О сопряжённости в группе Шевалле больших абелевых подгрупп унипотентной подгруппы*

Г. С. СУЛЕЙМАНОВА

Сибирский федеральный университет e-mail: suleymanova@list.ru

УДК 512.542

Ключевые слова: группа Шевалле, унипотентная подгруппа, большая абелева подгруппа.

Аннотация

Пусть U— унипотентная подгруппа группы Шевалле над конечным полем. Исследуется известный вопрос описания «больших» (наивысшего порядка) абелевых подгрупп в U исключительного типа. Ранее дано описание нормальных больших абелевых подгрупп в U. Доказана сопряжённость в группе Шевалле типа F_4 над конечным полем характеристики, отличной от 2, всякой большой абелевой подгруппы из U с нормальной подгруппой в U. Показано, что для групп U типа G_2 и 3D_4 такой сопряжённости нет.

Abstract

G. S. Suleimanova, On a conjugacy in a Chevalley group of large Abelian subgroups of the unipotent subgroup, Fundamentalnaya i prikladnaya matematika, vol. 15 (2009), no. 7, pp. 205-216.

Let U be the unipotent subgroup of a Chevalley group over a finite field. The well-known problem about describing the set of "large" (of maximal order) Abelian subgroups in U of exceptional type is investigated. The description of normal large Abelian subgroups in U was established earlier. It is proved that each large Abelian subgroup from U is conjugate in the Chevalley group of type F_4 over a finite field of characteristic not equal to 2 to a normal subgroup in U. It is shown that for the groups U of type G_2 and 3D_4 the similar conclusion is not true.

Введение

В конечной группе абелевы подгруппы наивысшего порядка называют большими. Максимальную унипотентную подгруппу U группы Шевалле выберем как в [11]. Множество $\mathrm{A}(U)$ больших абелевых подгрупп в U описано в [9, 10, 14, 15] для групп Шевалле классических типов над конечным полем.

^{*}Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 09-01-00717).

Вопрос описания множества A(U) и его подмножества $A_N(U)$ нормальных подгрупп групп U исключительного типа поставил A. С. Кондратьев [3, проблема (1.6)]. Метод A. И. Мальцева [7] применял к решению вопроса E. П. Вдовин [2].

Теоремы из [5] о нормальном строении и максимальных абелевых нормальных подгруппах группы U позволили выписать явно подгруппы из $A_N(U)$. Автор и В. М. Левчук [6] доказали сопряжённость в группе Шевалле классического типа всякой большой абелевой подгруппы из U с нормальной подгруппой в U. В данной статье аналогичное утверждение доказано для группы Шевалле типа F_4 над полем характеристики, отличной от 2 (теорема 3). В общем случае это не так (см. предложение 2) и поэтому проблема (1.6) из [3] сводится к перечислению исключений (см. также [12, § 1]).

1. Предварительные замечания и основная теорема

Группу Шевалле $\Phi(K)$ над полем K, ассоциированную с системой корней Φ , порождают корневые подгруппы $X_r = x_r(K), \ r \in \Phi$. Скрученная группа Шевалле типа $^m\Phi-$ это централизатор в $\Phi(K)$ скручивающего автоморфизма σ (композиция полевого автоморфизма и графового автоморфизма τ) порядка m=2 или m=3 [11]; её корневые элементы мы поставим в соответствие орбитам подстановки $^-$ системы корней Φ , индуцированной симметрией порядка m графа Кокстера и продолжаемой до гомоморфизма ζ решётки корней. Если $(m,\Phi)=(3,D_4)$ или $(2,E_6)$, то $\zeta(\Phi)$ есть система корней типа G_2 или F_4 соответственно. Участвующий в построении σ автоморфизм $t\to \bar{t}$ основного поля K (см. [11]) обозначаем также через σ , а через K_σ обозначаем подполе неподвижных элементов.

Унипотентная подгруппа U=UG(K) группы Шевалле G(K) ($G=\Phi$ или $^m\Phi$) порождается корневыми элементами, соответствующими всевозможным положительным корням или (для скрученных групп Шевалле) классам корней [11]. Как обычно, $U_i=\langle X_r\mid h(r)\geqslant i\rangle$. Пусть $\{r\}^+$ при $r\in G$ есть совокупность $s\in G^+$ с неотрицательными коэффициентами в линейном выражении s-r через базу $\Pi(G)$. Полагаем

$$T(r) = \langle X_s \mid s \in \{r\}^+ \rangle, \quad Q(r) = \langle X_s \mid s \in \{r\}^+ \setminus \{r\}.$$

В связи с проблемой (1.6) из обзора [3] в [13] отмечался следующий вопрос: какая часть больших абелевых подгрупп группы U сопряжена в G(K) с нормальной подгруппой из U? Соответствующий вопрос В. М. Левчук поставил в [12, § 1]. В [6] доказана следующая теорема.

