Полугруппы эндоморфизмов 2-нильпотентных бинарных отношений

ю. в. жучок

Луганский национальный университет им. Тараса Шевченко e-mail: zhuchok_y@mail.ru

УДК 512.53

Ключевые слова: полугруппа эндоморфизмов, бинарное отношение, нильпотентное отношение.

Аннотация

В работе построены две полугрупповые конструкции, которые с точностью до изоморфизма описывают строение всех полугрупп эндоморфизмов 2-нильпотентных бинарных отношений.

Abstract

Y. V. Zhuchok, Endomorphism semigroups of 2-nilpotent binary relations, Fundamentalnaya i prikladnaya matematika, vol. 14 (2008), no. 6, pp. 75–83.

We define two constructions of semigroups, which up to isomorphism describe the structure of all endomorphism semigroups of 2-nilpotent binary relations.

1. Введение

Полугруппы эндоморфизмов бинарных отношений изучались многими авторами. Одним из первых результатов об эндоморфизмах бинарных отношений является теорема Л. М. Глускина [2] об определяемости любого нетривиального отношения квазипорядка своей полугруппой эндоморфизмов. Л. Б. Шнеперман в [5] показал, что результат Глускина невозможно перенести на класс всех рефлексивных бинарных отношений, при этом им были найдены абстрактные характеристики полугруппы всех эндоморфизмов квазиупорядоченного множества и квазиупорядоченной полугруппы всех эндоморфизмов отношения квазипорядка. Далее в этом направлении было получено достаточно много результатов для различных классов отношений, а также некоторые обобщения и аналоги ряда классических результатов (см., например, [6, 8, 9]).

Следует отметить, что особенное внимание уделялось изучению полугруппы эндоморфизмов отношения частичного порядка и, в частности, полугруппы эндоморфизмов цепи. Так, для полугруппы эндоморфизмов конечной цепи А. Я. Айзенштат [1] были найдены её образующие и соотношения, а Б. М. Шайном [10]

Фундаментальная и прикладная математика, 2008, том 14, № 6, с. 75—83. © 2008 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

получены условия, при которых элемент полугруппы эндоморфизмов произвольной цепи раскладывается в произведение идемпотентов. Для полугрупп эндоморфизмов частичных порядков также изучались некоторые комбинаторные свойства [7], условия регулярности [4] и другие алгебраические свойства.

Открытым при этом остаётся вопрос о строении с точностью до изоморфизма полугрупп эндоморфизмов для многих содержательных типов бинарных отношений. Для полугруппы эндоморфизмов произвольного отношения эквивалентности этот вопрос был решён в [3]. Основной целью этой работы является описание с точностью до изоморфизма строения всех полугрупп эндоморфизмов 2-нильпотентных отношений.

2. Основные понятия

В этом разделе вводятся необходимые понятия. Показано, как эндоморфизм бинарного отношения определяется через нижний или верхний конус.

2.1. Пусть $\Im(X)$ — симметрическая полугруппа на множестве X. Эндоморфизмом отношения $\rho\subseteq X\times X$ называется преобразование $f\in\Im(X)$, такое что при любых $a,b\in X$ из условия $(a;b)\in \rho$ следует $(af;bf)\in \rho$. Множество $E_{\rho}(X)$ всех эндоморфизмов отношения ρ относительно обычной операции композиции преобразований является полугруппой.

Нижним (верхним) конусом элемента $u \in X$ реляционной системы (X, ρ) , где $\rho \subseteq X \times X$, называется множество

$$u^{\nabla} = \{ v \in X \mid (v; u) \in \rho \} \quad \left(u^{\triangle} = \{ v \in X \mid (u; v) \in \rho \} \right).$$

Эндоморфизмы бинарного отношения можно определить в терминах нижнего или верхнего конуса.

Лемма. Пусть $\rho\subseteq X\times X$ — непустое отношение, $f\in\Im(X)$. Следующие условия эквивалентны:

- 1) $f \in E_{\rho}(X)$;
- 2) $f(a^{\triangle}) \subseteq (f(a))^{\triangle}$ для всех $a \in \text{Dom } \rho$;
- 3) $f(a^{\nabla}) \subseteq (f(a))^{\nabla}$ для всех $a \in \operatorname{Im} \rho$.

