Rolling simplexes and their commensurability. I (аксиома и критерий несжимаемости и лемма о моменте)

О. В. ГЕРАСИМОВА

Московский государственный университет им. М. В. Ломоносова e-mail: ynona_olga@rambler.ru

УДК 512.543.7+512.544.33+512.815.8+517.984.5+514.84

Ключевые слова: абстрактная проективная плоскость, роллинг, симплексы, соизмеримость, несжимаемость.

Аннотация

Строится единая геометрическая теория поля.

Abstract

O. V. Gerasimova, Rolling simplexes and their commensurability. I. The axiom and criterion of incompressibility and the momentum lemma, Fundamentalnaya i prikladnaya matematika, vol. 17 (2011/2012), no. 2, pp. 87-95.

A unified geometric field theory is constructed.

Рассмотрим множество M и выберем в множестве всех подмножеств 2^M подмножество L, элементами которого являются прямые, удовлетворяющее следующим аксиомам:

- (Р0) каждая прямая содержит не менее трёх точек;
- (P1) через любые две точки $X, Y \in M$ проходит ровно одна прямая $l \in L$;
- (P2) любые две прямые $l_1, l_2 \in L$ пересекаются ровно в одной точке.

Выберем прямую $l\in L$, которую назовём бесконечно удалённой. Тогда $M_l\stackrel{\mathrm{def}}{=} M\setminus l$ является аффинной картой с системой прямых $L_l\stackrel{\mathrm{def}}{=} L\setminus \{l\}$. Прямые $l_1, l_2\in L_l$ аффинной плоскости M_l принято называть параллельными, если точка их пересечения лежит на бесконечно удаленной прямой l. Таким образом, множество M наделено структурой абстрактной проективной плоскости.

Определение. Будем называть тройкой (тройкой точек, упорядоченной тройкой) элемент декартова произведения $M_l \times M_l \times M_l$ и обозначать его (A,B,C).

Определение. Назовём шагом роллинга «передвижение» любой точки из тройки параллельно прямой, проходящей через две оставшиеся, причём порядок точек в тройке сохраняется, т. е. тройка (A,B,C) может перейти в тройки

Фундаментальная и прикладная математика, 2011/2012, том 17, № 2, с. 87—95. © 2011/2012 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

 $(A',B,C),\ (A,B',C)$ или (A,B,C'), где точки $A',\ B',\ C'$ лежат на прямых, параллельных прямым $BC,\ AC,\ AB$ и проходящих через точки $A,\ B,\ C$ соответственно.

Заметим, что для того чтобы совершить шаг роллинга точки Q в произвольную точку Q' для тройки (Q,S,P), надо сначала перекатить точку P в точку P', являющуюся точкой пересечения прямой, проходящей через P и параллельной прямой QS, и прямой, проходящей через S и параллельной QQ'. При этом если прямая QQ' параллельна прямой SP, то P' совпадёт с P.

Докажем теорему, сформулированную в [1].

Предложение 1. Пусть точки A, B, C не лежат на одной прямой и являются тройкой. Тогда любую тройку (A', B', C') за конечное число шагов можно перекатить (с сохранением на каждом шаге, в интуитивном понимании, «ориентированной площади $\Delta A'B'C'$ ») так, чтобы результат перекатывания точек A' и B' совпал с A и B соответственно, а точка C' оказалась на одной прямой с точками B и C.

- (R0) (аксиома несжимаемости). Если точки A, B, C аффинной плоскости M_l не лежат на одной прямой и точка D находится на одной прямой с B и C, но не совпадает с C, то тройку (A,B,D) нельзя перекатить в тройку (A,B,C).
- (R1) (аксиома слабой аддитивности). Если в аффинной плоскости M_l тройки точек (S,A,A') и (S,B,B') лежат на разных прямых, а прямые, проходящие через точки $A,\ B$ и $A',\ B',$ параллельны, то тройку (S,A',B) можно перекатить в тройку (S,A,B').
- (R2) (аксиома аддитивности). Если в аффинной плоскости M_l точки каждой из троек $(A,B,C),\ (A',B',C')$ не лежат на одной прямой, $D\in BC,$ $D'\in B'C'$ и тройки $(A,B,D),\ (A,D,C)$ можно перекатить в тройки $(A',B',D'),\ (A',D',C')$ соответственно, то тройка (A,B,C) перекатывается в (A',B',C').