Теорема 1. Всякая большая абелева подгруппа унипотентной подгруппы U группы Шевалле G(K) классического типа над конечным полем сопряжена в G(K) с нормальной большой абелевой подгруппой из U.

Другую ситуацию в этом разделе выявляет следующее утверждение.

Предложение 2. Пусть $U - \text{группа } U^3 D_4(K)$ над конечным полем K = 2Kили группа $UG_2(K)$, 6K = K. Тогда в U существует большая абелева подгруппа, не сопряжённая в группе Шевалле ни с какой нормальной подгруппой из U.

Основной в статье является следующая теорема.

Теорема 3. В унипотентной подгруппе U группы Шевалле G(K) типа F_4 над конечным полем характеристики, отличной от 2, каждая большая абелева подгруппа G(K)-сопряжена с какой-либо из нормальных больших абелевых в Uподгрупп.

Диаграмма 1, взятая из [4], представляет систему положительных корней типа F_4 как объединение систем C_4^+ и B_4^+ :

$$B_4^+ = \{q_{ij} \mid 0 \leqslant |j| < i \leqslant 4\}, \quad C_4^+ = \{p_{ij} \mid 0 < |j| \leqslant i \leqslant 4, \ i \neq j\}.$$

Корни сопровождаются также обозначением (abcd) из [1, таблица VIII]. Симметрию $\bar{p}_{ij} = q_{ij}, \; \bar{q}_{ij} = p_{ij} \; (1 \leqslant |j| < i \leqslant 4).$ Группа

$$U^{2}E_{6}(K) = \langle x_{p_{iv}}(K), x_{q_{iv}}(K_{\sigma}) \ (1 \leqslant |v| < i \leqslant 4) \rangle$$

также ассоциирована с системой корней типа F_4 (см. [4]).

Теоремы из [5] о максимальных абелевых нормальных подгруппах унипотентной группы U приводят к явному описанию подгрупп из $\mathrm{A}_{\mathrm{N}}(U)$. В группах U типа G_2 и 3D_4 выделим элементы $\alpha = x_a(1)x_{2a+b}(1)$, $\beta_c(t) = x_{a+b}(t)x_{2a+b}(tc)$. Уточнение следствия 6 из [5] для групп U лиева ранга не выше 4 даёт следуюшая лемма.

Лемма 4. В группе U над конечным полем абелевы нормальные подгруппы наивысшего порядка являются большими абелевыми. Они исчерпываются следующими подгруппами:

- 1) $T(q_{43})U_6$ при 2K = K для типов 2E_6 и F_4 ;
- 2) U_3 для типов 3D_4 , 2K=K, и G_2 , 6K=K, U_2 для типа G_2 , 3K=0;
- 3) $\beta_c(K)U_4$ ($c \in K$) и U_3 в $UG_2(K)$, |K| > 2 чётное, $\langle \alpha \rangle \times \langle \beta_1(1) \rangle$ при |K| = 2;
- 4) с точностью до диагонального автоморфизма

$$\langle \alpha \rangle \times \langle \beta_1(1) \rangle \times x_{2a+b}(K^{1+\sigma})$$

в $U^3D_4(8)$, а в остальных случаях, когда 2K=0,

$$\beta_c(K_\sigma)x_{2a+b}(K^{1+\sigma})\cdot U_4 \ (c\in K_\sigma), \ U_3$$

в $U^3D_4(K)$;

$$T(p_{3,-2})^{\tau}$$
, $X_{p_{43}}T(p_{42})$, $X_{p_{43}}X_{p_{42}}X_{p_{41}}\{x_{q_{3,-2}}(t)x_{q_{42}}(t) \mid t \in K\}T(p_{4,-1})$, $T(p_{3,-2})$, $X_{q_{43}}T(p_{42})$, $X_{q_{43}}T(p_{41})\{x_{p_{3,-2}}(t)x_{p_{42}}(t) \mid t \in K\}$

в $UF_4(K)$, а в $UF_4(2)$ ещё $\langle x_{p_{43}}(1)x_{q_{43}}(1)\rangle T(p_{42})$;

$$(T(p_{3,-2}) \cap E_6(K_\sigma))U_7$$
 порядка $|K_\sigma|^{13}$

в группе $U^2E_6(K)$.

