Континуальность множества предполных классов в классе дефинитных автоматов

д. н. жук

Московский государственный университет им. М. В. Ломоносова e-mail: zh_dmitriy@mail.ru

УДК 519.95

Ключевые слова: дефинитные автоматы, предполные классы, полнота.

Аннотация

В данной работе показано, что в классе дефинитных автоматов мощность множества всех предполных классов равна континууму.

Abstract

D. N. Zhuk, Cardinality of the set of all precomplete classes for definite automata, Fundamentalnaya i prikladnaya matematika, vol. 15 (2009), no. 4, pp. 29—36.

In this paper, we prove that the cardinality of the set of all precomplete classes for definite automata is continuum.

Введение

Известно, что решение задачи о полноте относительно операций суперпозиции и обратной связи для систем автоматных функций наталкивается на существенные трудности. Так, в [3] показано, что мощность множества предполных классов равна континууму. В [2] установлена алгоритмическая неразрешимость задачи о полноте.

Аналогичные результаты были получены для дефинитных автоматов. Было показано, что в классе дефинитных автоматов задача о полноте относительно операции суперпозиции алгоритмически неразрешима [1]. В данной работе установлено, что мощность множества предполных классов в классе дефинитных автоматов равна континууму. При этом в работе в явном виде приводится континуальное семейство предполных классов.

Автор выражает благодарность своему научному руководителю В. Б. Кудрявцеву за оказанную помощь и поддержку в исследовании задачи и написании данной работы.

Фундаментальная и прикладная математика, 2009, том 15, № 4, с. 29—36. © 2009 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

1. Основные понятия и результаты

Пусть $\mathbb{N}=\{1,2,3,\ldots\}$ — множество всех натуральных чисел, $\mathbb{N}_0=\mathbb{N}\cup\{0\}$, $E_2=\{0,1\},\ E_2^l$ — множество всех слов длины l в алфавите $E_2,\ E$ — множество всех бесконечных последовательностей нулей и единиц. Далее такие последовательности называем сверхсловами. Множество E^n состоит из всех наборов $(\alpha_1,\alpha_2,\ldots,\alpha_n)$, где $\alpha_i\in E$. Если $a\in E_2$, то через \bar{a} будем обозначать отрицание a.

Пусть α — слово или сверхслово. Для $n \in \mathbb{N}$ через $\alpha(n)$ обозначим n-й элемент α . Обозначим через $|\alpha|$ длину слова α , для сверхслова α положим $|\alpha| = \infty$. Для слова α , такого что $|\alpha| \geqslant k$, определим

$$[k\alpha = \alpha(|\alpha| - k + 1) \dots \alpha(|\alpha| - 1)\alpha(|\alpha|).$$

Для слова или сверхслова α , такого что $|\alpha| \geqslant k \geqslant l$, положим

$$_{l} \alpha = \alpha(1)\alpha(2)\dots\alpha(k), \quad [_{l}]_{k}\alpha = \alpha(k-l+1)\alpha(k-l+2)\dots\alpha(k).$$

Для слова α определим

$$\operatorname{invert}(\alpha) = \alpha(|\alpha|)\alpha(|\alpha|-1)\dots\alpha(1), \quad \alpha^s = \underbrace{\alpha\,\alpha\dots\alpha}_s, \quad \alpha^\infty = \alpha\,\alpha\,\alpha\dots.$$

Через Λ будем обозначать пустое слово, т. е. такое слово, что для любого слова α выполняется $\Lambda\alpha=\alpha\Lambda=\alpha$. Будем говорить, что α является подсловом β , если для каких-то δ_1 , δ_2 выполняется $\delta_1\alpha\delta_2=\beta$.

