Радикалы и l-модули

н. е. шавгулидзе

Московский государственный университет им. М. В. Ломоносова e-mail: nathalia_s@mail.ru

УДК 512.555.4+512.555.6

Ключевые слова: решёточно упорядоченное кольцо, решёточно упорядоченный модуль, специальный класс l-модулей, специальный радикал l-кольца, первичный радикал l-кольца.

Аннотация

В статье изучается специальный класс l-модулей и показывается, что он связан со специальным классом l-колец. Специальный радикал l-кольца R представляется в виде пересечения l-аннуляторов l-модулей над R, принадлежащих специальному классу. Первичный радикал l-кольца представляется в виде пересечения l-аннуляторов всех l-первичных l-модулей над R.

Abstract

N. E. Shavgulidze, Radicals and 1-modules, Fundamentalnaya i prikladnaya matematika, vol. 15 (2009), no. 7, pp. 235—243.

We show that for any special class of l-modules, we can define a special class of l-rings. We prove that the special radical of an l-ring R can be represented as the intersection of the l-annihilators of l-modules over R belonging to the special class. The prime radical of an l-ring R can be represented as the intersection of the l-annihilators of l-prime l-modules over R.

В работе [1] вводится определение специального класса модулей и показывается, что этот класс задаёт радикал и связан со специальным классом колец. Если задан специальный класс колец, специальный радикал кольца R представляется в виде пересечения аннуляторов R-модулей из соответствующего специального класса модулей. В [1] также приводятся примеры специальных классов модулей, одним из которых является класс всех первичных модулей.

В данной работе доказываются утверждения из работы [8], а именно показывается, что утверждения, аналогичные утверждениям из [1], можно доказать для решёточно упорядоченных колец (l-колец) и решёточно упорядоченных модулей (l-модулей). Мы изучаем решёточно упорядоченные модули, специальные классы l-модулей и их связь со специальными классами l-колец. Мы доказываем, что специальный радикал l-кольца R представляется в виде пересечения l-аннуляторов l-модулей над R из соответствующего специального класса. В частности,

Фундаментальная и прикладная математика, 2009, том 15, № 7, с. 235—243. © 2009 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

первичный радикал l-кольца R представляется в виде пересечения l-аннуляторов всех l-первичных l-модулей над R.

В работе все кольца считаются ассоциативными, не обязательно с единицей. Терминология и обозначения аналогичны терминологии из [2,4], В [2,4] можно найти и необходимые сведения об l-кольцах. Приведём некоторые определения и факты.

Пусть R — ассоциативное решёточно упорядоченное кольцо (l-кольцо). Введём обозначения $R_+=\{r\in R\mid r\geqslant 0\},\ |r|=r\vee 0-r\wedge 0,\$ где $a\vee b$ — наименьшая верхняя грань элементов $a,b\in R,\$ а $a\wedge b$ — наибольшая нижняя грань. Для любых $a,b\in R$ выполняются неравенства

$$|a+b| \le |a| + |b|$$
, $|ab| \le |a| |b|$, $|a \lor b| \le |a| + |b|$.

(Правый) идеал I l-кольца R называется (правым) l-идеалом, если для любых $a \in I, \ x \in R, \ |x| \leqslant |a|$, имеем $x \in I$. То, что I является (правым) l-идеалом l-кольца R, мы будем обозначать $I \lhd R$ ($I \lhd_{\mathbf{r}} R$).

Пусть R, S-l-кольца. Гомоморфизм колец $f\colon R\to S$ называется l-гомоморфизмом, если для любых $a,b\in R$ выполняются равенства

$$f(a \lor b) = f(a) \lor f(b), \quad f(a \land b) = f(a) \land f(b).$$

Если $I \lhd R$, то фактор-кольцо R/I (с отношением порядка, заданным следующим правилом: $a+I\leqslant b+I$ тогда и только тогда, когда $a'\leqslant b'$ для некоторых $a'\in a+I$, $b'\in b+I$) является l-кольцом, а естественный гомоморфизм $\pi\colon R\to R/I$ является l-гомоморфизмом.

Первая теорема об l**-изоморфизме.** Eсли $f: R \to S - c$ юръективный l-гомоморфизм l-колец R и S, то l-кольца S и $R/\operatorname{Ker} f$ l-изоморфны.

Вторая теорема об l-изоморфизме. Eсли I и J-l-идеалы l-кольца R и $I\subset J$, то $R/J\cong (R/I)/(J/I)$.