Положительные корни системы F_4

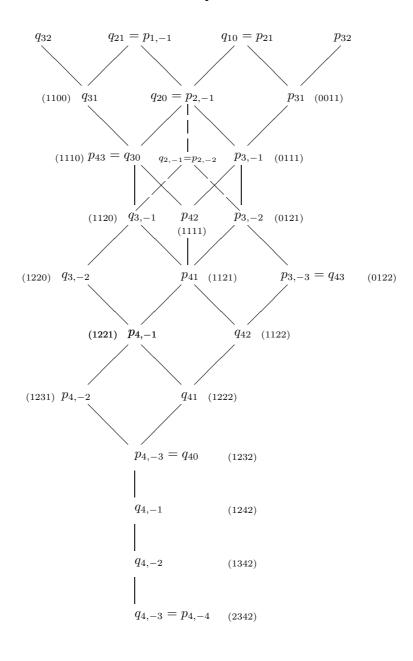


Диаграмма 1

Доказательство предложения 2. Скручивание системы корней Φ типа D_4 с помощью симметрии порядка 3 графа Кокстера даёт систему, ассоциированную с системой корней типа G_2 (см. [11]). Это позволяет корневые подгруппы X_r в группе $U^3D_4(K)$ ставить в соответствие корням r системы типа G_2 (см. [4]).

По лемме 4 в выбранных в предложении 2 группах U = UG(K) множество $A_N(U)$ состоит из подгруппы U_3 (напомним, что подгруппа U_i порождена всеми корневыми элементами, соответствующими корням высоты не меньше i). ${\sf K}$ большим абелевым в U относится также подгруппа

$$A = X_a X_{3a+b} X_{3a+2b} = X_a U_4,$$

где a, b — простые корни системы типа $G_2, |a| < |b|$. Покажем, что подгруппа Aне сопряжена с U_3 . Для типа G_2 это показано в [6]. Перенесём это доказательство на случай ${}^{3}D_{4}$.

Предположим противное: $gAg^{-1} = U_3$ для некоторого элемента g группы Шевалле G(K). Пусть B — подгруппа Бореля, N — мономиальная подгруппа и n_w — фиксированный (произвольно) прообраз в N элемента w группы Вейля W при естественном гомоморфизме $N\mapsto W.$ В каноническом разложении элемента g [11, предложение 13.5.3]

$$g = bn_w u, \quad b \in B, \quad u \in U_w^- = \langle X_r \mid r \in G^+, \ \omega(r) \in G^- \rangle$$

сомножители b, w, u определены однозначно. Поэтому

$$(n_w u)A(n_w u)^{-1} \subseteq U$$
, $uAu^{-1} = n_w^{-1}(X_{2a+b}X_{3a+b}X_{3a+2b})n_w \subseteq U$.

Отсюда приходим к соотношению

$$n_w^{-1}(X_{2a+b}X_{3a+b}X_{3a+2b})n_w = X_a \mod U_2,$$

показывающему, что $w^{-1}(2a+b), w^{-1}(3a+b), w^{-1}(3a+2b) \in G^+$. Так как a, 2a + b — короткие корни, а 3a + b, 3a + 2b — длинные, то

$$w^{-1}(2a+b) = a, \quad w^{-1}\{3a+b, 3a+2b\} = \{3a+b, 3a+2b\}.$$
 (1)

Поэтому w(3a+b) совпадает с 3a+b или 3a+2b. Учитывая равенство w(3a+b) ==6a+3b+w(b), получаем, что w(b) совпадает с -3a-2b или -3a-b. Но тогда $w(3a+2b) = \pm b$; это противоречит соотношению (1). Предложение доказано. \Box

2. Доказательство основной теоремы

Напомним, что коммутативным подмножеством системы корней Ф называется такое подмножество $\Psi \subseteq \Phi$, что для любых корней $r,s \in \Psi$ их сумма r+s не принадлежит Ф. А. И. Мальцев [7] нашёл коммутативные подмножества максимального порядка для произвольной системы Ф. В таблице 1 приведён список максимальных коммутативных подмножеств Ψ_i , i = 1, ..., 28, множества F_4^+ . В ней, как и в [1], корню $a\alpha_1 + b\alpha_2 + c\alpha_3 + d\alpha_4$, где α_1 , α_2 , α_3 , α_4 — простые корни, соответствует запись abcd.

