Кольца, над которыми все модули являются I_0 -модулями. II

А. Н. АБЫЗОВ

Казанский государственный университет e-mail: Adel.Abyzov@ksu.ru

А. А. ТУГАНБАЕВ

Российский государственный торгово-экономический университет e-mail: tuganbaev@gmail.com

УДК 512.55

Ключевые слова: I_0 -модуль, слабо регулярный модуль, полуартиново кольцо.

Аннотация

Все правые R-модули являются I_0 -модулями в точности тогда, когда либо R — правое SV-кольцо, либо $R/I^{(2)}(R)$ — полуцепное артиново кольцо с нулевым квадратом радикала Джекобсона.

Abstract

A. N. Abyzov, A. A. Tuganbaev, Rings over which all modules are I_0 -modules. II, Fundamentalnaya i prikladnaya matematika, vol. 14 (2008), no. 2, pp. 3–12.

All right R-modules are I_0 -modules if and only if either R is a right SV-ring or $R/I^{(2)}(R)$ is an Artinian serial ring such that the square of the Jacobson radical of $R/I^{(2)}(R)$ is equal to zero.

Все кольца предполагаются ассоциативными и с ненулевой единицей, а модули — унитарными. Говоря об артиновых кольцах или подобных объектах, мы предполагаем, что соответствующие условия выполнены справа и слева. Подмодуль X модуля M называется малым B M, если $X+Y\neq M$ для любого собственного подмодуля P модуля M. Следуя [14], мы называем модуль M I_0 -модулем, если каждый его немалый подмодуль содержит ненулевое прямое слагаемое модуля M. Ясно, что I_0 -модули являются слабо регулярными модулями, рассматривавшимися в [1—3,11]; модуль M называется слабо регулярным, если каждый его подмодуль, не лежащий в радикале Джекобсона модуля M, содержит в себе ненулевое прямое слагаемое модуля M. Слабо регулярные модули изучались в [1—3; 6; 7; 11; 13; 14; 15, гл. 3; 16] и других работах. Кольцо называется обобщённым правым SV-кольцом, если над ним каждый правый модуль является глабо регулярным. Ясно, что если каждый правый A-модуль является I_0 -модулем, то A — обобщённое правое SV-кольцо. Кроме того, поскольку из результатов работы следует, что каждый правый модуль над обобщённым правым

Фундаментальная и прикладная математика, 2008, том 14, № 2, с. 3—12. © 2008 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

SV-кольцом имеет малый радикал Джекобсона, то каждый правый модуль над обобщённым правым SV-кольцом является I_0 -модулем. Целью работы является изучение обобщённых правых SV-колец.

Основным результатом работы является теорема 1.

Теорема 1. Для кольца R равносильны следующие условия:

- 1) все правые R-модули являются I_0 -модулями;
- 2) либо R правое SV-кольцо, либо $R/I^{(2)}(R)$ артиново полуцепное кольцо и $J^2(R/I^{(2)}(R))=0$.

Доказательство теоремы 1 разбито на ряд утверждений, некоторые из которых представляют самостоятельный интерес. Приведём необходимые определения и обозначения.

Пересечение всех максимальных подмодулей модуля M обозначается через J(M) и называется радикалом Джекобсона модуля M. Через E(M) обозначается инъективная оболочка модуля M. Кольцо A называется регулярным (по фон Нейману), если $a \in aAa$ для любого элемента $a \in A$. Модуль M называется цепным, если любые два его подмодуля сравнимы по включению. Прямая сумма цепных модулей называется полущепным модулем. Модуль M называется полупростым, если каждый его подмодуль является прямым слагаемым в M. Подмодуль N модуля M называется существенным, если для любого подмодуля X модуля M равенство $X \cap N = 0$ влечёт равенство X = 0. В этом случае также говорят, что M — существенное расширение модуля N. Модуль, изоморфный подмодулю гомоморфного образа прямых сумм копий модуля M, называется M-подпорождённым модулем. Полная подкатегория всех правых R-модулей, состоящая из всех M-подпорождённых модулей, обозначается через $\sigma(M)$ и называется категорией Висбауэра модуля M.

