И. В. ОРЕШИНА

Московский государственный университет им. М. В. Ломоносова e-mail: ivo@sai.msu.ru

Б. В. СОМОВ

Московский государственный университет им. М. В. Ломоносова e-mail: somov@sai.msu.ru

УДК 517.54+524.3-17

Ключевые слова: конформное отображение, компактная звезда, магнитосфера, электрический ток.

Аннотация

В двумерном приближении с помощью метода конформных отображений анализируется структура магнитного поля в магнитосфере компактной звезды. Исследуется зависимость решения от входных параметров модели. Вычислены прямой и обратный токи в хвосте магнитосферы.

Abstract

I. V. Oreshina, B. V. Somov, Method of conformal mappings for calculation of electric currents in magnetospheres of compact stars, Fundamentalnaya i prikladnaya matematika, vol. 15 (2009), no. 6, pp. 141–150.

In the two-dimensional approximation with the method of conformal mapping, we analyze the magnetic-field structure in the magnetosphere of a compact star. The dependence of the solution on the input parameters of the model is investigated. The direct and reverse electric currents are calculated in the magnetosphere.

1. Введение

Компактными звёздами называют нейтронные звёзды, в частности магнетары, и белые карлики. Важная особенность компактных звёзд — наличие *сильных магнитных полей*. Напряжённость поля на нейтронной звезде достигает $\sim 10^{12}$ Гс и даже $\sim 10^{15}$ Гс [26, 27]. Столь сильное поле оказывает огромное

^{*}Работа выполнена при финансовой поддержке гранта РФФИ 08-02-01033.

Фундаментальная и прикладная математика, 2009, том 15, № 6, с. 141-150.

^{© 2009} Центр новых информационных технологий МГУ,

Издательский дом «Открытые системы»

влияние на движение плазмы вблизи звезды. Именно оно ответственно за различные наблюдательные проявления компактных звёзд, такие как рентгеновское излучение и выбросы вещества (см., например, [17, 19, 20, 22, 23, 27]). Поэтому исследование магнитосферы звезды (её формы, размеров, конфигурации и величины поля внутри её) является одной из актуальных астрофизических проблем.

Для решения двумерных задач космической магнитогидродинамики давно применяется теория функций комплексного переменного (см., например, [12, 14-16] и др.). В частности, был приведён пример расчёта задач об обтекании тел, имеющих магнитное поле, потоком проводящего газа и решена задача о форме магнитосферы Земли [1, 2, 9]. Изучалась конфигурация магнитного поля в магнитосфере звезды без аккреционного диска [11]. Найдено точное решение для формы магнитосферы без аккреционного диска с произвольным степенным распределением давления, а также форма магнитосферы звезды, вращающейся в гиперзвуковом режиме [12]. Была рассмотрена задача о конфигурации магнитного поля вблизи аккрецирующей компактной звезды, обладающей мультипольным магнитным моментом [5], и звезды, обладающей дипольным магнитным моментом, без учёта внешней границы магнитосферы и в приближении плоского аккреционного диска [4, 24]. Был выполнен расчёт формы магнитосферы с плоским аккреционным диском при наличии внешней границы [13]. Исследовался вопрос о форме аккреционного диска [7, 8]. Самосогласованным образом получены внешняя граница магнитосферы и форма аккреционного диска [10].

Ниже рассматривается задача о магнитосфере компактной звезды после прохождения ударной волны, вызванной, например, взрывом сверхновой. Такая ударная волна искажает магнитосферу и, в частности, увлекает за собой часть магнитного потока. В разделе 2 излагается математическая постановка задачи, в разделе 3 — метод решения. Рассчитаны форма магнитопаузы, а также конфигурация магнитного поля в пределах магнитосферы. В разделе 4 анализируется зависимость полученного решения от входных параметров модели, рассматриваются некоторые предельные случаи, сводящие найденное решение к уже известным аналитическим решениям, а также вычисляются электрические токи в хвосте магнитосферы.

2. Постановка задачи

Будем моделировать звезду точечным магнитным диполем. Это приближение оправдано тем, что нас интересует крупномасштабное магнитное поле, магнитосфера в целом, а размеры компактных звёзд невелики (радиус средней нейтронной звезды составляет всего 10 км). Заметим, что хотя в литературе встречается моделирование звезды магнитным квадруполем [5], дипольная модель получила более широкое распространение.

Для околозвёздного пространства компактных объектов оказывается общим присутствие сильного магнитного поля и сравнительно разреженной плазмы.