Доказательство. Докажем импликацию $1)\Longrightarrow 2$). Пусть $b\in f(a^\triangle)$, где $a\in {\rm Dom}\, \rho$. Тогда существует такой элемент $x\in a^\triangle$, что f(x)=b. Так как $f\in E_\rho(X)$, то из условия $(a;x)\in \rho$ следует, что $\big(f(a);f(x)\big)=(f(a);b)\in \rho$, т. е. $b\in \big(f(a)\big)^\triangle$.

Докажем импликацию $2) \Longrightarrow 3$). Возьмём $x \in f(b^{\nabla})$, где $b \in \operatorname{Im} \rho$. Тогда найдётся такой элемент $u \in b^{\nabla}$, что f(u) = x. Из того, что $(u;b) \in \rho$, следует $b \in u^{\triangle}$. Так как $f(b) \in f(u^{\triangle})$ и $u \in \operatorname{Dom} \rho$, то по условию 2) получаем $f(b) \in (f(u))^{\triangle}$, откуда $(f(u);f(b)) = (x;f(b)) \in \rho$. Следовательно, $x \in (f(b))^{\nabla}$.

Докажем импликацию $3)\Longrightarrow 1$). Пусть $(u;v)\in \rho$, тогда $u\in v^{\bigtriangledown}$. Согласно условию 3) $f(v^{\bigtriangledown})\subseteq \big(f(v)\big)^{\bigtriangledown}$, поэтому $f(u)\in \big(f(v)\big)^{\bigtriangledown}$. Таким образом, $\big(f(u);f(v)\big)\in \rho$, т. е. $f\in E_{\rho}(X)$.

Лемма доказана.

2.2. Пусть B_X — полугруппа всех бинарных отношений на множестве X, n — натуральное число. Отношение $\rho \in B_X$ называется нильпотентным отношением степени n (или n-нильпотентным отношением), если $\rho^n = \emptyset$ и не существует натурального m < n с таким свойством.

Если n=2, то условие 2-нильпотентности отношения $\rho\in B_X$ равносильно тому, что ${\rm Dom}\,\rho\cap{\rm Im}\,\rho=\varnothing.$

Множество $\mathrm{Dom}\,\rho\cup\mathrm{Im}\,\rho$ будем называть содержанием отношения $\rho\in B_X$ и обозначать через $c(\rho)$.

Если $f\colon A\to B$ — произвольное отображение, $Y\subseteq A$, то через $f|_Y$ будем обозначать ограничение отображения f на подмножество Y, а через f^* — отношение $\big\{\big(a;f(a)\big)\mid a\in A\big\}.$

3. Эндоморфизмы 2-нильпотентных отношений

В этом разделе описываются необходимые и достаточные условия, при которых произвольное преобразование множества, на котором определено нильпотентное отношение второй степени, будет эндоморфизмом этого отношения.

3.1. Подмножество $A\subseteq {\rm Dom}\, \rho$ $(B\subseteq {\rm Im}\, \rho)$ назовём множеством связности (косвязности) элемента $u\in {\rm Dom}\, \rho$ $(v\in {\rm Im}\, \rho)$, если

$$u \in A, \ \bigcap_{x \in A} x^{\triangle} \neq \varnothing \quad \Big(v \in B, \ \bigcap_{x \in B} x^{\bigtriangledown} \neq \varnothing\Big).$$

Обозначим через Q_u (Q_v') совокупность всех множеств связности (косвязности) элемента $u \in \text{Dom } \rho$ ($v \in \text{Im } \rho$), и пусть

$$T = \{ f \in \Im(\operatorname{Dom} \rho) \mid \forall x \in \operatorname{Dom} \rho \ A \in Q_x \Rightarrow f(A) \in Q_{f(x)} \}, \quad \lambda \in T, \\ S' = \{ g \in \Im(\operatorname{Im} \rho) \mid \forall y \in \operatorname{Im} \rho \ A \in Q'_y \Rightarrow g(A) \in Q'_{g(y)} \}, \quad \mu \in S'.$$