Пусть $n,h\in\mathbb{N}$. Функция $T\colon E^n\to E$ называется дефинитным автоматом с n входами высоты h, если существуют функции $f_j\colon (E_2^j)^n\to E_2$ $(j=1,2,3,\ldots,h)$, такие что для любых $x_1,x_2,\ldots,x_n\in E$ выполняется

$$\begin{split} T(x_1, x_2, \dots, x_n)(1) &= f_1(\,]_1 x_1, \,]_1 x_2, \dots, \,]_1 x_n), \\ T(x_1, x_2, \dots, x_n)(2) &= f_2(\,]_2 x_1, \,]_2 x_2, \dots, \,]_2 x_n), \\ \dots \\ T(x_1, x_2, \dots, x_n)(h) &= f_h(\,]_h x_1, \,]_h x_2, \dots, \,]_h x_n), \\ T(x_1, x_2, \dots, x_n)(h+1) &= f_h(\,[_h\,]_{h+1} x_1, \,[_h\,]_{h+1} x_2, \dots, \,[_h\,]_{h+1} x_n), \\ \dots \\ T(x_1, x_2, \dots, x_n)(h+i) &= f_h(\,[_h\,]_{h+i} x_1, \,[_h\,]_{h+i} x_2, \dots, \,[_h\,]_{h+i} x_n), \end{split}$$

Таким образом, согласно нашему определению автомат высоты h является также автоматом высоты h+1.

Пусть T — автомат высоты h. Для $p \in \mathbb{N}$ определим функцию

$$T^p\colon (E_2^p)^n\to E_2.$$

Если $p \leqslant h$, положим

$$T^p(\alpha_1, \alpha_2, \dots, \alpha_n) = f_p(\alpha_1, \alpha_2, \dots, \alpha_n).$$

Для p > h положим

$$T^p(\alpha_1, \alpha_2, \dots, \alpha_n) = f_h(\lceil_h \alpha_1, \lceil_h \alpha_2, \dots, \lceil_h \alpha_n).$$

Таким образом, для любого p функция T^p определяет p-й элемент выходного сверхслова. Функции T^p , где $p=1,\ldots,h$, будем называть порождающими. Нетрудно убедиться, что для задания дефинитного автомата необходимо задать высоту автомата и порождающие функции.

Множество всех дефинитных автоматов обозначим \mathcal{P}_a . Для $T\in\mathcal{P}_a$ через h(T) обозначим наименьшую высоту автомата T.

Пусть $M \subseteq \mathcal{P}_a$. Фиксируем некоторое счётное множество $U = \{u_1, u_2, u_3, \ldots\}$, элементы которого будем называть переменными. Индуктивно определим понятие терма над множеством M:

- 1) если $u \in U$, то u терм над M;
- 2) если F автомат с $n\in\mathbb{N}$ входами, $F\in M,$ $\tau_1,\tau_2,\ldots,\tau_n$ термы над M, то выражение $F(\tau_1,\tau_2,\ldots,\tau_n)$ терм над M.

Термы, отличные от переменных, назовём собственными. Пусть τ — произвольный терм, (x_1,x_2,\ldots,x_m) — набор попарно различных переменных, содержащий все переменные, использованные при построении терма τ . Тогда через $\tau(x_1,x_2,\ldots,x_m)$ обозначим функцию $\tau\colon E^m\to E$, определяемую индуктивно следующим образом:

1) если $\tau=x_c$ — переменная, $\gamma=(\gamma^1,\gamma^2,\ldots,\gamma^m)\in E^m$, то определим $\tau(x_1,x_2,\ldots,x_m)(\gamma)=\gamma^c;$

2) если
$$\tau = F(\tau_1, \tau_2, \dots, \tau_n), \ \gamma = (\gamma^1, \gamma^2, \dots, \gamma^m) \in E^m$$
, то определим $\tau(x_1, x_2, \dots, x_m)(\gamma) = F(\tau_1(x_1, x_2, \dots, x_m)(\gamma), \dots, \tau_n(x_1, x_2, \dots, x_m)(\gamma)).$

О функции T, такой что $T=\tau(x_1,x_2,\ldots,x_m)$ для некоторого собственного терма τ над множеством M, будем говорить, что она получена термальными операциями из дефинитных автоматов множества M. Нетрудно проверить, что функция T также будет дефинитным автоматом, поэтому мы можем ввести на множестве \mathcal{P}_a оператор замыкания [] относительно термальных операций, т. е. такое отображение, которое каждому множеству $M\subseteq\mathcal{P}_a$ ставит в соответствие множество [M] всех автоматов, которые можно получить термальными операциями из автоматов множества M. Определённый выше оператор замыкания также известен как оператор замыкания относительно операции суперпозиции [4]. Нетрудно заметить, что дефинитные автоматы — это все автоматы, которые можно получить с помощью термальных операций из булевых функций и задержки.

