Линейные отображения матриц, $^{\sharp}$ сп монотонные относительно порядков \leqslant и \leqslant

м. а. Ефимов

Московский государственный университет им. М. В. Ломоносова e-mail: efimov-mikhail@rambler.ru

УДК 512.643

Ключевые слова: линейные отображения, частичные порядки на матричной алгебре, групповая обобщённая обратная матрица.

Аннотация

Получена характеризация линейных отображений пространства матриц в себя над произвольным полем характеристики, отличной от 2, монотонных относительно порядков $\overset{\sharp}{\leqslant}$ и $\overset{\mathrm{cn}}{\leqslant}$.

Abstract

M. A. Efimov, Linear matrix transformations that are monotone with respect to the \leqslant - or \leqslant -order, Fundamentalnaya i prikladnaya matematika, vol. 13 (2007), no. 4, pp. 53–66.

We characterize linear transformations on the matrix algebra over an arbitrary field with characteristic not equal to 2 that are monotone with respect to the \leqslant - or \leqslant -order.

1. Введение

Пусть $\mathrm{M}_n(\mathbf{F})$ — пространство квадратных матриц порядка n с коэффициентами из произвольного поля \mathbf{F} , $\mathrm{char}\,\mathbf{F}$ — характеристика поля \mathbf{F} , $\mathrm{GL}_n(\mathbf{F})$ — полная линейная группа. Через A^{t} обозначим транспонированную матрицу к матрице $A \in \mathrm{M}_n(\mathbf{F})$, через $\mathrm{rk}\,A$ — ранг матрицы A. Пусть E_{ij} — матрица, у которой на (i,j)-й позиции стоит 1, а на всех остальных — 0, $\mathrm{Ker}\,T$ — ядро линейного отображения T.

Определение 1.1. Матрица $A \in M_n(\mathbf{F})$ имеет *индекс* k (Ind A = k), если $\operatorname{rk} A^k = \operatorname{rk} A^{k+1}$ и k есть наименьшее натуральное число с таким свойством.

Определение 1.2. *Групповая обобщённая обратная матрица* A^{\sharp} для матрицы A — это матрица, удовлетворяющая следующим соотношениям:

- $1) AA^{\sharp}A = A;$
- $2) A^{\sharp}AA^{\sharp} = A^{\sharp};$
- 3) $AA^{\sharp} = A^{\sharp}A$.

Фундаментальная и прикладная математика, 2007, том 13, № 4, с. 53—66. © 2007 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

Известно (см. [5,8]), что групповая обобщённая обратная (или просто *групповая обратная*) матрица к данной матрице A существует тогда и только тогда, когда A имеет индекс 1 (rk $A=\operatorname{rk} A^2$). Кроме того, если матрица с такими свойствами существует, то она единственна (см. [9,12]).

При помощи групповой обобщённой обратной матрицы можно задавать различные отношения частичного порядка на матричной алгебре. Введём те из них, которые будут рассмотрены в данной работе.

Определение 1.3 [9]. Пусть матрица $A \in \mathrm{M}_n(\mathbf{F})$ имеет индекс 1, $B \in \mathrm{M}_n(\mathbf{F})$ — произвольная матрица. Будем говорить, что $A \stackrel{\sharp}{\leqslant} B$, если $AA^{\sharp} = BA^{\sharp} = A^{\sharp}B$.

Заметим, что все матрицы индекса больше 1 максимальны относительно порядка $\stackrel{\sharp}{\leqslant}$. В [7] введено отношение порядка на всей матричной алгебре, расширяющее порядок $\stackrel{\sharp}{\leqslant}$. Это отношение называется порядком $\stackrel{\text{cn}}{\leqslant}$. Для его задания определим следующее разложение матриц.

Определение 1.4. *Нильпотентным разложением* квадратной матрицы $A \in \mathrm{M}_n(\mathbf{F})$ называется представление $A = C_A + N_A$, где C_A имеет индекс 1, а N_A нильпотентна, причём $C_A N_A = N_A C_A = 0$.

Известно, что для произвольной матрицы $A \in \mathrm{M}_n(\mathbf{F})$ нильпотентное разложение существует и единственно [4, гл. 4.8].

Введём отношение порядка $\overline{\leqslant}$, оно также потребуется для задания порядка $\stackrel{\mathrm{cn}}{\leqslant}$.

Определение 1.5 [6,11]. $A \leqslant B$ для произвольных матриц $A,B \in \mathrm{M}_n(\mathbf{F})$ тогда и только тогда, когда $\mathrm{rk}(B-A) = \mathrm{rk}\,B - \mathrm{rk}\,A.$

Определение 1.6 [7]. Пусть $A,B\in \mathrm{M}_n(\mathbf{F})$. Тогда $A\stackrel{\mathrm{cn}}{\leqslant} B$, если и только если $C_A\stackrel{\sharp}{\leqslant} C_B$ и $N_A \overline{\leqslant} N_B$.

Все три определённые отношения действительно являются отношениями частичного порядка, т. е. рефлексивны, антисимметричны и транзитивны (доказательство можно найти в [7]). Отметим, что указанные отношения порядка используются в различных областях алгебры (см. [3,10]). Применяются они и в математической статистике (см. [2]).

Изучение свойств заданного частичного порядка на $M_n(\mathbf{F})$ нередко опирается на характеризацию монотонных относительно него отображений (подробнее см. [3]).

Определение 1.7. Отображение $T\colon \mathrm{M}_n(\mathbf{F}) \to \mathrm{M}_n(\mathbf{F})$ монотонно относительно порядка \leqslant , если для любых матриц A и B из $A \leqslant B$ следует $T(A) \leqslant \leqslant T(B)$.

Определение 1.8. Отображение $T \colon \mathrm{M}_n(\mathbf{F}) \to \mathrm{M}_n(\mathbf{F})$ строго монотонно относительно порядка \leqslant , если для любых матриц A и B условия $A \leqslant B$ и $T(A) \leqslant T(B)$ эквивалентны.

Цель данной работы — указать общий вид линейных отображений, монотонных относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$. В [1] подобная характеризация уже была получена при дополнительном предположении биективности рассматриваемых отображений. Нам потребуются определение и связанная с ним лемма, доказанная в этой работе.

Определение 1.9 [1, определение 3.2]. Будем называть последовательность матриц $(A_1, A_2, \dots, A_n) \in (M_n(\mathbf{F}))^n$ выделенной, если существуют такие ненулевые элементы $\alpha_1,\alpha_2,\ldots,\alpha_n\in \mathbf{F}$ и матрица $P\in \mathrm{GL}_n(\mathbf{F})$, что

$$A_i = P(\alpha_1 E_{11} + \alpha_2 E_{22} + \ldots + \alpha_i E_{ii})P^{-1}$$

для всех i = 1, 2, ..., n.