Таблица 1

Ψ_1	Ψ_2	Ψ_3	Ψ_4	Ψ_5	Ψ_6	Ψ_7	Ψ_8	Ψ_9	Ψ_{10}
0001	0001	0001	0011	0011	0111	0111	1111	1111	0121
0011	0111	1111	0121	1121	0121	1221	1121	1221	1231
0122	0122	0122	0122	0122	0122	0122	0122	0122	0122
1122	1122	1122	1122	1122	1122	1122	1122	1122	1122
1222	1222	1222	1222	1222	1222	1222	1222	1222	1222
1232	1232	1232	1232	1232	1232	1232	1232	1232	1232
1242	1242	1242	1242	1242	1242	1242	1242	1242	1242
1342	1342	1342	1342	1342	1342	1342	1342	1342	1342
2342	2342	2342	2342	2342	2342	2342	2342	2342	2342
Ψ_{11}	Ψ_{12}	Ψ_{13}	Ψ_{14}	Ψ_{15}	Ψ_{16}	Ψ_{17}	Ψ_{18}	Ψ_{19}	Ψ_{20}
1121	1221	1232	1232	1232	1110	1110	0110	0110	0010
1231	1231	0120	0120	0120	0120	0120	0120	0120	0120
0122	0122	1120	1120	1120	1120	1120	1120	1120	1120
1122	1122	1220	1220	1220	1220	1220	1220	1220	1220
1222	1222	1242	1242	1242	1242	1242	1242	1242	1242
1232	1232	1342	1342	1342	1342	1342	1342	1342	1342
1242	1242	2342	2342	2342	2342	2342	2342	2342	2342
1342	1342	0121	1121	1221	1121	1221	0121	1221	0121
2342	2342	1231	1231	1231	1231	1231	1231	1231	1231
Ψ_{21}	Ψ_{22}	Ψ_{23}	Ψ_{24}	Ψ_{25}	Ψ_{26}	Ψ_{27}	Ψ_{28}		
0010	1232	1232	1232	1110	1110	0110	0110		
0120	0100	0100	0100	0100	0100	0100	0100		
1120	1100	1100	1100	1100	1100	1100	1100		
1220	1220	1220	1220	1220	1220	1220	1220		
1242	1222	1222	1222	1222	1222	1222	1222		
1342	1342	1342	1342	1342	1342	1342	1342		
2342	2342	2342	2342	2342	2342	2342	2342		
1121	0111	1111	1221	1111	1221	0111	1221		
1231	1221	1221	1231	1221	1231	1221	1231		

Унипотентная подгруппа U порождается корневыми подгруппами X_r , соответствующими всевозможным корням $r \in \Phi^+$. Хорошо известно [11, теорема 5.3.3], что всякий элемент подгруппы U допускает единственное разложение в произведение корневых элементов $x_r(t_r),\ r\in\Phi^+$, расположенных соответственно фиксированному упорядочению корней.

Далее нам понадобятся следующие обозначения из [2]. Будем говорить, что на корневой системе Φ (или на пространстве $\mathbb{Z}\Phi\otimes_{Z}\mathbb{R}$) задан частичный или линейный порядок, если этот порядок согласован с операциями сложения корней и умножения на вещественный скаляр. Далее, если не оговорено противное, будем считать, что на пространстве $\mathbb{Z}\Phi\otimes_{Z}\mathbb{R}$ задан фиксированный линейный порядок \leqslant (соответствующий фундаментальной системе $\{r_1,\ldots,r_n\}$), определяемый по следующему правилу: либо v=0, либо $0\leqslant v=\sum\limits_{i=1}^n\lambda_ir_i$ тогда и только тогда, когда последний из ненулевых коэффициентов λ_i больше 0. Запись $r \leqslant s$ означает, что $0 \leqslant s-r$, а запись r < s означает, что $0 \leqslant s-r$ и $r \neq s$. Через $\Phi(x)$ для элемента $x \in U$ обозначим множество таких корней r, что $t_r \neq 0$ в разложении $x = \prod x_r(t_r)$, где корни r выбраны в порядке возрастания относительно порядка \leqslant . Через m(x) обозначим минимальный элемент множества $\Phi(x)$. Для подгруппы $L\leqslant U$ положим $m(L)=\bigcup \{m(x)\}$. Согласно [2], если A — произвольная большая абелева подгруппа в U, то $m(A)=\Psi_i$ для некоторого $1 \leqslant i \leqslant 28$.

Для доказательства следующих лемм и теоремы 3, помимо таблицы 1, используется диаграмма 1. Через n_i в группе $F_4(K)$ обозначаем мономиальный элемент $n_r(1)$ для $r=\alpha_i$ (1 $\leq i \leq 4$). Используем также понятие угла из [5]: если $H \subseteq T(r_1)T(r_2)\dots T(r_m)$ и включение нарушается при любой замене $T(r_i)$ на $Q(r_i)$, назовём $\{r_1, r_2, \dots, r_m\} = \mathcal{L}(H)$ множеством углов для H. Пусть далее U — группа $UF_4(K)$ над конечным полем характеристики, отличной от 2.

Лемма 5. Большая абелева подгруппа группы U имеет не более одного простого угла.