Магнитная сила здесь доминирует над остальными: градиентом давления, силой инерции, гравитационной силой и т. д. Поэтому при рассмотрении таких задач применимо приближение сильного поля [25]: решения уравнений магнитной гидродинамики ищутся в виде рядов, содержащих малые параметры, такие как отношение газового давления к магнитному и т. д. В нулевом порядке по малым параметрам решение для магнитного поля является бессиловым или потенциальным.

В рассматриваемой постановке задачи хорошо проводящая плазма обтекает некоторую «пустую» область пространства. Эту область пространства можно назвать пустой в следующем смысле: заключённое в ней магнитное поле является столь сильным, что уравновешивает само себя в плазме, как в вакууме, т. е. может быть рассчитано в потенциальном приближении. Кроме того, будем считать, что поверхность раздела S между потоком плазмы и рассматриваемой областью определяется равенством магнитного и газового давлений (рис. 1 справа). Пустую область называют магнитосферой, а её внешнюю границу — магнитопаузой.

Рис. 1. Линии магнитного поля во вспомогательной плоскости w (слева) и в плоскости z (справа). S' и S — магнитопаузы в соответствующих плоскостях. Q — магнитные массы. np1 и np2 нулевые точки магнитного поля в плоскости w, которые при отображении z(w) переходят в нулевые точки x_+ и x_- соответственно

Итак, в двумерном приближении физическая картина может быть описана следующей математической моделью. Компактная звезда моделируется направленным вверх точечным диполем с моментом

$$\mathbf{m} = m\mathbf{e}_{y}.\tag{1}$$

Здесь \mathbf{e}_y — единичный вектор вдоль оси ординат. Магнитное поле потенциально, т. е. описывается уравнениями

$$\operatorname{div} \mathbf{B} = 0, \quad \operatorname{rot} \mathbf{B} = 0. \tag{2}$$

На магнитопаузе S магнитное давление уравновешено газовым:

$$\left. \frac{B^2}{8\pi} \right|_S = p. \tag{3}$$

Вне магнитосферы $\mathbf{B} = 0$ и применимы уравнения обычной газодинамики. Предполагаем, что поле звезды не проникает сквозь границу S, т. е.

$$\mathbf{B} \cdot \mathbf{n}|_S = 0. \tag{4}$$

Ещё один параметр задачи — величина магнитного потока, унесённого на бесконечность прошедшей ударной волной. Эту величину будем характеризовать параметром *Q*, или так называемой «магнитной массой», введённой в [9].

Считаем, что величина магнитного момента $m = m_0$, значение газового давления $p = p_0$, а также магнитная масса Q заданы. Нужно найти форму границы S, а также магнитное поле **В** в пределах магнитосферы.

3. Метод решения

Суть предложенного ранее (см. [1,2,9]) метода решения задач с заранее неизвестной границей состоит в следующем. При любом фиксированном положении границы S решение уравнений (2) с условиями (1) и (4) единственно, поэтому условие (3) является достаточным для определения формы S.

Рассмотрим плоский случай

$$\mathbf{B} = (B_x(x,y), B_y(x,y), 0).$$

Пусть z = x + iy — комплексная плоскость. Тогда поле удобно описывать с помощью потенциала F(z) — аналитической функции, связанной с вектором В соотношением [25]

$$\mathbf{B} = B_x + iB_y = -i\left(\frac{\mathrm{d}F}{\mathrm{d}z}\right)^*.$$
(5)

Звёздочка означает комплексное сопряжение, а линии поля являются линиями уровня действительной части потенциала, т. е. определяются из условия

$$\operatorname{Re} F(z) = \operatorname{const.} \tag{6}$$

Предположим, что существует конформное отображение области, занятой магнитосферой с неизвестной границей S в плоскости z, на некоторую известную простую область с заданной границей S' во вспомогательной плоскости w = u + iv. При этом требуется, чтобы отображение w(z) переводило начало координат z = 0 в начало координат w = 0 и сохраняло угол наклона диполя. Тогда, построив потенциал F(w), создаваемый диполем **m** в плоскости w, так, чтобы границе S' была линией поля, и зная зависимость w = w(z), можно получить вектор магнитного поля и, следовательно, распределение линий поля в плоскости z по формулам (5) и (6). Таким образом, для решения задачи (1)-(4) нужно построить потенциал F(w) и отображение w(z).