Если $K=\{k^\triangle\mid k\in {\rm Dom}\, \rho\}$ $(K'=\{k^\nabla\mid k\in {\rm Im}\, \rho\})$, то для каждого $x\in {\rm Im}\, \rho$ (соответственно $a\in {\rm Dom}\, \rho$) положим

$$[x] = \{y^{\triangle} \in K \mid x \in y^{\triangle}\}, \quad [x]^* = \{y \in \text{Dom } \rho \mid y^{\triangle} \in [x]\}, \quad P_{\lambda}(x) = \bigcap_{y \in \lambda([x]^*)} y^{\triangle},$$

$$\left([a]' = \{b^{\nabla} \in K' \mid a \in b^{\nabla}\}, \quad [a]_* = \{b \in \operatorname{Im} \rho \mid b^{\nabla} \in [a]'\}, \quad P'_{\mu}(a) = \bigcap_{b \in \mu([a]_*)} b^{\nabla}\right).$$

Обозначим через M_x^{λ} ($M_a'^{\mu}$), где $x \in \text{Im } \rho$ ($a \in \text{Dom } \rho$), множество всех отображений из одноэлементного множества $\{x\}$ (соответственно $\{a\}$) в множество

 $P_{\lambda}(x)$ (соответственно $P'_{\mu}(a)$), т. е.

$$M_x^{\lambda} = \operatorname{Map}(\lbrace x \rbrace; P_{\lambda}(x)) \quad \left(M_a^{\prime \mu} = \operatorname{Map}(\lbrace a \rbrace; P_{\mu}^{\prime}(a)) \right).$$

Пусть

$$\begin{split} S_{\lambda} &= \{ f \in \Im(\operatorname{Im} \rho) \mid \forall \, x \in \operatorname{Im} \rho \, \, f|_{\{x\}} \in M_{x}^{\lambda} \}, \quad S = \bigcup_{\eta \in T} S_{\eta}, \\ T'_{\mu} &= \{ g \in \Im(\operatorname{Dom} \rho) \mid \forall \, a \in \operatorname{Dom} \rho \, \, g|_{\{a\}} \in M_{a}^{\prime \mu} \}, \quad T' = \bigcup_{\eta \in S'} T'_{\eta}. \end{split}$$

Если $f\in \Im(X)$ и $\rho\subseteq X imes X$, то будем использовать (в этом разделе) обозначения $f|_{\mathrm{Dom}\,\rho}=\varphi,\,f|_{\mathrm{Im}\,\rho}=\psi.$

3.2. Эндоморфизмы нильпотентных отношений второй степени, содержание которых совпадает с множеством, на котором определено это отношение, описывает следующая лемма.

Лемма. Пусть $\rho - 2$ -нильпотентное отношение на множестве X, такое что $c(\rho) = X$. Тогда следующие условия эквивалентны:

- 1) $f \in E_{\rho}(X)$;
- 2) $\psi \in S_{\varphi}$, где $\varphi \in T$; 3) $\varphi \in T'_{\psi}$, где $\psi \in S'$.

Доказательство. Докажем импликацию $1) \Longrightarrow 2$). Предположим, что $\varphi \notin$ $otin \Im(\mathrm{Dom}\,\rho)$. Тогда найдётся такой элемент $x\in\mathrm{Dom}\,\rho$, что $\varphi(x)\notin\mathrm{Dom}\,\rho$ и при любом $y \in x^{\triangle}$ из условия $(x;y) \in \rho$ следует, что $(f(x);f(y)) \notin \rho$, т. е. $f \notin E_{\rho}(X)$. Следовательно, $\varphi \in \Im(\mathrm{Dom}\,\rho)$.

Допустим, что $\varphi \notin T$. Это означает, что существуют такие $u \in \mathrm{Dom}\, \rho$ и $A\in Q_u$, что $\varphi(A)\notin Q_{\varphi(u)}$. Отсюда получаем, что $u\in A$, $\bigcap_{x\in A}x^\triangle\neq\varnothing$, при этом, так как $\varphi(u)\in\varphi(A)$, $\bigcap_{y\in\varphi(A)}y^\triangle=\varnothing$.