Доказательство. Пусть A — произвольная большая абелева подгруппа группы U. Предположим противное: A имеет по крайней мере два простых угла p, q. Занумеруем простые корни двумя способами так, чтобы в первом случае первым корнем был корень p (нумерация (*)), а во втором случае — корень q (нумерация (**)). Так как множество m(A) в общем случае зависит от нумерации простых корней, то обозначим его через $m^*(A)$ и $m^{**}(A)$ в нумерациях (*) и (**) соответственно. Тогда $m^*(A)$ содержит p, а $m^{**}(A)$ содержит q.

Случай $p=\alpha_1$ невозможен, так как не существует максимальных коммутативных подмножеств системы F_4^+ , содержащих корень α_1 (см. табл. 1). Рассмотрим случай $p=\alpha_2$. Тогда множество $m^{**}(A)$ содержит простой корень $q \neq \alpha_1, \alpha_2$ и, значит, ещё корень 1242. Очевидно, что если m(x) = 1242 при некоторой нумерации простых корней, то это равенство останется верным и при любой другой нумерации простых корней. Поэтому $1242 \in m^*(A)$, но 1242 не может входить ни в одно коммутативное подмножество корней, содержащее корень α_2 . Таким образом, случай $p=\alpha_2$ невозможен. Остаётся случай $p=\alpha_3$, $q=\alpha_4$. Но тогда множество $m^{**}(A)$ содержит α_4 и, следовательно, ещё корень 1232, который войдёт и в $m^*(A)$, как и выше. Но 1232 не входит ни в одно коммутативное подмножество корней, содержащее корень α_3 . Таким образом, этот случай также невозможен. Лемма доказана.

Лемма 6. Если большая абелева подгруппа A группы U имеет простой угол p, то $A \subseteq T(p)$.

Доказательство. По лемме 5 A имеет не более одного простого угла. Пусть A имеет простой угол α_i . Подгруппа $T(\alpha_i)$ остаётся неподвижной при n_j -сопряжениях для всех $j \neq i$. Предположим, что $A \nsubseteq T(\alpha_i)$.

При i=1 это означает, что подгруппа A содержит такой элемент x, что $\Phi(x)$ содержит один из корней $0110,\ 0011,\ 0120,\ 0111,\ 0121$ или 0122. В первом случае, применяя n_2 -сопряжение, получим подгруппу с углом α_3 , а если полученная подгруппа не будет иметь угла α_1 (и, следовательно, будет иметь угол 1100), то, применив к полученной подгруппе ещё n_1 -сопряжение, получим подгруппу с углами α_2 и α_3 . Во втором случае n_4 -сопряжением получаем подгруппу с углами α_1 и α_3 . В третьем случае n_4 -сопряжением получаем подгруппу, содержащую такой элемент x, что $\Phi(x)$ содержит корень 0110, и приходим к первому случаю. Пятый случай n_3 -сопряжением сводится к четвёртому, а шестой — n_4 -сопряжением к третьему.

При i=2 подгруппа A содержит такой элемент x, что $\Phi(x)$ содержит корень 0011. Применяя n_4 -сопряжение, получим подгруппу с углами α_2 и α_3 . При i=3 подгруппа A содержит такой элемент x, что $\Phi(x)$ содержит корень 1100. Применяя n_1 -сопряжение, получим подгруппу с углами α_2 и α_3 . Для случая i=4 доказательство проводится аналогично случаю i=1. Лемма доказана.

Лемма 7. Если большая абелева подгруппа A группы U имеет угол r высоты 2, то $A\subseteq T(r)$.

Доказательство. Пусть большая абелева подгруппа A имеет угол 1100. n_3 - и n_4 -сопряжения оставляют подгруппу T(1100) неподвижной, а n_2 -сопряжения не выводят её за пределы $T(\alpha_1)$. Применив к подгруппе A n_2 -сопряжение, получим подгруппу с углом α_1 , по лемме 6 лежащую в $T(\alpha_1)$. Но $\{\alpha_1\}^+ = \{1100\}^+ \cup \{\alpha_1\}$, поэтому если бы подгруппа A имела угол, не лежащий в $\{1100\}^+$, то после n_2 -сопряжения в полученной подгруппе вновь был бы угол, не лежащий в $\{1100\}^+$, что противоречит включению $A^{n_2} \subseteq T(\alpha_1)$.

Пусть A имеет угол 0110. Тогда если A имеет ещё углы 1100 или 0011, то n_2 -или n_3 -сопряжениями получим подгруппу с двумя простыми углами. Случай, когда A имеет угол 0011, рассматривается аналогично первому случаю. Лемма доказана.