Рядом Лёви модуля M называется возрастающая цепочка

$$0 \subset \operatorname{Soc}_{\alpha}(M) = \operatorname{Soc}(M) \subset \ldots \subset \operatorname{Soc}_{\alpha}(M) \subset \operatorname{Soc}_{\alpha+1}(M) \subset \ldots$$

где

$$\operatorname{Soc}_{\alpha}(M)/\operatorname{Soc}_{\alpha-1}(M) = \operatorname{Soc}(M/\operatorname{Soc}_{\alpha-1}(M))$$

для каждого непредельного ординального числа α и

$$\operatorname{Soc}_{\alpha}(M) = \bigcup_{\beta < \alpha} \operatorname{Soc}_{\beta}(M)$$

для каждого предельного ординального числа α . Обозначим через L(M) подмодуль вида $\mathrm{Soc}_\xi(M)$, где ξ — наименьший ординал, для которого выполнено равенство $\mathrm{Soc}_\xi(M)=\mathrm{Soc}_{\xi+1}(M)$. Модуль M называется полуартиновым, если M=L(M). Модуль полуартинов в точности тогда, когда каждый его фактор-модуль является существенным расширением полупростого модуля. Кольцо R называется полуартиновым справа, если модуль R_R является полуартиновым. Для произвольного кольца R через L(R) и $\mathrm{Soc}(R)$ обозначаются идеалы $L(R_R)$ и $\mathrm{Soc}(R_R)$ соответственно. Модуль M называется инъективным, если для любого модуля X и каждого подмодуля Y модуля X все гомоморфизмы $Y \to M$

продолжаются до гомоморфизмов $X \to M$. Кольцо A называется *правым V-кольцом* при выполнении следующих эквивалентных условий (см. [10, 7.32A]):

- 1) все простые правые A-модули инъективны;
- 2) в кольце A каждый собственный правый идеал пересечение максимальных правых идеалов.

Полуартиново справа правое V-кольцо называется правым SV-кольцом.

В каждом кольце R мы выделим два идеала $I^{(1)}(R)$ и $I^{(2)}(R)$, которые строятся с помощью трансфинитной индукции.

Определим идеал $I^{(1)}(R)$. При $\alpha=0$ положим $I^{(1)}_{\alpha}(R)=0$. Если $\alpha=\beta+1$, то $I^{(1)}_{\beta+1}(R)/I^{(1)}_{\beta}(R)$ — сумма всех простых инъективных подмодулей правого R-модуля $R/I^{(1)}_{\beta}(R)$. Когда α — предельное ординальное число, положим

$$I_{\alpha}^{(1)}(R) = \bigcup_{\beta < \alpha} I_{\beta}^{(1)}(R).$$

Ясно, что для некоторого ординального числа τ имеют место равенства $I_{\tau}^{(2)}(R)=I_{\tau+1}^{(1)}(R)$. Далее через $I^{(1)}(R)$ будем обозначать правый идеал $I_{\tau}^{(1)}(R)$, который, как легко заметить, является идеалом.

Определим идеал $I^{(2)}(R)$. При $\alpha=0$ положим $I^{(2)}_{\alpha}(R)=0$. Если $\alpha=\beta+1$, то $I^{(2)}_{\beta+1}(R)/I^{(2)}_{\beta}(R)$ — сумма всех локальных инъективных подмодулей правого R-модуля $R/I^{(2)}_{\beta}(R)$ длины не больше двух, у которых фактор-модуль по радикалу Джекобсона является инъективным модулем. Когда α — предельное ординальное число, положим

$$I_{\alpha}^{(2)}(R) = \bigcup_{\beta < \alpha} I_{\beta}^{(2)}(R).$$

Ясно, что для некоторого ординального числа τ имеет место равенство $I_{\tau}^{(2)}(R)=I_{\tau+1}^{(2)}(R)$. Далее через $I^{(2)}(R)$ будем обозначать правый идеал $I_{\tau}^{(2)}(R)$, который, как легко заметить, является идеалом.

