j=0}^m B_j$. Тогда m=n и существует такая перестановка φ индексов $0,1,\ldots,m$, что $A_i \cong {}^o B_{\varphi(i)}$ для всех $i=0,1,\ldots,m$.

Предложение 15. Пусть $G = \bigoplus_{i \in I} G_i$, где каждая группа G_i — группа без кручения ранга 1. Группа $\operatorname{Aut}(G)$ конечна тогда и только тогда, когда выполнены следующие условия:

1) множество I конечно;

- 2) для всякого простого числа p группы G_i $(i \in I)$ не являются p-делимыми;
- 3) $t(G_{i_1})$ несравним с $t(G_{i_2})$ для всякой пары индексов $i_1, i_2 \in I$, $i_1 \neq i_2$.

Доказательство. Покажем сначала, что если $A = B \oplus C$ — вполне разложимая группа ранга 2 и $\mathsf{t}(C) \leqslant \mathsf{t}(B)$, то группа $\mathsf{Aut}(A)$ бесконечна.

Группа ${\rm Hom}(C,B)$ является группой без кручения [5, предложение 85.4]. Пусть $\psi\in {\rm Hom}(C,B)$ и $\psi\neq 0$. Определим отображения $\varphi_n\colon A\to A$ $(n\in\mathbb{N})$ следующим образом: $\varphi_n(g_1+g_2)=g_1+g_2+n(\psi g_2)$, где $g_1\in B,\ g_2\in C$. Для любого натурального числа n отображение φ_n является автоморфизмом группы A, причём $\varphi_m\neq\varphi_k$ при $m\neq k$. Получаем, что группа автоморфизмов ${\rm Aut}(A)$ бесконечна.

Докажем необходимость условий 1)—3). Условие 1) очевидно. Известно, что если A— группа без кручения ранга 1 и $(\alpha_1,\alpha_2,\ldots,\alpha_k,\ldots)\in \mathrm{t}(A)$, то группа $\mathrm{Aut}(A)$ изоморфна мультипликативной группе рациональных чисел, числители и знаменатели которых делятся только на те простые числа p_n $(p_n-n$ -е простое число), для которых $\alpha_n=\infty$. Значит, группа $\mathrm{Aut}(A)$ изоморфна прямому произведению группы $\mathbb{Z}(2)$ и стольких бесконечных циклических групп, сколько имеется α_n , равных ∞ [5, с. 294]. Поэтому если для вполне разложимой группы $G=\bigoplus_{i\in I}G_i$ группа $\mathrm{Aut}(G)$ конечна и $(\alpha_{i_1},\alpha_{i_2},\ldots,\alpha_{i_k},\ldots)\in\mathrm{t}(G_i)$, то $\alpha_{i_k}<\infty$ для всех $i\in I,\ k\in\mathbb{N}$ и, значит, $\mathrm{Aut}(G_i)\cong\mathbb{Z}(2)$. Докажем условие 3). Предположим, что существует пара индексов $i_1,i_2\in I$ $(i_1\neq i_2)$, таких что $\mathrm{t}(G_{i_1})\leqslant\mathrm{t}(G_{i_2})$. Тогда по ранее доказанному прямое слагаемое $G_{i_1}\oplus G_{i_2}$ ранга 2 группы G имеет бесконечную группу автоморфизмов, а значит, и вся группа $\mathrm{Aut}(G)$ бесконечна.

Докажем достаточность условий 1)—3). Пусть $G=\bigoplus_{i=1}^n G_i$, где G_i — группы без кручения ранга 1. Из условия 2) следует, что для любого $i\in I$ имеем, что $\operatorname{Aut}(G_i)\cong \mathbb{Z}(2)$. Так как тип группы G_i несравним с типом группы G_j , то $\operatorname{Hom}(G_i,G_j)=0$ при $i\neq j$ и, значит, $\operatorname{Aut}(G)\cong \prod_{i=1}^n \operatorname{Aut}(G_i)\cong \prod_{i=1}^n \mathbb{Z}(2)$. Группа $\operatorname{Aut}(G)$ имеет мощность 2^n , следовательно, она конечна.

Для вполне разложимых групп без кручения получен следующий результат.

Теорема 16. Пусть G и H — почти голоморфно изоморфные вполне разложимые группы без кручения. Если группы $\mathrm{Aut}(G)$ и $\mathrm{Aut}(H)$ конечны, то группы G и H изоморфны.

Доказательство. Имеем $G\cong H',\ H\cong G',\$ где G' и H'- нормальные подгруппы групп $\Gamma(G)$ и $\Gamma(H)$ соответственно. По теореме 9 группы G' и H'- характеристические подгруппы групп G и H соответственно. Значит, группы G и H почти изоморфны по характеристическим подгруппам. Имеем $G=\bigoplus_{i=1}^n G_i,\ H=\bigoplus_{j=1}^m H_j,\$ где G_i и H_j- группы ранга 1. Группы ранга 1. Сильно неразложимы. Таким образом, группы G_i и H_j удовлетворяют условиям теоремы 14, откуда

следует, что m=n и существует такая перестановка φ индексов $1,2,\dots,n$, что $G_i\cong^\circ H_{\varphi(i)}$ для всех $i=1,\dots,n$. Почти изоморфные группы ранга 1 изоморфны.

Следовательно,
$$G = \bigoplus_{i=1}^n G_i \cong \bigoplus_{j=1}^n H_j = H.$$

Литература

- [1] Беккер И. Х. О голоморфах абелевых групп без кручения // Изв. высш. учебн. завед. Математика. 1974. № 3. С. 3—13.
- [2] Беккер И. Х. Абелевы группы с изоморфными голоморфами // Изв. высш. учебн. завед. Математика. 1975. N2 3. С. 97—99.
- [3] Беккер И. Х. Определяемость редуцированных абелевых групп без кручения своими относительными голоморфами // Абелевы группы и модули. — Томск, 1980. — С. 3—19.
- [4] Беккер И. Х. Абелевы голоморфные группы // Межд. конф. Всесибирские чтения по матем. и мех. Избранные доклады. Т. 1. Математика. 1997.-C.43-47.
- [5] Фукс Л. Бесконечные абелевы группы. М.: Мир, 1977. Т. 2.
- [6] Jónsson B. On direct decomposition of torsion free Abelian groups // Math. Scand. 1959.- Vol. 7, no. 2.- P. 361-371.
- [7] Mills W. H. Multiple holomorphs of finitely generated abelian groups // Trans. Amer. Math. Soc. -1950. Vol. 71, no. 3. P. 379-392.
- [8] Mills W. H. On the non-isomorphism of certain holomorphs // Trans. Amer. Math. Soc. -1953. Vol. 74. P. 428-443.

Статья поступила в редакцию в мае 2006 г.