Классификация регулярных круговых три-тканей с точностью до круговых преобразований

В. Б. ЛАЗАРЕВА

Тверской государственный университет e-mail: lazvalya@rambler.ru

УДК 514.763.7

Ключевые слова: круговая три-ткань, регулярная три-ткань, круговые преобразования

Аннотация

Круговыми три-тканями называются ткани, образованные тремя пучками окружностей. Круговая три-ткань не является, вообще говоря, регулярной, т. е. не диффеоморфна ткани, образованной тремя семействами параллельных прямых. В настоящей работе регулярные круговые ткани классифицированы с точностью до круговых преобразований плоскости. Доказано, что существует 48 неэквивалентных типов таких тканей. Из них 5 типов содержат по ∞^3 неэквивалентных тканей, 11 типов — по ∞^2 неэквивалентных тканей, 12 типов — по ∞^1 неэквивалентных тканей; 5 тканей допускают однопараметрическую группу автоморфизмов.

Abstract

V. B. Lazareva, Classification of regular circle three-webs up to circular transformations, Fundamentalnaya i prikladnaya matematika, vol. 16 (2010), no. 1, pp. 95—107.

A curvilinear three-web formed by three pencils of circles is called a circle web. Generally speaking, the circle three-web is not regular, i.e., it is not locally diffeomorphic to a web formed by three families of parallel straight lines. In this paper, all regular circle three-webs are classified up to circular transformations. The main result is as follows: there exist 48 nonequivalent (with respect to circular transformations) types of regular three-webs. Five of them contain ∞^3 nonequivalent webs each, 11 types contain ∞^2 nonequivalent webs each, 12 types contain ∞^1 nonequivalent webs each; 5 webs admit a one-parameter group of automorphisms.

1. Введение

Круговыми три-тканями мы называем ткани, образованные тремя пучками окружностей. Криволинейная три-ткань называется регулярной, если она ло-кально диффеоморфна ткани, образованной тремя семействами параллельных прямых. Круговая три-ткань не является, вообще говоря, регулярной. В начале 50-х годов XX века В. Бляшке привёл пример регулярной круговой ткани и предложил найти все такие ткани (см. [2]). Он предложил и способ решения:

Фундаментальная и прикладная математика, 2010, том 16, № 1, с. 95—107. © 2010 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

найти кривизну произвольной круговой ткани и рассмотреть все случаи обращения её в нуль. Однако этот способ приводит к столь сложным вычислениям, что даже современная $\mathfrak{P}BM$ не в состоянии их выполнить. Разными авторами были найдены отдельные классы регулярных круговых тканей, но полное корректное решение проблемы на этом пути найдено не было. В [9] нам удалось решить проблему Бляшке, используя теорему А. Шелехова о границах регулярной ткани: если криволинейная ткань W непараболического типа является регулярной, то границы её области определения являются линиями этой ткани (см. [12]).

Основной результат, полученный в [9], следующий: не существует других регулярных круговых тканей, кроме перечисленных в [5].

В [5] все регулярные круговые ткани разбиты на 8 классов. В настоящей работе мы детализируем эту классификацию с точностью до круговых преобразований плоскости.

В доказательствах мы используем проективную интерпретацию Дарбу многообразия окружностей на плоскости. В ней точки плоскости (окружности нулевого радиуса) изображаются точками некоторой овальной квадрики трёхмерного проективного пространства P^3 , которая называется квадрикой Дарбу (мы обозначаем её Q); окружности вещественного и чисто мнимого радиуса изображаются точками внешней и внутренней (по отношению к квадрике Дарбу) областей пространства P^3 соответственно; пучки окружностей — прямыми в P^3 , связки окружностей — плоскостями. При этом гиперболические и эллиптические пучки изображаются соответственно прямыми, пересекающими и не пересекающими квадрику Дарбу; параболические пучки — прямыми, касающимися квадрики Дарбу; параболические связки окружностей — плоскостями, касающимися квадрики Дарбу; ортогональные пучки окружностей — прямыми, сопряжёнными относительно квадрики Дарбу. Точки, принадлежащие окружности C, изображаются точками квадрики Дарбу, лежащими на пересечении этой квадрики с плоскостью, полярно сопряжённой образу точки C относительно Q, и т. д. Три пучка окружностей, образующих три-ткань, изображаются, следовательно, тремя прямыми (мы будем обозначать их ℓ_i , i=1,2,3), а три окружности ткани из разных пучков, проходящие через точку M, изображаются тремя точками прямых ℓ_i , лежащими в одной и той же касательной плоскости к квадрике Дарбу в точке M. Указанные выше 8 классов следующие.