Лемма 2. Пусть e — ненулевой идемпотент кольца R.

- 1. Если N подмодуль модуля M, то имеет место естественный изоморфизм правых eRe-модулей $(M/N)e\cong Me/Ne$.
- 2. Если M полупростой правый R-модуль, то Me полупростой правый eRe-модуль.
- 3. Если eRe регулярное кольцо, то из инъективности правого R-модуля M следует инъективность правого eRe-модуля Me.

Доказательство. Утверждения 1 и 2 леммы 2 хорошо известны и проверяются непосредственно.

Докажем утверждение 3. Поскольку над кольцом eRe каждый модуль является плоским, то наше утверждение следует из [10, 11.35] и eRe-изоморфизма $\operatorname{Hom}_R(eR,M)\cong Me$.

Лемма 3. Пусть M — слабо регулярный правый R-модуль и N — такой подмодуль модуля M, что (N+J(M))/J(M) — простой подмодуль модуля M/J(M). Тогда модуль N содержит такое локальное прямое слагаемое mR модуля M, что (N+J(M))/J(M)=(m+J(M))R.

Доказательство. Пусть n — такой элемент подмодуля N, что

$$(N + J(M))/J(M) = (n + J(M))R.$$

Из слабой регулярности модуля M следует существование такого циклического подмодуля mR, что $mR \not\subset \mathrm{J}(M), \, mR \subset nR$ и mR — прямое слагаемое модуля M. Тогла

$$\big(N+{\rm J}(M)\big)/{\rm J}(M)=\big(m+{\rm J}(M)\big)R\cong mR/({\rm J}(M)\cap mR)\cong mR/{\rm J}(mR),$$
 что доказывает локальность модуля mR .

Лемма 4. Пусть R — кольцо.

- 1. Для каждого ординального числа α всякий инъективный простой правый $R/I_{\alpha}^{(1)}$ -модуль M является инъективным правым R-модулем.
- 2. Если e центральный идемпотент кольца R и eR полупростой модуль над кольцом R, то eR инъективный модуль.

Доказательство. 1. Покажем с помощью трансфинитной индукции, что для каждого ординального числа lpha инъективный простой R/I_{lpha} -модуль M является инъективным R-модулем. Если $\alpha = 0$, то утверждение тривиально. Пусть lpha — некоторое ординальное число и для каждого eta < lpha всякий инъективный простой правый R/I_{β} -модуль M является инъективным правым R-модулем. Рассмотрим произвольный инъективный простой правый R/I_{α} -модуль M. Допустим, что $E(M) \neq M$, где E(M) — инъективная оболочка R-модуля M. Если $E(M)I_{lpha}
eq 0$, то обозначим через γ наименьшее ординальное число, для которого $E(M)I_{\gamma} \neq 0$. Ясно, что $\gamma = \gamma_0 + 1$ для некоторого ординального числа γ_0 . Тогда $E(M)-R/I_{\gamma_0}$ -модуль и для некоторого примитивного идемпотента e из идеала I_{γ}/I_{γ_0} имеет место неравенство $E(M)e \neq 0$. По предположению индукции простой модуль $e(R/I_{\gamma_0})$ является инъективным R-модулем. Согласно [4, 6.6.3] E(M) — непростой модуль, в которым любые два ненулевых подмодуля имеют ненулевое пересечение. С другой стороны, E(M) содержит простой инъективный R-модуль. Полученное противоречие показывает, что $E(M)I_{\alpha}=0$. Таким образом, E(M) является R/I_{α} -модулем и, поскольку M — инъективный простой R/I_{α} -модуль, E(M)=M.