Согласно общепринятым обозначениям $A \stackrel{\sharp}{<} B$ ($A \stackrel{\text{cn}}{<} B$), если $A \neq B$ и $A \stackrel{\sharp}{\leqslant} B$ $(A \stackrel{\operatorname{cn}}{\leqslant} B).$

Лемма 1.10 [1, лемма 3.4]. Для последовательности

$$(A_1, A_2, \dots, A_n) \in (M_n(\mathbf{F}))^n$$

равносильны следующие утверждения:

- 1) последовательность (A_1, A_2, \ldots, A_n) является выделенной;
- 2) $0 \stackrel{\sharp}{<} A_1 \stackrel{\sharp}{<} A_2 \stackrel{\sharp}{<} \dots \stackrel{\sharp}{<} A_n;$ 3) $0 \stackrel{\text{cn}}{<} A_1 \stackrel{\text{cn}}{<} A_2 \stackrel{\text{cn}}{<} \dots \stackrel{\text{cn}}{<} A_n.$

В дальнейшем нам потребуются примеры монотонных отображений. Непосредственная проверка показывает, что справедлива следующая лемма.

Лемма 1.11. Следующие отображения пространства матриц линейны и монотонны относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$:

- 1) $T_c(X) = cX$, где $c \in \mathbf{F}$;
- 2) $T_P(X) = P^{-1}XP$, где $P \in GL_n(\mathbf{F})$;
- 3) $T_t(X) = X^t$.

Так как композиция отображений, монотонных относительно некоторого частичного порядка, снова монотонна, отображения следующего вида монотонны относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$ ($\alpha \in \mathbf{F}$ и $P \in \mathrm{GL}_n(\mathbf{F})$): $T(X) = \alpha P^{-1} X P$, $T(X) = \alpha P^{-1} X^{t} P$. Нетрудно понять, что композиция отображений указанного вида есть отображение указанного вида. Отметим, что утверждение основной теоремы данной работы состоит в том, что других линейных монотонных относительно исследуемых порядков отображений нет.

В дальнейшем для изучения линейных монотонных отображений нам понадобятся следующие определения.

Определение 1.12. Будем говорить, что матрицы $A, B \in \mathrm{M}_n(\mathbf{F})$ ортогональны, если AB = BA = 0.

Определение 1.13. Набор из n матриц $A_1, A_2, \ldots, A_n \in \mathrm{M}_n(\mathbf{F})$ будем называть B-набором, если выполнены следующие условия:

- 1) все A_i имеют ранг и индекс 1;
- 2) A_i и A_j ортогональны для любых различных i и j.

В следующем разделе будут изучены некоторые свойства линейных отображений, монотонных относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\rm cn}{\leqslant}$, и получена информация о структуре В-набора. С помощью этих данных в разделе 3 будет сформулирована и доказана основная теорема о характеризации линейных отображений, монотонных относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\rm cn}{\leqslant}$.

2. Свойства монотонных отображений

Нам потребуются следующие две леммы.

Лемма 2.1. Пусть $A=\{a_{ij}\}$ — произвольная квадратная матрица. Тогда A и E_{ii} будут ортогональны, если и только если $a_{ij}=a_{ji}=0$ для всех $j=1,2,\ldots,n$.

Доказательство. Из соотношения

$$E_{ii}A = \sum_{j} a_{ij}E_{ij} = 0$$

получаем условие $a_{ij}=0$ для всех $j=1,2,\ldots,n$. Аналогично получаем условие $a_{ji}=0$ для всех $j=1,2,\ldots,n$.

Лемма 2.2. Пусть матрицы $X_1, X_2, \dots, X_n \in \mathrm{M}_n(\mathbf{F})$ образуют B-набор. Тогда существуют такие ненулевые $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbf{F}$ и такая матрица $P \in \mathrm{GL}_n(\mathbf{F})$, что $P^{-1}X_iP = \alpha_iE_{ii}$ для всех $i=1,2,\dots,n$.

Доказательство. Проведём индукцию по n. При n=1 утверждение верно ($\alpha_1 \neq 0$, так как матрица X_1 имеет ранг 1). Пусть n>1. По условию матрица X_1 имеет индекс и ранг 1, поэтому существует такая матрица $P_1 \in \mathrm{GL}_n(\mathbf{F})$, что $X_1 = P_1^{-1} \alpha_1 E_{11} P_1$ для некоторого $\alpha_1 \neq 0$. Но тогда матрицы

$$P_1X_1P_1^{-1} = \alpha_1E_{11}, \ P_1X_2P_1^{-1}, \dots, \ P_1X_nP_1^{-1}$$

также образуют В-набор. Без ограничения общности можем считать, что $X_1=\alpha_1E_{11}$. Будем обозначать через \mathbf{M}_{ij} элемент матрицы M, стоящий на позиции (i,j). Применяя лемму 2.1, получаем $(X_k)_{1j}=(X_k)_{j1}=0$ при всех $k,j\in\{1,2,\ldots,n\}$ с условием k>1, т. е. X_k — блочно-диагональная матрица вида

$$\begin{pmatrix} 0 & 0 \\ 0 & X'_k \end{pmatrix}.$$

Отметим, что ранг X_k' совпадает с рангом X_k и равен 1, $(X_k')^2 \neq 0$, т. е. индекс X_k' также равен 1. Тогда из правил умножения матриц следует, что

 $X_2', X_3', \ldots, X_n' \in \mathrm{M}_{n-1}(\mathbf{F})$ образуют В-набор. По предположению индукции найдётся матрица $P' \in \mathrm{GL}_{n-1}(\mathbf{F})$, такая что $(P')^{-1}X_{i+1}'P' = \beta_i E_{ii}$ для всех $i=1,2,\ldots,n-1$, все β_i ненулевые. Обозначим $\alpha_2=\beta_1,\ \alpha_3=\beta_2,\ldots,\ \alpha_n=\beta_{n-1};$

$$P = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix}.$$

Тогда
$$P^{-1}X_1P = \alpha_1E_{11}$$
 и $P^{-1}X_iP = \alpha_iE_{ii}$ при $i>1$. Лемма доказана.

Вообще говоря, непосредственная проверка условия монотонности для данного отображения — трудная техническая задача. Поэтому важнейшим для характеризации линейных монотонных отображений является следующее их свойство, вытекающее из леммы о выделенной последовательности (см. [1, лемма 3.4]).