- **Класс О.** Три пучка окружностей принадлежат одной связке. (В P^3 прямые ℓ_i принадлежат одной плоскости.)
- **Класс 1.1.** Три гиперболических пучка с общей мнимой окружностью. В каждом пучке есть окружность, ортогональная всем окружностям двух других пучков. (В P^3 прямые ℓ_i проходят через одну точку, лежащую внутри квадрики Дарбу, и являются рёбрами тетраэдра, автополярного относительно квадрики Дарбу.)
- **Класс 1.2.** Два эллиптических пучка и один гиперболический с общей вещественной окружностью. В каждом пучке есть окружность, ортогональная всем окружностям двух других пучков. (В P^3 прямые ℓ_i проходят через

- одну точку, лежащую вне квадрики Дарбу, и являются рёбрами тетраэдра, автополярного относительно квадрики Дарбу.)
- Класс 2. Два пучка ортогональны, в каждом из них есть окружность, принадлежащая третьему пучку. (Прямые ℓ_1 и ℓ_2 сопряжены относительно квадрики Дарбу, а прямая ℓ_3 их пересекает.)
- Класс 3. Два ортогональных параболических пучка, а третий гиперболический, причём одна из его вершин совпадает с общей вершиной параболических пучков. (Прямые ℓ_1 и ℓ_2 сопряжены и касаются квадрики Дарбу в точке A, через которую проходит третья прямая.)
- Класс 4. Пример Бляшке: все пучки эллиптические и определяются парами вершин (A, B), (B, C), (C, A). (Прямые ℓ_i проходят через одну точку, а плоскости, содержащие пары этих прямых, касаются квадрики Дарбу.)
- **Класс 5.** Два эллиптических пучка определяются точками A, B и B, C, нулевые окружности третьего (гиперболического) пучка есть точки A и C. (Прямые ℓ_1 , ℓ_2 и прямая ℓ_3^* , сопряжённая прямой ℓ_3 , пересекаются в одной точке. Плоскости, определяемые парами прямых ℓ_1 и ℓ_2 , ℓ_1 и ℓ_3^* , ℓ_2 и ℓ_3^* , касаются квадрики Дарбу.)
- Класс 6.1. Два параболических пучка, не принадлежащих одной связке, третий пучок эллиптический, причём его вершины совпадают с вершинами параболических пучков. (Две непересекающиеся прямые касаются квадрики Дарбу, а третья сопряжена прямой, соединяющей точки касания.)
- Класс 6.2. Два параболических пучка, принадлежащие одной связке, третий пучок эллиптический, причём его вершины совпадают с вершинами параболических пучков. (Две пересекающиеся прямые касаются квадрики Дарбу, а третья сопряжена прямой, соединяющей точки касания.)
- **Класс 7.** Эллиптический пучок имеет вершины A и B, точки B и C служат нулевыми окружностями гиперболического пучка, а третий — параболический — пучок имеет вершину в точке A. При этом общая окружность эллиптического и гиперболического пучков ортогональна окружности, проходящей через точки A, B и C. (Прямая ℓ_2 пересекает квадрику Дарбу в точках B и C. Прямая ℓ_1 лежит в касательной плоскости к квадрике Дарбу в точке B. Прямая ℓ_3 касается квадрики Дарбу в точке A и пересекает прямые ℓ_1 и ℓ_2 .)

Класс 4 впервые описан В. Бляшке в [2], классы 2 и 3 описаны Р. Балабановой в [1], классы 5 и 7 описаны в диссертации Эрдогана [12].

Ткани, у которых пучки имеют общую окружность (классы 1, 3, 4, 6.2), описаны впервые нами в [3].

В [4] мы находили круговые ткани, исходя из более общей задачи, а именно рассматривая три-ткань W, высекаемую на произвольной гладкой поверхности Vтремя пучками плоскостей.

Итак, цель этой статьи — классифицировать регулярные круговые ткани с точностью до круговых преобразований. Классификацию мы приводим в проективных терминах.

Сначала заметим, что всякому круговому преобразованию плоскости, переводящему круговую ткань в круговую, в проективном пространстве соответствует проективное преобразование, переводящее в себя квадрику Дарбу Q. Множество таких преобразований образует шестипараметрическую группу. Две круговые ткани W и W' являются эквивалентными с точностью до круговых преобразований тогда и только тогда, когда существует проективное преобразование в P^3 , которое прямые ℓ_i , изображающие пучки окружностей ткани W, переводит в прямые ℓ_i' , изображающие пучки окружностей ткани W'. Далее термин «эквивалентные ткани» мы применяем исключительно по отношению к группе круговых преобразований.

2. Классификация регулярных круговых три-тканей с точностью до круговых преобразований

Класс 0. Пусть p — плоскость, в которой лежат прямые ℓ_i , изображающие пучки окружностей ткани W. Эта плоскость может пересекать квадрику Q, может касаться её и может не иметь с ней общих точек. Все эти случаи являются проективно различными.

Случай 0.1: три прямые ℓ_i образуют треугольник, плоскость p не имеет с Q общих точек.

Прямые ℓ_i в плоскости p можно задать точками пересечения (обозначим их A_i). Аналогично ткань W' задаётся треугольником A_i' в плоскости p'. Чтобы задать проективное преобразование, переводящее точки A_i в точки A_i' , нужно наложить девять условий на параметры этого преобразования. Однако в нашем распоряжении только шесть параметров группы круговых преобразований. Следовательно, рассматриваемая круговая ткань W обладает тремя инвариантами. Иными словами, существует ∞^3 неэквивалентных круговых тканей рассматриваемого типа

В качестве инвариантов, характеризующих класс круговых тканей, в данном случае можно взять углы между общими окружностями пучков (этим окружностям соответствуют точки A_i).