2. Рассмотрим вложение $eR\subset E(eR)$. Если $E(eR)(1-e)\neq 0$, то для некоторого элемента x из E(eR) имеем $x(1-e)\neq 0$. Поскольку eR существенен в E(eR), для некоторых элементов r и s из R имеем $x(1-e)r=es\neq 0$. Тогда

$$es = ese = x(1 - e)re = 0.$$

Полученное противоречие показывает, что E(eR)(1-e)=0, и следовательно, E(eR) мы можем рассматривать как модуль над кольцом eR. Поскольку eR- полупростой модуль, то eR- полупростое кольцо и eR=E(eR).

П

Лемма 5 [6, следствие 7]. Над обобщённым правым SV-кольцом каждый неразложимый правый модуль является либо простым модулем, либо локальным модулем длины два.

Лемма 6 [6, теорема 1]. Для кольца R равносильны следующие условия:

- 1) R обобщённое правое SV-кольцо;
- 2) над кольцом R каждый правый модуль является либо полупростым, либо содержит в себе ненулевой инъективный подмодуль.

Замечание. Утверждение, аналогичное предыдущему, для категории Висбауэра было независимо установлено первым автором.

Лемма 7 [2, теорема 3; 6, следствие 10]. Для полусовершенного кольца R равносильны следующие условия:

- 1) R обобщённое правое SV-кольцо;
- 2) R артиново полуцепное кольцо и $J^{2}(R) = 0$.

Лемма 8. Если R — полуартиново справа обобщённое правое SV-кольцо, то каждый неполупростой правый R-модуль N будет содержать инъективный ло-кальный подмодуль длины не больше двух. В частности, каждый локальный модуль длины два инъективен.

Доказательство. Поскольку модуль N не полупрост, то из леммы 6 следует, что он будет содержать ненулевой инъективный подмодуль N_0 . Так как R — полуартиново справа кольцо, то подмодуль N_0 также является полуартиновым и, следовательно, $N_0/\mathrm{J}(N_0)$ будет содержать простой подмодуль. Тогда из лемм 3 и 5 следует, что модуль N_0 содержит прямое слагаемое, являющееся инъективным локальным модулем длины не больше двух.

Лемма 9. Пусть M — правый модуль над кольцом R.

- 1. Если $MI^{(2)}(R) \neq 0$, то M содержит ненулевой локальный инъективный подмодуль длины не больше двух.
- 2. Если $R = I^{(2)}(R)$, то R правое SV-кольцо.

Доказательство. 1. Пусть γ — наименьшее ординальное число с условием $MI_{\gamma}^{(2)}(R) \neq 0$. Ясно, что γ — непредельное ординальное число. Тогда модуль M содержит ненулевой гомоморфный образ модуля $I_{\gamma}^{(2)}(R)/I_{\gamma-1}^{(2)}(R)$ и, следовательно, M содержит локальный инъективный подмодуль длины не больше двух.

2. Второе утверждение следует из первого.

Лемма 10. Для кольца R равносильны следующие условия:

- 1) R полуартиново справа обобщённое правое SV-кольцо;
- 2) либо R правое SV-кольцо, либо $R/I^{(2)}(R)$ артиново полуцепное кольцо и $J^2\big(R/I^{(2)}(R)\big)=0.$

Доказательство. Докажем импликацию $1) \Longrightarrow 2$). Обозначим через S фактор-кольцо $R/I^{(2)}(R)$, которое можно рассматривать как правый R-модуль. Предположим, что S/J(S) — неполупростое кольцо. Тогда по лемме 6 правый R-модуль S/J(S) содержит в себе ненулевой инъективный подмодуль и, следовательно, будет содержать и простой инъективный подмодуль. Тогда из лемм 3 и 8 следует, что правый R-модуль S содержит инъективный локальный подмодуль длины не больше двух, у которого фактор-модуль по радикалу Джекобсона является инъективным модулем. Поскольку по построению идеала $I^{(2)}(R)$ правый R-модуль $R/I^{(2)}(R)$ не может содержать локальных подмодулей длины не больше двух, у которых фактор-модуль по радикалу Джекобсона является инъективным модулем, то получаем противоречие. Таким образом, S/J(S) не содержит ненулевых инъективных подмодулей и, следовательно, согласно лемме 6 является полупростым модулем. Тогда S является полулокальным кольцом, и импликация следует из лемм 6 и 7.