Теорема 1. Пусть в абстрактной аффинной плоскости выполняется свойство (R0). Тогда сама проективная плоскость дезаргова, её координатное тело коммутативно и в ней выполняются аксиомы (R1) и (R2).

Доказательство теоремы разобьём на три шага.

1. Для любых трёх точек $S,A_1,A_2\in M_l$, лежащих на одной прямой, существует единственное проективное преобразование $\gamma\colon M\to M$, называемое гомотетией аффинной плоскости M_l , которое оставляет на месте все точки прямой l и точку S, а A_1 переводит в A_2 .

Для доказательства пункта 1 докажем следующую лемму.

Лемма о моменте. Пусть даны точки Q_1 , Q_2 , Q_3 , S из M_l , такие что никакие три из них не лежат на одной прямой. Возьмём точку $P_0 \in M_l$, не лежащую на прямой SQ_1 . Определим P_i как точку пересечения прямой, проходящей через P_{i-1} и параллельной Q_iS , и прямой, проходящей через S и параллельной

 Q_iQ_{i+1} для i=1,2,3 (где $Q_4\stackrel{\mathrm{def}}{=}Q_1$). Тогда точки P_0 , P_1 , P_3 лежат на одной прямой, параллельной прямой SQ_1 .

Доказательство. Тройки точек (Q_1,S,P_0) , (Q_1,S,P_1) , (Q_2,S,P_1) , (Q_2,S,P_2) , (Q_3,S,P_2) , (Q_3,S,P_2) , (Q_3,S,P_3) , (Q_1,S,P_3) последовательно перекатываются друг в друга, а значит, по аксиоме несжимаемости (R0) тройка (Q_1,S,P_3) должна перекатываться в тройку (Q_1,S,P_1) . Но это возможно тогда и только тогда, когда прямая P_1P_3 параллельна прямой SQ_1 .

Отметим, что точку P_0 можно выбрать на прямой SQ_1 , но тогда точки P_1 , P_2 , P_3 сольются в точку S, и утверждение леммы станет тривиальным.

Следствие 1. Пусть дано шесть точек $Q_1,Q_2,Q_3,R_1,R_2,R_3\in M_l$, таких что несовпадающие прямые $Q_1R_1,\ Q_2R_2$ и Q_3R_3 пересекаются в точке $S\in M_l$, причём прямая R_1R_2 параллельна Q_1Q_2 и прямая R_2R_3 параллельна Q_2Q_3 . Тогда прямая Q_1Q_3 параллельна R_1R_3 .

Доказательство. Возьмём произвольную точку $P_1 \in M_l$ на прямой, проходящей через S и параллельной прямой Q_1Q_2 , перекатим точку Q_1 относительно тройки (P_1,Q_1,S) по маршруту $Q_1Q_2Q_3$. Тогда точка P_1 пройдёт путь $P_1P_2P_3$ (описанный в предыдущей лемме). Теперь перекатим точку P_1 как точку тройки (P_1,R_1,S) и по $P_1P_2P_3$. Для того чтобы перекатить P_1 в P_2 , надо перекатить R_1 в точку пересечения прямой, проходящей через S и параллельной P_1P_2 (которая, следовательно, совпадает с прямой SQ_2), и прямой, проходящей через R_1 и параллельной P_1S (которая в свою очередь параллельна прямой Q_1Q_2). Так как по условию Q_1Q_2 параллельна R_1R_2 , то R_1 перекатится в R_2 . Аналогично, чтобы перекатить P_2 в P_3 , надо перекатить R_2 в R_3 . Следовательно, по лемме R_3R_1 параллельна SP_3 , а так как по построению SP_3 параллельна Q_1Q_3 , то R_1R_3 параллельна Q_1Q_3 .