Случай 0.2: три прямые ℓ_i образуют треугольник, плоскость p касается квадрики Q в некоторой точке T.

0.2.1: точка T не лежит ни на одной из прямых ℓ_i . Пусть T' — точка касания плоскости p' с квадрикой Дарбу, причём T' также не лежит ни на одной из прямых ℓ_i' . Пусть P — проективное преобразование, переводящее точки T и A_i в точки T' и A_i' соответственно. Такое преобразование определяется восемью соотношениями на параметры (по два соотношения на каждую точку). В самом деле, так как точки T и T' лежат на квадрике Дарбу, то соотношение P(T) = T' даёт два соотношения на параметры. А так как точки A_i (A_i') лежат в касательной плоскости точки T (соответственно T'), то положение каждой из них также определяется двумя

- координатами. Следовательно, каждое из соотношений $P(A_i) = A_i'$ даёт два соотношения на параметры преобразования P. Рассуждая как в п. 0.1, приходим к выводу, что ткань рассматриваемого типа имеет два инварианта, т. е. мы имеем в данном случае ∞^2 проективно неэквивалентных типов
- 0.2.2: точка T лежит, например, на прямой ℓ_1 . Пусть точки A_2 и A_3 лежат на прямой ℓ_1 . Рассмотрим проективное преобразование P, переводящее точки T и A_i в точки T' и A_i' соответственно. Каждое из преобразований $P(A_1) = A_1', \ P(A_2) = A_2'$ даёт по два соотношения на параметры преобразования P. Чтобы перевести точку A_3 в A_3' , необходимо наложить одно условие на параметры, поскольку уже $P(TA_1) = T'A_1'$. Таким образом, получается семь условий на параметры преобразования P. Отсюда вытекает, что существует ∞^1 проективно неэквивалентных типов рассматриваемых круговых тканей.
- 0.2.3: $T \equiv A_1$. Аналогичные предыдущим рассуждения дают, что в рассматриваемом случае получается шесть соотношений на параметры преобразования Р. Следовательно, любые две ткани рассматриваемого типа эквивалентны.
- Случай 0.3: три прямые ℓ_i образуют треугольник, плоскость p пересекает квадрику Q по кривой C. Возможны следующие варианты.
- 0.3.1: кривая C не имеет общих точек с прямыми ℓ_i ;
- 0.3.2: C не проходит ни через одну из трёх точек A_i и пересекает одну из прямых ℓ_i ;
- 0.3.3: C не проходит ни через одну из трёх точек A_i и пересекает две из трёх
- 0.3.4: C не проходит ни через одну из трёх точек A_i и пересекает все три прямые ℓ_i :
 - а) точки пересечения прямых ℓ_i находятся вне кривой C;
 - б) одна из трёх точек пересечения прямых ℓ_i находится внутри кривой C;
 - в) две из трёх точек пересечения прямых ℓ_i находятся внутри кривой C;
 - г) все точки пересечения прямых ℓ_i находятся внутри кривой C;
- 0.3.5: C касается одной из прямых ℓ_i и не пересекает две другие;
- 0.3.6: C касается одной из трёх прямых ℓ_i и пересекает одну из двух других;
- 0.3.7: C касается одной из прямых ℓ_i и пересекает две другие;
- 0.3.8: C касается двух из трёх прямых ℓ_i , а третья прямая не пересекает C;
- 0.3.9: C касается двух из трёх прямых ℓ_i , а третья прямая пересекает C;
- 0.3.10: C касается всех трёх прямых ℓ_i ;
- 0.3.11: C проходит через одну из трёх точек A_i , например A_1 , и не пересекает прямую A_2A_3 ;
- 0.3.12: C проходит через одну из трёх точек A_i , например A_1 , и пересекает прямую A_2A_3 ;

- 0.3.13: C проходит через две из трёх точек A_i , например A_1 и A_2 , и пересекает прямые A_1A_3 и A_2A_3 ;
- 0.3.14: C проходит через точки A_i ;
- 0.3.15: C проходит через одну из трёх точек A_i , например A_1 , и касается прямой A_2A_3 ;
- 0.3.16: C проходит через две из трёх точек A_i , например A_1 и A_2 , пересекает прямую A_1A_3 и касается A_2A_3 ;
- 0.3.17: C касается двух прямых, например ℓ_1 и ℓ_2 , причём прямой ℓ_1 в точке A_2 ;
- 0.3.18: C проходит через две из трёх точек A_i , например A_1 и A_2 , и касается прямых A_1A_3 и A_2A_3 .

Рассмотрим каждый случай в отдельности.

В случаях 0.3.1-0.3.4, повторив рассуждения, проведённые в случае 0.1, мы придём к такому же выводу: три-ткани рассматриваемых типов имеют три инварианта, т. е. в каждом из случаев 0.3.1-0.3.4 имеется ∞^3 неэквивалентных круговых тканей.