144

Будем пользоваться безразмерными переменными, полученными делением размерных величин: магнитного момента m, давления p, магнитного поля B, магнитной массы Q и расстояний x, y на m_0 , p_0 , $B_0 = p_0^{1/2}$, $Q_0 = p_0^{1/3} m_0^{1/3}$, $L_0 = m_0^{1/3} p_0^{-1/6}$ соответственно.

В качестве вспомогательной области в плоскости *w* выберем единичный круг. Тогда искомый потенциал имеет вид

$$F(w) = i Q \ln \frac{w - e^{i\alpha}}{w e^{i\alpha} - 1} + w - \frac{1}{w}.$$
(7)

Здесь α — свободный параметр задачи, так что дуга $(-\alpha, \alpha)$ единичной окружности в плоскости w переходят при отображении в поверхность токового слоя в плоскости z, тогда как дуга $(\alpha, 2\pi - \alpha)$ в плоскости w соответствуют внешней границе магнитосферы в плоскости z (см. рис. 1).

Условие (3) даёт обыкновенное дифференциальное уравнение для нахождения вещественной части $x(\varphi)$ функции отображения для магнитопаузы; здесь φ — аргумент точки в плоскости w. Уравнение решалось численно с помощью метода Рунге—Кутты. Чтобы рассчитать форму магнитопаузы, нужно найти ещё и мнимую часть отображения — функцию $y(\varphi)$. Воспользуемся тем, что отображение конформно, т. е. функция z(w) аналитическая. Следовательно, её вещественная и мнимая части — гармонически сопряжённые функции. С помощью разложения $x(\varphi)$ в ряд Фурье и взятия гармонически сопряжённого ряда находим $y(\varphi)$ для магнитопаузы. Итак, внешняя граница магнитосферы построена (см. рис. 1 справа).

Определим теперь положение токового слоя в хвосте магнитосферы. В силу симметрии задачи относительно оси абсцисс этот слой будет плоским. Таким образом, $y(\varphi) = 0$ при $\varphi \in (-\alpha, \alpha)$. Дуга $(0, \alpha)$ отображается на верхнюю сторону слоя, а дуга $(0, -\alpha)$ — на нижнюю сторону.

Тем самым полностью определена система функций $y(\varphi)$ для всех $\varphi \in (0, 2\pi)$. Теперь, воспользовавшись формулой Шварца [3]

$$z(w) = -\frac{1}{2\pi i} \int_{0}^{2\pi} y(\varphi) \frac{e^{i\varphi} + w}{e^{i\varphi} - w} \,\mathrm{d}\varphi,\tag{8}$$

найдём функцию z(w) во всем круге $|w| \leq 1$ (интегрирование формулы Шварца осуществлялось численно). Зная потенциал F(w) и отображение z(w), переводящее единичный круг плоскости w в магнитосферу в плоскости z, получаем конфигурацию магнитного поля в плоскости z (см. рис. 1). В частности, отметим, что при выборе параметров $\alpha = \pi/6$ и Q = 1/6 токовый слой начинается в точке $x_l = 0.62$.

Чтобы вернуться к размерным переменным, нужно задать значения магнитного момента m_0 и давления p_0 межзвёздного газа на границе магнитосферы. Для этого воспользуемся известными данными [6] и выберем $m_0 = 10^{30} \ \Gamma c \cdot c m^3$ и $p_0 = 1.38 \cdot 10^6 \ du \mu/cm^2$, что соответствует параметрам типичной нейтронной звезды. Отметим, что изложенный метод позволяет получать численные оценки напряжённости магнитного поля в любой точке магнитосферы.

4. Обсуждение результатов

4.1. Оценка достоверности полученного решения

Варьируя значения присутствующих в задаче параметров α и Q, можно сводить полученное решение к уже известным результатам других авторов.

Случаю $\alpha = 0$ и Q = 0 отвечает магнитосфера без токового слоя; вся вспомогательная единичная окружность перейдёт при отображении во внешнюю границу магнитосферы. В этом случае потенциал F совпадает с рассмотренным ранее в [11] для соответствующего случая, а форма магнитосферы совпадает с рассчитанной в [11,18].

Заметим, что параметры α и Q взаимосвязаны. Они могут быть отличны от нуля или обращаться в нуль одновременно. Действительно, случай $\alpha \neq 0$ соответствует существованию токового слоя. Слой формируется, когда часть магнитного потока увлекается на бесконечность, т. е. если параметр Q, характеризующий его величину, отличен от нуля. Это отражено в формуле (7) для магнитного потенциала, где при обращении в нуль одного из параметров α или Qвторой исчезает автоматически.