Теперь докажем, что отображение, определённое в пункте 1, существует. Считаем, что $\gamma(S) = S$, $\gamma(K) = K$ для всех точек K, лежащих на прямой l, и $\gamma(A_1) = \gamma(A_2)$. Для любой точки $B_1 \in M_l$, не лежащей на прямых l и SA_1 , будем считать, что $\gamma(B_1)=B_2$, где B_2 является точкой пересечения прямой SB_1 и прямой, проходящей через точку A_2 параллельно прямой A_1B_1 . Пусть C_2 точка пересечения прямой, проходящей через точку A_2 и параллельной прямой A_1C_1 , и прямой SC_1 . Тогда $\gamma(C_1)=C_2$. Заметим, что прямые A_1A_2 , B_1B_2 , C_1C_2 пересекаются в точке S, а прямые A_1B_1 , A_1C_1 параллельны прямым A_2B_2 , A_2C_2 соответственно, значит, по следствию 1 прямая B_1C_1 параллельна прямой B_2C_2 . Если аналогичным образом определить отображение δ , оставляющее точку S на месте и переводящее точку B_1 в точку B_2 , то $\delta(C_1)$ будет точкой пересечения прямой SC_1 с прямой, проходящей через точку B_2 параллельно прямой B_1C_1 , т. е. будет точкой C_2 . Значит, $\gamma(C_1)=\delta(C_1)=C_2$ и отображения γ и δ совпадают на всех прямых SC_1C_2 , на которых они определены. Но отображение γ определено везде, кроме точек прямой SA_1A_2 , а δ на всех точках плоскости, за исключением точек прямой SB_1B_2 . Значит, определив $\gamma(A)=\delta(A)$, где точка A лежит на прямой SA_1A_2 , получим отображение, определённое на всех точках плоскости.

Докажем, что при данном отображении три точки прямой переходят в три точки, лежащие на одной прямой. Пусть $\gamma(A_1)=A_2$ и l_1 — произвольная прямая, не проходящая через точки A_1 и S. Если прямые l и l_1 пересекаются в точке B_3 , а B_1 , C_1 — другие точки прямой l_1 , пусть $\gamma(B_1)=B_2$, $\gamma(C_1)=C_2$ и $\gamma(B_3)=B_3$. Тогда прямые A_1A_2 , B_1B_2 , C_1C_2 пересекаются в точке S и прямые A_1B_1 , A_1C_1 параллельны прямым A_2B_2 , A_2C_2 соответственно. Следовательно, по следствию 1 прямые B_1C_1 и B_2C_2 параллельны, т. е. пересекаются на прямой l в точке l за исключением, возможно, случая, когда точка l является точкой пересечения прямых l за исключением, возможно, случая, когда точка l является точкой пересечения прямых l за исключением, что l за усключение l за усключение l за усключение l за усключением l за усключен

2. Для любых двух точек $A, B \in M_l$ существует единственное проективное преобразование $\nu \colon M \to M$, называемое параллельным переносом аффинной плоскости M_l на вектор \overline{AB} , которое оставляет на месте все точки прямой l, отображает A в B, а любую прямую, проходящую через точку $S \stackrel{\text{def}}{=} l \cap AB$ переводит в себя, при этом ν представимо в виде суперпозиции двух гомотетий из различных центров.

Пусть l_1 — прямая, проходящая через точки A, B, l_2 — прямая, проходящая через точку S и не совпадающая с прямой l_1 . Выберем на l_2 точку $S_1 \in M_l$, на прямой S_1A возьмём точку $A_1 \in M_l$, не лежащую на прямых l_1 и l_2 . Пусть S_2 — точка пересечения прямой l_2 и прямой A_1B . Пусть γ_{S_1} — гомотетия с центром в точке S_1 , переводящая точку A в точку A_1 , а γ_{S_2} — гомотетия с центром в точке S_2 , отображающая A_1 в B.