В случае 0.3.5 пусть кривая C касается прямой $\ell_1=A_2A_3$ в точке T. Рассмотрим вторую ткань такого же типа и проективное преобразование P, переводящее тройку точек A_i в аналогичную тройку точек A_i' . Чтобы перевести точку T в T', необходимо наложить два условия на параметры. Преобразование $P(A_2)=A_2'$ даёт два соотношения на параметры преобразования P, так как точка A_2 лежит в касательной плоскости точки T, а точка A_2' — в касательной плоскости точки T'. Чтобы перевести точку A_3 в A_3' , необходимо наложить одно условие на параметры, поскольку уже $P(TA_2)=T'A_2'$. С помощью ещё трёх условий на параметры переводим точку A_1 в A_1' . Таким образом, получается восемь соотношений на параметры. Отсюда следует, что круговая ткань рассматриваемого типа имеет два инварианта, т. е. существует ∞^2 неэквивалентных типов таких тканей.

В случаях 0.3.6 и 0.3.7 рассуждения будут аналогичными.

Пусть в случае 0.3.8 кривая C касается двух прямых ℓ_1 и ℓ_2 в точках T_1 и T_2 соответственно. Преобразование P, переводящее эту конструкцию в аналогичную, переводит точки T_1 и T_2 в точки T_1' и T_2' (четыре условия на параметры). При этом линия m пересечения плоскостей, касательных к квадрике Дарбу в точках T_1 и T_2 , перейдёт в аналогичную линию пересечения m'. Так как точка A_3 пересечения прямых ℓ_1 и ℓ_2 лежит на m, то преобразование $P(A_3) = A_3'$ даст только одно условие на параметры преобразования P. Далее, поскольку образы прямых $\ell_1 = T_1A_3$ и $\ell_2 = T_2A_3$ уже определены, то условия $P(A_1) = A_1'$ и $P(A_2) = A_2'$ дадут по одному соотношению на параметры. Таким образом, получается всего семь условий на параметры преобразования P, так что ткань рассматриваемого типа имеет один инвариант и существует ∞^1 неэквивалентных типов таких тканей.

В случае 0.3.9 рассуждения и выводы аналогичны.

В случае 0.3.10 кривая C касается трёх прямых ℓ_i в точках T_i , которые полностью определяют положение этих прямых. Чтобы перевести точки T_i в ана-

логичные, необходимо наложить шесть условий на параметры. Следовательно, существует единственное круговое преобразование, переводящее ткань рассматриваемого типа в аналогичную. Таким образом, все эти ткани эквивалентны.

В случае 0.3.11 кривая C проходит через одну из трёх точек A_i , например A_1 , и не пересекает прямую A_2A_3 . Соотношение $P(A_1)=A_1'$ даёт два соотношения на параметры преобразования P, так как точка A_1 лежит на квадрике Дарбу. Каждое из преобразований $P(A_2) = A_2'$ и $P(A_3) = A_3'$ даёт по три соотношения на параметры преобразования Р. Таким образом, всего получается восемь соотношений, поэтому существует ∞^2 неэквивалентных тканей рассматриваемого типа.

В случае 0.3.12 получаем аналогичный результат.

В случае 0.3.13 получается 2+2+3=7 соотношений на параметры, т. е. ∞^1 неэквивалентных круговых тканей рассматриваемого типа.

В случае 0.3.14 соотношений на параметры будет 2+2+2=6, т. е. все ткани рассматриваемого типа будут эквивалентными.

В случае 0.3.15 кривая C проходит через одну из трёх точек A_i , например A_1 , и касается прямой A_2A_3 в точке T_1 . Соотношения $P(A_1)=A_1'$ и $P(T_1)=T_1'$ дадут по два условия на параметры преобразования P. Соотношение $P(A_2)=$ $=A_2^\prime$ даст два соотношения на параметры преобразования P, так как точка A_2 лежит в плоскости, касательной к квадрике Дарбу в точке T_1 . Чтобы перевести точку A_3 в A_3' , необходимо наложить только одно условие на параметры, поскольку уже $P(T_1A_2) = T_1'A_2'$. Таким образом, проективное преобразование определяется семью условиями на параметры. Отсюда следует, что существует ∞^1 неэквивалентных типов тканей.

В случае 0.3.16 кривая C проходит через точки A_1 и A_2 , пересекает прямую A_1A_3 и касается прямой A_2A_3 в точке A_2 . Каждое из преобразований $P(A_1)=$ $A_1', P(A_2) = A_2'$ даёт по два соотношения на параметры преобразования P. Точка A_3 лежит в плоскости, касательной к квадрике Дарбу в точке A_2 , поэтому условие $P(A_3) = A_3'$ также даёт два условия на параметры. Итак, всего получается шесть соотношений на параметры преобразования P. Следовательно, любые две ткани рассматриваемого типа эквивалентны.

В случае 0.3.17 пусть кривая C касается прямых ℓ_1 и ℓ_2 соответственно в точках A_2 и T. Соотношения $P(A_2)=A_2'$ и P(T)=T' дадут по два условия на параметры преобразования P. Точка A_3 , являющаяся точкой пересечения прямых ℓ_1 и ℓ_2 , лежит на линии пересечения касательных плоскостей к квадрике Дарбу в точках A_2 и T, поэтому чтобы перевести точку A_3 в A_3' , необходимо наложить одно условие на параметры преобразования P. Чтобы перевести точку A_1 в A_1' , необходимо наложить одно условие на параметры, поскольку образ прямой $\ell_2 = TA_3$ уже определён. Итак, получается шесть соотношений на параметры преобразования P, и любые две ткани рассматриваемого типа эквивалентны.