О достоверности представленного решения свидетельствует и тот факт, что полученные характерные размеры магнитосферы хорошо согласуются с оценками других авторов. Так, по оценкам, полученным с помощью космического аппарата IXAE нейтронная звезда 4U 1907+09 окружена магнитосферой с характерным радиусом $r_m \sim 0.4 \cdot 10^9 \ cm$ [21]. Результаты наших расчётов для стандартной нейтронной звезды, т. е. звёзды с магнитным моментом $m_0 = 10^{30} \ \Gamma c \cdot cm^3$ и газовым давлением на границе магнитосферы $p_0 = 1.38 \cdot 10^6 \ dun/cm^2$ (данные взяты из [6]), дают характерный размер магнитосферы $r_m \approx 0.6 \cdot 10^9 \ cm$.

Таким образом, можно сделать вывод, что достоверность полученных результатов подтверждается имеющимися теоретическими расчётами и наблюдательными данными. Заметим, что в [21] был приведён список известных нейтронных звёзд, аналогичных 4U 1907+09, т. е. звёзд, к которым может быть применима предложенная модель.

4.2. Исследование структуры поля в магнитосфере

Рассмотрим особенности поля в пределах магнитосферы. Остановимся на вопросе о расположении и количестве нулевых точек магнитного поля. Такие точки играют важную роль в процессе ускорения частиц в плазме [25]. Расчёты показывают, что магнитосфера может содержать одну или две нулевые точки в зависимости от соотношения магнитного момента звезды m и унесённого потока Q. Конфигурация на рис. 1 справа содержит две нулевые точки: x_+ на

146

верхней границе токового слоя и x_- на его нижней границе. Нулевые точки могут быть также расположены между звездой и токовым слоем или совпадать с внутренним краем токового слоя. В последних случаях две точки будут сливаться в одну. Силовая линия, проходящая через нулевые точки, отделяет магнитный поток, замыкающийся на диполь, от потока, уходящего в хвост магнитосферы. Заметим, что с уменьшением параметра Q нулевая точка отодвигается от звезды.

Определим, при каких значениях параметров α и Q нулевая точка совпадет с внутренним краем токового слоя. Очевидно, нулевые точки поля в плоскости w отвечают нулевым точкам в плоскости z. Действительно, из выражения (5) следует уравнение

$$\mathbf{B} = -i\left(\frac{\mathrm{d}F}{\mathrm{d}z}\right)^* = -i\left(\frac{\mathrm{d}F}{\mathrm{d}w} \cdot \frac{\mathrm{d}w}{\mathrm{d}z}\right)^* = 0.$$

Производная dw/dz отлична от нуля вследствие конформности отображения. Следовательно, должно выполняться равенство

$$\frac{\mathrm{d}F}{\mathrm{d}w} = 0,\tag{9}$$

означающее равенство нулю координат B_u и B_v магнитного поля в плоскости w. Потенциал F в этой плоскости имеет аналитический, удобный для анализа вид (7). Вследствие симметрии магнитного поля относительно оси абсцисс во вспомогательной плоскости w началу токового слоя отвечает точка (1,0). Подставив эти координаты в уравнение (9), после отделения действительной и мнимой частей получаем систему двух алгебраических уравнений относительно двух переменных α и Q. Её решение показывает, что нулевая точка поля совпадает с внутренним краем токового слоя, если параметры выбраны так, что

$$Q = \frac{2(1 - \cos \alpha)}{\sin \alpha}$$

Например, для выбранного нами значения $\alpha = \pi/6$ получим Q = 0.53. При меньших значениях Q нулевые точки лежат на токовом слое, как это показано на рис. 1 справа.

4.3. Вычисление электрических токов в хвосте магнитосферы

Циркуляция магнитного поля вдоль токового слоя создаёт электрический ток. В случае когда нулевые точки лежат на токовом слое, возникают два противоположно направленных электрических тока: один создаётся циркуляцией вокруг внутренней части слоя до нулевых точек x_+ и x_- , а другой — циркуляцией вокруг внешней части слоя, от нулевых точек x_+ и x_- до бесконечности (рис. 2). Первый из этих токов будем называть обратным, а второй — прямым.

