Антиизоморфизмы градуированных колец эндоморфизмов градуированных модулей, близких к свободным*

И. Н. БАЛАБА

Тульский государственный педагогический университет им. Л. Н. Толстого e-mail: ibalaba@tula.net

А. В. МИХАЛЁВ

Московский государственный университет им. М. В. Ломоносова

УДК 512.552

Ключевые слова: градуированные кольца эндоморфизмов, антиполулинейный изоморфизм, градуированная антиэквивалентность.

Аннотация

Получены критерии, решающие вопрос о том, когда антиизоморфизм градуированных колец эндоморфизмов строгих gr-образующих модулей индуцируется градуированной антиэквивалентностью Мориты или градуированным антиполулинейным преобразованием.

Abstract

I. N. Balaba, A. V. Mikhalev, Anti-isomorphisms of graded endomorphism rings of graded modules close to free ones, Fundamentalnaya i prikladnaya matematika, vol. 14 (2008), no. 7, pp. 23—36.

We obtain the criteria for anti-isomorphism of graded endomorphism rings of the strict gr-generators induced by graded Morita anti-equivalence or a graded anti-semilinear isomorphism.

Наряду с описанием изоморфизмов колец эндоморфизмов модулей значительный интерес представляет описание антиизоморфизмов колец эндоморфизмов.

Р. Бэром [6] было установлено, что кольца линейных преобразований $\operatorname{End}(V_D)$ и $\operatorname{End}(W_E)$ линейных пространств V_D и W_E над телами D и E соответственно антиизоморфны в том и только том случае, если линейные пространства V_D и W_E конечномерны и существует антиполулинейное преобразование сопряжённого пространства D^{V^*} на пространство W_E , которое индуцирует исходный антиизоморфизм. Л. Гевирцман [12, 13] попытался расширить этот результат на классы свободных и локально свободных модулей над

^{*}Работа выполнена при частичной финансовой поддержке РФФИ, грант № 08-01-00790-а.

кольцом главных идеалов. К. Дж. Уолфсон [17] отметил ошибочность некоторых результатов Л. Гевирцмана; он построил пример пары локально свободных (но не свободных) модулей несчётного ранга, имеющих антиизоморфные кольца эндоморфизмов, и привёл критерий индуцируемости антиизоморфизма колец эндоморфизмов строгих образующих модулей антиполулинейным преобразованием. Одним из авторов совместно с К. И. Бейдаром [5] был установлен критерий индуцируемости антиизоморфизма колец эндоморфизмов строгих образующих модулей антиэквивалентностью Мориты, откуда, в частности, следовало, что любой антиизоморфизм колец эндоморфизмов прообразующих модулей индуцируется антиэквивалентностью Мориты (этот результат можно считать аналогом теоремы М. Л. Боллы [11] для антиизоморфизмов). Отметим, что критерии индуцируемости изоморфизма колец эндоморфизмов строгих образующих модулей полным вложением, эквивалентностью Мориты или полулинейным преобразованием были даны в [8].

В последние десятилетия отмечается значительный интерес к алгебраическим объектам, снабжённым градуировкой. При этом специальные классы колец и модулей связываются с соответствующими классами градуированных колец и модулей [16]. В частности, вместо кольца эндоморфизмов для градуированного модуля естественно рассматривать градуированное кольцо эндоморфизмов. В [4] авторами были получены критерии, решающие вопрос о том, когда изоморфизм градуированных колец изоморфизмов градуированных модулей, имеющих gr-свободное циклическое прямое слагаемое, индуцируется gr-образующим модулем, градуированной эквивалентностью Мориты или полулинейным преобразованием, а в [3] анонсирован критерий индуцируемости антиизоморфизма градуированных колец эндоморфизмов таких градуированных модулей антиполулинейным преобразованием.

Целью данной работы является получение критериев индуцируемости антиизоморфизмов градуированных колец эндоморфизмов градуированных модулей, имеющих gr-свободное циклическое прямое слагаемое, градуированной антиэквивалентностью Мориты или градуированным антиполулинейным преобразованием.

Все кольца предполагаются ассоциативными с единицей 1, все модули — унитарными; G — мультипликативная группа с единичным элементом e.

Кольцо A называется G-градуированным (или градуированным по группе G), если $A=\bigoplus_{g\in G}A_g$, где $\{A_g\mid g\in G\}$ — семейство аддитивных подгрупп кольца A и $A_gA_h\subseteq A_{gh}$ для всех $g,h\in G$. Элементы множества $h(A)=\bigcup_{g\in G}A_g$ называются однородными элементами кольца, а ненулевой элемент $a\in A_g$ называется однородным элементом степени g (обозначение $\deg a=g$).

Правый A-модуль M называется G-градуированным, если $M=\bigoplus_{g\in G}M_g$, где $\{M_g\mid g\in G\}$ — семейство аддитивных подгрупп в абелевой группе (M,+), таких что $M_hA_g\subseteq M_{hg}$ для всех $h,g\in G$.

Аналогично можно определить левый G-градуированный модуль и G-градуированный бимодуль. Чтобы подчеркнуть, с какой стороны определена структура модуля, будем в этих ситуациях использовать обозначения: M_A , $_AM$, $_AM_R$ и т. п., здесь $_AM_R$ обозначает A-R-бимодуль (левый A-модуль и правый R-модуль, при этом (am)r = a(mr) для всех $a \in A$, $m \in M$, $r \in R$).

Обозначим через $\operatorname{mod-}A$ ($A\operatorname{-mod}$) категорию правых (левых) $A\operatorname{-mod}$ улей, а через $\operatorname{gr.mod-}A$ ($A\operatorname{-gr.mod}$) — категорию правых (левых) $G\operatorname{-градуированных} A\operatorname{-mod}$ улей, объектами которой являются правые (левые) $G\operatorname{-градуированные} A\operatorname{-mody-}$ ли, а морфизмами — сохраняющие градуировку гомоморфизмы.

Для $M_A, N_A \in \operatorname{gr.mod-}A$ обозначим через $\operatorname{HOM}(M_A, N_A)_g$ множество однородных гомоморфизмов степени g, т. е. A-линейных отображений, для которых $f(M_h) \subseteq N_{gh}$ для всех $h \in G$. Ясно, что $\operatorname{HOM}(M_A, N_A) = \bigoplus_{g \in G} \operatorname{HOM}(M_A, N_A)_g$ — градуированная абелева группа, а $\operatorname{END}(M_A) = \operatorname{HOM}(M_A, N_A)_g$

 $= \mathrm{HOM}(M_A, M_A)$ — градуированное кольцо, которое называется *градуированным кольцом эндоморфизмов* градуированного A-модуля M_A . Если группа G конечна или модуль M_A конечно порождён, то $\mathrm{END}(M_A)$ совпадает с кольцом эндоморфизмов $\mathrm{End}(M_A)$ модуля M_A , рассматриваемого без градуировки [16, следствие 1.2.11]. При рассмотрении левых A-модулей гомоморфизмы будем писать справа; $f \in \mathrm{HOM}({}_AM, {}_AN)_g$ означает, что $(M_h)f \subseteq N_{hg}$.