Третья теорема об l-изоморфизме. Пусть R-l-кольцо, $A,\ I-l$ -идеалы l-кольца R. Тогда A+I-l-кольцо, $A\cap I-l$ -идеал l-кольца $A,\ I-l$ -идеал l-кольца A+I и $(A+I)/I\cong I/(A\cap I).$

Определение (см. [6,10]). Класс \mathcal{K} ассоциативных l-первичных l-колец называется *специальным*, если выполнены следующие условия:

если
$$R \in \mathcal{K}$$
 и $0 \neq B \triangleleft R$, то $B \in \mathcal{K}$, (A)

если
$$0 \neq B \in \mathcal{K}$$
, $B \triangleleft R$ и $R - l$ -первичное l -кольцо, то $R \in \mathcal{K}$. (B)

Определение. Модуль M_R над l-кольцом R называется l-модулем, если M-l-группа и для любых $r\in R$, $a,b\in M$, таких что $r>0,\ a\leqslant b$, выполняется неравенство $ar\leqslant br$. Введём обозначение $M_+=\{m\in M\mid m\geqslant 0\}.$

Напомним, что аннулятором (см. [1]) R-модуля M_R называется множество

$$(0:M)_R = \{r \in R \mid Mr = 0\}.$$

Модуль M_R называется *первичным* (см. [1]), если $MR \neq 0$ и для любых $x \in M$, $x \neq 0$, и идеала B кольца R из xB = 0 следует, что $B \subseteq (0:M)_R$.

Определение. l-аннулятором l-модуля M_R называется множество

$$(0:M)_R = \{r \in R \mid M|r| = 0\}.$$

Здесь и далее $(0:M)_R$ будет обозначать l-аннулятор l-модуля M_R .

Лемма 1. l-аннулятор l-модуля M_R является l-идеалом l-кольца R.

Доказательство. Пусть $a, b \in (0:M)_R, x \in M_+$. Так как

$$x|a+b| \leqslant x|a| + x|b| = 0,$$

то x|a+b|=0. Из того что любой элемент $y\in M$ можно представить в виде $y=y_+-y_-,\,y_+,y_-\in M_+,$ следует, что $a+b\in (0:M)_R.$

Пусть $r \in R$. Тогда

$$|x|ar| \le |x|a| |r| = 0 * |r| = 0, \quad |x|ra| \le |x|r| |a| = (|x|r|) |a| = 0.$$

Следовательно, x|ar|=0 и x|ra|=0. Поэтому $ar\in (0:M)_R$ и $ra\in (0:M)_R$. Если $|r|\leqslant |a|$, то

$$x|r| \leqslant x|a| = 0,$$

т. е.
$$x|r|=0$$
. Следовательно, $r\in (0:M)_R$. Лемма доказана.

Определение. l-модуль M_R называется l-первичным, если $MR \neq 0$ и для любых $0 < x \in M$ и $B \lhd R$ из xB = 0 следует, что $B \subseteq (0:M)_R$.

Из определений вытекает, что всякий первичный l-модуль является l-первичным. В качестве примера l-первичного, но не первичного l-модуля можно привести l-кольцо R примера 1 работы [5], рассматриваемое как l-модуль над собой.

Для того чтобы ввести определение специального класса l-модулей нам потребуется несколько лемм.

Лемма 2. Пусть A-l-идеал l-кольца R, $\bar{R}=R/A$ и M-l-модуль над \bar{R} . Определим mr=m(r+A) для любых $m\in M$, $r\in R$. Тогда M-l-модуль над R и $(0:M)_{\bar{R}}=\left((0:M)_R\right)/A$.

Доказательство. Из определения следует, что $A \subseteq (0:M)_R$. Следовательно, A является l-идеалом l-кольца $(0:M)_R$. По определению

$$(0:M)_{\bar{R}} = \{r + A \mid M|r + A| = 0\}, \quad (0:M)_{R} = \{r \mid M|r| = 0\}.$$

Легко убедиться, что

$$\big((0:M)_R\big)/A = \{r+A \mid M|r|=0\} = \{r+A \mid M|r+A|=0\} = (0:M)_{\bar{R}},$$
 что и требовалось доказать. \qed

Лемма 3 [9, лемма 2]. Если I-l-идеал l-кольца R, J-l-идеал в I, то $(\langle J \rangle_R)^3 \subseteq J$,

где $\langle J \rangle_R - l$ -идеал в R, порождённый J.