Пусть $a\in\bigcap_{x\in A}x^{\triangle}$. Так как $f\in E_{\rho}(X)$, то для всех $t\in A$ из условия $(t;a)\in
ho$ следует, что $ig(f(t);f(a)ig)=ig(arphi(t);\psi(a)ig)\in
ho$, и значит, $\psi(a)\in ig(arphi(t)ig)^{ riangle}$ при любом $t\in A$. Таким образом, $\psi(a)\in \bigcap_{t\in A}ig(arphi(t)ig)^{ riangle}$, или, что то же самое, $\psi(a)\in\bigcap_{v\in \varphi(A)}v^{\triangle}=\varnothing$. Следовательно, начальное предположение неверно и $\varphi \in T$. Покажем, что $\psi \in S_{\varphi}$.

Понятно, что $\psi \in \Im(\operatorname{Im} \rho)$, в противном случае нашелся бы элемент $x \in \operatorname{Im} \rho$, такой что $\psi(x) \notin \operatorname{Im} \rho$, и тогда из условия $(y;x) \in \rho$ при любом $y \in x^{\nabla}$ следовало бы, что $(f(y); f(x)) = (\varphi(y); \psi(x)) \notin \rho$.

Предположим, что $\psi \notin S_{\varphi}$, т. е. существует элемент $x \in \operatorname{Im} \rho$, для которого $\psi|_{\{x\}} \notin M_x^{\varphi}$, и пусть $\psi(x) = y$. Поскольку $M_x^{\varphi} = \operatorname{Map} ig(\{x\}; P_{\varphi}(x)ig)$, то $y \notin P_{\varphi}(x)$, где $P_{\varphi}(x) = \bigcap_{z \in \varphi([x]^*)} z^{\triangle}$. Очевидно, $[x] \neq \varnothing$. Тогда для всех $t \in [x]^*$ имеем $x \in t^\triangle$, откуда $(t;x) \in \rho$. Так как f — эндоморфизм, то $\big(f(t);f(x)\big) = (\varphi(t);y) \in \rho$, т. е. $y \in \big(\varphi(t)\big)^\triangle$ для всех $\varphi(t) \in \varphi([x]^*)$. Это означает, что $y \in \bigcap_{\varphi(t) \in \varphi([x]^*)} \big(\varphi(t)\big)^\triangle$, или, что то же самое, $y \in P_\varphi(x)$. Итак, $\psi \in S_\varphi$.

Докажем импликацию $2)\Longrightarrow 3).$ Предположим, что $\varphi\notin T'_\psi$. Тогда найдётся элемент $u\in {\rm Dom}\, \rho$, такой что $\varphi|_{\{u\}}\notin M'^\psi_u$. Отсюда следует, что $v=\varphi(u)\notin P'_\psi(u)$. Если ${\rm Dom}\, \rho=P'_\psi(u)$, то $v\notin {\rm Dom}\, \rho$, что противоречит условию $\varphi\in T$. В случае когда ${\rm Dom}\, \rho\neq P'_\psi(u)$, из условия $v\notin P'_\psi(u)$ получаем, что найдётся элемент $t\in \psi([u]_*)$, для которого $v\notin t^\nabla$, откуда следует, что

$$t \notin v^{\triangle}$$
. (*)

Так как $t \in \psi([u]_*)$, то существует такой элемент $a \in [u]_*$, что $\psi(a) = t$. Отсюда следует, что $a^{\bigtriangledown} \in [u]'$, $u \in a^{\bigtriangledown}$. Тогда $(u;a) \in \rho$, т. е. $a \in u^{\triangle}$.

Поскольку $\psi \in S_{\varphi}$, то $\psi(a) \in P_{\varphi}(a)$. Учитывая, что $u \in [a]^*$, получаем $\varphi(u) \in \varphi([a]^*)$, следовательно, $P_{\varphi}(a) \subseteq \varphi(u)^{\triangle}$. Тогда $t \in v^{\triangle}$, что противоречит условию (*).