Лемма 8. Если большая абелева подгруппа A группы U имеет угол r высоты 3, то либо r=0111 и $A\subseteq T(r)$, либо $A\subseteq T(1110)T(0120)$ и, когда A не имеет угла 0120, $A \subseteq T(1110)T(0122)$.

Доказательство. Пусть A имеет угол 0111. Тогда n_2 -сопряжением получим подгруппу с углом 0011, которая должна лежать в T(0011) по лемме 7. Но $\{0011\}^+ = \{0111\}^+ \cup \{0011\}$, поэтому если бы подгруппа A имела угол, не лежащий в $\{0111\}^+$, то после n_2 -сопряжения в полученной подгруппе вновь был бы угол, не лежащий в $\{0111\}^+$, что противоречит включению $A^{n_2} \subseteq T(0011)$.

Пусть теперь A имеет угол 1110, но не имеет угла 0120, и 0121 $\in \Phi(x)$ для некоторого $x \in A$. Тогда, применив n_3 -сопряжение, получим подгруппу с углами 1110 и 0111, что противоречит доказанному выше. Лемма доказана.

Доказательство теоремы 3. Пусть A — большая абелева подгруппа группы U, имеющая простой угол $p=\alpha_i$ (и по лемме 6 содержащаяся в T(p)). Покажем, что A сопряжена с подгруппой из U_2 . Для этого будем подбирать элемент $x \in A$ и, применяя к нему U- и n_i -сопряжения (для $j \neq i$) преобразовывать его к такому элементу y, что $p + m(y) \in \Phi$. Поскольку полученная в результате этих сопряжений подгруппа по-прежнему будет лежать в T(p), но в силу абелевости уже не будет иметь угла p, она будет лежать в U_2 .

Случай $p = \alpha_1$ невозможен (см. табл. 1). Пусть $p = \alpha_2$. Как видно из табл. 1, в A найдётся такой элемент x, что m(x) = 1222. Кроме того, $1221 \in m(A)$, т. е. в A найдётся элемент y вида

$$x_{1221}(t_1)x_{1231}(t_2)x_{1122}(t_3)x_{1222}(t_4)x_{1232}(t_5) \mod U_9, \quad t_1 \neq 0.$$

Умножением на подходящий элемент $z \in A$ с условием m(z) = 1222 всегда можем добиться выполнения условия $t_4 = 0$. Если $t_3 \neq 0$, то $1222 \in \Phi[x,w]$ для любого элемента $w \in T(\alpha_2)$ с углом α_2 . Кроме того, U-сопряжением можем добиться выполнения условия $t_2=0$. Тогда $y^{n_3}=x_{1231}(t_1)x_{1232}(t_5)\mod U_9$ (снова можем считать, что $1222 \notin \Phi(y^{n_3})$, так как если после сопряжения $1222 \notin m(A^{n_3})$, то и $\alpha_2 \notin m(A^{n_3})$, следовательно, $A^{n_3} \subseteq U_2$). В полученном элементе U-сопряжением добиваемся того, что $t_5=0$, тогда $(y^{n_3})^{n_4}=x_{1232}(t_1)$ $\mod U_9$. Таким образом, если после перечисленных сопряжений полученная подгруппа по-прежнему имеет угол α_2 , то можем считать, что в ней существуют элементы с углом 1232, и тогда выбранный в начале доказательства элемент xзапишется в виде $x = x_{1222}(u) \mod U_9, \ u \neq 0$. С точностью до U-сопряжения $m(x^{n_3}) = 1242$, no $1242 + \alpha_2 \in \Phi$.

При $p=\alpha_3$ в A найдётся такой элемент x, что m(x)=1231. Элемент x имеет вид

$$x_{1231}(t_1)x_{0122}(t_2)x_{1122}(t_3)x_{1222}(t_4) \mod U_8, \quad t_1 \neq 0.$$

Применяя n_1 -, n_2 - и U-сопряжения, преобразуем этот элемент к виду

$$y = x_{1231}(u_1)x_{1222}(u_2) \mod U_8, \quad u_1 \neq 0.$$

Кроме того, $u_2=0$, так как в противном случае $1232\in\Phi([y,z])$ для про-извольного $z\in T(\alpha_3)$ с углом α_3 . Но тогда с точностью до U-сопряжения $m(y^{n_4})=1232$, и $1232+\alpha_3\in\Phi$.

При $p=\alpha_4$ один из корней 0011, 0111 или 1111 входит в m(A). С точностью до n_1 -, n_2 - и U-сопряжений можем считать, что это корень 1111. Следовательно, можем считать, что подгруппа A содержит элемент вида $x=x_{1111}(t_1)x_{0121}(t_2)$ mod U_5 , $t_1\neq 0$, причём $t_2=0$, так как в противном случае $0122\in\Phi([x,y])$ для любого элемента $y\in A$ с углом α_4 . Тогда с точностью до U-сопряжений $m(x^{n_3})=1121$, но $1121+\alpha_4\in\Phi$.