Градуированный A-модуль U_A называется gr-образующим, если модуль $V=\bigoplus_{\sigma\in G}U(\sigma)$ является образующим в категории $\operatorname{gr.mod-}A$. Эквивалентные определения $\operatorname{gr-образующего}$ модуля можно найти в [4, лемма 2.1]. Конечно порождённый проективный $\operatorname{gr-образующий}$ модуль называется $\operatorname{gr-npoofpasyo-шим}$.

Градуированный A-модуль M_A называется cmpoeum gr-образующим, если он имеет в качестве прямого слагаемого gr-свободный модуль ранга 1. Как было отмечено в [4], в этом случае существует такой однородный идемпотент $u \in \mathrm{END}(M_A)$, что $uM \cong A(\sigma)$ для некоторого $\sigma \in G$; u называется odнородным идемпотентным эндоморфизмом ранга 1 (обозначение $\mathrm{gr.r}(u)=1$).

Пусть $A=\bigoplus_{g\in G}A_g-G$ -градуированное кольцо и A^{op} —противоположное кольцо, т. е. $x\circ y=yx$ для любых $x,y\in A$. Положим $A_g^{\mathrm{op}}=A_{g^{-1}}$, тогда $A^{\mathrm{op}}=\bigoplus_{g\in G}A_g^{\mathrm{op}}-G$ -градуированное кольцо.

Если $M\in A$ -gr.mod, то, положив $M_g^{\mathrm{op}}=M_{g^{-1}}$, получим, что $M^{\mathrm{op}}=\bigoplus_{g\in G}M_g^{\mathrm{op}}\in \mathrm{gr.mod}\text{-}A^{\mathrm{op}}$, где $m\circ a=am$ для любых $a\in A^{\mathrm{op}},\ m\in M^{\mathrm{op}}$.

Отображение $\varphi \colon A \to B$ градуированных по группе G колец называется антигомоморфизмом (антиизоморфизмом) градуированных колец, если φ явля-

ется антигомоморфизмом (антиизоморфизмом) колец (т. е. $\varphi(x+y)=\varphi(y)+\varphi(x)$ и $\varphi(xy)=\varphi(y)\varphi(x)$ для всех $x,y\in A$) и $\varphi(A_g)\subseteq B_{q^{-1}}$ для всех $g\in G$.

Легко убедиться, что если φ является антиизоморфизмом градуированных колец A и B, то φ является изоморфизмом градуированных колец A и B^{op} .

Пусть M_A — правый G-градуированный A-модуль. Тогда левый G-градуированный A-модуль $M^*=\mathrm{HOM}(M_A,A_A)$ называют ∂y альным к модулю M_A . Модуль $M^{**}=(M^*)^*=\mathrm{HOM}(_A\,\mathrm{HOM}(M_A,A_A),_A\,A)$ называется $\mathit{бидуальным}$ к модулю M_A .

Как и в неградуированном случае, будем использовать обозначения

$$\langle f, x \rangle = f(x), \quad \langle f, \varphi \rangle = (f) \varphi$$
 для $x \in M_A, \quad f \in M^*, \quad \varphi \in M^{**}.$

Легко убедиться, что существует канонический гомоморфизм градуированных A-модулей $\omega_M\colon M\to M^{**}$, такой что

$$\langle f, \omega_M(m) \rangle = \langle f, m \rangle$$
 для всех $m \in M, f \in M^*.$

Градуированный A-модуль M_A будем называть полурефлексивным (или модулем без кручения в смысле Басса), если ω_M является мономорфизмом, и рефлексивным, если ω_M — изоморфизм. Рефлексивные градуированные модули рассматривались в [2,15].

рассматривались в [2,15]. Заметим, что $\left(M(\sigma)\right)^*=M^*(\sigma^{-1})$. Действительно, из определения следует, что

$$(M(\sigma))_g^* = HOM(M(\sigma)_A, A_A)_g = HOM(M_A, A_A)_{g\sigma^{-1}} = M^*(\sigma^{-1})_g$$

для любого $g \in G$.

Лемма 1.

- 1. Модуль $_{A}M^{st}$ является полурефлексивным для любого градуированного модуля M_{A} .
- 2. Если M_A рефлексивный градуированный модуль, то и модуль M^* рефлексивен.

Доказательство не отличается от доказательства утверждения 12.2.1 в [7].

Лемма 2. Если градуированный модуль M_A является строгим gr-образующим, то и модуль ${}_AM^*$ является строгим gr-образующим.

Доказательство. Поскольку $M=A(\sigma)\oplus H$ для некоторого $\sigma\in G$, то

$$M^* = \operatorname{HOM}(M_A, A_A) = \operatorname{HOM}(A(\sigma) \oplus H, A_A) =$$

$$= \operatorname{HOM}(A(\sigma)_A, A_A) \oplus \operatorname{HOM}(H_A, A_A) =$$

$$= (A(\sigma))^* \oplus H^* = A^*(\sigma^{-1}) \oplus H^* = A(\sigma^{-1}) \oplus H^*.$$

Следовательно, M^* является строгим gr-образующим.

Лемма 3. Если

$$0 \longrightarrow P \longrightarrow M \longrightarrow Q \longrightarrow 0$$

расщепляющаяся точная последовательность правых (или левых) градуированных A-модулей, то модуль M рефлексивен в том и только том случае, если рефлексивны модули P и Q.

Доказательство. Так как функтор $HOM(_A HOM(_{-A}, A_A), _AA)$ аддитивен, из [9, предложение 3.38] следует, что диаграмма

$$0 \longrightarrow P \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} Q \longrightarrow 0$$

$$\omega_{P} \downarrow \qquad \omega_{M} \downarrow \qquad \omega_{Q} \downarrow$$

$$0 \longrightarrow P^{**} \stackrel{f^{**}}{\longrightarrow} M^{**} \stackrel{g^{**}}{\longrightarrow} Q^{**} \longrightarrow 0$$

имеет расщепляющие точные строки. Легко проверить, что она коммутативна. Из свойств коммутативных диаграмм в абелевых категориях [10, предложение 23.7] получим, что ω_M является изоморфизмом тогда и только тогда, когда ω_P и ω_Q — изоморфизмы.

Следствие 1. Каждый конечно порождённый проективный градуированный A-модуль является рефлексивным.