Докажем импликацию $3)\Longrightarrow 1).$ Пусть $f\in\Im(X)$ — такое преобразование, что $\varphi\in T'_\psi$, где $\psi\in S'$. Покажем, что $\varphi(t^\bigtriangledown)\subseteq \left(\psi(t)\right)^\bigtriangledown$ для всех $t\in\operatorname{Im}\rho$. Возьмём произвольный элемент $v\in\varphi(a^\bigtriangledown)$, где $a\in\operatorname{Im}\rho$. Тогда найдётся элемент $u\in a^\bigtriangledown$, такой что $\varphi(u)=v$.

Так как $\varphi\in T'_\psi$, то $\varphi|_{\{u\}}\in M'^\psi_u$, где $M'^\psi_u=\mathrm{Map}\big(\{u\};P'_\psi(u)\big)$. Очевидно, что $[u]_*\neq\varnothing$. Тогда для всех $c\in[u]_*$ имеем $c^\nabla\in[u]'$, откуда $u\in c^\nabla$ и, значит, $u\in\bigcap_{c\in[u]_*}c^\nabla$. Это означает, что $[u]_*$ является множеством косвязности

для любого своего элемента. Учитывая, что $\psi \in S'$, получаем, что $\psi([u]_*)$ также множество косвязности для каждого элемента из $\psi([u]_*)$. Следовательно, $P'_{\psi}(u) = \bigcap_{s \in \psi([u]_*)} s^{\bigtriangledown} \neq \varnothing$, и значит, множество M'^{ψ}_u непусто.

По построению множества M'^ψ_u имеем $v=\varphi(u)\in P'_\psi(u)$. Из того, что $u\in a^\bigtriangledown$, следует $a\in [u]_*$, тогда $\psi(a)\in \psi([u]_*)$. Отсюда для всех $u\in a^\bigtriangledown$ имеем, что $\bigcap_{s\in\psi([u]_*)} s^\bigtriangledown=P'_\psi(u)\subseteq \left(\psi(a)\right)^\bigtriangledown$.

Таким образом, $v\in \left(\psi(a)\right)^{\bigtriangledown}$, или, что то же самое, $\varphi(a^{\bigtriangledown})\subseteq \left(\psi(a)\right)^{\bigtriangledown}$. Отсюда по лемме пункта 2.1 получаем, что $f\in E_{\rho}(X)$.

3.3. Пусть $\alpha\subseteq X\times X$ — произвольное отношение, $f\in\Im(X)$. Положим $G=X\setminus c(\alpha),\ f|_G=\eta,\ M=\mathrm{Map}(G;X)$ — множество всех отображений из множества G в множество X.

Описание эндоморфизмов нильпотентных отношений второй степени, содержание которых не совпадает с множеством, на котором определено это отношение, даёт следующая лемма.

Лемма. Пусть $\rho-2$ -нильпотентное отношение на множестве X, такое что $c(\rho) \neq X$. Тогда следующие условия эквивалентны:

- 1) $f \in E_{\rho}(X)$;
- 2) $\psi \in S_{\varphi}$, где $\varphi \in T$, и $\eta \in M$;
- 3) $\varphi \in T'_{\psi}$, где $\psi \in S'$, и $\eta \in M$.

Доказательство данной леммы аналогично доказательству леммы пункта 3.2.

4. Полугруппы эндоморфизмов 2-нильпотентов

В этом разделе строятся две полугрупповые конструкции, каждая из которых изоморфна полугруппе эндоморфизмов 2-нильпотентного отношения, в зависимости от его содержания.

4.1. Пусть $\rho \in B_X$ — такое 2-нильпотентное отношение, что $c(\rho)=X$. Если $\mu \in S_\lambda$, где $\lambda \in T$ (см. пункт 3.1), то определим преобразование $f_{\lambda,\mu} \in \Im(X)$, положив для всех $x \in X$

$$f_{\lambda,\mu}(x) = \begin{cases} \lambda(x), & x \in \text{Dom } \rho, \\ \mu(x), & x \in \text{Im } \rho. \end{cases}$$

Имеет место следующая лемма.

Лемма.

- 1. Множество T является подполугруппой $\Im(\mathrm{Dom}\,\rho)$.
- 2. Множество S является подполугруппой $\Im(\operatorname{Im} \rho)$.

Доказательство.