Теорема 2.3. Пусть матрицы $X_1, X_2, \dots, X_n \in \mathrm{M}_n(\mathbf{F})$ образуют B-набор, а линейное отображение $T \colon \mathrm{M}_n(\mathbf{F}) \to \mathrm{M}_n(\mathbf{F})$ монотонно относительно порядка $\stackrel{\mathrm{cn}}{\leqslant}$ (или $\stackrel{\mathrm{cn}}{\leqslant}$). Кроме того, ни для какого $i=1,2,\dots,n$ матрица X_i не принадлежит $\mathrm{Ker}\,T$. Тогда матрицы $T(X_1),T(X_2),\dots,T(X_n)$ образуют B-набор.

Доказательство. В силу леммы 2.2 найдётся такая матрица $P \in \mathrm{GL}_n(\mathbf{F})$, что $P^{-1}X_iP = \alpha_iE_{ii}$ для некоторых ненулевых $\alpha_1,\alpha_2,\ldots,\alpha_n \in \mathbf{F}$. Рассмотрим выделенную последовательность

$$(X_1, X_1 + X_2, \dots, X_1 + X_2 + \dots + X_n)$$

и применим лемму 1.10. Получим

$$0 \stackrel{\sharp}{\leqslant} X_1 \stackrel{\sharp}{\leqslant} X_1 + X_2 \stackrel{\sharp}{\leqslant} \dots \stackrel{\sharp}{\leqslant} X_1 + X_2 + \dots + X_n, 0 \stackrel{\text{cn}}{\leqslant} X_1 \stackrel{\text{cn}}{\leqslant} X_1 + X_2 \stackrel{\text{cn}}{\leqslant} \dots \stackrel{\text{cn}}{\leqslant} X_1 + X_2 + \dots + X_n.$$

По условию теоремы T — линейное отображение, монотонное относительно порядка $\stackrel{\sharp}{\leqslant}$ (или $\stackrel{\mathrm{cn}}{\leqslant}$). Обозначая $Y_i=T(X_i)$, с учётом равенства T(0)=0 получаем

$$0 \leqslant Y_1 \leqslant Y_1 + Y_2 \leqslant \dots \leqslant Y_1 + Y_2 + \dots + Y_n$$

ИЛИ

$$0 \stackrel{\text{cn}}{\leqslant} Y_1 \stackrel{\text{cn}}{\leqslant} Y_1 + Y_2 \stackrel{\text{cn}}{\leqslant} \dots \stackrel{\text{cn}}{\leqslant} Y_1 + Y_2 + \dots + Y_n.$$

Так как $X_i \notin \operatorname{Ker} T$ для любого $i=1,2,\ldots,n$, получим, что $Y_i=T(X_i)\neq 0$ для каждого $i=1,2,\ldots,n$. Поэтому все неравенства строгие. Повторно применяя лемму 1.10, можем утверждать, что последовательность

$$(Y_1, Y_1 + Y_2, \dots, Y_1 + Y_2 + \dots + Y_n)$$

выделенная. Но тогда существует матрица $Q \in \mathrm{GL}_n(\mathbf{F})$, такая что

$$Y_1 + Y_2 + \ldots + Y_i = Q(\beta_1 E_{11} + \beta_2 E_{22} + \ldots + \beta_i E_{ii})Q^{-1}$$

для некоторых ненулевых $\beta_1,\beta_2,\dots,\beta_n\in \mathbf{F}$, откуда следует, что $Y_i=Q\beta_iE_{ii}Q^{-1}$. Таким образом, матрица Y_i имеет ранг и индекс 1 для каждого i. Кроме того, $E_{ii}E_{jj}=E_{jj}E_{ii}=0$ при $i\neq j$. Следовательно, матрицы Y_i и Y_j ортогональны при $i\neq j$. В результате матрицы Y_1,Y_2,\dots,Y_n образуют В-набор.

Из доказанной теоремы нетрудно получить следствие.

Следствие 2.4. Пусть биективное линейное отображение $T \colon \mathrm{M}_n(\mathbf{F}) \to \mathrm{M}_n(\mathbf{F})$ монотонно относительно порядка $\stackrel{\mathrm{cn}}{\leqslant}$ (или $\stackrel{\mathrm{cn}}{\leqslant}$). Тогда оно переводит матрицы ранга и индекса 1 в матрицы ранга и индекса 1.

Доказательство. Пусть A — некоторая матрица с условием $\operatorname{rk} A = \operatorname{Ind} A = 1$. Тогда существуют $P \in \operatorname{GL}_n(\mathbf{F})$ и ненулевое $\lambda \in \mathbf{F}$, такие что $A = \lambda P^{-1}E_{11}P$. Рассмотрим набор из n матриц

$$X_1 = A = \lambda P^{-1} E_{11} P$$
, $X_2 = P^{-1} E_{22} P$,..., $X_n = P^{-1} E_{nn} P$.

Как отмечалось выше, эти матрицы образуют В-набор. Кроме того, в силу биективности $X_i \notin \operatorname{Ker} T$ для любого $i=1,2,\ldots,n$.

По теореме 2.3 матрицы $T(X_1), T(X_2), \dots, T(X_n)$ также образуют В-набор. Поэтому матрица $T(A) = T(X_1)$ имеет ранг и индекс 1, что и требовалось доказать.

В дальнейшем нам потребуется следующее определение.

Определение 2.5. Матрицу $A\in \mathrm{M}_n(\mathbf{F})$ будем называть матрицей типа (i,j), где $i,j\in\{1,2,\ldots,n\}$, если существуют такие $a_{ii},a_{ij},a_{ji},a_{jj}\in\mathbf{F}$, что

$$A = a_{ii}E_{ii} + a_{ij}E_{ij} + a_{ji}E_{ji} + a_{jj}E_{jj}.$$

Замечание 2.6. В теореме 2.3 рассматриваются В-наборы, в которых $X_i \notin \operatorname{Ker} T$ для всех $i=1,2,\ldots,n$. В связи с этим возникает вопрос о существовании таких наборов. Ответ на него даёт следующая лемма: если В-наборов с этим свойством нет, то отображение T тождественно нулевое (достаточно положить $V=\operatorname{Ker} T$).