Докажем, что $\nu=\gamma_{S_2}\circ\gamma_{S_1}$. Очевидно, что так определённая гомотетия отображает точку A в точку B и оставляет на месте все точки прямой l. Остаётся доказать, что любая прямая, проходящая через точку S, переходит в себя. Понятно, что прямая l_2 переходит в себя. Предположим, что существует прямая l_C , такая что $\nu(l_C) \not\subseteq l_C$, и выберем на ней такую точку C, что $\nu(C)C$ не совпадает с l_C . Тогда точка $D \stackrel{\text{def}}{=} \nu(C)C \cap l_2$ не совпадает с S и переходит при гомотетии ν в себя. Следовательно, D является центром гомотетии ν , что невозможно, так как A переходит в B, но A, B, D не лежат на одной прямой.

Следствие 2. Пусть точки $Q_1,Q_2,Q_3,R_1,R_2,R_3\in M_l$ таковы, что прямые $Q_1R_1,\,Q_2R_2$ и Q_3R_3 параллельны и не совпадают, причём прямые $R_1R_2,\,R_2R_3$ параллельны прямым $Q_1Q_2,\,Q_2Q_3$. Тогда прямая Q_1Q_3 параллельна R_1R_3 .

Предложение 2. В любой проективной плоскости, удовлетворяющей аксиоме (R0), выполняется аксиома (R1).

Доказательство. Пусть l_1 — прямая, проходящая через точку S и параллельная прямой AB, прямая l_2 проходит через точку B и параллельна прямой SA, прямая l_3 параллельна прямой SB и проходит через точку A. Обозначим B'' точку пересечения прямых l_1 и l_2 , а A'' — точку пересечения прямой l_3 и прямой A'B'

Тогда тройки точек (S,A',B), (S,A',B''), (S,A'',B''), (S,A'',B''), (S,A'',B'), (S,A,B') последовательно перекатываются друг в друга. Предпоследний шаг роллинга возможен, так как прямые SA'' и B''B' параллельны по следствию 2, а именно тройки точек (S,A,A'') и (B'',B,B') удовлетворяют его условиям (прямые SB'', AB, A''B, проходящие через соответствующие вершины, параллельны, как и прямые, содержащие соответствующие пары точек троек: прямая l_3 параллельна BB' и прямая SA параллельна l_2).

3. Для любых трёх точек S, A, B, не лежащих на одной прямой аффинной плоскости M_l , и её произвольных гомотетий γ , δ с общим центром S тройка точек $\Big(S,A,\gamma\big(\delta(B)\big)\Big)$ перекатывается в тройку $\Big(S,A,\delta\big(\gamma(B)\big)\Big)$, в частности, $\gamma\circ\delta=\delta\circ\gamma$.

Сначала докажем, что тройку $(S,A,\gamma(B))$ можно перекатить в тройку $(S,\gamma(A),B)$. Для этого надо показать, что прямая AB параллельна прямой $\gamma(A)\gamma(B)$. Предположим, что они пересекаются в точке $S'\notin l$. Тогда $\gamma(S')=S'$, значит, при данной гомотетии сохраняются точки S и S', следовательно, все точки прямой SS' и все точки плоскости, но это противоречит предположению о том, что прямые AB и $\gamma(A)\gamma(B)$ пересекаются. Тройку точек $(S,\delta(A),\gamma(B))$ можно перекатить в тройку $(S,A,\delta(\gamma(B)))$, так как прямая $A\gamma(B)$ параллельна прямой $\delta(A)\delta(\gamma(B))$. Аналогично тройка $(S,\gamma(A),\delta(B))$ перекатывается в тройку $(S,A,\gamma(\delta(B)))$. Заметим, что тройки $(S,\gamma(A),\delta(B))$ и $(S,\delta(A),\gamma(B))$ образуют конфигурацию, указанную в (R1), т. е. точки $S,\gamma(A),\delta(A)$ и $S,\gamma(B),\delta(B)$ коллинеарны, а прямая $\gamma(A)\gamma(B)$ параллельна прямой $\delta(A)\delta(B)$.

