Деревья Шабата диаметра 4: приложение к статье Звонкина

Б. БЁРЧ

Институт математики, Оксфорд

УДК 511.6+512.7+519.17

Ключевые слова: римановы поверхности, многочлены Шабата, обобщённые многочлены Чебышёва, деревья диаметра 4.

Аннотация

Настоящий текст был приложен к письму автора Александру Звонкину (от 1 ноября 1995 г.). Публикуется с любезного разрешения автора. Перевод Г. Б. Шабата.

Abstract

B. Birch, Shabat trees of diameter 4: Appendix to a paper of Zvonkin, Fundamentalnaya i prikladnaya matematika, vol. 13 (2007), no. 6, pp. 131–135.

This is an attachment to a letter of the author to Alexander Zvonkin (dated November 1, 1995). It is reproduced here with the kind permission of the author.

1. Введение

Дерево Шабата диаметра 4 — это (детский) рисунок с n чёрными вершинами валентностей l_1,\ldots,l_n , белой вершиной валентности n и $\left(\sum l_i\right)-n$ белыми вершинами валентности 1. Соответствующая риманова поверхность $\mathcal R$ имеет род нуль. Выберем на ней координату X, нормализованную так, что $X(0)=\infty$ и X=0 в белой вершине валентности n, и предположим, что $X=\alpha_i$ $(i=1,\ldots,n)$ в чёрных вершинах. Тогда из уравнений накрытия следует, что

$$\prod (X - \alpha_i)^{l_i} - C = X^n P(X) \tag{1}$$

где C — ненулевая константа и многочлен P имеет старший коэффициент 1. Решение уравнения (1) даёт модель поверхности \mathcal{R} . Нас интересует минимальное поле $K=\mathbb{Q}(\alpha)$, для которого α задаёт такую модель.

Этой задачей занимался Звонкин (см. [2]. — Примеч. пер.). Во-первых, заметим, что любое решение уравнения (1) задаёт риманову поверхность, соответствующую определённому циклическому упорядочиванию множества l_1, \ldots, l_n , и наоборот, для каждого циклического упорядочивания множества l_1, \ldots, l_n найдётся решение уравнения (1), единственное с точностью до пропорциональности (мы можем умножить все α на общий множитель t, если заменим C на $Ct^{\sum l_i}$).

Фундаментальная и прикладная математика, 2007, том 13, № 6, с. 131—135. © 2007 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

132 Б. Бёрч

Мы выбираем C так, чтобы минимизировать степень $[K:\mathbb{Q}]$. Если все l_i различны, сопряжённые решения α соответствуют различным циклическим порядкам на l_1,\ldots,l_n , так что заведомо $[K:\mathbb{Q}]$ не превосходит (n-1)!; это остаётся верным и в случае, когда некоторые l_i совпадают.

До сих пор всё было ясно. Но где K ветвится? Звонкину принадлежит замечательное наблюдение: дискриминант поля K делит произведение простых чисел, меньших чем n и чем значения линейных форм от l_1,\ldots,l_n с коэффициентами 0 или 1! (Допускаются кратности: если среди l_i есть совпадающие, то коэффициент при l_i не должен превосходить кратность l_i в списке.) Насколько я понимаю, это было экспериментальное наблюдение, основанное на вычислениях с помощью PARI, однако утверждение несомненно верно, поскольку оно следует из теоремы о ветвлении Гротендика—Бекман и стандартных теорем о простых числах, представимых многочленами. В настоящем приложении я проверяю наблюдение Звонкина, пользуясь только алгеброй XIX века. Оправданием моего подхода служит то, эти элементарные методы дают несколько больше информации.

2. Проверка

Обнаружение тождества (1) равносильно нахождению решений $(\alpha_1,\ldots,\alpha_n)$ системы алгебраических уравнений (эти уравнения изучались многими авторами, см., например, [1]. — *Примеч. пер.*). Дифференцирование (1) и разложение на множители в $\mathbb{C}[X]$ (стандартный трюк) приводят к тождеству

$$\sum_{i=1}^{n} \left(l_i \prod_{1 \leq j \leq n, \ j \neq i} (X - \alpha_j) \right) = \left(\sum l_i \right) X^{n-1},$$

поэтому мы хотим, чтобы

$$\sum_{i=1}^{n} l_i \sigma_d(\alpha; \hat{\imath}) = 0 \quad \text{для} \quad d = 1, \dots, n-1.$$
 (2)

Здесь $\sigma_d(\alpha; \hat{\imath})$ — элементарная симметрическая функция степени d от n-1 переменных $(\alpha_1, \ldots, \alpha_n)$ с отброшенной α_i .