Докажем импликацию $2)\Longrightarrow 1).$ Покажем, что каждый локальный правый $R/I^{(2)}(R)$ -модуль N длины два является инъективным R-модулем. Пусть E(N) — инъективная оболочка R-модуля N. Если $E(N)I^{(2)}(R)=0$, то E(N) можно рассматривать как $R/I^{(2)}(R)$ -модуль. Тогда из инъективности $R/I^{(2)}(R)$ -модуля N следует равенство N=E(N). В случае когда $E(N)I^{(2)}(R)\neq 0$, из леммы 9 следует, что E(N) содержит инъективный локальный подмодуль длины не больше двух, и тогда равенство E(N)=N проверяется непосредственно.

Рассмотрим произвольный неполупростой правый R-модуль N. Если $NI^{(2)}(R)=0$, то N можно рассматривать как правый $R/I^{(2)}(R)$ -модуль. Тогда N содержит локальный подмодуль длины два, который является инъективным R-модулем. Если $NI^{(2)}(R)\neq 0$, то из леммы 9 следует, что N содержит ненулевой локальный инъективный подмодуль. Таким образом, приведённые выше рассуждения показывают, что в произвольном неполупростом модуле N содержится ненулевой инъективный подмодуль. Тогда импликация следует из леммы 6. \square

Лемма 11. Если e — ненулевой идемпотент кольца R, eRe — регулярное кольцо и R — обобщённое правое SV-кольцо, то eRe — обобщённое правое SV-кольцо.

Доказательство. Предположим противное. Тогда из леммы 6 следует, что над кольцом eRe найдётся неполупростой правый модуль N, который не содержит ненулевых инъективных подмодулей. Рассмотрим правый R-модуль $M=N\otimes_{eRe}eR$. Ясно, что $Me\cong N$. Определим в модуле M по трансфинитной индукции для каждого ординального числа α подмодуль M_{α} следующим образом. При $\alpha=0$ положим $M_{\alpha}=0$. Если $\alpha=\beta+1$, то $M_{\beta+1}/M_{\beta}-$ сумма всех инъективных подмодулей модуля M/M_{β} . Когда $\alpha-$ предельное ординальное число, положим $M_{\alpha}=\bigcup_{\beta<\alpha}M_{\beta}$. Обозначим через M_{0} объединение всех таких

модулей. Покажем с помощью трансфинитной индукции, что для каждого ординального числа α имеет место равенство $M_{\alpha}e=0$. Если $\alpha=0$, то утверждение

тривиально. Пусть α — некоторое ординальное число и $M_{\beta}e=0$ для каждого $\beta<\alpha$. Если α — предельное ординальное число, то равенство $M_{\alpha}e=0$ тривиально. Предположим, что α — непредельное ординальное число и $\alpha=\alpha_0+1$. По предположению индукции $M_{\alpha_0}e=0$. Тогда по лемме 2 имеем

$$(M_{\alpha}/M_{\alpha_0})e \cong (M_{\alpha}e)/(M_{\alpha_0}e) \cong M_{\alpha}e.$$

Если $M_{\alpha}e \neq 0$, то в модуле M_{α}/M_{α_0} найдётся инъективный подмодуль L, для которого имеет место неравенство $Le \neq 0$. Поскольку по лемме 2 Le- инъективный eRe-модуль, то $M_{\alpha}e$ и, следовательно, Me будут содержать в себе ненулевые инъективные подмодули, что противоречит исходному предположению. Таким образом, для каждого ординального числа α имеет место равенство $M_{\alpha}e=0$, и следовательно, $M_0e=0$. Поскольку M/M_0 не содержит инъективных подмодулей, то из леммы 6 следует, что модуль M/M_0 полупрост. Тогда по лемме 2 $(M/M_0)e-$ полупростой модуль, и следовательно, поскольку $(M/M_0)e\cong Me$, модуль Me также является полупростым, что противоречит выбору модуля N.