Теперь $(S, A, \delta(\gamma(B)))$ можно перекатить в $(S, A, \gamma(\delta(B)))$, так как тройки $(S, A, \delta(\gamma(B)))$, $(S, \delta(A), \gamma(B))$, $(S, \gamma(A), \delta(B))$, $(S, A, \gamma(\delta(B)))$ последовательно перекатываются друг в друга.

Рассмотрим множество гомотетий с одним центром как множество с двумя операциями: суперпозицией и сложением. Суммой гомотетий γ и δ с центром в точке S назовём отображение $\gamma+\delta$, такое что $(\gamma+\delta)(A)=B$, где точка B такова, что $\overline{SB}=\overline{S\gamma(A)}+\overline{S\delta(A)}$. Очевидно, что при данном отображении сохраняется точка S и любая прямая, через неё проходящая. Остаётся доказать, что три точки, лежащие на одной на прямой, переходят в три точки одной прямой. Пусть A, B, C — точки, лежащие на прямой l_1 , не проходящей через точку S. Из определения гомотетий следует, что тройки точек $(\gamma(A), \gamma(B), \gamma(C))$ и $(\delta(A), \delta(B), \delta(C))$ лежат на прямых, параллельных прямой l_1 . Построим точки $(\gamma+\delta)(A_1), (\gamma+\delta)(A_2), (\gamma+\delta)(A_3)$. Для этого параллельно перенесём точку S

в точку S' на прямой $\gamma(A_1)\gamma(A_2)\gamma(A_3)$. Назовём A_1' , A_2' , A_3' результат переноса точек A_1 , A_2 , A_3 соответственно. Тогда прямые $S'\delta(A_1')$, $S'\delta(A_2')$, $S'\delta(A_3')$ параллельны соответственно прямым $S\gamma(A_1)$, $S\gamma(A_2)$, $S\gamma(A_3)$, а точки $\delta(A_1')$, $\delta(A_2')$, $\delta(A_3')$ лежат на прямой, параллельной прямой l_1 . Для получения искомых точек нужно перенести векторы $S'\delta(A_1)$, $S'\delta(A_2)$, $S'\delta(A_3)$ параллельно прямой l_1 так, чтобы их начала попали в точки $\gamma(A_1)$, $\gamma(A_2)$, $\gamma(A_3)$. Но при таком переносе точки $\delta(A_1')$, $\delta(A_2')$, $\delta(A_3')$ двигаются по прямой, на которой лежат, а значит, и результат их переноса будет лежать на одной прямой, параллельной прямой l_1 .

Таким образом, сумма гомотетий также является гомотетией, причём относительно данной операции множество гомотетий с одним центром является группой, и в силу коммутативности сложения векторов абелевой группой. По операции суперпозиция множество гомотетий также группа с единицей, равной тождественному отображению. Обратной для гомотетии с центром в точке S, переводящей точку A в точку B, является гомотетия с центром в точке S, переводящая точку B в точку A. В силу пункта B0 з то коммутативная группа.

Докажем дистрибутивность операций суперпозиции и сложения гомотетий, т. е. выполнение для любой точки $A \in M_l$ соотношения

$$\beta(\gamma + \delta)(A) = \beta(\gamma(A)) + \beta(\delta(A)).$$

В силу коммутативности гомотетий

$$\beta(\gamma(A)) + \beta(\delta(A)) = \gamma(\beta(A)) + \delta(\beta(A)) = (\gamma + \delta)(\beta(A)) = \beta(\gamma + \delta)(A).$$

Множество гомотетий с одним центром является полем относительно операций сложения и суперпозиция.

Заметим, что, доказав лемму, мы доказали больше, а именно следующий результат.