В безразмерных переменных плотность электрического тока равна

$$\mathbf{j} = \xi^{-1} \operatorname{rot} \mathbf{B}_{\mathbf{j}}$$

Рис. 2. Конфигурация магнитного поля в малой окрестности токового слоя. x_l — начальная точка слоя. x_+ — нулевая точка на верхней границе слоя, x_- — нулевая точка на его нижней границе. L_1 — контур, ограничивающий поверхность S_1 , через которую вычисляется обратный электрический ток. L_2 — контур, ограничивающий поверхность S_2 , через которую вычисляется прямой электрический ток

где $\xi = 4\pi j_0 L_0/cB_0$. Здесь c — скорость света, j_0 — характерная величина плотности электрического тока. Вычислим обратный ток, т. е. ток через площадку S_1 , охватывающую внутренний конец токового слоя до нулевых точек x_+ и x_- (на рис. 2 показана пунктиром):

$$I_{\rm rc} = \iint_{S_1} \mathbf{j} \, \mathrm{d}\mathbf{s} = \frac{1}{\xi} \iint_{S_1} \operatorname{rot} \mathbf{B} \, \mathrm{d}\mathbf{s} = \frac{1}{\xi} \oint_{L_1} \mathbf{B} \, \mathrm{d}\mathbf{l},$$

где через L_1 обозначен контур, ограничивающий площадку S_1 . Выберем L_1 максимально близко прилегающим к токовому слою. Тогда с учётом формулы (5) можно получить, что

$$I_{\rm rc} = \frac{1}{\xi} \left[{\rm Im}\{F(z)\} |_{z=x_+} - {\rm Im}\{F(z)\} |_{z=x_-} \right].$$

Так как отображение z(w) переводит нулевые точки в плоскости w в нулевые точки плоскости z, из последнего равенства вытекает, что

$$I_{\rm rc} = \frac{1}{\xi} \Big[{\rm Im}\{F(z[w])\}|_{w=\exp(i\varphi_{np1})} - {\rm Im}\{F(z[w])\}|_{w=\exp(i\varphi_{np2})} \Big] = \frac{1}{\xi} \Big[{\rm Im}\{F[\exp(i\varphi_{np1})]\} - {\rm Im}\{F[\exp(i\varphi_{np2})]\} \Big].$$
(10)

С учётом формулы (7) величина обратного тока легко вычисляется для любых значений входных параметров задачи α и Q. Заметим, что она является конечной величиной при любых конечных значениях Q.

Аналогично для прямого тока получаем выражение

$$I_{dc} = \frac{1}{\xi} \left[\operatorname{Im} \{ F[\exp(i\alpha)] \} - \operatorname{Im} \{ F[\exp(i\varphi_{np1})] \} \right] + \frac{1}{\xi} \left[\operatorname{Im} \{ F[\exp(i\varphi_{np2})] \} - \operatorname{Im} \{ F[\exp(-i\alpha)] \} \right] = -I_{rc} + \frac{1}{\xi} \left[\operatorname{Im} \{ F[\exp(i\alpha)] \} - \operatorname{Im} \{ F[\exp(-i\alpha)] \} \right]$$

Точки α и $-\alpha$ являются особыми точками потенциала (7), в них расположены магнитные массы. Как легко проверить, последнее слагаемое оказывается бесконечной величиной. Таким образом, прямой ток в нашей постановке задачи является бесконечным.

Литература

- Жигулев В. Н. О явлении магнитного «отжатия» потока проводящей среды // ДАН СССР. – 1959. – Т. 126, вып. 3. – С. 521–523.
- [2] Жигулев В. Н., Ромишевский Е. А. О взаимодействии потоков проводящей среды с магнитным полем Земли // ДАН СССР. 1959. Т. 127, вып. 5. С. 1001–1004.
- [3] Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. — М.: Наука, 1987.
- [4] Липунов В. М. Дисковая аккреция на замагниченные компактные объекты // Астрометрия и астрофизика. — 1978. — Т. 36. — С. 8—12.
- [5] Липунов В. М. Магнитосферы аккрецирующих компактных звёзд, обладающих мультипольными магнитными полями // Астрон. журн. — 1978. — Т. 55, вып. 6. — С. 1233—1240.
- [6] Липунов В. М. Астрофизика нейтронных звёзд. М.: Наука, 1987.
- [7] Липунов В. М., Семёнов Е. С., Шакура Н. И. Ориентация аккреционного диска в двойных рентгеновских пульсарах // Астрон. журн. — 1981. — Т. 58, вып. 4. — С. 765—770.
- [8] Липунов В. М., Шакура Н. И. Взаимодействие аккрецирующего диска с магнитным полем нейтронной звезды // Письма в астрон. журн. — 1980. — Т. 6, вып. 1. — С. 28—33.
- [9] Оберц П. Двумерная задача о форме магнитосферы // Геомагнетизм и аэрономия. 1973. — Т. 13, вып. 5. — С. 896—905.
- [10] Орешина А. В., Орешина И. В., Сомов Б. В., Шакура Н. И. Двумерная модель магнитосферы компактной звезды с аккреционным диском // Прикл. математика и механика. – 2004. – Т. 68, вып. 3. – С. 452–461.
- [11] Орешина И. В., Сомов Б. В. О методе конформных отображений для решения задач космической электродинамики // Изв. РАН. Сер. физ. – 1999. – Т. 63, вып. 8. – С. 1543–1549.
- [12] Сибгатуллин Н. Р. Колебания и волны в сильных гравитационных и электромагнитных полях. — М.: Наука, 1984.