Таким образом, во всех случаях подгруппа A сопряжена с подгруппой из U_2 . Пусть теперь A — большая абелева подгруппа из U_2 , имеющая угол r высоты 2. Покажем, что A сопряжена с подгруппой из U_3 .

Случай r=1100 невозможен (см. табл. 1). Пусть r=0110 (и по лемме 7 $A\subseteq T(0110)$). Возьмём такой элемент $x\in A$, что m(x)=0110. Применяя к этому элементу U- и n_1 -сопряжения, получим элемент вида

$$y = x_{1110}(t_1)x_{0120}(t_2)x_{0111}(t_3) \mod U_4, \quad t_1 \neq 0,$$

но тогда $1220\in\Phi([y,z])$ для произвольного элемента $z\in T(0110)$ с углом 0110. Таким образом, полученная подгруппа лежит в U_3 . Если r=0011 (и по лемме 7 $A\subseteq T(0011)$), то возьмём такой элемент $x\in A$, что m(x)=0011. Тогда с точностью до U-сопряжения $m(x^{n_2})=0111$, но $0111+0011\in\Phi$, значит, полученная подгруппа снова лежит в U_3 .

Рассмотрим теперь большую абелеву подгруппу A, имеющую угол r высоты 3 и лежащую в U_3 , и покажем, что она сопряжена с подгруппой из U_4 .

Пусть r=1110. Тогда $0120\in m(A)$, и по лемме 8 подгруппа A содержится в T(1110)T(0120). По таблице 1 в A найдётся такой элемент x, что m(x)=1231, т. е. x имеет вид

$$x = x_{1231}(t_1)x_{0122}(t_2)x_{1122}(t_3)x_{1222}(t_4)x_{1232}(t_5) \mod U_9, \quad t_1 \neq 0,$$

причём U-сопряжением можем добиться выполнения условия $t_5=0$. Возьмём $y\in A$ с углами 1110 и 0120. Учитывая, что корни 1120 и 1220 входят в m(A), элемент y можем записать в виде

$$y = x_{1110}(u_1)x_{0120}(u_2)x_{1111}(u_3)x_{0121}(u_4)x_{1121}(u_5) \times \times x_{1221}(u_6)x_{0122}(u_7)x_{1122}(u_8)x_{1222}(u_9)x_{1232}(u_{10}) \mod U_9, \quad u_1, u_2 \neq 0.$$

Тогда

$$[x,y] = x_{1232}(\pm u_1 t_2) x_{1242}(\pm u_2 t_3) x_{1342}(\pm u_2 t_4) \mod U_{11},$$

откуда следует, что $t_2=t_3=t_4=0$. Следовательно, с точностью до U-сопряжения $1232\in m(A^{n_4})$ и $1110\notin m(A^{n_4})$. Предположим, что подгруппа A^{n_4} по-прежнему имеет угол 0120. Можем считать, что $1111\notin \Phi(x)$ для всех $x\in A$, так как в противном случае n_4 -сопряжением получим только что рассмотренную подгруппу с углами 1110 и 0120. С точностью до n_1, n_2 - и U-сопряжений

можем считать, что $1221 \in m(A)$. Тогда в A найдётся элемент x вида

$$x_{1221}(t_1)x_{0122}(t_2)x_{1122}(t_3)x_{1222}(t_4), \quad t_1 \neq 0.$$

Возьмём элемент $y \in A$ с углом 0120, причём можем считать, что 1120 и 1220не входят в $\Phi(y)$ (так как эти корни входят в m(A)) и с точностью до U-сопряжения 0121 не входит в $\Phi(y)$. Тогда $1242 \in \Phi([x,y])$ при $t_3 \neq 0$ и $1342 \in \Phi([x,y])$ при $t_4 \neq 0$, вопреки абелевости A. Случай $t_4 \neq 0$ также невозможен, так как $A^{n_2n_1}$ по-прежнему имеет угол 0120 и тогда $1342 \in \Phi([x^{n_2n_1},y])$. Таким образом, A содержит подгруппу X_{1221} . Тогда $1121,0121 \notin \Phi(z)$ для всех $z \in A$. В подгруппе A найдётся элемент w вида

$$x_{1220}(u_1)x_{0122}(u_2)x_{1122}(u_3)x_{1222}(u_4), \quad u_1 \neq 0.$$

U- и n_1 -сопряжением преобразуем его к виду $x_{1220}(u_1)x_{1122}(u_2)x_{1222}(u_4)$, а затем U- и n_4 -сопряжением преобразуем полученный элемент к виду $x_{1222}(u_1)x_{1120}(u_2)$. Но тогда $1342 \in \Phi([x_{1222}(u_1)x_{1120}(u_2),y])$, следовательно, полученная подгруппа не имеет угла 0120 и лежит в U_4 .