Лемма 4. Если M_A — полурефлексивный правый градуированный A-модуль, то существует единственный мономорфизм градуированных колец $\phi \colon \mathrm{END}(M_A) \to \mathrm{END}(_AM^*), \ \phi(\eta) = \eta^*, \$ обладающий свойством $\langle f, \eta m \rangle = \langle f\eta^*, m \rangle$ для любых $m \in M$, $f \in M^*$. Если модуль M_A рефлексивен, то ϕ — изоморфизм градуированных колец $\mathrm{END}(M_A)$ и $\mathrm{END}(_AM^*)$. Обратно, если ϕ — изоморфизм градуированных колец, а M_A — полурефлексивный строгий gг-образующий модуль, то M_A рефлексивен.

Доказательство. Пусть $\eta \in \text{END}(M_A)$ и $f \in M^*$. Нетрудно проверить, что отображение η^* , обладающее свойством $\langle f, \eta m \rangle = \langle f \eta^*, m \rangle$ для любых $m \in M$, $f \in M^*$, определяет эндоморфизм модуля ${}_AM^*$, причём $\deg \eta = \deg \eta^*$.

Покажем, что ϕ — мономорфизм. Действительно, пусть $\eta', \eta'' \in \mathrm{END}(_A M^*)$ такие, что $\langle f\eta', m \rangle = \langle f\eta'', m \rangle$ для любых $m \in M, \ f \in M^*$. Тогда для $\eta' - \eta'' \in \mathrm{END}(_A M^*)$ имеем, что $\langle f(\eta' - \eta''), m \rangle = 0$ для всех $m \in M, \ f \in M^*$. Так как модуль M_A полурефлексивен, получим, что $f(\eta' - \eta'') = 0$ для всех $f \in M^*$. Следовательно, $\eta' - \eta'' = 0$, т. е. $\eta' = \eta''$.

Пусть теперь M_A рефлексивен и $\varsigma \in h\big(\mathrm{END}(_AM^*)\big)$. Если $m \in M$, то, как легко убедиться, отображение $\langle f, \varphi \rangle = \langle f\varsigma, m \rangle$ ($f \in M^*$) определяет элемент $\varphi \in h(M^{**})$. В силу рефлексивности M_A найдётся такой элемент $m' \in M$, что $\langle f, m' \rangle = \langle f, \varphi \rangle = \langle f\varsigma, m \rangle$. Ясно, что отображение $m \to m'$ определяет эндоморфизм $\eta \in h\big(\mathrm{END}(M_A)\big)$, для которого $\langle f, \eta m \rangle = \langle f, \varphi \rangle = \langle f\varsigma, m \rangle$ для всех $m \in M, f \in M^*$, причём $\deg \eta = \deg \varsigma$. Следовательно, $\varphi \colon \mathrm{END}(M_A) \to \mathrm{END}(_AM^*)$ — изоморфизм градуированных колец.

Предположим, что $\phi \colon \mathrm{END}(M_A) \to \mathrm{END}(_AM^*)$ — изоморфизм градуированных колец и M_A — полурефлексивный строгий gr-образующий модуль. Тогда $M=P\oplus H$, где P=mA для некоторого $m\in M_\sigma$ и существует такой элемент $f\in M^*_{\sigma^{-1}}$, что $\langle f,m\rangle=1$. Пусть $\varphi\in h(M^{**})$ и для каждого $x\in M^*$ положим

 $x\eta' = \langle x, \varphi \rangle f$. Ясно, что $\eta' \in \text{END}(_AM^*)$, и значит, существует такой элемент $\eta \in \text{END}(M_A)$, что $\eta^* = \eta'$. Следовательно,

$$\langle x, \eta m \rangle = \langle x \eta^*, m \rangle = \langle \langle x, \varphi \rangle f, m \rangle = \langle x, \varphi \rangle \langle f, m \rangle = \langle x, \varphi \rangle$$

для любого $x \in M^*$. Положив $\eta m = n \in M$, получим, что $\langle x, n \rangle = \langle x, \varphi \rangle$ для любого $x \in M^*$, что означает рефлексивность модуля M_A .

Отображение $\phi \colon \mathrm{END}(M_A) \to \mathrm{END}(_AM^*)$, как и в [17], будем называть сопряжённым отображением, а элемент $\eta^* = \phi(\eta) \in \mathrm{END}(_AM^*)$ — сопряжённым к элементу $\eta \in \mathrm{END}(M_A)$.

Напомним, что *полулинейным изоморфизмом* правых модулей M_A и N_B называется пара отображений (β,γ) , где $\beta\colon M\to N$ – изоморфизм абелевых групп, $\gamma\colon A\to B$ — изоморфизм колец и $(ma)^\beta=m^\beta a^\gamma$ для всех $a\in A,\ m\in M$.

Пусть $_AM$ — левый A-модуль, а N_B — правый B-модуль. Пара отображений (α,β) называется антиполулинейным изоморфизмом модулей $_AM$ и N_B , если $\beta\colon M\to N$ — изоморфизм абелевых групп, $\alpha\colon A\to B$ — антиизоморфизм колец и $(am)^\beta=m^\beta a^\alpha$ для всех $a\in A,\ m\in M$.

Для бимодулей $_RM_A$ и $_SN_B$ тройка отображений $(\alpha,\beta,\gamma)\colon {_RM_A}\to {_SN_B}$ называется полулинейным изоморфизмом бимодулей, если $(\alpha,\beta)\colon {_RM}\to {_SN}$ и $(\beta,\gamma)\colon M_A\to N_B$ — полулинейные изоморфизмы модулей.

Лемма 5. Пусть M_A — строгий gr-образующий модуль, $R = \text{END}(M_A)$, $E = \text{End}(M_A)$, элемент $u = u^2 \in R$ таков, что $uM_A \cong A(\sigma)$. Тогда

- 1) $\operatorname{End}(_EM) = \operatorname{End}(_RM) = \operatorname{END}(_RM) \approx A$ (изоморфизм градуированных колец);
- 2) существует полулинейный изоморфизм $(\mathrm{id}_R,\beta,\gamma)$ бимодулей $_RRu_{uRu}$ и $_RM_A$, при котором $\left((Ru)_g\right)^\beta\subseteq M_{g\sigma}$ и $\left((uRu)_g\right)^\gamma\subseteq A_{\sigma^{-1}g\sigma}$ для всех $g\in G$;
- 3) если, кроме того, M_A полурефлексивен, а \bar{R} образ кольца R при сопряжённом отображении ϕ , то существует полулинейный изоморфизм (γ, δ, ϕ) бимодулей ${}_{uRu}uR_R$ и ${}_{A}M^*_{\bar{R}}$, при котором $\left((uR)_g\right)^\delta\subseteq M^*_{\sigma^{-1}g}$ для всех $g\in G$.

Доказательство. Утверждения 1) и 2) были доказаны в [4, лемма 2.5].

Докажем утверждение 3). Пусть x — однородный базис gr-свободного A-модуля uM, т. е. uM = xA, $\deg x = \sigma$. Как было показано в [4, лемма 2.5], $(yu)^{\beta} = yux$, $m(uyu)^{\gamma} = \left(m^{\beta^{-1}}uyu\right)^{\beta}$ для любых $y \in R$, $m \in M$.