Доказательство. Пусть

$$M = \{ a \in R \mid |a| \leqslant a_1 + a_2 r_1 + r_2 a_3 + r_3 a_4 r_4, \ a_i \in J_+, \ r_i \in R_+, \ i = 1, 2, 3, 4 \}.$$

Мы утверждаем, что $M=\langle J\rangle_R$. Действительно, очевидно, что это множество содержит J. Докажем, что оно является l-идеалом l-кольца R.

Пусть $a,b\in R,\ |a|\leqslant a_1+a_2r_1+r_2a_3+r_3a_4r_4,\ |b|\leqslant b_1+b_2s_1+s_2b_3+s_3b_4s_4,\ a_i,b_i\in J_+,\ r_i,s_i\in R_+,\ i=1,2,3,4.$ Тогда

$$\begin{aligned} |a+b| &\leqslant |a|+|b| \leqslant a_1+a_2r_1+r_2a_3+r_3a_4r_4+b_1+b_2s_1+s_2b_3+s_3b_4s_4 \leqslant \\ &\leqslant (a_1+b_1)+(a_2+b_2)(r_1+s_1)+(r_2+s_2)(a_3+b_3)+(r_3+s_3)(a_4+b_4)(r_4+s_4), \end{aligned}$$

т. е. $a + b \in M$.

Если $r \in R$, то

$$|ar| \leq |a| |r| \leq (a_1 + a_2 r_1 + r_2 a_3 + r_3 a_4 r_4) |r| \leq$$

$$\leq (a_1 + a_2)(|r| + r_1 |r|) + (r_2 + r_3)(a_3 + a_4)(|r| + r_4 |r|),$$

т. е. $ar \in M$. Аналогично $ra \in M$.

Если $|r| \leqslant |a|$, то

$$|r| \le |a| \le a_1 + a_2 r_1 + r_2 a_3 + r_3 a_4 r_4,$$

т. е. $r \in M$.

Мы доказали, что $M \lhd R$. Поэтому $\langle J \rangle_R = M$.

Пусть $a \in \langle J \rangle_R$, $|a| \leqslant a_1 + a_2 r_1 + r_2 a_3 + r_3 a_4 r_4$, $a_i \in J_+$, $r_i \in R_+$, i=1,2,3,4. Заметим, что $(\langle J \rangle_R)^3 \subseteq I(\langle J \rangle_R)I$. Для любых $b_1,b_2 \in I$ получим

$$|b_1ab_2| \leq |b_1| |a| |b_2| \leq |b_1| (a_1 + a_2r_1 + r_2a_3 + r_3a_4r_4) |b_2|.$$

Но

$$|b_1|(a_1 + a_2r_1 + r_2a_3 + r_3a_4r_4)|b_2| \in J$$
,

так как $ba\in J,\ ab\in J,\ br\in I,\ rb\in I$ для любых $a\in J,\ b\in I,\ r\in R.$ Следовательно, $(\langle J\rangle_R)^3\subseteq I(\langle J\rangle_R)I\subseteq J.$

Лемма 4. Если M_R-l -первичный l-модуль и $B\lhd R$, причём $MB\neq 0$, то M-l-первичный B-модуль и $(0:M)_R\cap B=(0:M)_B$.

Доказательство. Имеем, что M_B-l -модуль и $MB\neq 0$. Равенство l-аннуляторов очевидно. Пусть xC=0 для некоторых $0< x\in M,\ C\lhd B.$ Пусть A- наименьший l-идеал l-кольца R, содержащий C.

Если xA=0, то MA=0, так как M_R-l -первичный R-модуль.

Теперь рассмотрим случай, когда $xA\neq 0$. Тогда существует $a\in A$, такое что $xa\neq 0$. Следовательно, $0\neq |xa|\leqslant |x|\,|a|=x|a|$, т. е. x|a|>0. Если $xA^2=0$, то $(x|a|)A\subseteq xA^2=0$, т. е. (x|a|)A=0, откуда получаем MA=0 в силу l-первичности l-модуля M_R .