Множество M называется замкнутым, если [M]=M, и полным, если $[M]=\mathcal{P}_a$. Множество M называется предполным, если $[M]\neq\mathcal{P}_a$ и для любой $f\in\mathcal{P}_a\setminus M$ выполняется $[M\cup\{f\}]=\mathcal{P}_a$.

В данной работе доказывается следующая теорема.

Теорема. Мощность множества всех предполных классов в классе дефинитных автоматов равна континууму.

2. Основные утверждения

Для произвольного автомата T высоты h с n входами и произвольного $p\geqslant h$ определим функцию $T^{-p}\colon (E_2^p)^n\to E_2.$ Положим

$$T^{-p}(\alpha_1, \alpha_2, \dots, \alpha_n) = T^p(\text{invert}(\alpha_1), \text{invert}(\alpha_2), \dots, \text{invert}(\alpha_n)).$$

Заметим, что функция T^{-h} однозначно задаёт функцию T^h .

Далее определим отображение $T^{\infty} \colon E^n \to E$:

$$T^{\infty}(x_1, x_2, \dots, x_n)(1) = T^{-h}([_h x_1,]_h x_2, \dots,]_h x_n),$$

$$T^{\infty}(x_1, x_2, \dots, x_n)(2) = T^{-h}([_h]_{h+1} x_1, [_h]_{h+1} x_2, \dots, [_h]_{h+1} x_n),$$

$$\dots$$

$$T^{\infty}(x_1, x_2, \dots, x_n)(i) = T^{-h}([_h]_{h+i-1} x_1, [_h]_{h+i-1} x_2, \dots, [_h]_{h+i-1} x_n),$$

Отображение T^∞ в каком-то смысле действует так же, как автомат T, но преобразует сверхслова не с начала, а как бы с конца. Можно сказать, что T^∞ имитирует поведение автомата T в обратную сторону, поэтому такое преобразование сохраняет операцию суперпозиции. Другими словами, для любых автоматов

$$T(x_1,\ldots,x_n),T_1(x_1,\ldots,x_{m_1}),T_2(x_1,\ldots,x_{m_2}),\ldots,T_n(x_1,\ldots,x_{m_n})\in\mathcal{P}_a,$$

автомата

$$T_0(x_{1,1},\ldots,x_{1,m_1},\ldots,x_{n,1},\ldots,x_{n,m_n}) = T(T_1(x_{1,1},\ldots,x_{1,m_1}),\ldots,T_n(x_{n,1},\ldots,x_{n,m_n})),$$

а также для любых $\alpha_{1,1},\dots,\alpha_{1,m_1},\dots,\alpha_{n,1},\dots,\alpha_{n,m_n}\in E$ выполняется равенство

$$T_0^{\infty}(\alpha_{1,1}, \dots, \alpha_{1,m_1}, \dots, \alpha_{n,1}, \dots, \alpha_{n,m_n}) = T^{\infty}(T_1^{\infty}(\alpha_{1,1}, \dots, \alpha_{1,m_1}), \dots, T_n^{\infty}(\alpha_{n,1}, \dots, \alpha_{n,m_n})).$$

Также следует заметить, что отображение T^∞ не зависит от того, какую высоту выбрать в качестве h, минимальную или нет.

Определение 1. Автомат $T\in P_a$ с n входами сохраняет множество $C\subseteq E$ на бесконечности, если для любых $\alpha_1,\alpha_2,\ldots,\alpha_n\in C$ выполняется

$$T^{\infty}(\alpha_1, \alpha_2, \dots, \alpha_n) \in C.$$

Нетрудно убедиться, что справедливо следующее утверждение.

Утверждение 1. Для любого множества $C \subseteq E$ множество всех автоматов, сохраняющих C на бесконечности, замкнуто.

Для $C\subseteq E$ через $U^\infty(C)$ обозначим класс всех автоматов, сохраняющих C на бесконечности.