Лемма 2.7. Пусть ${\bf F}-$ произвольное поле с условием ${\rm char}\,{\bf F}\neq 2,\ n\geqslant 1-$ целое число, V- такое подпространство ${\rm M}_n({\bf F}),$ что в любом B-наборе найдётся матрица, лежащая в V. Тогда $V={\rm M}_n({\bf F}).$

Доказательство. Проведём индукцию по n. При n=1 утверждение верно. Пусть n>1. Покажем, что все матрицы ранга и индекса 1 лежат в V. Предположим, найдётся матрица $A_0 \notin V$ с условием $\operatorname{rk} A_0 = \operatorname{Ind} A_0 = 1$. Рассмотрим некоторый B-набор, содержащий A_0 , и воспользуемся условием теоремы. Тогда найдётся такая матрица B_0 , ортогональная A_0 , что $B_0 \in V$, $\operatorname{rk} B_0 = \operatorname{Ind} B_0 = 1$. Как отмечалось выше, существуют такие матрица $P_1 \in \operatorname{GL}_n(\mathbf{F})$ и элемент поля $\lambda_1 \neq 0$, что $B_0 = \lambda_1 P_1^{-1} E_{11} P_1$. Обозначим $V_1 = \lambda_1^{-1} P_1 V P_1^{-1}$. Тогда $E_{11} \in V_1$ и найдётся такая матрица $A_1 = \lambda_1^{-1} P_1 A_0 P_1^{-1}$ ранга и индекса 1, ортогональная E_{11} , что $A_1 \notin V_1$.

Рассмотрим всевозможные B-наборы, содержащие E_{11} .

1. В каждом В-наборе матриц $X_1=E_{11},X_2,\ldots,X_n$ найдётся отличная от E_{11} матрица, лежащая в V_1 . Обозначим через W подпространство матриц с нулевыми первой строкой и столбцом, $V'=V_1\cap W$. Пусть $\overline{V'}$ — это V', рассмотренное как подпространство $\mathbf{M}_{n-1}(\mathbf{F})$. В силу леммы 2.1 все ортогональные E_{11} матрицы лежат в W,

$$X_k = \begin{pmatrix} 0 & 0 \\ 0 & X_k' \end{pmatrix}$$

для всех $k=2,3,\ldots,n$. Поэтому X_2',X_3',\ldots,X_n' —В-набор в пространстве $\mathbf{M}_{n-1}(\mathbf{F})$ и в каждом таком наборе найдётся матрица, лежащая в $\overline{V'}$. Применим утверждение индукции и получим, что $\overline{V'}=\mathbf{M}_{n-1}(\mathbf{F})$, т. е. V'=W и $W\subset V_1$. Но A_1 ортогональна E_{11} , следовательно, $A_1\in W\subset V_1$. Противоречие.

2. Найдётся такой B-набор $X_1=E_{11},X_2,X_3,\ldots,X_n$, что $X_i\notin V_1$ для всех $i=2,3,\ldots,n$. По лемме 2.2 найдутся такая матрица $P_2\in \mathrm{GL}_n(\mathbf{F})$ и такие ненулевые $\lambda_2,\lambda_3,\ldots,\lambda_n\in \mathbf{F}$, что $X_k=\lambda_iP_2E_{ii}P_2^{-1}$ для всех $k=2,3,\ldots,n$ и $X_1=P_2E_{11}P_2^{-1}=E_{11}$. Обозначим $V_2=P_2^{-1}V_1P_2$, получим $E_{11}\in V_2,\,\lambda_kE_{kk}\notin V_2$ для всех $k=2,3,\ldots,n$. Но V_2 является подпространством в $\mathrm{M}_n(\mathbf{F})$. Поэтому $E_{22},E_{33},\ldots,E_{nn}\notin V_2$.

Далее будем рассматривать наборы матриц вида A,B,E_{33},\ldots,E_{nn} , где матрицы A и B ортогональны, имеют тип (1,2) и ранг и индекс 1. Из условия теоремы следует, что либо $A\in V_2$, либо $B\in V_2$.

- 1) Покажем, что $E_{12} \in V_2$. Пусть $A = E_{11} + x E_{12}$, $B = -x E_{12} + E_{22}$, где $x \in \mathbf{F}$ и $x \neq 0$. Тогда AB = BA = 0, $A^2 = A$, $B^2 = B$, гк $A = \operatorname{rk} B = 1$. Но это означает, что A и B удовлетворяют всем требуемым условиям. Если $A = E_{11} + x_0 E_{12} \in V_2$ при некотором значении $x = x_0$, то, используя линейность V_2 и условие $E_{11} \in V_2$, получим $E_{12} \in V_2$. Если же такого значения x_0 нет, то найдутся ненулевые $x_1 \neq x_2$, такие что $-x_1 E_{12} + E_{22} \in V_2$ и $-x_2 E_{12} + E_{22} \in V_2$. Это следует из того, что char $\mathbf{F} \neq 2$ и в поле \mathbf{F} не меньше трёх элементов. С учётом линейности V_2 имеем $E_{12} \in V_2$.
- 2) Полагая $A=E_{11}+xE_{21},\,B=-xE_{21}+E_{22},$ аналогично пункту 1) получаем, что $E_{21}\in V_2.$
- 3) Пусть $A=E_{11}+E_{12}+E_{21}+E_{22},\,B=E_{11}-E_{12}-E_{21}+E_{22}.$ Проверим, что AB=0 и BA=0:

$$AB = (E_{11} + E_{12} + E_{21} + E_{22})(E_{11} - E_{12} - E_{21} + E_{22}) =$$

$$= (E_{11} - E_{12}) + (-E_{11} + E_{12}) + (E_{21} - E_{22}) + (-E_{21} + E_{22}) = 0,$$

$$BA = (E_{11} - E_{12} - E_{21} + E_{22})(E_{11} + E_{12} + E_{21} + E_{22}) =$$

$$= (E_{11} + E_{12}) + (-E_{11} - E_{12}) + (E_{21} + E_{22}) + (-E_{21} - E_{22}) = 0.$$

Обозначим d=1+1. Так как характеристика поля ${\bf F}$ не равна $2,\ d\neq 0$. Покажем, что $A^2\neq 0,\ B^2\neq 0$. Для этого рассмотрим матрицы $E_{11}A^2E_{11}$ и $E_{11}B^2E_{11}$:

$$E_{11}A^{2}E_{11} = E_{11}(E_{11} + E_{12} + E_{21} + E_{22})(E_{11} + E_{12} + E_{21} + E_{22})E_{11} =$$

$$= (E_{11} + E_{12})(E_{11} + E_{21}) = E_{11} + E_{11} = dE_{11} \neq 0,$$

$$E_{11}B^{2}E_{11} = E_{11}(E_{11} - E_{12} - E_{21} + E_{22})(E_{11} - E_{12} - E_{21} + E_{22})E_{11} =$$

$$= (E_{11} - E_{12})(E_{11} - E_{21}) = E_{11} + E_{11} = dE_{11} \neq 0.$$

Ясно, что $\operatorname{rk} A = \operatorname{rk} B = 1$. С учётом неравенства $A^2 \neq 0$ имеем $0 < \operatorname{rk} A^2 \leqslant \operatorname{rk} A = 1$. Следовательно, $\operatorname{rk} A^2 = 1 = \operatorname{rk} A$ и $\operatorname{Ind} A = 1$. Аналогично получаем, что $\operatorname{Ind} B = 1$. Можем утверждать, что либо $A \in V_2$, либо $B \in V_2$. Но тогда $E_{22} \in V_2$, так как $E_{11} \in V_2$, $E_{12} \in V_2$, $E_{21} \in V_2$. Противоречие.