В случае 0.3.18 кривая C проходит через две точки A_1 и A_2 и касается в этих точках прямых ℓ_1 и ℓ_2 . Каждое из преобразований $P(A_1)=A_1',\,P(A_2)=$ $=A_{2}^{\prime}$ даёт по два соотношения на параметры преобразования P. Чтобы перевести точку A_3 в A_3' , необходимо наложить ещё одно условие на параметры, поскольку A_3 лежит на линии пересечения плоскостей, касательных к квадрике Дарбу в точках A_1 и A_2 . Таким образом, получается всего пять условий на параметры преобразования P. Так как группа круговых преобразований является шестипараметрической, получаем, что любые две ткани рассматриваемого типа эквивалентны и любая такая ткань допускает однопараметрическую группу автоморфизмов.

Случай 0.4: три прямые ℓ_i лежат в одной плоскости p, проходят через одну точку B, плоскость p не имеет с Q общих точек.

Пусть проективное преобразование P переводит прямые ℓ_i , изображающие пучки окружностей ткани W, в прямые ℓ'_i . Условие P(B)=B' даст три соотношения на параметры преобразования P; условия $P(\ell_1)=\ell'_1$ и $P(\ell_2)=\ell'_2$ дадут 2+2=4 соотношения на параметры. Тем самым плоскость p' будет определена. Поэтому условие $P(\ell_3)=\ell'_3$ даст только одно соотношение на параметры преобразования P. Итого получаем 3+2+2+1=8 условий на параметры этого преобразования. Так как в нашем распоряжении только шесть параметров группы круговых преобразований, то рассматриваемая круговая ткань W обладает двумя инвариантами. Иными словами, существует ∞^2 неэквивалентных круговых тканей рассматриваемого типа.

Случай 0.5: три прямые ℓ_i лежат в одной плоскости p и проходят через одну точку B, плоскость p касается квадрики Q в некоторой точке T.

- 0.5.1: точка T не лежит ни на одной из прямых ℓ_i . Пусть P проективное преобразование, переводящее точку T и три прямые ℓ_i в точку T' и три прямые ℓ_i' соответственно. Так как точки T и T' лежат на квадрике Дарбу, то соотношение P(T) = T' даёт два соотношения на параметры преобразования P. А так как точка B лежит в касательной плоскости точки T, то соотношение P(B) = B' также даёт два условия на параметры. Так как касательная плоскость к квадрике Q точкой B' уже определена, то каждое из соотношений $P(\ell_i) = \ell_i'$ даёт одно соотношение на параметры преобразования P. Всего получаем семь соотношений, следовательно, ткань рассматриваемого типа имеет один инвариант, и в данном случае мы имеем ∞^1 проективно неэквивалентных типов тканей.
- 0.5.2: точка T лежит на одной из прямых ℓ_i , например на прямой ℓ_1 . Этот случай отличается от предыдущего тем, что точки T и B однозначно определяют ту прямую из трёх прямых ℓ_i , на которой они лежат. Поэтому получается шесть соотношений на параметры преобразования P. Следовательно, любые две ткани рассматриваемого типа эквивалентны.
- 0.5.3: $T \equiv B$. В этом случае получается пять соотношений на параметры преобразования P, поэтому все ткани данного типа эквивалентны и любая из них допускает однопараметрическую группу автоморфизмов.

Случай 0.6: три прямые ℓ_i лежат в одной плоскости p и проходят через одну точку B, плоскость p пересекает квадрику Q по кривой C. Возможны следующие варианты:

- 0.6.1: кривая C не имеет общих точек с прямыми ℓ_i ;
- 0.6.2: C не проходит через точку B и пересекает одну из прямых ℓ_i ;
- 0.6.3: C не проходит через точку B и пересекает две из трёх прямых ℓ_i ;
- 0.6.4: C не проходит через точку B и пересекает все три прямые ℓ_i ;
 - а) точка B находятся вне кривой C;
 - б) точка B находится внутри кривой C;
- 0.6.5: C касается одной из прямых ℓ_i и не пересекает две другие;
- 0.6.6: C касается одной из трёх прямых ℓ_i и пересекает одну из двух других;
- $0.6.7:\ C$ касается одной из прямых ℓ_i и пересекает две другие;
- 0.6.8: C касается двух из трёх прямых ℓ_i , а третья прямая не пересекает C;
- 0.6.9: C касается двух из трёх прямых ℓ_i , а третья прямая пересекает C;
- 0.6.10: C проходит через точку B и пересекает все прямые ℓ_i ;
- 0.6.11: C проходит через точку B и касается одной из прямых, например ℓ_1 .

Рассмотрим каждый случай в отдельности.

В случаях 0.6.1—0.6.4, повторив рассуждения, проведённые в случае 0.4, мы придём к такому же выводу: три-ткани рассматриваемых типов имеют два инварианта, т. е. в каждом из случаев 0.6.1-0.6.4 имеется ∞^2 неэквивалентных круговых тканей.