Пусть $\gamma \in E$. Построим последовательность слов $\delta_{\gamma,0}, \delta_{\gamma,1}, \delta_{\gamma,2}, \dots$ в алфавите $\{0,1\}$. Пусть $\delta_{\gamma,0}=01,\ \delta_{\gamma,i}=\delta_{\gamma,i-1}\delta_{\gamma,i-1}\gamma(i)\delta_{\gamma,i-1}$ для произвольного $i\in\mathbb{N}$. Обозначим

$$\alpha_{\gamma} = \delta_{\gamma,1}(1)\delta_{\gamma,2}(2)\delta_{\gamma,3}(3)\delta_{\gamma,4}(4)\dots$$

Нетрудно убедиться, что для любого $i\in\mathbb{N}_0$ слово $\delta_{\gamma,i}$ является началом сверхслова α_γ .

Утверждение 2. Для любого $\gamma \in E$ множество $U^{\infty}(\{\alpha_{\gamma}\})$ является предполным классом в \mathcal{P}_a .

Утверждение 3. Если
$$\gamma_1 \neq \gamma_2$$
, то $U^{\infty}(\{\alpha_{\gamma_1}\}) \neq U^{\infty}(\{\alpha_{\gamma_2}\})$.

Доказательство теоремы. Поскольку всего дефинитных автоматов счётное количество, то мощность множества предполных классов не может быть больше, чем континуум. Из утверждений 2, 3 следует, что каждому $\gamma \in E$ соответствует предполный класс и эти предполные классы попарно различны. Теорема доказана.

3. Доказательство утверждений 2 и 3

Лемма 1. Для любого γ и любого $i \in \mathbb{N}_0$ справедливо равенство

$$\alpha_{\gamma} = \delta_{\gamma,i} t_1 \delta_{\gamma,i} t_2 \delta_{\gamma,i} t_3 \dots,$$

где $t_1, t_2, t_3, \ldots \in \{0, 1, \Lambda\}.$

Доказательство. Как мы уже отмечали, для любого j слово $\delta_{\gamma,j}$ является началом сверхслова α_{γ} . Значит, достаточно доказать, что для любого j>i слово $\delta_{\gamma,j}$ представляется в виде

$$\delta_{\gamma,i}t_1\delta_{\gamma,i}t_2\delta_{\gamma,i}t_3\dots t_l\delta_{\gamma,i},$$

где $t_1, t_2, t_3, \ldots, t_l \in \{0, 1, \Lambda\}$. Применим индукцию. Для j = i + 1 утверждение следует непосредственно из определения. Докажем шаг индукции. Пусть

$$\delta_{\gamma,j} = \delta_{\gamma,i} t_1 \delta_{\gamma,i} t_2 \delta_{\gamma,i} t_3 \dots t_l \delta_{\gamma,i}.$$

По определению

$$\delta_{\gamma,i+1} = \delta_{\gamma,i}\delta_{\gamma,i}c\delta_{\gamma,i}$$

где $c \in \{0,1\}$. Значит, $\delta_{\gamma,j+1}$ также представляется в таком виде. Лемма доказана.

Доказательство утверждения 2. Легко проверить, что автомат, не зависящий от входа и возвращающий сверхслово 0^{∞} , не принадлежит $U^{\infty}(\{\alpha_{\gamma}\})$. Учитывая утверждение 1, получаем, что $[U^{\infty}(\{\alpha_{\gamma}\})] \neq \mathcal{P}_a$.

Пусть
$$T \notin U^{\infty}(\{\alpha_{\gamma}\}), h(T) = h.$$
 Тогда

$$T^{\infty}(\alpha_{\gamma}, \alpha_{\gamma}, \dots, \alpha_{\gamma}) = \varepsilon \neq \alpha_{\gamma}.$$

Рассмотрим минимальное j, такое что $\varepsilon(j) \neq \alpha_{\gamma}(j)$. Рассмотрим такое i, что $|\delta_{\gamma,i}|>j+h$. Пусть $\delta=[_h\,]_{i+h-1}\delta_{\gamma,i}$. Так как α_{γ} начинается с $\delta_{\gamma,i}$, то

$$T^{-h}(\delta, \delta, \dots, \delta) = \varepsilon(j) \neq \alpha_{\gamma}(j) = \delta_{\gamma, i}(j) = \delta(1).$$