Ясно, что отображение $\delta\colon uR\to M^*$, для которого $\langle (uy)^\delta,m\rangle=\left(uym^{\beta^{-1}}\right)^\gamma$ при $m\in M,\ y\in R$, является гомоморфизмом абелевых групп. Если $(uy)^\delta=0$ для некоторого $y\in R$, то $\left(uym^{\beta^{-1}}\right)^\gamma=0$ для всех $m\in M$. Тогда $uym^{\beta^{-1}}=(uym)^{\beta^{-1}}=0$, откуда следует, что uym=0 для всех $m\in M$. Следовательно, uy=0 и δ — мономорфизмом.

Если $f\in M^*$, то легко проверить, что отображение $\varphi\colon m\to x\langle f,m\rangle$ является эндоморфизмом модуля M_A . Более того, $\varphi=ur$ для некоторого $r\in R=\mathrm{END}(M_A).$ Тогда для $m\in M$ имеем

$$\langle (ur)^{\delta}, m \rangle = \left(urm^{\beta^{-1}} \right)^{\gamma} = \left(u(urm)^{\beta^{-1}} \right)^{\gamma} = \left(u(x\langle f, m \rangle)^{\beta^{-1}} \right)^{\gamma} =$$

$$= \left(ux^{\beta^{-1}} \langle f, m \rangle^{\gamma^{-1}} \right)^{\gamma} = \left(u\langle f, m \rangle^{\gamma^{-1}} \right)^{\gamma} = \langle f, m \rangle,$$

т. е. δ — эпиморфизм.

Легко убедиться, что (γ,δ,ϕ) — полулинейный изоморфизм бимодулей $u_{Ru}uR_R$ и ${}_AM_{R}^*$ и $\left((uR)_g\right)^\delta\subseteq M_{\sigma^{-1}q}^*$.

Определение 1. Полулинейный изоморфизм (β, γ) градуированных модулей M_A и N_B будем называть полулинейным σ -изоморфизмом $(\sigma \in G)$, если $(M_q)^\beta \subseteq N_{q\sigma}$ и $(A_q)^\gamma \subseteq B_{\sigma^{-1}q\sigma}$ для всех $g \in G$.

Антиполулинейный изоморфизм (γ,β) градуированных модулей $_AM$ и N_B будем называть антиполулинейным σ -изоморфизмом $(\sigma\in G)$, если $(M_g)^\beta\subseteq \subseteq N_{g^{-1}\sigma}$ и $(A_g)^\gamma\subseteq B_{\sigma^{-1}g^{-1}\sigma}$ для всех $g\in G$.

Заметим, что тождественное отображение является антиполулинейным e-изоморфизмом модуля $_AM$ на модуль $M_{_{\rm Aop}}^{^{
m op}}$.

Определение 2 [6]. Говорят, что антиизоморфизм $\alpha \colon \operatorname{End}_A(M) \to \operatorname{End}_B(N)$ колец эндоморфизмов правых модулей M_A и N_B индуцируется антиполулинейным изоморфизмом (γ,β) модулей ${}_AM^*$ и N_B , если $(f\eta^*)^\beta = \eta^\alpha f^\beta$ для всех $f \in M^*, \, \eta \in \operatorname{End}_A(M)$.

Теорема 1. Пусть M_A — рефлексивный правый градуированный A-модуль. Тогда для каждого антиполулинейного σ -изоморфизма (γ,β) градуированных модулей $_AM^*$ и N_B $(\sigma \in G)$ существует единственный антиизоморфизм градуированных колец $\alpha \colon \mathrm{END}(M_A) \to \mathrm{END}(N_B)$, который индуцируется антиполулинейным изоморфизмом (γ,β) .

Доказательство. Поскольку модуль M_A рефлексивен, то из леммы 4 следует, что сопряжённое отображение $\phi \colon \mathrm{END}(M_A) \to \mathrm{END}(_AM^*)$ — изоморфизм градуированных колец. Положив $\eta^{\alpha}(n) = \left(n^{\beta^{-1}}\eta^*\right)^{\beta}$ для любого $n \in N$, получим, что $\eta^{\alpha} \in \mathrm{END}(N_B)$ для любого $\eta \in \mathrm{END}(M_A)$. Ясно также, что α — антиизоморфизм колец $\mathrm{END}(M_A)$ и $\mathrm{END}(N_B)$, а поскольку $(\mathrm{END}(M_A)_h)^{\alpha} \subseteq \mathrm{END}(N_B)_{h^{-1}}$, то α — антиизоморфизм градуированных колец.

Если $\varphi \colon \mathrm{END}(M_A) \to \mathrm{END}(N_B)$ — антиизоморфизм градуированных колец, который индуцируется антиполулинейным изоморфизмом (γ,β) , то для любого $n=f^\beta \in N$ имеем

$$(f\eta^*)^\beta = \left(n^{\beta^{-1}}\eta^*\right)^\beta = \eta^\varphi f^\beta = \eta^\varphi n = \eta^\alpha(n),$$

что доказывает единственность отображения α .

Лемма 6. Пусть M_A и N_B — правые G-градуированные модули, причём M_A полурефлексивен, и $\alpha \colon \mathrm{END}(M_A) \to \mathrm{END}(N_B)$ — антиизоморфизм градуированных колец, который индуцируется антиполулинейным σ -изоморфизмом (γ,β) модулей $_AM^*$ и N_B ($\sigma \in G$). Тогда сопряжённое отображение $\phi \colon \mathrm{END}(M_A) \to \mathrm{END}(_AM^*)$ — изоморфизм.

Доказательство. Пусть $\varsigma \in h\big(\mathrm{END}(_AM^*)\big)$ и $n \in h(N)$. Тогда отображение $\psi \colon n \to \left(n^{\beta^{-1}}\varsigma\right)^\beta$ — эндоморфизм B-модуля N_B , причём $\deg \psi = (\deg \varsigma)^{-1}$. Следовательно, существует $\eta \in \mathrm{END}(M_A)$, такой что $\eta^\alpha = \psi$. Тогда для $n = f^\beta$ получим

$$(f\eta^*)^{\beta} = \eta^{\alpha} f^{\beta} = (n^{\beta^{-1}}\varsigma)^{\beta} = (f\varsigma)^{\beta}.$$

Итак, $(f\eta^*)^\beta=(f\varsigma)^\beta$ для любого $f\in M^*$. Тогда $\eta^*=\varsigma$ в силу однозначности β , и ϕ — изоморфизмом.