Рассмотрим теперь большую абелеву подгруппу A, имеющую угол r высоты 4и лежащую в U_4 , и покажем, что она сопряжена с подгруппой из U_5 . Случай r=1120 невозможен. Пусть r=1111. Тогда $1121\in m(A)$ или $1221\in m(A)$. Подгруппа A не может иметь угол 0121, так как в противном случае $[x,y] \neq 1$ для таких элементов x и y, таких что $0121 \in \Phi(x)$ и m(y) = 1121 или m(y) = 1221. Применяя к элементу с углом $1111 \, n_2$ -, n_3 - и U-сопряжения, получим такой элемент z, что m(z)=1231, но $1111+1231\in\Phi$. Значит, полученная подгруппа не имеет угла 1111 и лежит в U_5 . При r=0121 с точностью до U-сопряжения $m(x^{n_1})=1121$, но $0121+1121\in\Phi$. Значит, A^{n_2} не имеет угла 0121 и лежит в U_5 .

Рассмотрим, наконец, большую абелеву подгруппу A, имеющую угол r высоты 5 и лежащую в U_5 . Случай r=1220 невозможен. Пусть r=1121. Тогда с точностью до U-сопряжения $m(x^{n_2})=1221$, но $1221+1121\in\Phi$. Значит, A^{n_2} не имеет угла 1121. При r=0122 подгруппа A совпадает с нормальной подгруппой $X_{0122}U_6$. Теорема доказана. П

Литература

- [1] Бурбаки Н. Группы и алгебры Ли (главы IV-VI). М.: Мир, 1972.
- [2] Вдовин Е. П. Большие абелевы унипотентные подгруппы конечных групп Шевалле // Алгебра и логика. — 2001. — Т. 40, № 5. — С. 523—544.
- [3] Кондратьев А. С. Подгруппы конечных групп Шевалле // Успехи мат. наук. 1986. — T. 41, № 1 (247). — C. 57—96.
- [4] Левчук В. М. Автоморфизмы унипотентных подгрупп групп лиева типа малых рангов // Алгебра и логика. — 1990. — Т. 29, № 2. — С. 141—161.
- [5] Левчук В. М., Сулейманова Г. С. Нормальное строение унипотентной подгруппы группы лиева типа и смежные вопросы // Докл. РАН. — 2008. — Т. 419, № 5. — C. 595-598.

- [6] Левчук В. М., Сулейманова Г. С. Автоморфизмы и нормальное строение унипотентных подгрупп финитарных групп Шевалле // Тр. ИММ. 2009. Т. 15, № 2. С. 133—142.
- [7] Мальцев А. И. Коммутативные подалгебры полупростых алгебр Ли // Изв. АН СССР. Сер. мат. 1945. Т. 9, № 4. С. 291—300.
- [8] Стейнберг Р. Лекции о группах Шевалле. - М.: Мир,1975.
- [9] Barry M. J. J. Large Abelian subgroups of Chevalley groups // J. Aust. Math. Soc. Ser. A. -1979. Vol. 27, no. 1. P. 59-87.
- [10] Barry M. J. J., Wong W. J. Abelian 2-subgroups of finite symplectic groups in characteristic 2 // J. Aust. Math. Soc. Ser. A. 1982. Vol. 33, no. 3. P. 345—350.
- [11] Carter R. Simple Groups of Lie Type. New York: Wiley, 1972.
- [12] Gupta C. K., Levchuk V. M., Ushakov Yu. Yu. Hypercentral and monic automorphisms of classical algebras, rings and groups // J. Sib. Federal Univ., Mathematics & Physics. -2008. Vol. 1, no. 4. P. 280-290.
- [13] Levchuk V. M., Suleymanova G. S., Voitenko T. Yu. Some questions for the unipotent subgroup of the Chevalley group // Тезисы докл. междунар. конф. «Алгебра и её приложения». Красноярск, 2007. С. 168—169.
- [14] Wong W. J. Abelian unipotent subgroups of finite orthogonal groups // J. Aust. Math. Soc. Ser. A. -1982. Vol. 32, no. 2. P. 223-245.
- [15] Wong W. J. Abelian unipotent subgroups of finite unitary and symplectic groups // J. Aust. Math. Soc. Ser. A. -1982. Vol. 33, no. 2. -P. 331-344.