Таким образом, все матрицы ранга и индекса 1 лежат в V. Покажем, что произвольная матрица лежит в V. Для этого представим её в виде суммы матриц ранга 1. Если среди слагаемых встретится матрица S индекса, отличного от 1, то $S=Q^{-1}E_{12}Q$ для некоторой матрицы $Q\in \mathrm{GL}_n(\mathbf{F})$. Но $E_{12}=(E_{11}+E_{12})-E_{11}$, причём E_{11} и $E_{11}+E_{12}$ имеют ранг и индекс 1. Поэтому

$$S = Q^{-1} \big((E_{11} + E_{12}) - E_{11} \big) Q = Q^{-1} (E_{11} + E_{12}) Q - Q^{-1} E_{11} Q = A_1 - A_2 \in V,$$
 так как сопряжение сохраняет ранг и индекс матриц. Тем самым все матрицы ранга 1 лежат в V , а значит, и их сумма. Это наблюдение завершает доказательство.

3. Характеризация монотонных отображений

Теорема 3.1. Пусть ${\bf F}-$ произвольное поле с условием char ${\bf F}\neq 2,\ n\geqslant 1-$ целое число, а линейное отображение $T\colon {\rm M}_n({\bf F})\to {\rm M}_n({\bf F})$ монотонно относительно порядка $\stackrel{{
m cn}}{\leqslant}$ (или $\stackrel{{
m cn}}{\leqslant}$). Тогда T имеет один из двух следующих видов ($\alpha\in {\bf F}$, $P\in {\rm GL}_n({\bf F})$):

- 1) $T(X) = \alpha P^{-1} X P$ для всех $X \in M_n(\mathbf{F})$;
- 2) $T(X) = \alpha P^{-1} X^{\mathsf{t}} P$ для всех $X \in \mathcal{M}_n(\mathbf{F})$.

Сформулированная теорема утверждает, что все линейные отображения, монотонные относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\rm cn}{\leqslant}$, являются композицией простейших, рассмотренных в лемме 1.11.

Доказательство.

1. Если $T\equiv 0$, то T- отображение указанного вида при $\alpha=0$. Далее будем считать, что $T\not\equiv 0$. Для доказательства утверждения теоремы будем видоизменять отображение T, комбинируя его с различными сопряжениями, умножениями на скаляры и транспонированиями. По лемме 1.11 полученное отображение также будет линейным и монотонным относительно порядка \leqslant (или \leqslant). Если же в результате применения такой серии замен мы получим тождественное отображение, будет доказано, что любое линейное монотонное отображение T имеет требуемый вид.

2. Как отмечено в замечании 2.6, найдётся B-набор X_1, X_2, \ldots, X_n , такой что $X_i \notin \operatorname{Ker} T$ для $\operatorname{Bcex} i = 1, 2, \ldots, n$. Применим лемму 2.2 и получим, что $X_i = \beta_i Q_0 E_{ii} Q_0^{-1}$ при $i = 1, 2, \ldots, n$ для некоторых ненулевых $\beta_1, \beta_2, \ldots, \beta_n \in \mathbf{F}$ и $Q_0 \in \operatorname{GL}_n(\mathbf{F})$. Сделаем замену $T(X) \to T_1(X) = T(Q_0 X Q_0^{-1})$. Тогда $T_1(\beta_i E_{ii}) \notin \mathbb{F}$ Кег T_1 для $\operatorname{Bcex} i = 1, 2, \ldots, n$. С учётом линейности отображения T_1 имеем $E_{11}, E_{22}, \ldots, E_{nn} \notin \operatorname{Ker} T_1$.

По теореме 2.3 матрицы

$$Y_1 = T_1(E_{11}), Y_2 = T_1(E_{22}), \dots, Y_n = T_1(E_{nn})$$

образуют В-набор. Тогда $Y_i=\alpha_iP_0E_{ii}P_0^{-1}$ при $i=1,2,\ldots,n$ для некоторых ненулевых $\alpha_1,\alpha_2,\ldots,\alpha_n\in \mathbf{F}$ и матрицы $P_0\in \mathrm{GL}_n(\mathbf{F})$. Делая замену

$$T_1(X) \to T_2(X) = P_0^{-1} T_1(X) P_0,$$

получаем, что $T_2(E_{ii}) = \alpha_i E_{ii}$ при i = 1, 2, ..., n.

- 3. Итак, существуют такие ненулевые элементы $\alpha_1,\alpha_2,\dots,\alpha_n\in \mathbf{F}$, что $T_2(E_{ii})=\alpha_iE_{ii}$ для всех $i=1,2,\dots,n$. Докажем, что $T_2(E_{ij})=b_{ij}E_{ij}+c_{ij}E_{ji}$ для некоторых $b_{ij}\in \mathbf{F}$ и $c_{ij}\in \mathbf{F}$ при всех $i,j=1,2,\dots,n$, причём $b_{ij}c_{ij}=0$. Кроме того, если существуют i и j, такие что $\alpha_i\neq\alpha_j$, то для этих i и j справедливо $T_2(E_{ij})=0$.
- 1) Фиксируем произвольные различные $i,j\in\{1,2,\ldots,n\}$ и введём обозначение $M=T_2(E_{ij})$. Далее будем рассматривать наборы матриц вида

$$A, B, E_{11}, \ldots, \widehat{E_{ii}}, \ldots, \widehat{E_{ij}}, \ldots, E_{nn},$$

где A и B ортогональны, имеют ранг и индекс 1, их тип (i,j) (обозначение \widehat{X} говорит об отсутствии матрицы X в наборе). Ясно, что все такие совокупности матриц являются B-наборами. Если же, кроме того, $T_2(A) \neq 0$ и $T_2(B) \neq 0$, то по теореме 2.3 $T_2(A)$ и $T_2(B)$ также имеют ранг и индекс 1 и ортогональны. B силу равенств $T_2(E_{kk}) = \alpha_k E_{kk}$ при всех $k=1,2,\ldots,n$ матрицы $T_2(A)$ и $T_2(B)$ имеют тип (i,j) в этом случае.