Теорема 2. Пусть A и B-G-градуированные кольца, M_A и N_B- строгие gг-образующие модули, причём модуль M_A полурефлексивен, $R=\mathrm{END}(M_A)$ и $S=\mathrm{END}(N_B)-$ градуированные кольца эндоморфизмов, $\alpha\colon R\to S-$ антиизоморфизм градуированных колец. Тогда следующие условия равносильны:

- 1) если $u = u^2 \in h(R)$, gr.r(u) = 1, то $gr.r(u^{\alpha}) = 1$;
- 2) существует такой идемпотентный эндоморфизм $u=u^2\in h(R)$, что ${\rm gr.r}(u)={\rm gr.r}(u^{\alpha})=1;$
- 3) существуют элемент $\sigma \in G$ и антиполулинейный σ -изоморфизм (γ,β) модулей $_AM^*$ и N_B , который индуцирует антиизоморфизм $\alpha.$

При выполнении этих условий оба градуированных модуля M_A и N_B являются рефлексивными и существует антиполулинейный σ^{-1} -изоморфизм модулей $_BN^*$ и M_A .

Доказательство. Импликация $1) \Longrightarrow 2)$ очевидна.

Докажем импликацию $2)\Longrightarrow 3).$ Так как $\operatorname{gr.r}(u)=1$, то $uM\cong A(\tau)$ для некоторого $\tau\in G$. Следовательно, в силу леммы 5 существует полулинейный изоморфизм (γ_1,δ_1,ϕ) бимодулей ${}_{uRu}uR_R$ и ${}_AM_R^*$, такой что $\left((uRu)_g\right)^{\gamma_1}\subseteq A_{\tau^{-1}g\tau},$ $\left((uR)_g\right)^{\delta_1}\subseteq M_{\tau^{-1}g}^*$ для всех $g\in G$ (здесь $\phi\colon R\to \operatorname{END}({}_AM^*)$ — сопряжённое отображение).

Положим $w=u^{\alpha}$. Ясно, что антиизоморфизм градуированных колец $\alpha\colon R\to S$ индуцирует отображение бимодулей $\alpha\colon {}_{uRu}uR_R\to {}_SSw_{wSw}$, которое является антиполулинейным e-изоморфизмом правого градуированного R-модуля uR_R на левый градуированный S-модуль ${}_SSw$ и антиполулинейным e-изоморфизмом левого градуированного uRu-модуля ${}_{uRu}uR$ на правый градуированный wSw-модуль Sw_{wSw} .

Поскольку r(w)=1, то в силу леммы 5 существует полулинейный изоморфизм $(\mathrm{id}_S,\beta_2,\gamma_2)$ бимодулей $_SSw_{wSw}$ и $_SN_B$, такой что $\left((wSw)_g\right)^{\gamma_2}\subseteq B_{\varsigma^{-1}g\varsigma}$, $\left((Sw)_g\right)^{\beta_2}\subseteq N_{g\varsigma}$ для всех $g\in G$ (здесь $wN\cong B(\varsigma)$).

 $((Sw)_g)^{\beta_2}\subseteq N_{g\varsigma}$ для всех $g\in G$ (здесь $wN\cong B(\varsigma)$). Тогда пара отображений $(\gamma=\gamma_1^{-1}\alpha\gamma_2,\,\beta=\delta_1^{-1}\alpha\beta_2)$ является антиполулинейным изоморфизмом модулей ${}_AM^*$ и N_B , причём $(M_g^*)^\beta\subseteq N_{g^{-1}\tau^{-1}\varsigma},\,(A_g)^\gamma\subseteq\subseteq B_{\varsigma^{-1}\tau g^{-1}\tau^{-1}\varsigma}$, т. е. (γ,β) — антиполулинейный $(\tau^{-1}\varsigma)$ -изоморфизм градуированных модулей ${}_AM^*$ и N_B .

Пусть $f \in M^*$, $\eta \in R$. Тогда

$$(f\eta^*)^{\beta} = (f\eta^*)^{\beta_2\alpha\delta_1^{-1}} = (f^{\delta_1^{-1}}\eta)^{\beta_2\alpha} = (\eta^{\alpha}f^{\alpha\delta_1^{-1}})^{\beta_2} = \eta^{\alpha}f^{\beta}.$$

Таким образом, антиизоморфизм α индуцируется антиполулинейным $(\tau^{-1}\varsigma)$ -изоморфизмом (γ,β) .

Убедимся в справедливости импликации $3)\Longrightarrow 1$). Пусть существуют элемент $\sigma\in G$ и антиполулинейный σ -изоморфизм (γ,β) модулей ${}_AM^*$ и N_B , который индуцирует антиизоморфизм α , т. е. $(f\eta^*)^\beta=\eta^\alpha f^\beta$ для всех $f\in M^*$, $\eta\in R$.

Если $u=u^2\in h(R)$ и $\operatorname{gr.r}(u)=1$, то в силу леммы 5 существует полулинейный изоморфизм (γ,δ,ϕ) бимодулей ${}_{uRu}uR_R$ и ${}_{A}M_{\bar{R}}^*$, причём $\left((uR)_g\right)^\delta\subseteq\subseteq M_{\tau^{-1}g}^*$ и $\left((uRu)_g\right)^\gamma\subseteq A_{\tau^{-1}g\tau}$, где $uM\approx A(\tau)$. Следовательно, для $\eta\in R$ имеем $M^*\eta^*\approx (uR)\eta=uR\eta$, откуда при $\eta=u$ получим $M^*u^*\approx uRu$. Поскольку uRu — свободный циклический uRu-модуль, то M^*u^* — свободный циклический A-модуль, значит, и $(M^*u^*)^\beta=u^\alpha(M^*)^\beta=u^\alpha N$ — свободный циклический B-модуль. Простая проверка показывает, что $u^\alpha N\approx B(\tau\sigma)$, следовательно, $u^\alpha N$ — u^α

При выполнении условий 1)—3) из лемм 4 и 6 получим, что градуированный модуль M_A является рефлексивным, а значит, в силу леммы 1 рефлексивным является и модуль ${}_AM^*.$ Но тогда рефлексивным будет N_B , и следовательно, существует антиполулинейный σ^{-1} -изоморфизм градуированных модулей ${}_BN^*$ и M_A .

Определение 3. Пусть A и B — градуированные кольца, M_A и N_B — правые градуированные модули, $R = \mathrm{END}(M_A)$ и $S = \mathrm{END}(N_B)$ — градуированные кольца эндоморфизмов, $\alpha \colon R \to S$ — антиизоморфизм градуированных колец. Будем говорить, что антиизоморфизм α индуцируется градуированной анти-эквивалентностью Мориты, если существует градуированная эквивалентность категорий $H \colon \mathrm{gr.mod}\text{-}A^\mathrm{op} \to \mathrm{gr.mod}\text{-}B$, для которой канонический гомоморфизм $R \to \mathrm{END}(AM^*)$ является изоморфизмом, $H\left((M^*)^\mathrm{op}\right) = N$ и $H(r)n = r^\alpha n$ для всех $n \in N, r \in R^\mathrm{op}$.