При доказательстве следующей леммы мы использовали рассуждения, приведённые в [12, лемма 10].

Лемма 12. Пусть R — самоинъективное справа регулярное кольцо и A — счётно порождённый не конечно порождённый правый идеал кольца R. Если для некоторого идемпотента e модуль eR является существенным расширением A_R , то модуль $R/(A\oplus (1-e)R)$ не содержит ненулевых инъективных подмодулей.

Доказательство. Допустим, что $B=A\oplus (1-e)R$. Предположим, что модуль R/B содержит ненулевой инъективный подмодуль C/B. Тогда $R/B=C/B\oplus D/B$. Поскольку $R/D\cong C/B$, R/D- инъективный модуль. Так как правый идеал B счётно порождён, а модуль D/B цикличен, то правый идеал D счётно порождён. Тогда из [12, следствие 9] следует, что D- конечно порождённый правый идеал регулярного кольца R. Поэтому D- прямое слагаемое в R_R . Поскольку B- существенный подмодуль в R_R и B лежит в прямом слагаемом D модуля R_R , то D=R. Следовательно, C/B=0, что противоречит нашему предположению.

Теорема 13. Для кольца R равносильны следующие условия:

- 1) R правое SV-кольцо;
- 2) R регулярное кольцо и каждый правый R-модуль является слабо регулярным.

Доказательство. Импликация $1) \Longrightarrow 2)$ проверяется непосредственно.

Докажем импликацию $2)\Longrightarrow 1$). Пусть R — регулярное кольцо, над которым каждый правый модуль слабо регулярен. Предположим, что $R\neq I^{(1)}(R)$, и обозначим через S кольцо $R/I^{(1)}(R)$. Из леммы 4 следует, что модуль S_S не содержит простых инъективных S-подмодулей и, в частности, не является

полупростым. Поскольку над кольцом S каждый модуль является слабо регулярным, то из леммы 6 следует, что S_S содержит ненулевой инъективный подмодуль вида eS, где e — некоторый идемпотент кольца S. Так как кольцо eSe изоморфно кольцу эндоморфизмов инъективного модуля eS и J(eSe)=0, то согласно [17, 22.1] оно является самоинъективным справа регулярным кольцом. Тогда из леммы 11 следует, что eSe — обобщённое правое SV-кольцо. Поскольку eS не содержит простых подмодулей, то регулярное кольцо eSe не содержит примитивных идемпотентов, т. е. Soc(eSe)=0. Тогда в кольце eSe мы можем выделить бесконечное семейство ортогональных ненулевых идемпотентов вида $\{e_{ij}\}_{i,j=1}^{\infty}$. Для каждого i модуль $\bigoplus_{j=1}^{\infty} e_{ij}eSe$ является существенным подмодулем $\{f_ieSe\}_{i=1}^{\infty}$ является, очевидно, независимым, и для некоторого идемпотента f кольца eSe правый идеал $\bigoplus_{i=1}^{\infty} f_ieSe$ является существенным в feSe. Правый идеал $\bigoplus_{i,j=1}^{\infty} e_{ij}eSe$ является существенным подмодулем в feSe, и правый eSe-мо-мо-моруле $eSe/\left(\bigoplus_{i,j=1}^{\infty} e_{ij}eSe \oplus (e-f)eSe\right)$ содержит подмодуль, изоморфный модулю $\bigoplus_{i=1}^{\infty} \left(f_ieSe/\left(\bigoplus_{j=1}^{\infty} e_{ij}eSe\right)\right)$. Тогда модуль $eSe/\left(\bigoplus_{i,j=1}^{\infty} e_{ij}eSe \oplus (e-f)eSe\right)$ не является полупростым и, следовательно, согласно лемме 6 содержит ненулевой инъективный подмодуль, что противоречит лемме 12.