Пусть t — некоторый ненулевой элемент поля \mathbf{F} , $A_t=tE_{ii}+E_{ij}$, $B_t=-tE_{jj}+E_{ij}$. Тогда A_t и B_t ортогональны. Кроме того, они имеют ранг и индекс 1, так как $t\neq 0$. Если бы обе матрицы $T_2(A_t)$ и $T_2(B_t)$ были ненулевыми, то они имели бы ранг 1. Таким образом, если ранг одной из них больше 1, то другая обязана быть нулевой.

Докажем, что $T_2(A_t)\neq 0$ при $t\neq 0$. Предположим, существует ненулевой элемент $t_0\in {\bf F}$, для которого выполнено $T_2(A_{t_0})=0$. Но $T_2(A_{t_0})=\alpha_i t_0 E_{ii}+M$, откуда $M=-\alpha_i t_0 E_{ii}$. Тогда

$$\operatorname{rk} T_2(B_t) = \operatorname{rk}(-\alpha_j t E_{jj} + M) = \operatorname{rk}(-\alpha_j t E_{jj} - \alpha_i t_0 E_{ii}) = 2$$

при любом $t \neq 0$. Следовательно, $T_2(A_t) = 0$ при всех $t \neq 0$.

Покажем, что равенство $T_2(A_t)=0$ может выполняться не более чем при одном значении t. В самом деле, если справедливы равенства $T_2(A_{t_1'})=T_2(A_{t_2'})=0$ для некоторых различных $t_1',t_2'\in \mathbf{F}$, то

$$0 = T_2(A_{t_1'}) - T_2(A_{t_2'}) = T_2((t_1' - t_2')E_{ii}) = \alpha_i(t_1' - t_2')E_{ii} \neq 0.$$

Но в поле ${\bf F}$ по крайней мере два ненулевых элемента, так как ${\rm char}\, {\bf F} \neq 2.$ Противоречие. Таким образом, $T_2(A_t) \neq 0$ при $t \neq 0.$ Аналогично получаем, что $T_2(B_t) \neq 0$ при $t \neq 0.$

Фиксируем некоторые ненулевые и различные $t_1,t_2\in {\bf F}$. Так как матрицы $T_2(A_{t_k})$ при k=1,2 имеют тип (i,j), то и $M=T_2(A_{t_k})-t_k\alpha_iE_{ii},\ k=1,2$, также имеет тип (i,j). Обозначим

$$M = aE_{ii} + bE_{ij} + cE_{ji} + dE_{jj}.$$

Матрицы $T_2(A_{t_1})$ и $T_2(A_{t_2})$ имеют ранг 1. Запишем равенство нулю соответствующих (2×2) -миноров этих матриц:

$$(t_1\alpha_i + a)d - bc = 0, \quad (t_2\alpha_i + a)d - bc = 0.$$

Комбинируя написанные равенства, получим $d=0,\ bc=0.$ Аналогично, рассматривая $T_2(B_{t_1})$ и $T_2(B_{t_2})$, показываем, что a=0. В результате $T_2(E_{ij})=b_{ij}E_{ij}+c_{ij}E_{ji}$, причём $b_{ij}c_{ij}=0.$

2) Покажем, что если $\alpha_i \neq \alpha_j$, то $T_2(E_{ij})=0$. В дальнейшем мы докажем, что $T_2(E_{ij})$ не может быть нулевым, а значит, все α_i равны.

Предположим, что $T_2(E_{ij}) \neq 0$ и $\alpha_i \neq \alpha_j$. Без ограничения общности будем считать, что $b_{ij} \neq 0$, $c_{ij} = 0$. Тогда из условия ортогональности матриц $T_2(A_{t_1}) = t_1\alpha_i E_{ii} + b_{ij} E_{ij}$ и $T_2(B_{t_1}) = -t_1\alpha_j E_{jj} + b_{ij} E_{ij}$ получим

$$0 = (t_1 \alpha_i E_{ii} + b_{ij} E_{ij})(-t_1 \alpha_j E_{jj} + b_{ij} E_{ij}) = t_1 \alpha_i b_{ij} E_{ij} - t_1 \alpha_j b_{ij} E_{ij} = (\alpha_i - \alpha_j) t_1 b_{ij} E_{ij}.$$

Но равенство последнего выражения нулю невозможно, так как $\alpha_i \neq \alpha_j$, $t_1 \neq 0$, $b_{ij} \neq 0$. Получили противоречие. Поэтому условие $\alpha_i \neq \alpha_j$ влечёт выполнение равенства $T_2(E_{ij})=0$.

4. При $i \neq j$ рассмотрим выражение $T_2(E_{ij}+E_{ji})$. Используя результат предыдущего пункта, можем утверждать, что

$$T_2(E_{ij} + E_{ji}) = p_{ij}E_{ij} + q_{ij}E_{ji}$$

для некоторых p_{ij} и q_{ij} при всех $i,j=1,2,\ldots,n$. Покажем, что $p_{ij}q_{ij}\neq 0$. Как и в пункте 3, рассмотрим матрицы

$$A = E_{ii} + E_{ij} + E_{ji} + E_{jj}, \quad B = E_{ii} - E_{ij} - E_{ji} + E_{jj}.$$

Аналогично пункту 3) леммы 2.7 доказываем, что A и B ортогональны и имеют ранг и индекс 1, так как характеристика поля ${\bf F}$ не равна 2. Кроме того, эти матрицы имеют тип (i,j) и $T_2(A) \neq 0$, $T_2(B) \neq 0$. Поэтому ${\rm rk}\, T_2(A) = 1$. Но

$$T_2(A) = \alpha_i E_{ii} + p_{ij} E_{ij} + q_{ij} E_{ji} + \alpha_j E_{jj},$$

откуда

$$\alpha_i \alpha_j - p_{ij} q_{ij} = 0, \quad p_{ij} q_{ij} = \alpha_i \alpha_j \neq 0.$$

5. Докажем, что $T_2(E_{ij}) \neq 0$ при всех различных $i,j=1,2,\ldots,n$. Предположим, что $T_2(E_{ij})=0$. Тогда $T_2(E_{ji})=T_2(E_{ij}+E_{ji})$. По пункту 3 имеем

$$T_2(E_{ii}) = b_{ii}E_{ij} + c_{ii}E_{ii}, \quad b_{ii}c_{ii} = 0.$$

С другой стороны, в пункте 4 показано, что

$$T_2(E_{ij} + E_{ji}) = p_{ij}E_{ij} + q_{ij}E_{ji}, \quad p_{ij}q_{ij} \neq 0.$$

Равенства

$$b_{ii}E_{ij} + c_{ji}E_{ji} = T_2(E_{ji}) = T_2(E_{ij} + E_{ji}) = p_{ij}E_{ij} + q_{ij}E_{ji}$$

возможны, только если $b_{ji}=p_{ij}$ и $c_{ji}=q_{ij}$. Но тогда

$$0 = b_{ji}c_{ji} = p_{ij}q_{ij} \neq 0.$$

Противоречие. Следовательно, $T_2(E_{ij}) \neq 0$ при любых $i,j=1,2,\ldots,n$ и все α_i совпадают.