Теорема 3. Пусть A и B-G-градуированные кольца, M_A и N_B- строгие gг-образующие модули, причём модуль M_A полурефлексивен, $R=\mathrm{END}(M_A)$ и $S=\mathrm{END}(N_B)-$ градуированные кольца эндоморфизмов, $\alpha\colon R\to S-$ антиизоморфизм градуированных колец. Тогда следующие условия равносильны:

- 1) если $u \in R$ и $\operatorname{gr.r}(u) = 1$, то $u^{\alpha}N_B g$ г-прообразующий B-модуль;
- 2) если $u \in R$, $w \in S$ и $\operatorname{gr.r}(u) = \operatorname{gr.r}(w) = 1$, то $u^{\alpha}N_B$ и $w^{\alpha^{-1}}M_A$ конечно порождённые проективные градуированные модули;
- 3) если $u \in R$, $w \in S$ и $\operatorname{gr.r}(u) = \operatorname{gr.r}(w) = 1$, то $u^{\alpha}N_B$ и $w^{\alpha^{-1}}M_A gr$ -образующие модули;
- 4) существует такой однородный идемпотентный эндоморфизм $u \in R$ ранга 1, что $u^{\alpha}N_B-g$ г-прообразующий B-модуль;
- 5) существуют такие однородные идемпотентные эндоморфизмы $u \in R$ и $w \in S$ ранга 1, что $u^{\alpha}N_B$ и $w^{\alpha^{-1}}M_A$ конечно порождённые проективные градуированные модули;

- 6) существуют такие однородные идемпотентные эндоморфизмы $u \in R$ и $w \in S$ ранга 1, что $u^{\alpha}N_{B}$ и $w^{\alpha^{-1}}M_{A}-g$ г-образующие модули;
- 7) антиизоморфизм α индуцируется градуированной антиэквивалентностью Мориты.

При выполнении любого из перечисленных выше условий градуированные модули M_A и N_B являются рефлексивными.

Для доказательства теоремы нам понадобятся следующие леммы из [4].

Лемма 7 [4, лемма 2.6]. Пусть M_A — градуированный A-модуль, R= = $\mathrm{END}(M_A)$, $u=u^2$, $v=v^2\in h(R)$. Тогда uRv и $\mathrm{HOM}(vM_A,uM_A)$ изоморфны как градуированные uRu-vRv-бимодули. В частности, Rv и $\mathrm{HOM}_A(vM,M)$ изоморфны как градуированные R-vRv-бимодули, а uR и $\mathrm{HOM}_A(M,uM)$ — как градуированные uRu-R-бимодули.

Лемма 8 [4, лемма 2.7]. Пусть M_A — строгий gг-образующий модуль, R= $END(M_A),\ u=u^2,\ v=v^2\in h(R),\ причём <math>\operatorname{gr.r}(u)=1.$ Тогда равносильны следующие условия:

- 1) wM_A конечно порождённый проективный градуированный A-модуль;
- 2) $(wRu)_{uRu}$ конечно порождённый проективный градуированный uRu-модуль;
- 3) wRuRw = wRw.

Доказательство теоремы 3. Так как модули M_A и N_B являются строгими gr-образующими, а модуль M_A полурефлексивен, то в силу леммы 5 существуют однородные идемпотентные эндоморфизмы $u \in R$ и $w \in S$ ранга 1 и полулинейные изоморфизмы бимодулей

$$(\mathrm{id}_R, \beta_1, \gamma_1) \colon {}_R R u_{uRu} \to {}_R M_A,$$
$$(\gamma_1, \delta_1, \phi) \colon {}_{uRu} u R_R \to {}_A M_R^*,$$
$$(\mathrm{id}_S, \beta_2, \gamma_2) \colon {}_S S w_{wSw} \to {}_S N_B,$$

такие что

$$((uRu)_g)^{\gamma_1} \subseteq A_{\sigma^{-1}g\sigma}, \quad ((Ru)_g)^{\beta_1} \subseteq M_{g\sigma}, \quad ((uR)_g)^{\delta_1} \subseteq M_{\sigma^{-1}g}^*,$$

$$((wSw)_g)^{\gamma_2} \subseteq B_{\tau^{-1}g\tau}, \quad ((Sw)_g)^{\beta_2} \subseteq N_{g\tau}$$

для всех $g\in G$ и таких $\sigma,\tau\in G$, для которых $uM\cong A(\sigma),\ wN\cong B(\tau).$

Докажем импликацию $2)\Longrightarrow 1$). Пусть $u^{\alpha}N_B$ и $w^{\alpha^{-1}}M_A$ — конечно порождённые проективные градуированные правые модули. Тогда из леммы 8 следует, что $w^{\alpha^{-1}}RuRw^{\alpha^{-1}}=w^{\alpha^{-1}}Rw^{\alpha^{-1}}$. Применяя к данному равенству антиизоморфизм α , получим

$$wSu^{\alpha}Sw = wSw. \tag{1}$$

По лемме 7 имеем изоморфизм градуированных wSw- $u^{\alpha}Su^{\alpha}$ -бимодулей $wSu^{\alpha}\cong HOM(u^{\alpha}N_B,wN_B)$. Легко проверить, что если $f\in h\big(HOM(u^{\alpha}N_B,wN_B)\big)$, то

 $\beta_2^{-1}f\beta_2\in hig(\mathrm{HOM}(u^{lpha}Sw_{wSw},wSw_{wSw})ig)$, причём $\deg f=\deg(\beta_2^{-1}f\beta_2)$, следовательно, $\mathrm{HOM}(u^{lpha}N_B,wN_B)$ и $\mathrm{HOM}(u^{lpha}Sw_{wSw},wSw_{wSw})$ изоморфны как граду-ированные абелевы группы. Отсюда и из (1) получим, что

$$\operatorname{gr.tr}_{wSw}(u^{\alpha}Sw) = \sum_{f \in \operatorname{HOM}(u^{\alpha}Sw_{wSw}, wSw_{wSw})} f(u^{\alpha}Sw) = (u^{\alpha}Sw)(u^{\alpha}Sw) = wSw.$$

Таким образом, в силу [4, лемма 2.1] $u^{\alpha}Sw$ является gr-образующим wSw-модулем, а следовательно, таковым является и градуированный B-модуль $u^{\alpha}N_B$, что доказывает утверждение 1).