Осталось рассмотреть случай, когда $xA^2 \neq 0$. Тогда существуют такие $a_1,a_2 \in A,\ a_1>0,\ a_2>0,$ что $xa_1a_2\neq 0,$ точнее $xa_1a_2>0.$ По лемме 3

 $A^3\subseteq C$. Следовательно, $xa_1a_2A\subseteq xA^3\subseteq xC=0$, т. е. $(xa_1a_2)A=0$. В силу l-первичности l-модуля M_R получаем, что MA=0.

Итак, во всех случаях MA=0. Следовательно, MC=0, т. е. M-l-первичный B-модуль. Лемма 4 доказана.

Лемма 5. Пусть R-l-кольцо, $A \lhd R$ и $\bar{R} = R/A$. Тогда

- 1) если M-l-первичный l-модуль над \bar{R} , то можно рассмотреть M как l-модуль над R (mr=m(r+A) для любых $m\in M$, $r\in R$), тогда M_R-l -первичный l-модуль;
- 2) если M-l-первичный l-модуль над R и $A\subseteq (0:M)_R$, то M-l-первичный l-модуль над \bar{R} (m(r+A)=mr для любых $m\in M, r\in R$).

Доказательство. Пусть xB=0 для некоторых $0 < x \in M$ и $B \lhd R$. По определению M_R имеем xA=0. Сумма l-идеалов является l-идеалом, поэтому $A+B\lhd R$. Легко убедиться, что $A\lhd (A+B)$ и $(A+B)/A\lhd \bar{R}$. Так как x(A+B)=0, то x(A+B)/A=0 и $M\left((A+B)/A\right)=0$ в силу l-первичности $M_{\bar{R}}$. Поэтому M(A+B)=0 и BM=0, т. е. M-l-первичный R-модуль.

Пусть $x\bar{B}=0$ для некоторых $0 < x \in M$ и $\bar{B} \lhd \bar{R}$. Тогда существует такой идеал $B \lhd R$, что $\bar{B}=B/A$. По определению l-модуля $M_{\bar{R}}$ из $x\bar{B}=0$ следует, что xB=0. Из того что M_R-l -первичный l-модуль, получаем MB=0. Следовательно, $M\bar{B}=0$ по определению M_R , т. е. M-l-первичный \bar{R} -модуль. \square

Определение. l-модуль M_R называется l-точным, если его l-аннулятор равен нулю.

Каждому l-кольцу R поставим в соответствие некоторый класс l-модулей над ним Σ_R .

Определение. Класс l-модулей $\Sigma = \bigcup_R \Sigma_R$ называется $\mathit{специальным}$, если он удовлетворяет следующим условиям:

- S1) если $M \in \Sigma_R$, то M l-первичный l-модуль;
- S2) если $M\in \Sigma_{\bar{R}}$, где $\bar{R}=R/A$, $A\lhd R$, то $M\in \Sigma_R$. Обратно, если $M\in \Sigma_R$ и $A\lhd R$, $A\subseteq (0:M)_R$, то $M\in \Sigma_{\bar{R}}$ $(xr=x\bar{r});$
- S3) если $M \in \Sigma_R$, $B \triangleleft R$, $MB \neq 0$, то $M \in \Sigma_B$;
- S4) если $0 \neq B \lhd R$, где R-l-первичное l-кольцо, и существует l-точный l-модуль $M_B \in \Sigma_B$, то существует l-точный l-модуль $N_R \in \Sigma_R$.

Корректность определения следует из лемм 4 и 5.

Покажем, что специальный класс l-модулей связан со специальным классом l-колец. Для начала докажем вспомогательное утверждение.

Лемма 6. l-кольцо R l-первично тогда и только тогда, когда над ним существует l-точный l-первичный l-модуль M.

Доказательство. Пусть R-l-первичное l-кольцо. Покажем, что l-модуль R_R l-точен и l-первичен. Если $x\in (0:R)_R$, то R|x|=0. Пусть $0< y\in R$. Тогда yR|x|=0. Вследствие l-первичности R имеем, что x=0 по [5, лемма 1], т. е. $(0:R)_R=0$.

Пусть $0 < x \in R$ и xB = 0, где $B \triangleleft R$. Рассмотрим множество

$$\langle x \rangle = \{ y \in R \mid |y| \leqslant nx + r_1 x + x r_2 + r_3 x r_4, \ n \geqslant 0, \ n \in \mathbb{Z}, \ r_i \in R_+ \}.$$

Докажем, что $\langle x \rangle - l$ -идеал, порождённый элементом x.