6. Докажем биективность отображения T_2 . Фиксируем базис из n^2 матриц $E_{11}, E_{12}, \ldots, E_{n,n-1}, E_{nn}$ в $\mathbf{M}_n(\mathbf{F})$. В этом базисе отображение T_2 выражается матрицей порядка n^2 , все столбцы которой содержат единственный ненулевой элемент. Это следует из того, что матричные единицы переходят в матричные единицы с некоторым ненулевым коэффициентом. В самом деле, как показано в пункте 2, $T_2(E_{ii}) = \alpha_i E_{ii}$ при всех $i=1,2,\ldots,n$. Кроме того, в пункте 3 доказано, что $T_2(E_{ij}) = b_{ij} E_{ij} + c_{ij} E_{ji}$ для всех различных $i,j=1,2,\ldots,n$. При этом $b_{ij}c_{ij}=0$, т. е. хотя бы один из коэффициентов b_{ij} и c_{ij} нулевой. Результат пункта 5 позволяет утверждать, что ровно один коэффициент нулевой.

Отметим также, что различные матричные единицы переходят в различные. Действительно, пусть матрицы E_{ij} и $E_{i'j'}$ различны, а $T_2(E_{ij})$ и $T_2(E_{i'j'})$ пропорциональны. С учётом выражения для $T_2(E_{ij})$ это возможно, только если $i \neq j, \ j' = i, \ i' = j.$ Но если бы матрицы $T_2(E_{ij})$ и $T_2(E_{ji})$ при некоторых различных i и j были пропорциональны одной матричной единице, то матрица $T_2(E_{ij} + E_{ji})$ также была бы пропорциональна матричной единице. С учётом результата пункта 4 это невозможно. Поэтому каждая строка матрицы отображения T_2 содержит единственный ненулевой элемент. Следовательно, она имеет ранг n^2 и обратима. Мы получили, что отображение T_2 — биекция.

- 7. Как показано в пункте 5, все коэффициенты α_i равны. Заменяя отображение $T_2(X)$ на $T_3(X)=\alpha_1^{-1}T_2(X)$, получим $T_3(E_{ii})=E_{ii}$ при всех $i=1,2,\ldots,n$. Обозначим $\hat{b}_{ij}=\alpha_1^{-1}b_{ij},\ \hat{c}_{ij}=\alpha_1^{-1}c_{ij}$.
- 8. В пункте 3 мы доказали, что $T_2(E_{ij}) = b_{ij}E_{ij} + c_{ij}E_{ji}$ при всех различных $i,j=1,2,\ldots,n$, причём $b_{ij}c_{ij}=0$, откуда $T_3(E_{ij})=\hat{b}_{ij}E_{ij}+\hat{c}_{ij}E_{ji}$ при любых различных $i,j=1,2,\ldots,n$. Кроме того, $\hat{b}_{ij}\hat{c}_{ij}=0$.

Учитывая, что $\hat{b}_{12}\hat{c}_{12}=0$, получаем, что хотя бы одно из этих чисел нулевое.

Пусть $\hat{c}_{12}=0$. Обозначим $T_4(X)=T_3(X),\ \tilde{b}_{ij}=\hat{b}_{ij},\ \tilde{c}_{ij}=\hat{c}_{ij}.$

Пусть $\hat{b}_{12} = 0$. Обозначим $T_4(X) = (T_3(X))^{\mathrm{t}}$, $\tilde{b}_{ij} = \hat{c}_{ij}$, $\tilde{c}_{ij} = \hat{b}_{ij}$.

В результате $T_4(E_{ij}) = \tilde{b}_{ij}E_{ij} + \tilde{c}_{ij}E_{ji}$ при любых различных $i,j=1,2,\ldots,n,$ $\tilde{c}_{12}=0$. Кроме того, справедливо равенство $T_4(E_{ii})=E_{ii}$ при всех $i=1,2,\ldots,n.$

9. Так как отображение T_2 биективно по пункту 6, отображение T_4 также биективно, и к нему применимо следствие 2.4. Получаем, что отображение T_4 переводит матрицы ранга и индекса 1 в матрицы ранга и индекса 1.

Коэффициент \tilde{c}_{12} нулевой, поэтому $T_4(E_{12})=\tilde{b}_{12}E_{12}$. Покажем, что в этом случае $T_4(E_{1j})=\tilde{b}_{1j}E_{1j}$ при всех j>2. Для этого рассмотрим матрицу $E_{11}+E_{12}+E_{1j}$, имеющую ранг и индекс 1. Под действием отображения T_4 эта матрица переходит в матрицу

$$T_4(E_{11} + E_{12} + E_{1j}) = E_{11} + \tilde{b}_{12}E_{12} + \tilde{b}_{1j}E_{1j} + \tilde{c}_{1j}E_{j1} = S.$$

Допуская, что неравенство $\tilde{c}_{1j}\neq 0$ выполнено, получаем ${\rm rk}\,S=2$. Но это противоречит следствию 2.4. Поэтому $T_4(E_{1j})=\tilde{b}_{1j}E_{1j}$ при любом j>1. А так как различные матричные единицы переходят в различные, $T_4(E_{i1})=\tilde{b}_{i1}E_{i1}$ при любом i>1.

Для доказательства равенства $T_4(E_{ij})=\tilde{b}_{ij}E_{ij}$ при всех i и j необходимо проверить его при $i>1,\ j>1,\ i\neq j.$ В силу условий на i и j матричные единицы $E_{ii},\ E_{i1}$ и E_{ij} различны, а потому матрица $E_{ii}+E_{i1}+E_{ij}$ имеет ранг и индекс 1. Значит, и матрица

$$T_4(E_{ii} + E_{i1} + E_{ij}) = E_{ii} + \tilde{b}_{i1}E_{i1} + \tilde{b}_{ij}E_{ij} + \tilde{c}_{ij}E_{ji}$$

имеет ранг 1. Последнее возможно только при $\tilde{c}_{ij}=0$, откуда следует, что $T_4(E_{ij})=\tilde{b}_{ij}E_{ij}$.

Положим $\tilde{b}_{ii}=1$ для любого $i=1,2,\dots,n$. Получим $T_4(E_{ij})=\tilde{b}_{ij}E_{ij}$ при всех $i,j=1,2,\dots,n$.