В случае 0.6.5 обозначим точку касания кривой C и прямой ℓ_1 через T. Рассмотрим вторую ткань такого же типа и проективное преобразование P, переводящее тройку прямых ℓ_i в аналогичную тройку прямых ℓ_i' . Чтобы перевести точку T в T', необходимо наложить два условия на параметры преобразования P. Соотношение $P(\ell_1)=\ell_1'$ даст одно соотношение на параметры преобразования P, так как прямая ℓ_1 лежит в касательной плоскости точки T, а прямая ℓ_1' — в касательной плоскости точки T'. Чтобы перевести точку B в B', необходимо наложить одно условие на параметры, поскольку уже P(TB) ==T'B'. С помощью ещё трёх условий на параметры переводим прямую ℓ_2 в прямую ℓ_2' , а прямую ℓ_3 – в ℓ_3' . Таким образом, получается семь соотношений на параметры. Отсюда следует, что круговая ткань рассматриваемого типа имеет один инвариант, т. е. существует ∞^1 неэквивалентных типов таких

В случаях 0.6.6 и 0.6.7 рассуждения будут аналогичными.

Пусть в случае 0.6.8 кривая C касается двух прямых ℓ_1 и ℓ_2 в точках T_1 и T_2 соответственно. Преобразование Р, переводящее эту конструкцию в аналогичную, переводит точки T_1 и T_2 в точки T_1' и T_2' (четыре условия на параметры). При этом линия m пересечения плоскостей, касательных к квадрике Дарбу в точках T_1 и T_2 , перейдёт в аналогичную линию пересечения m'. Так как точка B пересечения прямых ℓ_1 и ℓ_2 лежит на m, то преобразование $P(A_3)=A_3'$ даёт только одно условие на параметры преобразования P. Далее, поскольку образы прямых $\ell_1 = T_1 B$ и $\ell_2 = T_2 B$ уже определены, то условие $P(\ell_3) = \ell_3'$ даст только одно соотношение на параметры. Таким образом, получается шесть условий на параметры преобразования Р. Следовательно, существует единственное круговое преобразование, переводящее ткань рассматриваемого типа в аналогичную. Таким образом, все эти ткани эквивалентны.

В случае 0.6.9 рассуждения и выводы аналогичны.

В случае 0.6.10 соотношение P(B)=B' даёт два соотношения на параметры преобразования P, так как точка B лежит на квадрике Дарбу. Рассуждая как в п. 0.4, получим 2+2+2+1=7 условий на параметры преобразования P. Таким образом, имеем ∞^1 неэквивалентных типов тканей.

В случае 0.6.11 каждое из условий P(B)=B' и $P(\ell_1)=\ell_1'$ даст по два соотношения на параметры преобразования P. С помощью ещё трёх условий на параметры переводим прямую ℓ_2 в прямую ℓ_2' , а ℓ_3 — в ℓ_3' . Таким образом, получается семь соотношений. Отсюда следует, что существует ∞^1 неэквивалентных типов тканей рассматриваемого вида.

Класс 1. Сюда входят классы 1.1 и 1.2 (см. раздел 1).

- 1.1: прямые ℓ_i проходят через одну точку, лежащую внутри квадрики Дарбу, и являются рёбрами тетраэдра, автополярного относительно квадрики Дарбу. Обозначим общую точку прямых ℓ_i через A_4 . Плоскость, полярно сопряжённая точке A_4 , пересекает прямые ℓ_i в трёх точках, обозначим их через A_1 , A_2 и A_3 . Полученные четыре точки образуют автополярный тетраэдр. В нём уравнение квадрики Дарбу имеет канонический вид. Вследствие этого любые две ткани рассматриваемого класса эквивалентны, так как существует проективное преобразование, переводящее автополярный тетраэдр в аналогичный ему, которое квадрику Дарбу переводит в себя.
- 1.2: прямые ℓ_i проходят через одну точку, лежащую вне квадрики Дарбу, и являются рёбрами тетраэдра, автополярного относительно квадрики Дарбу. По аналогичной причине две любые ткани этого класса эквивалентны.

Класс 2. Прямые ℓ_1 и ℓ_2 сопряжены относительно квадрики Дарбу, а прямая ℓ_3 их пересекает. Имеется три варианта:

- 2.1: прямая ℓ_3 не пересекает квадрику Q;
- 2.2: прямая ℓ_3 пересекает квадрику Q;
- 2.3: прямая ℓ_3 касается квадрики Q.

В первых двух случаях поместим точки A_1 и A_2 проективного репера соответственно в точки пересечения сопряжённых прямых ℓ_1 и ℓ_2 с прямой ℓ_3 . Пусть точка A_3 лежит на прямой ℓ_1 и полярно сопряжена относительно Q точке A_1 , а точка A_4 лежит на прямой ℓ_2 и полярно сопряжена относительно Q точке A_2 . В полученном автополярном репере уравнение квадрики Дарбу имеет канонический вид. Так как существует проективное преобразование, переводящее автополярный репер в автополярный и квадрику Дарбу в себя, то все ткани рассматриваемого типа эквивалентны.