1. Пусть $\lambda,\mu\in T$. Очевидно, $\lambda\mu\in\Im(\mathrm{Dom}\,\rho)$. Тогда для всех $u\in\mathrm{Dom}\,\rho$ из условия $A\in Q_u$ следует, что $\lambda(A)\in Q_{\lambda(u)}$ и $\mu(A)\in Q_{\mu(u)}$. Таким образом, при любом $v\in\mathrm{Dom}\,\rho$ имеем

$$A \in Q_v \Longrightarrow \lambda(A) \in Q_{\lambda(u)} \Longrightarrow \mu(\lambda(A)) \in Q_{\mu(\lambda(u))} \Longrightarrow \lambda\mu(A) \in Q_{\lambda\mu(u)}.$$

Следовательно, $\lambda \mu \in T$.

2. Пусть $\varphi, \psi \in S$. Тогда $\varphi \in S_{\lambda}$, $\psi \in S_{\mu}$ для некоторых $\lambda, \mu \in T$. Очевидно, $\varphi \psi \in \Im(\operatorname{Im} \rho)$. Из леммы пункта 3.2 следует, что $f_{\lambda, \varphi} \in E_{\rho}(X)$ и $f_{\mu, \psi} \in E_{\rho}(X)$. Понятно, что $f_{\lambda, \varphi} \cdot f_{\mu, \psi} \in E_{\rho}(X)$. Отсюда по лемме пункта 3.2 получаем, что $f_{\lambda, \varphi} \cdot f_{\mu, \psi}|_{\operatorname{Im} \rho} \in S_{f_{\lambda, \varphi} \cdot f_{\mu, \psi}|_{\operatorname{Dom} \rho}}$. При этом $f_{\lambda, \varphi} \cdot f_{\mu, \psi}|_{\operatorname{Dom} \rho} = \lambda \mu, \ f_{\lambda, \varphi} \cdot f_{\mu, \psi}|_{\operatorname{Im} \rho} = \varphi \psi$. Таким образом, $\varphi \psi \in S$.

4.2. Для каждого $\eta \in T$ пусть $H_{\eta} = \{(\eta; \mu) \mid \mu \in S_{\eta}\}, \ H_{T,S} = \bigcup_{\eta \in T} H_{\eta}.$ Понятно, что $H_{T,S}$ — подполугруппа прямого произведения $T \times S$.

Теорема. Полугруппы $E_{\rho}(X)$, где $\rho^2=\varnothing$, $c(\rho)=X$, и $H_{T,S}$ являются изоморфными.

Доказательство. Изоморфизм между полугруппами $E_{\rho}(X)$, где $\rho^2=\varnothing$, $c(\rho)=Xc$, и $H_{T,S}$ устанавливает отображение

$$g: E_{\rho}(X) \to H_{T,S}, \quad f \mapsto (f|_{\text{Dom }\rho}; f|_{\text{Im }\rho}).$$

Действительно, для любого $(\eta;\mu)\in H_{T,S}$ преобразование $f_{\eta,\mu}\in\Im(X)$, определённое как в пункте 4.1, будет по лемме пункта 3.2 эндоморфизмом отношения ρ , для которого $g(f_{\eta,\mu})=(\eta;\mu)$, поэтому g сюръективно. Инъективность отображения g очевидна.

Кроме того, для всех $f_1, f_2 \in E_{\rho}(X)$, пользуясь леммой пункта 3.2, имеем

$$\begin{split} g(f_1f_2) &= \big((f_1f_2)|_{\text{Dom }\rho}; (f_1f_2)|_{\text{Im }\rho} \big) = (f_1|_{\text{Dom }\rho}f_2|_{\text{Dom }\rho}; f_1|_{\text{Im }\rho}f_2|_{\text{Im }\rho}) = \\ &= (f_1|_{\text{Dom }\rho}; f_1|_{\text{Im }\rho})(f_2|_{\text{Dom }\rho}; f_2|_{\text{Im }\rho}) = g(f_1)g(f_2). \end{split}$$

Теорема доказана.

4.3. Пусть $\{A,B\}$ — произвольное разбиение множества X, T — подполугруппа полугруппы B_X (см. пункт 2.2), такая что $T\subseteq B_A$ и каждое отношение из T функционально на множестве A, $F=\operatorname{Fun}(B;X)$ — множество всех функциональных отношений на множествах B и X.