10. Обозначим $B=\sum\limits_k \tilde{b}_{1k}E_{kk}$. Тогда $B^{-1}=\sum\limits_s (\tilde{b}_{1s})^{-1}E_{ss}$. Заменим отображение T_4 на отображение $T_5(X)\mapsto BT_4(X)B^{-1}$ и вычислим $T_5(E_{ij})$:

$$T_5(E_{ij}) = BT_4(E_{ij})B^{-1} =$$

$$= \left(\sum_k \tilde{b}_{1k} E_{kk}\right) \tilde{b}_{ij} E_{ij} \left(\sum_s (\tilde{b}_{1s})^{-1} E_{ss}\right) = \tilde{b}_{1i} \tilde{b}_{ij} (\tilde{b}_{1j})^{-1} E_{ij} = f_{ij} E_{ij},$$

где $f_{ij} = \tilde{b}_{1i} \tilde{b}_{ij} (\tilde{b}_{1j})^{-1}$.

Как отмечено в пункте 9, $\tilde{b}_{ii}=1$ при всех $i=1,2,\ldots,n$, откуда следует, что $f_{ii}=1$ и $f_{1i}=1$ при всех $i=1,2,\ldots,n$. Покажем, что в этом случае $f_{ij}=1$ при всех i и j. Так как отображение T_5 получено из T_4 сопряжением, к T_5 применимо следствие 2.4. Рассмотрим матрицу $C_{ij}=(E_{11}+E_{1j})+(E_{i1}+E_{ij})$ при всех i>1 и j>1. Её ранг равен 1. Докажем, что её индекс также равен 1. При i=j это уже было сделано в пункте 4. Пусть $i\neq j$. Имеем

$$E_{11}C_{ij}^2E_{11} = (E_{11} + E_{1j})(E_{11} + E_{i1}) = E_{11} \neq 0.$$

Это означает, что $C_{ij}^2 \neq 0$. Но тогда $\operatorname{Ind} C_{ij} = 1$. По свойству отображения T_5 rk $T_5(C_{ij})=1$. Отметим, что

$$T_5(C_{ij}) = (f_{11}E_{11} + f_{1j}E_{1j}) + (f_{i1}E_{i1} + f_{ij}E_{ij}).$$

Запишем равенство нулю соответствующего (2×2) -минора:

$$f_{11}f_{ij} - f_{1j}f_{i1} = 0, \quad f_{11}f_{ij} = f_{1j}f_{i1}.$$

Известно, что $f_{kk}=1$, $f_{1k}=1$ при $k=1,2,\ldots,n$. Полагая i=j в равенстве $f_{11}f_{ij}=f_{1j}f_{i1}$, получаем $f_{i1}=1$ при любом $i=1,2,\ldots,n$. Но тогда из того же соотношения $f_{ij}=1$ при всех $i>1,\ j>1$.

Таким образом, $f_{ij}=1$ и $T_5(E_{ij})=E_{ij}$ для всех $i,j=1,2,\ldots,n$. По линейности отображения T_5 имеем $T_5(X)=X$ для любой матрицы X. Теорема доказана.

Укажем некоторые непосредственные следствия теоремы 3.1.

Следствие 3.2. Пусть **F** — произвольное поле с условием char **F** \neq 2, $n \geqslant 1$ — целое число, линейное отображение $T \colon \mathrm{M}_n(\mathbf{F}) \to \mathrm{M}_n(\mathbf{F})$ монотонно относительно порядка $\stackrel{\mathrm{cn}}{\leqslant}$ (или $\stackrel{\mathrm{cn}}{\leqslant}$). Тогда T либо тождественно нулевое, либо биективное.

Следствие 3.3. Пусть **F** — произвольное поле с условием char **F** \neq 2, $n \geqslant 1$ — целое число, $T \colon \mathrm{M}_n(\mathbf{F}) \to \mathrm{M}_n(\mathbf{F})$ — линейное отображение. Тогда T монотонно относительно порядка $\stackrel{\sharp}{\leqslant}$, если и только если T монотонно относительно порядка $\stackrel{\mathrm{cn}}{\leqslant}$.

Следствие 3.4. Пусть **F** — произвольное поле с условием char **F** $\neq 2$, $n \geqslant 1$ — целое число, линейное отображение $T \colon \mathrm{M}_n(\mathbf{F}) \to \mathrm{M}_n(\mathbf{F})$ монотонно относительно порядка $\stackrel{\mathfrak{c}_n}{\leqslant}$ (или $\stackrel{\mathfrak{c}_n}{\leqslant}$). Тогда T строго монотонно относительно порядка $\stackrel{\mathfrak{c}_n}{\leqslant}$ (или $\stackrel{\mathfrak{c}_n}{\leqslant}$).

Автор благодарен своему научному руководителю А. Э. Гутерману за постановку задачи и интересные обсуждения.

Литература

- [1] Богданов И. И., Гутерман А. Э. Монотонные отображения матриц, заданные групповой обратной, и одновременная диагонализуемость // Мат. сб. 2007. Т. 198, N 1. С. 3—20.
- [2] Baksalary J. K., Hauke J. A further algebraic version of Cochran's theorem and matrix partial orderings // Linear Algebra Appl. 1990. Vol. 127. P. 157—169.
- [3] Baksalary J. K., Pukelsheim F., Styan G. P. H. Some properties of matrix partial orderings // Linear Algebra Appl. -1989. Vol. 119. P. 57-85.
- [4] Ben-Israel A., Greville T. Generalized Inverses: Theory and Applications. New York: John Wiley and Sons, 1974.
- [5] Englefield M. J. The commuting inverses of a square matrix // Math. Proc. Cambridge Philos. Soc. 1966. Vol. 62. P. 667—671.
- [6] Hartwig R. E. How to partially order regular elements // Math. Japon. 1980. Vol. 25, no. 1. P. 1-13.
- [7] Hartwig R. E., Mitra S. K. Partial orders based on outer inverses // Linear Algebra Appl. -1982. Vol. 176. P. 3-20.

- [8] Mitra S. K. A new class of g-inverse of square matrices // Sankhyā. Ser. A. -1963. Vol. 30. P. 323–330.
- [9] Mitra S. K. On group inverses and the sharp order // Linear Algebra Appl. 1987. Vol. 92. P. 17-37.
- [10] Mitra S. K. Matrix partial orders through generalized inverses: Unified theory // Linear Algebra Appl. 1991. Vol. 148. P. 237-263.
- [11] Nambooripad K. S. S. The natural partial order on a regular semigroup // Proc. Edinburgh Math. Soc. $-1980.-Vol.\ 23.-P.\ 249-260.$
- [12] Robert P. On the group-inverse of a linear transformation // J. Math. Anal. Appl. 1968. — Vol. 22. — P. 658—669.