В третьем случае пусть прямая ℓ_1 не пересекает квадрику Дарбу, прямая ℓ_2 ей полярно сопряжена и пересекает квадрику Дарбу в точках M и N, а прямая ℓ_3 пересекает ℓ_1 в точке B и проходит, например, через точку M. Таким образом,

проективная конструкция вполне определяется точками M, N и B. Проективное преобразование P определяется в этом случае пятью соотношениями на параметры, поэтому любые две ткани данного типа эквивалентны и каждая ткань этого класса допускает однопараметрическую группу автоморфизмов.

Класс 3. Прямые ℓ_1 и ℓ_2 сопряжены и касаются квадрики Дарбу в точке A, через которую проходит третья прямая.

Пусть полярно сопряжённые прямые ℓ_1 и ℓ_2 касаются квадрики Q в точке A_3 . Обозначим плоскость, в которой они лежат, через p. Прямая ℓ_3 проходит через точку A_3 , но не лежит в плоскости p (иначе получаем класс 0). Вторую точку пересечения прямой ℓ_3 с квадрикой Q обозначим A_4 . Прямая, полярно сопряжённая прямой ℓ_3 , лежит в плоскости p и пересекает прямые ℓ_1 и ℓ_2 соответственно в точках A_1 и A_2 . Рассмотрим вторую ткань такого же типа и проективное преобразование P, переводящее четвёрку точек A_i в аналогичную четвёрку точек A_i' . Чтобы перевести пару точек A_3 , A_4 в пару точек A_3' , A_4' , необходимо наложить четыре условия на параметры. Преобразование $P(A_1) = A_1^{\prime}$ даст одно соотношение на параметры преобразования P, так как точка A_1 лежит на прямой ℓ_3^* , полярно сопряжённой прямой $\ell_3=A_3A_4$, а точка A_1' — на соответствующей прямой $\ell_3^{*\prime}$. Точка A_2' при этом определится однозначно, так как она полярно сопряжена точке A_1' . Таким образом, получается всего пять соотношений на параметры преобразования P. Отсюда следует, что существует ∞^1 проективных преобразований, оставляющих неподвижной указанную четвёрку точек. Следовательно, все ткани данного типа эквивалентны, а всякая ткань рассматриваемого типа допускает однопараметрическую группу автоморфизмов.

Класс 4. Прямые ℓ_i проходят через одну точку, а плоскости, содержащие пары этих прямых, касаются квадрики Дарбу.

Обозначим точки касания плоскостей $[\ell_1,\ell_2], [\ell_2,\ell_3], [\ell_3,\ell_1]$ соответственно через A_3 , A_1 и A_2 , а точку пересечения трёх прямых ℓ_i — через A_4 . Четвёрка этих точек однозначно определяет прямые ℓ_i . Заметим, что точка A_4 представляет собой полюс плоскости $[A_1A_2A_3]$. Проективное преобразование P, переводящее точки A_1 , A_2 и A_3 в точки, также лежащие на квадрике Дарбу, определяется шестью условиями на параметры. По образам точек $A_1,\ A_2$ и A_3 четвёртая точка A_4' определится однозначно. Следовательно, проективное преобразование P определяется шестью соотношениями на параметры. Отсюда следует, что все ткани такого типа эквивалентны.

Класс 5. Прямые ℓ_1 , ℓ_2 и прямая ℓ_3^* , сопряжённая прямой ℓ_3 , пересекаются в одной точке. Плоскости, определяемые парами прямых ℓ_1 и ℓ_2 , ℓ_1 и ℓ_3^* , ℓ_2 и ℓ_3^* , касаются квадрики Дарбу.

Как и в предыдущем случае, мы имеем три плоскости $[\ell_1, \ell_2]$, $[\ell_2, \ell_3]$, $[\ell_3^*, \ell_1]$, проходящие через одну точку (обозначим её A_4) и касающиеся квадрики Дарбу в трёх точках, которые обозначим соответственно A_1 , A_2 и A_3 . Прямая ℓ_3 полярно сопряжена прямой ℓ_3^* , поэтому, задав прямую ℓ_3^* , мы однозначно определим и прямую ℓ_3 . Итак, задание прямых ℓ_i сводится к заданию четвёрки точек A_1 , A_2 , A_3 , A_4 . Рассуждая как в предыдущем пункте, докажем, что все ткани этого типа эквивалентны.

Класс 6. Сюда входят классы 6.1 и 6.2 (см. раздел 1).

- 6.1: две непересекающиеся прямые, пусть ℓ_1 и ℓ_2 , касаются квадрики Дарбу, а третья прямая ℓ_3 сопряжена прямой ℓ_3^* , соединяющей точки касания. Пусть прямые ℓ_1 и ℓ_2 касаются квадрики Дарбу соответственно в точках A_1 и A_2 . Рассматриваемая проективная конструкция вполне определяется точками A_1 , A_2 и прямыми ℓ_1 и ℓ_2 . Поэтому проективное преобразование P определяется шестью соотношениями на параметры: по два дают соотношения $P(A_1) = A_1'$ и $P(A_2) = A_2'$ и по одному соотношения $P(\ell_1) = \ell_1'$ и $P(\ell_2) = \ell_2'$ (поскольку касательные плоскости уже определены). Итак, две любые ткани рассматриваемого типа эквивалентны.
- 6.2: прямые ℓ_1 и ℓ_2 касаются квадрики Дарбу и пересекаются в точке B, а третья прямая ℓ_3 сопряжена прямой ℓ_3^* , соединяющей точки касания. Пусть, как и выше, A_1 и A_2 точки касания. В этом случае получаем пять условий на параметры преобразования P: по два дают соотношения $P(A_1) = A_1'$ и $P(A_2) = A_2'$ и одно P(B) = B', поскольку точка B' лежит на линии пересечения касательных плоскостей к квадрике в точках A_1' и A_2' . Следовательно, любые две ткани данного типа эквивалентны и любая три-ткань такого типа допускает однопараметрическую группу автоморфизмов.

