Модули и кольца Безу

А. А. ТУГАНБАЕВ

Российский государственный торгово-экономический университет e-mail: tuganbaev@gmail.com

УДК 512.552

Ключевые слова: модуль Безу, кольцо Безу.

Аннотация

Для любого кольца A существуют кольцо Безу R и идемпотент $e \in R$, такие что $A \cong eRe$. Каждый модуль над любым кольцом является прямым слагаемым модуля эндо-Безу. Над любым кольцом каждый свободный модуль бесконечного ранга является модулем эндо-Безу.

Abstract

 $\it A.~A.~Tuganbaev,~Bezout~modules~and~rings,~Fundamentalnaya i prikladnaya matematika, vol. 14 (2008), no. 4, pp. 227—229.$

For any ring A, there exist a Bezout ring R and an idempotent $e \in R$ with $A \cong eRe$. Every module over any ring is a direct summand of an endo-Bezout module. Over any ring, every free module of infinite rank is an endo-Bezout module.

Все кольца предполагаются ассоциативными и с ненулевой единицей, а модули — унитарными. Говоря о кольцах Безу или подобных объектах, мы предполагаем, что соответствующие условия выполнены справа и слева. Модулем Безу называется модуль, в котором все конечно порождённые подмодули цикличны. Правый модуль M называется модулем эндо-Безу, если M — левый модуль Безу над своим кольцом эндоморфизмов $\operatorname{End}(M)$.

Основным результатом работы является следующая теорема.

Теорема.

- 1. Для любого кольца A существуют кольцо Безу R и идемпотент $e \in R$, такие что $A \cong eRe$.
- 2. Каждый модуль над любым кольцом является прямым слагаемым модуля эндо-Безу.
- 3. Над любым кольцом каждый свободный модуль бесконечного ранга является модулем эндо-Безу. Следовательно, каждый проективный модуль над любым кольцом является прямым слагаемым свободного модуля эндо-Безу.

Лемма 1. Пусть R — такое кольцо, что существует модульный эпиморфизм

$$_{R}R \rightarrow _{R}R \oplus _{R}R.$$

Тогда каждый конечно порождённый левый R-модуль является циклическим модулем. Следовательно, каждый левый R-модуль является модулем Безу. В частности, R — левое кольцо Безу.

Доказательство. Из условия следует, что каждый конечно порождённый свободный левый R-модуль — гомоморфный образ циклического модуля $_RR$. Кроме того, каждый конечно порождённый модуль — гомоморфный образ конечно порождённого свободного модуля. Поэтому каждый конечно порождённый левый R-модуль цикличен.

Для кольца R обозначим через $R_{\infty\times\infty}$ множество всех бесконечных матриц $(a_{ij})_{i,j=1}^\infty$ $(a_{ij}\in R)$ с бесконечными счётными строками и столбцами. Матрица $M\in R_{\infty\times\infty}$ называется конечно-столбцовой (конечно-сторочной), если каждый столбец (каждая строка) этой матрицы содержит только конечное число ненулевых элементов. Множество $R_{\infty\times\infty}$ содержит подмножества R_1 , R_2 и R_3 , образованные всеми конечно-столбцовыми матрицами, всеми конечно-строчными матрицами и всеми конечно-столбцовыми и конечно-строчными матрицами соответственно. Непосредственно проверяется, что R_1 , R_2 и R_3 являются кольцами с обычными матричными операциями сложения и умножения.

Лемма 2. Пусть A — кольцо и R либо кольцо всех конечно-столбцовых матриц над A, либо кольцо всех конечно-строчных матриц над A, либо кольцо всех конечно-столбцовых конечно-строчных матриц над A.

1. Существуют модульные изоморфизмы

$$_{R}R \rightarrow _{R}R \oplus _{R}R, \quad R_{R} \rightarrow R_{R} \oplus R_{R}.$$

- 2. Все левые R-модули и все правые R-модули являются модулями Безу.
- 3. R кольцо Безу, и существует такой идемпотент $e \in R$, что $A \cong eRe$.

Доказательство. Докажем утверждение 1. Обозначим через M и N такие матрицы $(a_{ij}) \in R$ и $(b_{ij}) \in R$, что $a_{ij} = 0$ при $j \neq 2i-1$, $a_{i,2i-1} = 1$, $b_{ij} = 0$ при $i \neq 2j-1$, $b_{2j-1,j} = 1$. Для любой матрицы $X = (x_{ij}) \in R$ получаем, что

$$XM = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \dots \\ x_{21} & x_{22} & x_{23} & \dots \\ x_{31} & x_{32} & x_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \\ = \begin{pmatrix} x_{11} & 0 & x_{12} & 0 & x_{13} & 0 & \dots \\ x_{21} & 0 & x_{22} & 0 & x_{23} & 0 & \dots \\ x_{31} & 0 & x_{32} & 0 & x_{33} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

$$NX = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & x_{13} & \dots \\ x_{21} & x_{22} & x_{23} & \dots \\ x_{31} & x_{32} & x_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \dots \\ 0 & 0 & 0 & \dots \\ x_{21} & x_{22} & x_{23} & \dots \\ 0 & 0 & 0 & \dots \\ x_{31} & x_{32} & x_{33} & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Поэтому отображение $f \colon X \to XN$ — инъективный эндоморфизм левого модуля $_RR$, индуцирующий такое прямое разложение $_RR=f(_RR)\oplus G$, что $G\cong _RR$. Кроме того, отображение $g\colon X\to MX$ — инъективный эндоморфизм правого модуля R_R , индуцирующий такое прямое разложение $R_R = g(R_R) \oplus G$, что $G\cong R_R$. Поэтому $_RR\cong _RR\oplus _RR$ и $R_R\cong R_R\oplus R_R$.

Утверждение 2 следует из утверждения 1 и леммы 1.

Утверждение 3 следует из утверждения 2.

Лемма 3. Пусть M — правый модуль над кольцом S, $A = \operatorname{End}(M_S)$, $\{M_i\}_{i=1}^{\infty}$ — счётное множество изоморфных копий S-модуля M,

$$R = \operatorname{End}\left(\bigoplus_{i=1}^{\infty} M_i\right).$$

- $1.\$ Кольцо R изоморфно кольцу всех конечно-столбцовых матриц над коль-
- 2. Все левые R-модули и все правые R-модули являются модулями Безу. Следовательно, $\bigoplus_{i=1}^{\infty} M_i$ — модуль эндо-Безу. 3. R — кольцо Безу, и существует такой идемпотент $e \in R$, что $A \cong eRe$.

Доказательство. Утверждение 1 проверяется непосредственно. Утверждения 2 и 3 следуют из утверждения 1 и леммы 2.

Окончание доказательства теоремы. Утверждение 1 следует из третьего утверждения леммы 2. Утверждения 2 и 3 следуют из второго утверждения леммы 3.