Теорема 2. Пусть точки Q_1 , Q_2 , Q_3 , S таковы, что никакие три из них не лежат на одной прямой. Пусть l_1 , l_2 , l_3 — прямые, проходящие через точку S и параллельные прямым Q_1Q_2 , Q_2Q_3 , Q_1Q_3 соответственно. Возьмём произвольную прямую, параллельную SQ_2 , но с ней не совпадающую. Пусть она пересекает прямые l_1 и l_2 в точках P_1 и P_2 . Тогда точка пересечения прямых, проходящих через точки P_1 и P_2 и параллельных SQ_1 и SQ_3 соответственно, лежит на прямой l_3 .

Введём в нашей плоскости координаты, зафиксировав две прямые l_x и l_y , пересекающиеся в точке O, называемой началом координат, и две точки E_x и E_y на прямых l_x и l_y соответственно. Построим точку P_x пересечения прямой l_x и прямой, проходящей через точку P и параллельной l_y , и точку P_y пересечения l_y и прямой, проходящей через P и параллельной l_x . Пусть x, y — гомотетии с центром в точке O, переводящие точки E_x , E_y в точки P_x , P_y соответственно. Таким образом мы получаем координаты x и y точки P. Каждой точке ставится в соответствие пара (x,y).

Определение. Проективная плоскость называется декартовой, если она дезаргова и её координатное тело коммутативно.

Критерий несжимаемости. Для того чтобы проективная плоскость была декартовой, необходимо и достаточно, чтобы хотя бы в одной аффинной карте M_l выполнялось любое из следующих условий:

- а) в M_l справедлива аксиома (R0);
- б) в M_l справедлива теорема 2.

Теперь докажем, что аксиома аддитивности (R2) является следствием аксиомы несжимаемости (R0).

Определение. Каждой упорядоченной тройке точек (A,B,C) поставим в соответствие число по правилу

$$I(A, B, C) = \det \begin{pmatrix} x_B - x_A & y_B - y_A \\ x_C - x_A & y_C - y_A \end{pmatrix},$$

где (x_A, y_A) , (x_B, y_B) , (x_C, y_C) — координаты точек A, B, C соответственно.

Рассмотрим свойства функционала І.

1. Для любых точек A, B, C выполняются равенства

$$I(A, B, C) = I(B, C, A) = I(C, A, B) =$$

= $-I(A, C, B) = -I(B, A, C) = -I(C, B, A).$

Действительно,

$$I(B, C, A) = \det \begin{pmatrix} x_C - x_B & y_C - y_B \\ x_A - x_B & y_A - y_B \end{pmatrix} = \det \begin{pmatrix} x_C - x_A & y_C - y_A \\ x_A - x_B & y_A - y_B \end{pmatrix} =$$

$$= \det \begin{pmatrix} x_B - x_A & y_B - y_A \\ x_C - x_A & y_C - y_A \end{pmatrix} = I(A, B, C),$$

$$I(A, C, B) = \det \begin{pmatrix} x_C - x_A & y_C - y_A \\ x_B - x_A & y_B - y_A \end{pmatrix} =$$

$$= -\det \begin{pmatrix} x_B - x_A & y_B - y_A \\ x_C - x_A & y_C - y_A \end{pmatrix} = -I(A, B, C).$$

Остальные равенства доказываются аналогично.

2. Если тройку (A,B,C) можно перекатить в тройку (A',B',C'), то I(A,B,C)=I(A',B',C'), т. е. функционал I инвариантен относительно роллинга. И обратно, если I(A,B,C)=I(A',B',C'), то тройку (A,B,C) можно перекатить в тройку (A',B',C').

Достаточно доказать, что I не изменяется при шаге роллинга. Пусть, например, A перекатывается параллельно вектору BC, т. е. к координате точки A прибавляется $c \cdot \overrightarrow{BC} = c(x_C - x_B, y_C - y_B)$. Имеем

$$\begin{split} I(A,B,C) &= I(B,C,A) = \det \begin{pmatrix} x_C - x_B & y_C - y_B \\ x_A - x_B & y_A - y_B \end{pmatrix} = \\ &= \det \begin{pmatrix} x_C - x_B & y_C - y_B \\ x_A + c(x_C - x_B) - x_B & y_A + c(y_C - y_B) - y_B \end{pmatrix} = I(A',B,C), \end{split}$$

где A' — результат перекатывания точки A.