Докажем импликацию 3) \Longrightarrow 1). Пусть $w^{\alpha^{-1}}M_A$ — gr-образующий A-модуль. Тогда gr-образующим будет и uRu-модуль $w^{\alpha^{-1}}Ru_{uRu}$. Следовательно,

$$\operatorname{gr.tr}_{uRu} \left(w^{\alpha^{-1}} Ru \right) = \operatorname{HOM} \left(w^{\alpha^{-1}} Ru_{uRu}, uRu_{uRu} \right) w^{\alpha^{-1}} Ru = uRu.$$

С другой стороны, по лемме 7 имеем

$$uRw^{\alpha^{-1}} \cong HOM(w^{\alpha^{-1}}M_A, uM_A) \cong HOM(w^{\alpha^{-1}}Ru_{uRu}, uRu_{uRu}).$$
 (2)

Следовательно, $uRw^{\alpha^{-1}}Ru=uRu$. Применив α , получим, что $u^{\alpha}SwSu^{\alpha}=u^{\alpha}Su^{\alpha}$. Из леммы 8 вытекает, что $u^{\alpha}N$ является конечно порождённым проективным B-модулем. Но по условию этот модуль является gr-образующим, следовательно, $u^{\alpha}N$ является gr-прообразующим.

Докажем импликацию 1) \Longrightarrow 2). Так как $u^{\alpha}N$ — gr-образующий B-модуль, то $wSu^{\alpha}Sw=wSw$. Применив α^{-1} , получим, что $w^{\alpha^{-1}}RuRw^{\alpha^{-1}}=w^{\alpha^{-1}}Rw^{\alpha^{-1}}$. Из леммы 8 следует, что $w^{\alpha^{-1}}M$ — конечно порождённый проективный A-молуль.

Убедимся в справедливости импликации 1) \Longrightarrow 3). Так как $u^{\alpha}N_{B}$ — конечно порождённый проективный B-модуль, то по лемме 8 имеем, что $u^{\alpha}SwSu^{\alpha}==u^{\alpha}Su^{\alpha}$. Применив α^{-1} , получим $uRw^{\alpha^{-1}}Ru=uRu$. Отсюда и из соотношения (2) следует, что $w^{\alpha^{-1}}Ru$ — gr-образующий uRu-модуль, значит, $w^{\alpha^{-1}}M_{A}$ — gr-образующий a-модуль.

Эквивалентности $4) \Longleftrightarrow 5) \Longleftrightarrow 6)$ доказываются аналогично эквивалентностям $1) \Longleftrightarrow 2) \Longleftrightarrow 3).$

Импликация $1) \Longrightarrow 4$) очевидна.

Докажем импликацию 4) \Longrightarrow 7). Пусть $u^{\alpha}N_B-$ gr-прообразующий B-модуль. Тогда $u^{\alpha}Sw-$ gr-прообразующий wSw-модуль. Из леммы 7 следует, что

$$uR \cong HOM(M_A, uM_A) \cong HOM(Ru_{uRu}, uRu_{uRu}).$$
 (3)

Если $f \in h(\mathrm{HOM}(Ru_{uRu},uRu_{uRu}))$, то, положив $(x)f^{\alpha} = \left(f(x^{\alpha^{-1}})\right)^{\alpha}$ для всех $x \in u^{\alpha}S$, получим, что $f^{\alpha} \in h(\mathrm{HOM}(u^{\alpha}Su^{\alpha}u^{\alpha}S,u^{\alpha}Su^{\alpha}Su^{\alpha}))$. Поскольку α является антиизоморфизмом градуированных колец, то отображение $f \to f^{\alpha}$ индуцирует изоморфизм абелевых групп, причём $\deg(f^{\alpha}) = (\deg f)^{-1}$. Тогда из (3) вытекает, что

$$Su^{\alpha} \cong HOM(u^{\alpha}Su^{\alpha}u^{\alpha}S, u^{\alpha}Su^{\alpha}u^{\alpha}Su^{\alpha}).$$
 (4)

С другой стороны, из леммы 7 следует, что

$$Su^{\alpha} \cong HOM(u^{\alpha}N_B, N_B) \cong HOM(u^{\alpha}Sw_{wSw}, Sw_{wSw}).$$
 (5)

Так как $u^{\alpha}Sw$ является gr-прообразующим wSw-модулем, то из градуированного варианта теоремы Мориты (см. [1,14]) следует, что существует градуированная эквивалентность категорий

$$HOM(u^{\alpha}Sw_{wSw}, -)$$
: gr.mod- $wSw \longrightarrow gr.mod-u^{\alpha}Su^{\alpha}$.

Используя соотношение (5), из неё получим изоморфизм градуированных колец

$$S = \text{END}(N_B) \cong \text{END}(Sw_{wSw}) \cong \text{END}(Su_{u^{\alpha}Su^{\alpha}}^{\alpha}). \tag{6}$$

С другой стороны, из леммы 7 вытекает изоморфизм градуированных бимодулей

$$u^{\alpha}S \cong \text{HOM}(Su^{\alpha}_{u^{\alpha}Su^{\alpha}}, u^{\alpha}Su^{\alpha}_{u^{\alpha}Su^{\alpha}}). \tag{7}$$

Из соотношений (4) и (7) следует, что Su^{α} является рефлексивным градуированным $u^{\alpha}Su^{\alpha}$ -модулем. Поскольку градуированная эквивалентность категорий градуированных модулей сохраняет рефлексивность, то Sw — рефлексивный wSw-модуль, а значит, и N_B — рефлексивный B-модуль.

Поскольку из условия 4) следуют условия 5) и 6), то $w^{\alpha^{-1}}M_A$ является gr-прообразующим, следовательно, M_A рефлексивен. Тогда в силу леммы 4 R= $= \mathrm{END}(M_A) \cong \mathrm{END}(_AM^*)$. Поскольку M является строгим gr-образующим, то и $_AM^*$ является строгим gr-образующим по лемме 2. Таким образом, $(M^*)_{A^{\mathrm{op}}}^{\mathrm{op}}$ — строгий gr-образующий и $\mathrm{END}((M^*)_{A^{\mathrm{op}}}^{\mathrm{op}}) = R^{\mathrm{op}}$.

Ясно, что $u \in R^{\mathrm{op}}$ и $\operatorname{gr.r}(u) = 1$, а антиизоморфизм α индуцирует изоморфизм градуированных колец $\beta \colon R^{\mathrm{op}} \to S$. Так как $u^{\alpha}N_B - \operatorname{gr-прообразующий модуль}$, то из [4, теорема 3.2] следует, что существует градуированная эквивалентность

$$H: \operatorname{gr.mod-}A^{\operatorname{op}} \to \operatorname{gr.mod-}B$$
,

которая индуцирует изоморфизм β . Следовательно, $H\big((M^*)^{\operatorname{op}}\big)=N$ и $H(r)n=r^{\alpha}n$ для всех $n\in N, r\in R^{\operatorname{op}}$, что доказывает 7).

Наконец, докажем импликацию $7) \Longrightarrow 1$). Пусть выполнено 7), т. е. существует градуированная эквивалентность категорий

$$H: \operatorname{gr.mod-}A^{\operatorname{op}} \to \operatorname{gr.mod-}B$$
,

для которой канонический гомоморфизм $R \to \mathrm{END}(_A M^*)$ является изоморфизмом, $H \big((M^*)^\mathrm{op} \big) = N$ и $H(r) n = r^\alpha n$ для всех $n \in N, \ r \in R^\mathrm{op}$. По условию M_A — строгий gr-образующий модуль, поэтому из леммы 4 следует, что M_A является рефлексивным и R^op и $\mathrm{END} \big((M^*)_{A^\mathrm{op}}^\mathrm{op} \big)$ изоморфны как градуированные кольца.