Определим на множестве $P = T \times F$ операцию по правилу

$$(\varphi_1; \psi_1)(\varphi_2; \psi_2) = (\varphi_1 \circ \varphi_2; \psi_1 \circ \varphi_2 \cup \psi_1 \circ \psi_2),$$

где \circ — операция композиции отношений на множестве X.

Поскольку для всех $(\varphi_1; \psi_1), (\varphi_2; \psi_2), (\varphi_3; \psi_3) \in P$ имеем

$$\begin{split} & \big((\varphi_1; \psi_1) (\varphi_2; \psi_2) \big) (\varphi_3; \psi_3) = (\varphi_1 \circ \varphi_2; \psi_1 \circ \varphi_2 \cup \psi_1 \circ \psi_2) (\varphi_3; \psi_3) = \\ & = (\varphi_1 \circ \varphi_2 \circ \varphi_3; \psi_1 \circ \varphi_2 \circ \varphi_3 \cup \psi_1 \circ \psi_2 \circ \varphi_3 \cup \psi_1 \circ \varphi_2 \circ \psi_3 \cup \psi_1 \circ \psi_2 \circ \psi_3) = \\ & = (\varphi_1 \circ \varphi_2 \circ \varphi_3; \psi_1 \circ \varphi_2 \circ \varphi_3 \cup \psi_1 \circ \psi_2 \circ \varphi_3 \cup \psi_1 \circ \psi_2 \circ \psi_3) = \\ & = (\varphi_1 \circ \varphi_2 \circ \varphi_3; \psi_1 \circ (\varphi_2 \circ \varphi_3) \cup \psi_1 \circ (\psi_2 \circ \varphi_3 \cup \psi_2 \circ \psi_3)) = \\ & = (\varphi_1; \psi_1) \big((\varphi_2; \psi_2) (\varphi_3; \psi_3) \big), \end{split}$$

то множество P является полугруппой относительно такой операции. Обозначим полученную полугруппу через $P_{A,B}[T]$.

Например, если $\alpha \subseteq i_X$, $\alpha \neq i_X$, где $i_X = \{(a;a) \mid a \in X\}$, то, положив $c(\alpha) = A$, $B = X \setminus A$, получим, что полугруппа $E_{\alpha}(X)$ изоморфна полугруппе $P_{A,B}[\Im(A)]$.

4.4. Пусть $\rho-2$ -нильпотентное отношение на множестве X, такое что $c(\rho) \neq X$. Положим $A = c(\rho), B = X \setminus c(\rho)$.

Описание строения полугруппы эндоморфизмов отношения ρ даёт следующая теорема.

Теорема. Полугруппы $E_{\rho}(X)$, где $\rho^2=\varnothing$, $c(\rho)\neq X$, и $P_{A,B}[E_{\rho}(A)]$ являются изоморфными.

Доказательство. Отображение

$$g: E_o(X) \to P_{A,B}[E_o(A)], \quad f \mapsto ((f|_A)^*; (f|_B)^*),$$

очевидно, задаёт инъекцию из полугруппы $E_{\rho}(X)$ в $P_{A,B}[E_{\rho}(A)]$. Более того, для любого $(\alpha;\beta)\in P_{A,B}[E_{\rho}(A)]$ преобразование $f_{\alpha,\beta}\in\Im(X)$, определённое по правилу

$$f_{\alpha,\beta}(x) = \begin{cases} \alpha(x), & x \in A, \\ \beta(x), & x \in B, \end{cases}$$

будет согласно леммам пунктов 3.2 и 3.3 эндоморфизмом отношения ρ , причём таким, что $g(f_{\alpha,\beta})=(\alpha;\beta).$ Таким образом, g — биекция.