Обратно, по аксиоме (R0) точки A', B' можно перекатить в точки A, B соответственно, а точку C' — на прямую BC. Тогда I(A,B,C)=I(A,B,C'), где $C'=(x_C+c(x_C-x_B),y_C+c(y_C-y_B))$. Имеем

$$I(A, B, C') = \det \begin{pmatrix} x_B - x_A & y_B - y_A \\ x_C + c(x_C - x_B) - x_A & y_C + c(y_C - y_B) - y_A \end{pmatrix} =$$

$$= I(A, B, C) + c \det \begin{pmatrix} x_B - x_A & y_B - y_A \\ x_C - x_B & y_C - y_B \end{pmatrix} =$$

$$= I(A, B, C) + cI(B, C, A) = (c+1)I(A, B, C) = I(A, B, C).$$

Значит, cI(A,B,C)=0 и либо c=0 (тогда C' совпадает с C), либо I(A,B,C)=0 (тогда точки A,B,C,C' лежат на одной прямой и точку C' можно перекатить в точку C).

3. Для любых точек $A,\ B,\ C$ и точки D, лежащей на прямой BC, выполняется равенство

$$I(A, B, D) + I(A, D, C) = I(A, B, C).$$

Действительно,

$$I(A, B, D) + I(A, D, C) = \det \begin{pmatrix} x_B - x_A & y_B - y_A \\ x_D - x_A & y_D - y_A \end{pmatrix} =$$

$$= \det \begin{pmatrix} x_D - x_A & y_D - y_A \\ x_C - x_A & y_C - y_A \end{pmatrix} = \det \begin{pmatrix} x_B - x_C & y_B - y_C \\ x_D - x_A & y_D - y_A \end{pmatrix} =$$

$$= \det \begin{pmatrix} x_A - x_C & y_A - y_C \\ x_B - x_C & y_B - y_C \end{pmatrix} = I(C, A, B) = I(A, B, C).$$

Теперь аксиома аддитивности легко следует из леммы. Так как (A,B,D) можно перекатить в (A',B',D'), то I(A,B,D)=I(A',B',D'). Аналогично I(A,D,C)=I(A',D',C'). Значит, I(A,B,C)=I(A',B',C'), а следовательно, по аксиоме несжимаемости (R0) (A,B,C) можно перекатить в (A',B',C'). Заметим, что предположение в аксиоме аддитивности (R2) о том, что точка D лежит на прямой BC, необязательно.

С точки зрения аксиоматики универсальной алгебры роллинг инвариантной промеры $I\colon M_l \times M_l \times M_l \to K$ задаётся всего тремя тождествами:

(M1) (тождество кососимметричности) для любых точек $A,B,C\in M_l$ выполняются равенства

$$I(A, B, C) = I(B, C, A) = I(C, A, B) =$$

= $-I(A, C, B) = -I(B, A, C) = -I(C, B, A);$

(M2) (тождество аддитивности) для произвольных точек $A,B,C\in M_l$ и точки $D\in M_l$, лежащей на прямой BC, выполняется равенство

$$I(A, B, D) + I(A, D, C) = I(A, B, C)$$
:

(М3) (тождество мультипликативности) для всех точек $S,A,B,C,D\in M_l$ верно равенство

$$\det\begin{pmatrix} I(S,A,B) & I(S,A,D) \\ I(S,C,B) & I(S,C,D) \end{pmatrix} = I(S,A,C) \cdot I(S,B,D).$$

Литература

- [1] Размыслов Ю. П., Герасимова О. В. Rolling simplexes and their commensurability (законы механики как проблема выбора между метрикой и мерой) // Φ ундамент. и прикл. мат. -2010. Т. 16, вып. 3. С. 123-126.
- [2] Холл М. Теория групп. М.: Изд. иностр. лит., 1962.