Пусть $a,b\in R,\ |a|\leqslant mx+r_1x+xr_2+r_3xr_4,\ |b|\leqslant nx+\tilde{r}_1x+x\tilde{r}_2+\tilde{r}_3x\tilde{r}_4,\ m,n\in\mathbb{N}\cup 0,\ r_i,\tilde{r}_i\in R_+.$ Тогда

$$|a+b| \leq |a| + |b| \leq mx + r_1x + xr_2 + r_3xr_4 + nx + \tilde{r}_1x + x\tilde{r}_2 + \tilde{r}_3x\tilde{r}_4 \leq$$

$$\leq (m+n)x + (r_1 + \tilde{r}_1)x + x(r_2 + \tilde{r}_2) + (r_3 + \tilde{r}_3)x(r_4 + \tilde{r}_4),$$

т. е. $a+b \in \langle x \rangle$.

Пусть $r \in R$. Тогда

$$|ra| \leqslant |r| \, |a| \leqslant |r| (mx + r_1x + xr_2 + r_3xr_4) \leqslant (m|r| + |r|r_1)x + (|r| + |r|r_3)x(r_2 + r_4),$$

т. е. $ra \in \langle x \rangle$. Аналогично $ar \in \langle x \rangle$.

Если $|r| \leqslant |a|$, то

$$|r| \le |a| \le mx + r_1x + xr_2 + r_3xr_4$$
,

т. е. $r \in \langle x \rangle$. Следовательно, $\langle x \rangle - l$ -идеал l-кольца R.

Пусть $b\in B,\ y\in\langle x\rangle,\ |y|\leqslant nx+r_1x+xr_2+r_3xr_4,\ n\geqslant 0,\ n\in\mathbb{Z},\ r_i\in R_+.$ Тогда

$$|yb| \le |y| |b| \le nx|b| + r_1x|b| + xr_2|b| + r_3xr_4|b| = xr_2|b| + r_3xr_4|b| = 0,$$

так как $r_2b, r_4b \in B$. Следовательно, yb=0. Так как это равенство выполняется для любых $b\in B$ и $y\in \langle x\rangle$, то $\langle x\rangle B=0$. Из l-первичности R получаем, что B=0.

Обратно, пусть M-l-точный l-первичный l-модуль над R. Тогда если $B \lhd R$, $C \lhd R$, $B \ne 0$, BC = 0, $0 < x \in M$, то $xB \ne 0$ и существует такое $b \in B$, что $xb \ne 0$. Но тогда x|b|>0 и $x|b|C \subseteq x(BC)=0$. Вследствие l-точности и l-первичности M имеем, что C=0, и R-l-первичное кольцо. Лемма доказана.

Теорема 1.

1. Пусть $\Sigma = \bigcup \Sigma_R$ — специальный класс l-модулей и \mathcal{K}_Σ — класс l-колец со свойством

$$R \in \mathcal{K}_{\Sigma} \iff$$
 существует такой l -модуль $M \in \Sigma_R$, что $(0:M)_R = 0$. (K)

Тогда \mathcal{K}_{Σ} — специальный класс l-колец.

2. Если \mathcal{K} — специальный класс l-колец, то класс l-модулей $\Sigma^{\mathcal{K}} = \bigcup \Sigma_R^{\mathcal{K}}$ со свойством

$$M \in \Sigma_R^{\mathcal{K}} \iff R/(0:M)_R \in \mathcal{K}$$
 и $M-l$ -первичный R -модуль (S)

является специальным классом l-модулей.

Доказательство.

1. Пусть $\Sigma = \bigcup \Sigma_R$ — специальный класс l-модулей и \mathcal{K}_Σ — класс l-колец со свойством (K).

Из леммы 6 следует, что \mathcal{K}_{Σ} — класс l-первичных l-колец. Если $B \lhd R$, $B \neq 0$ и $R \in \mathcal{K}_{\Sigma}$, то существует такой l-модуль $M \in \Sigma_R$, что $(0:M)_R = 0$. Можно рассмотреть M как l-модуль над B. Так как для любого $b \in B$ выполнено $Mb \neq 0$, то $(0:M)_B = 0$. Так как $MB \neq 0$, то из условия S3) следует, что $M \in \Sigma_B$. Следовательно, $B \in \mathcal{K}_{\Sigma}$ и условие (A) специального класса для \mathcal{K}_{Σ} выполнено.