На уравнения (2) можно посмотреть как на уравнения расслоённого многообразия V в $P^{n-1} \times P^{n-1}$. Базой многообразия V является P^{n-1} , а слой V_l над общей точкой базы l состоит из (n-1)! различных точек (l,α) , каждая из которых определена над расширением поля $\mathbb{Q}(l)$ степени (n-1)!. Дискриминантное множество \mathcal{D} многообразия V состоит из тех l, над которыми точки α не все различны. Мы хотим установить структуру множества \mathcal{D} и доказываем следующий результат.

Теорема. $\mathcal{D} \subseteq \bigcup \pi_I$, где π_I обозначает гиперплоскость $\sum\limits_{i \in I} l_i = 0$, а объединение берётся по всем подмножествам I множества $\{1,\ldots,n\}$.

Некоторые размышления показывают, что множество \mathcal{D} задаётся уравнениями (2) вместе с условием

$$\operatorname{rank}\left[\frac{\partial}{\partial \alpha_k} \left(\sum_{i=1}^n l_i \sigma_d(\alpha, \hat{\imath})\right)\right]_{d=1,\dots,n-1;\ k=1,\dots,n} \leqslant n-2,$$

т. е.

$$\operatorname{rank}\left[\sum_{1 \leq i \leq n; \ i \neq k}\right]_{d=1,\dots,n-1; \ k=1,\dots,n} \leq n-2.$$
(3)

Столбцы матрицы, фигурирующей в уравнении (3), линейно зависимы в силу тождества Эйлера, так что на первый взгляд $\mathcal{D}(l)$ может быть вычислено исключением α из (2) и из уравнения

$$\det \left| \left(\sum_{1 \leq i \leq n: \ i \neq k} l_i \sigma_{d-1}(\alpha, \hat{\imath}, \hat{k}) \right) \right|_{d=1,\dots,n-1; \ k=1,\dots,n-1} = 0.$$
 (4)

(Строго говоря, мы произвели неявное умножение на α_n , избавляясь от последнего столбца, так что при действиях с (3) можно ожидать избыточных α_n .) Как произвести такое исключение? Вряд ли стоит надеяться на успех при непосредственных операциях с α , однако можно решить уравнения (2) относительно l, выразив их через α , по существу методом Гаусса, и получить

$$l_i \sim \frac{\alpha_i^{n-1}}{\prod\limits_{k, \ k \neq i} (\alpha_i - \alpha_k)}$$

(с точностью до пропорциональности), или, что то же самое,

$$l_i \sim (-1)^i \alpha_i^{n-1} \prod_{j < k \neq i} (\alpha_i - \alpha_k).$$
 (5)

Подставляя (5) в (4), можно надеяться получить ответ.

В этом месте я с помощью PARI разобрал случаи n=3,4 — без этого шансы угадать ответ были бы низки. Если читатель хочет проверить вычисления, лучше взять n=4.

Рассмотрим общий случай. Введём

$$\delta(\alpha) := \prod_{j < k} (\alpha_j - \alpha_k)$$

как знаменатель, возникающий при гауссовском исключении. (Следует помнить, что мы плохо контролируем множители $\alpha_i-\alpha_j$.) Подставляя (5) в (4), мы получаем определитель, модуль которого обозначим $|\Delta(\alpha;n)|$. Мы можем вычислить его.

Лемма.

$$|\Delta(\alpha;n)| = |(n-1)!\sigma_n(\alpha)^{n-2}\delta(\alpha)^{n-2}\alpha_n|.$$
(6)

134 Б. Бёрч

Проверка. Для каждого $k=1,\ldots,n-1$ элементы k-го столбца матрицы Δ являются однородными формами от α_1,\ldots,α_n , изменяющими знак при перестановках $\alpha_i,\ \alpha_j$ для таких $i,\ j,\$ что никакие два индекса из $i,\ j,\ k$ не совпадают. Таким образом, элементы k-го столбца делятся на $\delta(\alpha,\hat{k})$, где $\delta(\alpha,\hat{k})$ определяется как $\delta(\alpha)$, но с выброшенным α_k . Кроме того, последняя строка матрицы Δ делится на $\sigma_n(\alpha)$. Деля на эти известные множители, мы видим, что

$$|\Delta(\alpha; n)| = |\delta(\alpha)^{n-2} \delta(\alpha, \hat{n})^{-1} \delta^*(\alpha; n)|,$$