- [13] Сомов Б. В., Орешина А. В., Орешина И. В. Магнитное пересоединение в короне аккреционного диска компактной звезды // Изв. высш. учебн. завед. Радиофизика. — 2001. — Т. 44, вып. 9. — С. 796—805.
- [14] Сомов Б. В., Сыроватский С. И. Возникновение токового (нейтрального) слоя при движении плазмы в поле плоского магнитного диполя // ЖЭТФ. – 1971. – Т. 61, вып. 5. – С. 1864–1875.
- [15] Сомов Б. В., Сыроватский С. И. Гидродинамические течения плазмы в сильном магнитном поле // Нейтральные токовые слои в плазме: Тр. ФИАН. – 1974. – Т. 74. – С. 14–72.
- [16] Сыроватский С. И. О возникновении токовых слоёв в плазме с вмороженным сильным магнитным полем // ЖЭТФ. – 1971. – Т. 60, вып. 5. – С. 1727–1741.
- [17] Хейвартс Ж. МГД-силы в астрофизических дисках и струях // Космическая магнитная гидродинамика. — М.: Мир, 1995. — С. 410—434.
- [18] Cole J. D., Huth J. H. Some interieur problems of hydromagneitcs // Phys. Fluids. 1959. – Vol. 2, no. 6. – P. 624–626.
- [19] Galeev A. A., Rosner R., Vaiana G. S. Structured coronae of accretion disks // Astrophys. J. – 1979. – Vol. 229, no. 1, pt. 1. – P. 318–326.
- [20] Kudoh T., Matsumoto R., Shibata K. Magnetically driven jets from accretion disks: the effect of magneto-rotational instability // Adv. Space Res. – 1999. – Vol. 23, no. 5/6. – P. 1101–1104.
- [21] Mukerjee K., Agrawal P., Paul B., et al. Pulse characteristics of the X-ray Pulsar 4U 1907+09 // Astrophys. J. 2001. Vol. 548, no. 1, pt. 1. P. 368–376.
- [22] Romanova M., Ustyugova G., Koldoba A., Chechetkin V., Lovelace R. V. E. Dynamics of magnetic loops in the coronae of accretion disks // Astrophys. J. – 1998. – Vol. 500, no. 2, pt. 1. – P. 703–713.
- [23] Shibata K., Kudoh T. Formation and collimation of jets by magnetic forces // Proc. Star Formation / T. Nakamoto, ed. – Nobeyama: Nobeyama Radio Observatory, 1999. – P. 263–268.
- [24] Sibgatullin N. R., Sibgatullin I. N., Garcia A. A., Manko V. S. Magnetic fields of pulsars surrounded by accretion disks of finite extension // Astronom. Astrophys. – 2004. – Vol. 422. – P. 587–590.
- [25] Somov B. V. Plasma Astrophysics. Pt. I: Fundamentals and Practice. New York: Springer, 2006.
- [26] Thompson C., Duncan R. The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-ray, and Alfvén wave emission // Astrophys. J. – 1996. – Vol. 473, no. 1, pt. 1. – P. 322–342.
- [27] Woods P. M., Kouveliotou C., Göğüş E., et al. Evidence for a sudden magnetic field reconfiguration in soft gamma repeater 1900+14 // Astrophys. J. – 2001. – Vol. 552, no. 2, pt. 1. – P. 748–755.

150