Пусть теперь $0 \neq B \lhd R$, $B \in \mathcal{K}_{\Sigma}$, R-l-первичное l-кольцо. Тогда из условия S4) получаем, что $R \in \mathcal{K}_{\Sigma}$, т. е. выполнено условие (B) специального класса l-колец. Таким образом, \mathcal{K}_{Σ} — специальный класс l-колец.

2. Обратно, пусть $\mathcal{K}-$ специальный класс l-колец и $\Sigma^{\mathcal{K}}-$ класс l-модулей со свойством (S). Тогда $\Sigma^{\mathcal{K}}_R-$ класс l-первичных R-модулей.

Если $A \lhd R$, $\bar{R} = R/A$ и $M \in \Sigma_{\bar{R}}^{\mathcal{K}}$, то M-l-первичный \bar{R} -модуль и $\bar{R}/(0:M)_{\bar{R}} \in \mathcal{K}$. По лемме 2 получаем, что M-l-модуль над R, причём $(0:M)_{\bar{R}} = \big((0:M)_R\big)/A$, и по лемме 5 M-l-первичный R-модуль.

Так как по теореме об l-изоморфизме

$$R/(0:M)_R \cong (R/A)/((0:M)_R/A) = \bar{R}/(0:M)_{\bar{R}},$$

то $R/(0:M)_R \in \mathcal{K}$, и следовательно, $M \in \Sigma_R^{\mathcal{K}}$.

Аналогично доказывается обратная часть для условия S2).

Проверим S3). Пусть $M \in \Sigma_R^{\mathcal{K}}, \, B \lhd R, \, MB \neq 0$. По лемме 4 M-l-первичный B-модуль и $(0:M)_B = (0:M)_R \cap B$. Отсюда по теореме о l-изоморфизме получаем, что

$$\bar{B} = B/(0:M)_B = B/((0:M)_R \cap B) \cong (B+(0:M)_R)/(0:M)_R.$$

Так как $B \not\subseteq (0:M)_R$, то

$$0 \neq (B + (0:M)_R)/(0:M)_R \triangleleft R/(0:M)_R$$
.

Из условия (A) специального класса l-колец вытекает, что

$$\bar{B} = B/(0:M)_B \in \mathcal{K},$$

т. е. $M \in \Sigma_B^{\mathcal{K}}$.

Пусть, наконец, $0 \neq B \lhd R$, где R-l-первичное l-кольцо, и существует l-точный B-модуль $M \in \Sigma_B^{\mathcal{K}}$. Так как $(0:M)_B=0$, то $B \in \mathcal{K}$. Из условия (B) определения специального класса l-колец получаем, что $R \in \mathcal{K}$.

Заметим, что $(0:R)_R=0$. Действительно, так как для любых $x\in R$ и $r\in (0:R)_R$ имеем $|xr|\leqslant |x|\,|r|=0$ по определению l-аннулятора, то xr=0, т. е. $R(0:R)_R=0$. Так как $R\neq 0-l$ -первичное l-кольцо и $(0:R)_R\lhd R$, то $(0:R)_R=0$. Поэтому $R/(0:R)_R\cong R\in \mathcal{K}$ и $R\in \Sigma_R^{\mathcal{K}}$. Условие S4) выполнено. Теорема доказана.

Предложение 1. Пусть $\Sigma = \bigcup \Sigma_R -$ специальный класс l-модулей и $\mathcal{K} = \mathcal{K}_{\Sigma} -$ соответствующий специальный класс l-колец. Тогда l-идеал $P \lhd R$ равен $(0:M)_R$ для некоторого $M \in \Sigma_R$ в том и только в том случае, когда $R/P \in \mathcal{K}$.

Доказательство. Пусть $M\in \Sigma_R$ — такой l-модуль, что $P=(0:M)_R,\,M_R$ — l-первичный l-модуль. Следовательно, по свойству S2) $M\in \Sigma_{R/P}$. Из леммы 2 получаем, что

$$(0:M)_{(R/P)} = ((0:M)_R)/P = P/P = 0,$$

т. е. $R/P \in \mathcal{K}$.

Обратно, пусть $R/P \in \mathcal{K}$. Это означает, что существует l-модуль $M \in \Sigma_{R/P}$, такой что $(0:M)_{(R/P)}=0$. По свойству S2) $M \in \Sigma_R$, mr=m(r+P) для любых $m \in M$, $r \in R$. Следовательно, $P \subseteq (0:M)_R$. Но $(0:M)_{R/P}=0$, т. е. $P=(0:M)_R$. Предложение доказано.