Лемма 14. Если R — обобщённое правое SV-кольцо, то R — полуартиново справа кольцо.

Доказательство. Пусть R — обобщённое правое SV-кольцо. Предположим, что $R \neq L(R)$, и обозначим через S кольцо R/L(R), которое также является обобщённым правым SV-кольцом. Ясно, что $\mathrm{Soc}(S_S)=0$, и следовательно, по лемме 6 $\mathrm{J}(S)=0$. Поскольку модуль S_S не является полупростым, то из леммы 6 следует, что S_S содержит ненулевой инъективный подмодуль вида eS, где e — некоторый идемпотент кольца S. Согласно [17, 22.1] кольцо eSe регулярно. Тогда из леммы 11 и теоремы 13 следует, что eSe — правое SV-кольцо и, следовательно, содержит некоторый примитивный идемпотент f. Модуль feS является простым, что противоречит равенству $\mathrm{Soc}(S_S)=0$.

Окончание доказательства теоремы 1. Теорема 1 непосредственно вытекает из лемм 9, 10 и 14. □

Замечание. Отметим, что теоремы 1 и 13 на данном уровне общности были сначала получены первым из авторов.

Следствие 15. Пусть R — обобщённое правое SV-кольцо. Тогда мощность классов изоморфизмов неразложимых правых R-модулей, у которых фактор-модуль по радикалу Джекобсона неинъективен, является конечным.

Доказательство. Пусть M — неразложимый правый R-модуль, у которого фактор-модуль по радикалу Джекобсона неинъективен. Из леммы 5 следует, что M — локальный модуль длины два. Если $MI^{(2)}(R) \neq 0$, то из доказательства леммы 9 следует, что модуль $M/\mathrm{J}(M)$ является инъективным. Полученное противоречие показывает, что $MI^{(2)}(R)=0$, и следовательно, по теореме 1 модуль M изоморфен неразложимому прямому слагаемому модуля $\left(R/I^{(2)}(R)\right)_R$.

Кольцо называется I-бесконечным, если оно содержит бесконечное множество ортогональных идемпотентов.

Теорема 16. Если R — кольцо, у которого каждое I-бесконечное фактор-кольцо содержит примитивный центральный идемпотент, то равносильны следующие условия:

- 1) R обобщённое SV-кольцо;
- 2) либо R правое SV-кольцо, либо $R/I^{(1)}(R)$ артиново полуцепное кольцо и $J^2(R/I^{(1)}(R))=0$.

Доказательство. Докажем импликацию $1) \Longrightarrow 2$). Обозначим через S кольцо $R/I^{(1)}(R)$. Предположим, что S не является полусовершенным. Из следствия 15 следует, что мощность классов изоморфизмов неразложимых правых S-модулей, у которых фактор-модули по радикалу Джекобсона неинъективны, равна некоторому натуральному числу n. Пусть m > n. Тогда по предположению в кольце S мы можем выделить m ортогональных примитивных центральных идемпотентов e_1, \ldots, e_m . Согласно леммам 4 и 5 $I^{(1)}(S) = 0$ и для каждого i $e_i S$ — локальный модуль длины два. Поскольку модули $e_1 S, \dots, e_m S$ попарно не изоморфны и m>n, то существует такой примитивный центральный идемпотент f кольца S, что модуль fS является локальным модулем длины два и fS/J(fS) — инъективный модуль. Рассмотрим произвольный ненулевой элемент вида fj, где $j\in \mathrm{J}(S)$. Поскольку $\mathrm{Ann}(f)\subset \mathrm{Ann}(fj)$, то имеет место гомоморфизм φ из fS в fjS, при котором $\varphi(f)=fj$, и ядро этого гомоморфизма равно $f\mathrm{J}(S)=fjS$. Тогда $f\mathrm{J}(S)\cong fS/f\mathrm{J}(S)$ и, следовательно, $fS/\mathrm{J}(fS)$ не может быть инъективным. Полученное противоречие показывает, что кольцо $R/I^{(1)}(R)$ полусовершенно и, следовательно, согласно теореме 1 является артиновым полуцепным и $J^2(R/I^{(1)}(R)) = 0$.