где $\delta^*(\alpha;n)$ представляет собой определитель размера $(n-1)\times(n-1)$, в котором d-я строка для $d=1,\dots,n-2$ однородна степени d+n-2 по α_1,\dots,α_n , в последней строке стоит α_k^{n-3} в k-м столбце и k-й столбец симметричен по α_i при $i\neq k$. Если $\alpha_k=\alpha_j$ и при этом никакие два из k,j,n не совпадают, то k-й и j-й столбцы $\delta^*(\alpha;n)$ совпадают. Поэтому $\delta^*(\alpha;n)$ делится на $|\delta(\alpha;\hat{n})|$. Поскольку степени $\delta(\alpha;\hat{n})$ и $\delta^*(\alpha;n)$ равны соответственно $\frac{1}{2}(n-1)(n-2)$ и $\frac{3}{2}(n-1)(n-2)-1$, получаем, что

$$\Delta(\alpha; n) = \delta(\alpha)^{n-2} \sigma_n(\alpha) \varphi_n(\alpha),$$

где φ_n — однородный симметрический многочлен степени n(n-3)+1 от $\alpha_1,\dots,\alpha_{n-1}.$

Остаётся вычислить $\varphi_n(\alpha)$. Надо показать, что $\Delta(\alpha;n)$ делится на $\sigma_n(\alpha)^{n-2}$. В него входят все φ_n , кроме одного линейного множителя, который обязан совпадать с α_n . Мы можем, таким образом, заключить, что

$$\Delta(\alpha; n) = C\delta(\alpha)^{n-2}\sigma_n(\alpha)^{n-2}\alpha_n,$$

где C — константа. Мы можем проверить, что C есть -(n-1)!, откуда и будет следовать лемма.

Проверка того, что $\Delta(\alpha,n)$ делится на $\sigma_n(\alpha)^{n-2}$, совершенно элементарна и довольно кошмарна. Достаточно установить делимость на α_n^{n-2} , так что мы должны показать, что для l_1,\dots,l_n , являющихся решениями уравнений (2), задаваемыми (5), все миноры размера $(n-1)\times(n-1)$ матрицы (4) делятся на α_n^{n-2} . Теперь это легко сделать: последовательно для $k=2,\dots,n-1$ мы осуществляем элементарные операции над строками определителя, вычитая из k-й строки умноженную на α_n (k-1)-ю строку. Используя (2) и $l_n\equiv 0\ (\mathrm{mod}\ \alpha_n^{n-2})$, мы обнаруживаем, что последняя строка обращается в нуль по модулю α^{n-2} .

Теперь мы проверили (6), и остаётся найти множество \mathcal{D} . Мы должны определить, над какими l лежат α , удовлетворяющие условию $\Delta(\alpha;n)=0$. Мы различаем n случаев, а именно:

случай (0): две из α совпадают, но никакая из α не обращается в нуль, **случай** (m), $1 \leqslant m \leqslant n-1$: в точности m из α обращаются в нуль.

В случае (0) можно считать, что $\alpha_1=\alpha_2\neq 0$; рутинные операции с уравнениями (2) приводят к $\sum\limits_{k=1}^n l_k=0.$

В случае (m) можно считать, что $\alpha_1=\ldots=\alpha_m=0$, а оставшиеся α не обращаются в нуль. Уравнения (2) немедленно ведут к $l_1+\ldots+l_m=0$. Таким образом, дискриминантное множество $\mathcal D$ действительно содержится в объединении плоскостей

$$\bigcup \left(\sum_{i=1}^{n} \varepsilon_{i} l_{i} = 0\right),\,$$

где объединение берётся по n-кам $(\varepsilon_1,\ldots,\varepsilon_n)$, в которых каждое ε_i равно 0 или 1, но все они одновременно не равны нулю. Обратно, несложно проверить, что для $n\geqslant 4$ $\mathcal D$ составляет всё это множество.

Итак, наблюдение Звонкина обосновано. Соответствующий рисунок определён над числовым полем K степени не более (n-1)! над $\mathbb Q$, разветвлённым лишь над простыми числами, делящими (n-1)!D(l).

Если l_1,\dots,l_n различны, то степень $[K:\mathbb{Q}]$, как правило, оказывается равной в точности (n-1)!. Не ясно, в каких степенях простые числа, делящие D(l), входят в $D_{K/\mathbb{Q}}$.

Литература

- [1] Кочетков Ю. Ю. Антивандермондовы системы и плоские деревья // Функц. анализ и его прил. 2002. Т. 36, № 3. С. 83—87.
- [2] Shabat G. B., Zvonkin A. K. Plane trees and algebraic numbers // Jerusalem Combinatorics '93 / H. Barcelo, G. Kalai, eds. Amer. Math. Soc., 1994. (Contemp. Math.; Vol. 178). P. 233—275.