Таким образом, α — изоморфизм градуированных колец $\mathrm{END}((M^*)_{A^\mathrm{op}}^\mathrm{op})$ и $\mathrm{END}(N_B)$, который индуцируется градуированной эквивалентностью Мориты. По [4, теорема 3.2] получим, что для $u \in R$, $\mathrm{gr.r}(u) = 1$ модуль $u^\alpha N_B$ является $\mathrm{gr-прообразующим}$.

В качестве следствия получаем теорему 4.

Теорема 4. Пусть A и B — градуированные кольца, M_A и N_B — gг-прообразующие, $\alpha \colon \mathrm{END}(M_A) \to \mathrm{END}(N_B)$ — антиизоморфизм градуированных колец. Тогда α индуцируется градуированной антиэквивалентностью Мориты.

Доказательство. Так как M_A и N_B — конечно порождённые проективные градуированные модули, то по следствию 1 они являются рефлексивными модулями, и $\mathrm{END}(M_A)\cong\mathrm{END}(_AM^*)$. Из свойств gr-образующих модулей (см. [4, лемма 2.1]) следует, что существуют эпиморфизмы правых градуированных модулей $\varphi\colon\bigoplus_{i=1}^k M(g_i)\to A$ и $\psi\colon\bigoplus_{i=1}^l N(h_i)\to B$ для некоторых $g_1,g_2,\ldots,g_k,$ $h_1,h_2,\ldots,h_l\in G.$ Следовательно, существуют такие $\sigma_1=e,\sigma_2,\ldots,\sigma_n\in G,$ что модули $\tilde{M}=\bigoplus_{i=1}^n M(\sigma_i)$ и $\tilde{N}=\bigoplus_{i=1}^n N(\sigma_i)$ являются строгими gr-образующими. Легко проверить, что если $R=\mathrm{END}(M_A),$ а $S=\mathrm{END}(N_B),$ то

$$\tilde{R} = \text{END}_A(\tilde{M}) = M_n(R)(\sigma_1, \dots, \sigma_n), \quad \tilde{S} = \text{END}_A(\tilde{N}) = M_n(S)(\sigma_1, \dots, \sigma_n),$$

где через $M_n(R)(\sigma_1,\ldots,\sigma_n)$ обозначается градуированное кольцо матриц над градуированным кольцом R (см. [16]), и α индуцирует антиизоморфизм градуированных колец $\tilde{\alpha} \colon \tilde{R} \to \tilde{S}$.

Если $u \in R$, $w \in S$ и $\operatorname{gr.r}(u) = \operatorname{gr.r}(w) = 1$, то $u^{\tilde{\alpha}} \tilde{N}_B$ и $w^{\tilde{\alpha}^{-1}} \tilde{M}_A$ являются конечно порождёнными проективными градуированными модулями как прямые слагаемые конечно порождённых проективных модулей. По теореме 3 антиизоморфизм $\tilde{\alpha}$ индуцируется градуированной эквивалентностью категорий

$$H: \operatorname{gr.mod-}A^{\operatorname{op}} \to \operatorname{gr.mod-}B.$$

Тогда

$$H((M^*)^{\text{op}}) = H(E_{11}(\tilde{M}^*)^{\text{op}}) = E_{11}^{\tilde{\alpha}}\tilde{N} = E_{11}\tilde{N} = N,$$

и для всех $r \in R^{\mathrm{op}}, \, n \in N$ получим, что

$$H(r)n = H(E_{11}r)(n, n, \dots, n) = (E_{11}r)^{\tilde{\alpha}}(n, n, \dots, n) = r^{\alpha}n$$

(здесь E_{11} — матричная единица). Доказательство завершено.

Литература

- [1] Балаба И. Н. Эквивалентности Мориты категорий градуированных модулей // Успехи мат. наук. — 1987. — Т. 42, № 3. — С. 177—178.
- [2] Балаба И. Н. Рефлексивные градуированные модули // Алгоритмические проблемы теории групп и полугрупп. — Тула: ТГПИ, 1991. — С. 88—96.
- [3] Балаба И. Н. Индуцируемость антиизоморфизмов колец эндоморфизмов градуированных модулей антиполулинейным преобразованием // Успехи мат. наук. — 2008. - T. 63, № 3. - C. 151-152.
- [4] Балаба И. Н., Михалёв А. В. Изоморфизмы градуированных колец эндоморфизмов градуированных модулей, близких к свободным // Фундамент. и прикл. мат. — 2007. - T. 13, вып. 5. - C. 3-18.

- [5] Бейдар К. И., Михалёв А. В. Антиизоморфизмы колец эндоморфизмов модулей, близких к свободным, индуцированные антиэквивалентностями Мориты // Тр. семинара им. И. Г. Петровского. 1996. Вып. 19. С. 338—344.
- [6] Бэр Р. Линейная алгебра и проективная геометрия. М.: Изд. иностр. лит., 1955.
- [7] Каш Ф. Кольца и модули. М.: Мир, 1981.
- [8] Михалёв А. В. Изоморфизмы колец эндоморфизмов модулей, близких к свободным // Вестн. Моск. ун-та. Сер. 1, Математика, механика. 1989. № 2. С. 20—27.
- [9] Фейс К. Алгебра: кольца, модули и категории. Т. І. М.: Мир, 1977.
- [10] Фейс К. Алгебра: кольца, модули и категории. Т. II. М.: Мир, 1979.
- [11] Bolla M. L. Isomorphisms between endomorphism rings of progenerators // J. Algebra. 1984. Vol. 87. P. 261—281.
- [12] Gewirtzman L. Anti-isomorphisms of the endomorphism rings of a class of free module // Math. Ann. -1965. Vol. 159. P. 278-284.
- [13] Gewirtzman L. Anti-isomorphisms of endomorphism rings of torsion-free module // Math. $Z.-1967.-Vol.\ 98.-P.\ 391-400.$
- [14] Menini C., Năstăsescu C. When is R-gr equivalent to the category of modules? // J. Pure Appl. Algebra. 1988. No. 3. P. 277—291.
- [15] Menini C., del Rio A. Morita duality and graded rings // Commun. Algebra. 1991. Vol. 19, no. 6. — P. 1765—1794.
- [16] Năstăsescu C., van Oystaeyen F. Graded Ring Theory. Amsterdam: North-Holland, 1982.
- [17] Wolfson K. G. Anti-isomorphism of endomorphism rings of locally free modules // Math. Z. – 1989. – Vol. 202. – P. 151–159.