Из леммы 1 следует, что

$$\alpha_{\gamma} = \delta_{\gamma,i} t_1 \delta_{\gamma,i} t_2 \delta_{\gamma,i} t_3 \dots,$$

где $t_1,t_2,t_3,\ldots\in\{0,1,\Lambda\}$. Значит, любое подслово длины $2|\delta_{\gamma,i}|$ сверхслова α_{γ} содержит слово $\delta_{\gamma,i}$. Поскольку δ — подслово $\delta_{\gamma,i}$, любое подслово длины $2|\delta_{\gamma,i}|$ сверхслова α_{γ} содержит слово δ .

Рассмотрим произвольный автомат V с n входами. Покажем, что

$$V \in [U^{\infty}(\{\alpha_{\gamma}\}) \cup \{T\}].$$

Пусть $h_0 = 2|\delta_{\gamma,i}| + h(V)$. Построим автомат $T_0(x_1,x_2,\dots,x_n,x_{n+1})$ высоты h_0 . Пусть

$$T_0^s(\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1}) = V^s(\beta_1, \beta_2, \dots, \beta_{n-1}, \beta_n)$$

для $s = 1, 2, 3, \dots, h_0 - 1$. Также положим

$$\begin{split} T_0^{-h_0}(\beta_1,\beta_2,\dots,\beta_n,\beta_{n+1}) &= \\ &= \begin{cases} \beta_1(1), & \text{если } \beta_1 = \beta_{n+1} \text{ и } \beta_1 - \text{подслово } \alpha_\gamma, \\ V^{-h_0}(\beta_1,\beta_2,\dots,\beta_{n-1},\beta_n) & \text{иначе.} \end{cases} \end{split}$$

Легко убедиться, что $T_0 \in U^{\infty}(\{\alpha_{\gamma}\})$.

Покажем, что

$$T_0(x_1, x_2, \dots, x_n, T(x_1, x_1, \dots, x_1)) = V(x_1, x_2, \dots, x_n).$$

Рассмотрим произвольные $\beta_1,\beta_2,\dots,\beta_n\in E$. Несложно проверить, что для любого $l\in\mathbb{N}$ либо $[_{h_0}]_{l+h_0-1}\beta_1$ не является подсловом α_γ , либо δ является подсловом $[_{h_0}]_{l+h_0-1}\beta_1$ и

$$[b_0]_{l+h_0-1}\beta_1 \neq [b_0]_{l+h_0-1}T^{\infty}(\beta_1, \beta_1, \dots, \beta_1).$$

Значит,

$$T_0^{\infty}(\beta_1, \beta_2, \dots, \beta_n, T^{\infty}(\beta_1, \beta_1, \dots, \beta_1)) = V^{\infty}(\beta_1, \beta_2, \dots, \beta_n).$$

Из определения автомата T_0 следует, что в первые h_0-1 моментов времени он работает как V. Значит,

$$T_0(x_1, x_2, \dots, x_n, T(x_1, x_1, \dots, x_1)) = V(x_1, x_2, \dots, x_n).$$

Отсюда следует, что

$$[\{T\} \cup U^{\infty}(\{\alpha_{\gamma}\})] = \mathcal{P}_a.$$

Утверждение доказано.

Лемма 2. Если $a\delta=\delta c$, где $\delta\in E_2^r$, $a,c\in E_2$, то a=c и $\delta=a^r$.

Доказательство. Из условия следует, что для любого $j \in \{1, 2, \dots, r-1\}$ справедливо равенство $\delta(j) = \delta(j+1)$. При этом $\delta(1) = a$ и $\delta(r) = c$. Отсюда получаем, что a = c и $\delta = a^r$. Лемма доказана.

Лемма 3. Если $\delta\delta=\beta_1\delta\beta_2$, где $\delta\in E_2^r$, β_1 , β_2 — непустые слова, то найдётся такое слово ξ , что $\delta=\xi^k$, где $k\geqslant 2$.