Теорема 17 [9]. Для кольца R без бесконечных множеств ортогональных нецентральных идемпотентов следующие условия равносильны:

- 1) R обобщённое правое SV-кольцо;
- 2) либо R правое SV-кольцо, либо $R/I^{(1)}(R)$ артиново полуцепное кольцо и $J^2(R/I^{(1)}(R))=0$.

Открытый вопрос. В связи с теоремами 1 и 17 рассмотрим следующие два условия для произвольного кольца R:

1) либо R — правое SV-кольцо, либо $R/I^{(1)}(R)$ — артиново полуцепное кольцо и $J^2(R/I^{(1)}(R))=0$;

2) либо R — правое SV-кольцо, либо $R/I^{(2)}(R)$ — артиново полуцепное кольцо и $J^2(R/I^{(2)}(R))=0$.

Непосредственно проверяется, что всегда верна импликация $1) \Longrightarrow 2$). Верно ли, что эти два условия эквивалентны? По теореме 17 это верно для колец без бесконечных множеств ортогональных нецентральных идемпотентов.

Литература

- [1] Абызов А. Н. Замкнутость слабо регулярных модулей относительно прямых сумм // Изв. высш. учебн. завед. Математика. $2003. \mathbb{N} 9. \mathrm{C}. 3-5.$
- [2] Абызов А. Н. Слабо регулярные модули над полусовершенными кольцами // Чебышёвский сб. 2003.-T.4, N0 1. С. 4—9.
- [3] Абызов А. Н. Слабо регулярные модули // Изв. высш. учебн. завед. Математика. 2004.- № 3.- С. 3-6.
- [4] Каш Ф. Модули и кольца. М.: Мир, 1981.
- [5] Сахаев И. И., Хакми Х. И. О сильно регулярных модулях и кольцах // Изв. высш. учебн. завед. Математика 1998. № 2. С. 60—63.
- [6] Туганбаев А. А. Модули с большим числом прямых слагаемых // Фундамент. и прикл. мат. 2006. Т. 12, вып. 8. С. 233—241.
- [7] Туганбаев А. А. Кольца, над которыми все модули полурегулярны // Фундамент. и прикл. мат. -2007. Т. 13, вып. 2. С. 185-194.
- [8] Туганбаев А. А. Кольца, над которыми все модули являются I_0 -модулями // Фундамент. и прикл. мат. 2007. Т. 13, вып. 5. С. 193—200.
- [9] Туганбаев А. А. Кольца без бесконечных множеств нецентральных ортогональных идемпотентов // Фундамент. и прикл. мат. 2008. Т. 14, вып. 2. С. 207—221.
- [10] Фейс К. Алгебра: кольца, модули и категории. 1. М.: Мир, 1977.
- [11] Хакми Х. И. Сильно регулярные и слабо регулярные кольца и модули // Изв. высш. учебн. завед. Математика. 1994. \mathbb{N}_2 5. С. 60—65.
- [12] Dung N. V., Smith P. F. On semiartinian V-modules // J. Pure Appl. Algebra. 1992. Vol. 82, no. 1. P. 27 37.
- [13] Hamza H. I_0 -rings and I_0 -modules // Math. J. Okayama Univ. 1998. Vol. 40. P. 91—97.
- [14] Nicholson W. K. I-rings // Trans. Amer. Math. Soc. 1975. Vol. 207. P. 361—373.
- [15] Tuganbaev A. A. Rings Close to Regular. Dordrecht: Kluwer Academic, 2002.
- [16] Tuganbaev A. A. Semiregular, weakly regular, and π -regular rings // J. Math. Sci. 2002. Vol. 109, no. 3. P. 1509—1588.
- [17] Wisbauer R. Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991.