Класс 7. Прямая ℓ_2 пересекает квадрику Дарбу в точках B и C. Прямая ℓ_1 лежит в касательной плоскости к квадрике Дарбу в точке B. Прямая ℓ_3 пересекает прямые ℓ_1 и ℓ_2 и касается квадрики Дарбу в некоторой точке A. Обозначим точку пересечения прямых ℓ_1 и ℓ_3 через D. Описанная проективная конструкция вполне определяется точками A, B, C и направлением прямой ℓ_1 в касательной плоскости к квадрике Дарбу к точке B. Следовательно, для проективного преобразования, переводящего такую конструкцию в аналогичную, получим всего 2+2+2+1=7 соотношений на параметры. Отсюда следует, что существует ∞^1 неэквивалентных типов тканей рассматриваемого вида.

Результаты объединяет следующая теорема.

Теорема. Существует 48 неэквивалентных (относительно круговых преобразований) типов регулярных круговых три-тканей. Из них 5 типов содержат по ∞^3 неэквивалентных тканей, 11 типов — по ∞^2 неэквивалентных тканей, 12 типов — по ∞^1 неэквивалентных тканей; 5 тканей допускают однопараметрическую группу автоморфизмов.

3. Трёхмерное обобщение задачи Бляшке

Обобщение проблемы Бляшке состоит в описании всех регулярных 4-тканей, образованных пучками сфер в трёхмерном пространстве (сферические 4-ткани).

В [2] Бляшке предложил также привести примеры шестиугольных, но не регулярных сферических 4-тканей. Мы находим такие примеры в [7]. В [8] мы обобщаем теорему о границах для (n+1)-тканей, образованных n+1 слоениями n-мерных поверхностей на (n+1)-мерном многообразии, и с её помощью доказываем ряд теорем о регулярных сферических 4-тканях.

Литература

- [1] Балабанова Р. С. Шестоъгъльни три-тъкани от снопове окръжности, два от които са спрегнати // Науч. тр. Пловдив. ун-т, мат. — 1973. — Т. 11, № 4. — С. 128—141.
- [2] Бляшке В. Введение в геометрию тканей. М.: Физматгиз, 1959.
- [3] Лазарева В. Б. Три-ткани, образованные семействами окружностей на плоскости // Дифференциальная геометрия многообразий фигур. — 1977. — С. 49—64.
- [4] Лазарева В. Б. Три-ткани на двумерной поверхности в триаксиальном пространстве // Дифференциальная геометрия многообразий фигур. — 1979. — № 10. — C. 54-59.
- [5] Лазарева В. Б. Параллелизуемые три-ткани, образованные пучками окружностей // Ткани и квазигруппы. — Калинин: КГУ, 1988. — С. 74—77.
- [6] Лазарева В. Б., Орлова О. В. Об одном классе шестиугольных три-тканей, образованных пучками окружностей // Ткани и квазигруппы. — Калинин: КГУ, 1986. — C. 115-119.
- [7] Лазарева В. Б., Шелехов А. М. Конфигурации и ткани, порождаемые пучками сфер // Вестн. Чувашского гос. пед. ун-та им. И. Я. Яковлева. — 2006. — С. 87—95.
- [8] Лазарева В. Б., Шелехов А. М. К проблеме классификации регулярных 4-тканей, образованных пучками сфер // Изв. высш. учебн. завед. Математика. — 2007. — № 12. — C. 70-76.
- [9] Лазарева В. Б., Шелехов А. М. О триангуляциях плоскости пучками коник // Мат. сб. — 2007. — Т. 198, № 11. — С. 107—134.
- [10] Лазарева В. Б., Шелехов А. М. О триангуляции плоскости пучками кривых второго порядка. — Деп. в ВИНИТИ 21.01.09; № 25-В2009.
- [11] Шелехов А. М. О три-тканях, образованных пучками окружностей // Итоги науки и техн. Сер. Соврем. мат. и её прил. — 2005. — Т. 32. — С. 7—28.
- [12] Erdogan H. I. Düzlemde 6-gen doku teşkil eden čember demety 3-üzleri: Ph.D. Thesis. — Istanbul: Istanbul Teknik Ueniversitesi, 1974.
- [13] Erdogan H. I. Triples of circle-pencils forming a hexagonal three-web in E^2 // J. Geom. — 1989. — Vol. 35, no. 1-2. — P. 39—65.
- [14] Lazareva V. B., Shelekhov A. M. Around a Blaschke problem in the web theory // Webs and Quasigroups, 1996-1997. Tver: Tver State Univ., 1997. P. 65-73.