Предложение 2. Если $\Sigma = \bigcup \Sigma_R$ — специальный класс l-модулей и $\mathcal{K} = \mathcal{K}_{\Sigma}$ — специальный класс l-колец, определённый свойством (K) из теоремы 1, то соответствующий специальный радикал можно представить в виде

$$\rho(R, \mathcal{K}) = \bigcap_{M_{\alpha} \in \Sigma_R} \{ (0 : M_{\alpha})_R \}.$$

Доказательство. По определению

$$\rho(R,\mathcal{K}) = \bigcap \{ P_{\alpha} \mid P_{\alpha} \lhd R, \ R/P_{\alpha} \in \mathcal{K} \}.$$

По предложению 1 получаем, что из $R/P_{\alpha}\in\mathcal{K}$ следует, что существует l-модуль $M\in\Sigma_R$, такой что $P_{\alpha}=(0:M)_R$. Следовательно,

$$\bigcap_{M_{\alpha} \in \Sigma_R} \{ (0: M_{\alpha})_R \} \subseteq \rho(R, \mathcal{K}).$$

Если $M_{\alpha}\in \Sigma_R$, то $\bar{R}=R/(0:M_{\alpha})_R\in \mathcal{K}$, так как $M\in \Sigma_{\bar{R}}$ по свойству S2) и $(0:M)_{\bar{R}}=0.$ Следовательно,

$$\bigcap_{M_{\alpha} \in \Sigma_R} \{ (0: M_{\alpha})_R \} = \rho(R, \mathcal{K}).$$

Предложение доказано.

Приведём пример специального класса l-модулей. Напомним, что класс всех l-первичных l-колец является специальным и задаёт первичный радикал $N_1(R)$ (см. [3,10]). По доказанному $N_1(R)$ можно представить в виде пересечения l-аннуляторов l-первичных l-модулей над R.

Рассмотрим класс $\Sigma = \bigcup \Sigma_R$ всех l-первичных l-модулей. Это специальный класс l-модулей. Действительно, свойство S1) очевидно, S2) следует из леммы 5, S3) следует из леммы 4, а S4) следует из леммы 6. Из леммы 6 также вытекает, что \mathcal{K}_Σ в этом случае состоит из всех l-первичных l-колец. Отсюда и из предложения 2 получаем следующее утверждение.

Предложение 3. Для любого l-кольца R выполняется равенство

$$\rho(R,\mathcal{K}) = N_1 = \bigcap_{M_{\alpha} \in \Sigma_R} \{ (0: M_{\alpha})_R \},\,$$

где Σ_R — класс всех l-первичных R-модулей.

Литература

- [1] Андрунакиевич В. А., Рябухин Ю. М. Специальные модули и специальные радикалы // ДАН СССР. 1962. Т. 147. С. 1274—1277.
- [2] Биркгоф Г. Теория решёток. М.: Мир, 1984.
- [3] Михалёв А. В., Шаталова М. А. Первичный радикал решёточно упорядоченных колец // Сб. работ по алгебре. М.: Изд-во Моск. ун-та, 1989. С. 178—184.
- [4] Фукс Л. Упорядоченные алгебраические системы. М.: Наука, 1965.
- [5] Шавгулидзе Н. Е. Радикалы l-колец и односторонние l-идеалы // Фундамент. и прикл. мат. 2008. Т. 14, вып. 8. С. 169—181.
- [6] Шавгулидзе Н. Е. Специальные классы l-колец // Фундамент. и прикл. мат. 2009. Т. 15, вып. 1. С. 157—173.
- [7] Шавгулидзе Н. Е. Специальные классы l-колец и лемма Андерсона—Дивинского—Сулинского // Вестн. Моск. ун-та. Сер. 1, Математика, механика. 2009.
- [8] Шавгулидзе Н. Е. Радикалы l-колец и специальные классы l-модулей // Успехи мат. наук. 2010.
- [9] Шаталова М. А. l_A и l_I -кольца // Сиб. мат. журн. 1966. Т. 7, $N\!\!\!_{\odot}$ 6. С. 1383—1389.
- [10] Шаталова М. А. К теории радикалов в структурно упорядоченных кольцах // Мат. заметки. 1968. Т. 4, \mathbb{N} 6. С. 639—648.