Пусть $\eta, \theta \in E_{\rho}(X)$. Если $\eta(B) \subseteq A$ или $\eta(B) \subseteq B$, то $(\eta\theta)|_A = \eta|_A\theta|_A$ и либо

$$(\eta|_B)^*(\theta|_A)^* \cup (\eta|_B)^*(\theta|_B)^* = (\eta|_B)^*(\theta|_A)^* = (\eta\theta|_B)^*,$$

либо соответственно

$$(\eta|_B)^*(\theta|_A)^* \cup (\eta|_B)^*(\theta|_B)^* = (\eta|_B)^*(\theta|_B)^* = (\eta\theta|_B)^*.$$

В остальных случаях, т. е. когда существуют $K,L\subseteq B$, такие что $\{K,L\}$ — разбиение множества B и $\eta(K)\subseteq A,\ \theta(L)\subseteq B,\$ получаем

$$(\eta|_B)^*(\theta|_A)^* \cup (\eta|_B)^*(\theta|_B)^* = (\eta|_K)^*(\theta|_{\eta(K)})^* \cup (\eta|_L)^*(\theta|_{\eta(L)})^* = = (\eta\theta)^*|_K \cup (\eta\theta)^*|_L = (\eta\theta)^*|_{K \cup L} = (\eta\theta|_B)^*.$$

Отсюда следует, что для всех $\eta, \theta \in E_{\rho}(X)$

$$g(\eta\theta) = ((\eta\theta)^*|_A; (\eta\theta)^*|_B) = ((\eta|_A)^*(\theta|_A)^*; (\eta|_B)^*(\theta|_A)^* \cup (\eta|_B)^*(\theta|_B)^*) =$$
$$= ((\eta|_A)^*; (\eta|_B)^*)((\theta|_A)^*; (\theta|_B)^*) = g(\eta)g(\theta).$$

Теорема доказана.

4.5. Одной из актуальных проблем теории бинарных отношений является проблема определяемости отношений своими полугруппами эндоморфизмов. В данном случае 2-нильпотентные отношения не определяются своими полугруппами эндоморфизмов.

Действительно, если, например, $X=\{1,2,3\},\ \alpha=\{(1;2),(1;3)\},\$ а $Y=\{1,2,3,4\},\ \beta=\{(1;2),(3;4)\},\$ то полугруппы $E_{\alpha}(X)$ и $E_{\beta}(Y)$ изоморфны. Однако соответствующие реляционные системы (X,α) и (Y,β) не являются изоморфными.

Работа является частью научного исследования, которое поддерживается Министерством образования и науки Украины в рамках гранта Президента для молодых ученых на 2009 г.

Литература

[1] Айзенштат А. Я. Определяющие соотношения полугруппы эндоморфизмов конечного линейно упорядоченного множества // Сиб. мат. журн. — 1962.-T.3, N 2.-C.161-169.

- [2] Глускин Л. М. Полугруппы изотонных преобразований // Успехи мат. наук. 1961. Т. 16, № 5 (101). С. 157—162.
- [3] Жучок Ю. В. Ендоморфізми відношень еквівалентності // Вісн. Київ. унів. Сер. Фіз.-мат. науки. 2007. Вип. 3.- С. 22-26.
- [4] Ким В. И., Кожухов И. Б. Условия регулярности полугрупп изотонных преобразований счётных цепей // Фундамент. и прикл. мат. 2006.- Т. 12, вып. 8.- С. 97-104.
- [5] Шнеперман Л. Б. Полугруппы эндоморфизмов квазиупорядоченных множеств // Учёные записки ЛГПУ им. А. И. Герцена. 1962. T. 238. C. 21-37.
- [6] Araujo J., Konieczny J. Dense relations are determined by their endomorphisms monoids // Semigroup Forum. -2005. Vol. 70. P. 302–306.
- [7] Laradji A., Umar A. Combinatorial results for semigroups of order-preserving partial transformations // J. Algebra. -2004. Vol. 278, no. 1. P. 342-359.
- [8] Molchanov V. A. Semigroups of mappings on graphs // Semigroup Forum. 1983. Vol. 27. P. 155–199.
- [9] Popov B. V., Kovaleva O. V. On a characterization of monounary algebras by their endomorphism semigroups // Semigroup Forum. -2006. Vol. 73. -P. 444-456.
- [10] Schein B. M. Products of idempotent order-preserving transformations of arbitrary chains // Semigroup Forum. 1975. Vol. 11, no. 1. P. 297—309.