Доказательство. Так как β_1 — начало слова δ , а β_2 — конец слова δ , то $\delta=\beta_1\beta_2$. Тогда $\beta_1\beta_2\beta_1\beta_2=\delta\delta=\beta_1\delta\beta_2$ и $\delta=\beta_2\beta_1$. Значит, для любого $j\in\mathbb{N}$ выполняется равенство $\delta^{j+1}=\beta_1\delta^j\beta_2$.

Пусть $\varepsilon=\delta^\infty$, $|\beta_1|=s<|\delta|$. Тогда для любого $i\in\mathbb{N}$ выполняется равенство $\varepsilon(i)=\varepsilon(i+s)$. Пусть c — наибольший общий делитель чисел s и $|\delta|$. Тогда ε можно представить в виде ξ^∞ , где $|\xi|=c$. Следовательно, $\delta=\xi^{|\delta|/c}$. Лемма доказана.

Доказательство утверждения 3. Покажем, что существует автомат T, такой что $T\notin U^\infty(\{\alpha_{\gamma_1}\})$ и $T\in U^\infty(\{\alpha_{\gamma_2}\})$. Пусть m- максимальное число, такое что $\delta_{\gamma_1,m}=\delta_{\gamma_2,m}$. Обозначим $\delta_{\gamma_1,m}$ через δ . Для определённости будем считать, что $\delta_{\gamma_1,m+1}=\delta\delta0\delta$, $\delta_{\gamma_2,m+1}=\delta\delta1\delta$. Из леммы 1 следует, что

$$\alpha_{\gamma_2} = \delta \delta 1 \delta t_1 \delta \delta 1 \delta t_2 \delta \delta 1 \delta t_3 \dots,$$

где $t_1, t_2, t_3, \ldots \in \{0, 1, \Lambda\}.$

Построим искомый автомат T высоты $h=3|\delta|+1$ с одним входом. Пусть $T^s(\beta)=0$ для любого $\beta\in E_2{}^s$ и любого $s\in\{1,2,\ldots,h-1\}$. Положим $T^{-h}(\beta)=\overline{\beta(1)},$ если $\beta=\delta\delta0\delta,$ и $T^{-h}(\beta)=\beta(1)$ иначе.

Рассмотрим максимальное k, такое что для какого-то ξ выполняется $\xi^k=\delta$. Так как $\delta_{\gamma_2,0}=01$, то $|\xi|\geqslant 2$.

Легко проверить, что $T\notin U^\infty(\{\alpha_{\gamma_1}\})$. Покажем, что $T\in U^\infty(\{\alpha_{\gamma_2}\})$. Для этого достаточно доказать, что слово $\delta\delta0\delta$ не является подсловом сверхслова α_{γ_2} . Предположим, что это не так. Тогда $\xi^k\xi^k0\xi^k$ является подсловом слова $\xi^k\xi^k1\xi^kt_i\xi^k\xi^k1\xi^k$. Из лемм 2 и 3 следует, что либо $\xi\in\{0^{|\xi|},1^{|\xi|}\}$, либо $\xi=\xi_0{}^j$ для какого-то $j\geqslant 2$. Первый случай невозможен, так как $\delta_{\gamma_2,0}=01$. Второй случай невозможен, так как мы выбрали максимальное k, такое что для какого-то ξ выполняется $\xi^k=\delta$. Получили противоречие. Значит, $T\in U^\infty(\{\alpha_{\gamma_2}\})$, и утверждение доказано.

Литература

- [1] Буевич В. А., Клиндухова Т. Э. Об алгоритмической неразрешимости задач об А-полноте и полноте для дефинитных ограниченно-детерминированных функций // Математические вопросы кибернетики. Вып. 10. М.: Наука, 2001.
- [2] Кратко М. И. Алгоритмическая неразрешимость проблемы распознавания полноты для конечных автоматов // ДАН СССР. -1964.-T.155, N 1. -C.35-37.

- [3] Кудрявцев В. Б. О мощностях множеств предполных классов некоторых функциональных систем, связанных с автоматами // ДАН СССР. 1963. Т. 151, N 3. С. 493—496.
- [4] Кудрявцев В. Б., Алёшин С. В., Подколзин А. С. Введение в теорию автоматов. М.: Наука, 1985.