О примитивных алгебрах Ли

А. А. КУЧЕРОВ, О. А. ПИХТИЛЬКОВА, С. А. ПИХТИЛЬКОВ

Оренбургский государственный университет e-mail: bx24su@yandex.ru, pikhtilkov@mail.ru

УДК 512.554.342+512.554.36

Ключевые слова: примитивная алгебра Ли, примитивный идеал универсальной обёртывающей алгебры Ли, точное неприводимое представление алгебры Ли.

Аннотация

В работе формулируются достаточные условия примитивности алгебры Ли, приводятся примеры примитивных алгебр Ли и алгебры Ли, не являющейся примитивной.

Abstract

A. A. Kucherov, O. A. Pikhtilkova, S. A. Pikhtilkov, On primitive Lie algebras, Fundamentalnaya i prikladnaya matematika, vol. 17 (2011/2012), no. 2, pp. 177—182.

Sufficient conditions for Lie algebra primitiveness and examples of primitive Lie algebras and nonprimitive Lie algebras are given.

1. Введение

Скажем, что алгебра Ли примитивная, если она имеет точное неприводимое представление.

Идеал алгебры Ли назовём примитивным, если фактор-алгебра по нему примитивна.

Ю. А. Бахтурин познакомил одного из авторов работы со следующим примером.

Пример 1. Пусть F[x] — кольцо многочленов над полем F характеристики нуль. Рассмотрим следующие линейные отображения векторного пространства F[x]:

$$a(f(x)) = f'(x), \quad b(f(x)) = x \cdot f(x), \quad e(f(x)) = f(x).$$

Легко проверить соотношение [a,b]=e, где через [x,y] в ассоциативной алгебре обозначено xy-yx.

Обозначим через L линейную оболочку преобразований $a,\,b,\,e.$ Алгебра Ли L является трёхмерной нильпотентной степени 2 примитивной алгеброй.

Этот пример показывает, что даже нильпотентная конечномерная алгебра Ли степени 2 может быть примитивной.

Напомним, что радикалом конечномерной алгебры Ли называется наибольший разрешимый идеал [2].

Фундаментальная и прикладная математика, 2011/2012, том 17, № 2, с. 177—182. © 2011/2012 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

В 1963 г. В. Н. Латышев [5] ввёл новый класс алгебр Ли, которые он назвал специальными по аналогии с йордановыми алгебрами.

Скажем, что алгебра Ли L— специальная алгебра Ли или SPI-алгебра Ли, если существует ассоциативная PI-алгебра A, такая что L вложена в $A^{(-)}$ как алгебра Ли, где $A^{(-)}$ — алгебра Ли, заданная на A с помощью операции коммутирования [x,y]=xy-yx.

Известно, что разрешимый идеал конечномерной алгебры Ли и локально разрешимый идеал специальной алгебры Ли совпадают с первичным радикалом [1].

Парадоксальность примера состоит в том, что радикальная алгебра Ли по отношению к первичному радикалу является примитивной. Напомним, что в ассоциативном случае радикал Джекобсона, а следовательно, и первичный радикал примитивной алгебры равны нулю [7]. Более того, примитивная алгебра является первичной.

Оказалось, что примитивных алгебр Ли достаточно много.

Скажем, что алгебра Ли является артиновой, если любая убывающая цепочка её идеалов стабилизируется.

Справедливы следующие теоремы.

Теорема 1. Пусть L — артинова алгебра Ли над полем, имеющая единственный минимальный идеал. Тогда алгебра Ли L примитивна.

Теорема 2. Пусть L_1 и L_2 — примитивные алгебры Ли, имеющие такие точные неприводимые представления $\varphi_i\colon L_i\to M_i$, что центроиды Δ_i модулей M_i совпадают с основным полем и $\varphi_i(L_i)\cap\Delta_i=0$, где i=1,2. Тогда их прямая сумма $L_1\oplus L_2$ также примитивна.

В 70-х годах прошлого века была известна проблема: является ли универсальная обёртывающая алгебра U(L) полупростой конечномерной алгебры Ли L над полем характеристики нуль примитивной? Наибольших успехов в решении этой проблемы добился $\mathcal K$. Диксмье [4]. Он исследовал не только примитивность универсальной обёртывающей алгебры Ли, но и примитивность отдельных её идеалов.

Очевидна следующая импликация: если U(L) примитивна, то алгебра Ли L также является примитивной. Обратное в общем случае неверно (см. пример 2).

Относительно примитивности полупростых алгебр Ли справедливы следующие утверждения.

Следствие 1. Полупростые конечномерные алгебры Ли над алгебраически замкнутым полем характеристики нуль примитивны.

Скажем, что простая алгебра Ли L центральная простая, если центроид представления $\mathrm{ad}\colon L \to \mathrm{Ad}\,L$ совпадает с основным полем. Центральными простыми алгебрами над полем характеристики нуль являются, например, простые конечномерные алгебры Ли больших классов A, B, C, D [3].

Применяя теорему 2, получим следующее утверждение.

Следствие 2. Если полупростая конечномерная алгебра Ли над полем характеристики нуль раскладывается в прямую сумму центральных простых алгебр, то она является примитивной.

В [6] была доказана примитивность свободной ассоциативной алгебры Ли с конечным или счётным множеством образующих. Свободная ассоциативная алгебра является универсальной обёртывающей свободной алгебры Ли. Следовательно, свободная алгебра Ли является примитивной.

Все коммутативные алгебры Ли над полями \mathbb{Z}_p , где p — простое число, и \mathbb{Q} также являются примитивными. Бесконечномерные коммутативные алгебры Ли являются примитивными над любыми полями (см. пример 3).

Мы показываем, что конечномерная абелева алгебра размерности больше 1 над алгебраически замкнутым полем не является примитивной (см. пример 4).

Мы приводим пример неартиновой некоммутативной алгебры Ли, являющейся примитивной (см. пример 6).

В заключение сформулируем следующие вопросы, ответ на которые неизвестен авторам:

- 1) существует ли неабелева алгебра Ли, которая не является примитивной?
- 2) всегда ли полупростая алгебра Ли (первичный радикал равен нулю) является примитивной?

2. Примитивность некоторых алгебр Ли

Лемма 1. Пересечение примитивных идеалов произвольной алгебры Ли равно нулю.

Доказательство. Обозначим через X пересечение аннуляторов неприводимых представление алгебры Π и L или саму алгебру L, если их нет. Легко проверить, что модуль M неприводим над алгеброй Π и L тогда и только тогда, когда M является U(L)-неприводимым модулем, где U(L) — универсальная обёртывающая алгебры Π и L. Это означает, что $X = L \cap J(U(L))$. Известно, что J(U(L)) = 0 для произвольной алгебры Π и L (см., например, [4, с. 126]). Следовательно, множество X, равное пересечению примитивных идеалов алгебры Π и L, равно 0, что завершает доказательство леммы.

Пример 2. Пусть $L=\mathbb{C}-$ двумерная абелева алгебра Ли над \mathbb{R} . Представление L умножениями на \mathbb{C} является точным неприводимым. Следовательно, алгебра Ли L примитивна. Её универсальная обёртывающая, изоморфная алгебре многочленов над \mathbb{R} от двух коммутирующих переменных, не является примитивной.

Согласно теореме Капланского [7] примитивная PI-алгебра изоморфна алгебре матриц Δ_n для некоторого тела Δ . В силу коммутативности примитивная алгебра многочленов от двух переменных должна быть полем, что не выполнено.

Пример 3. Пусть L- абелева алгебра Ли над полем F. Если размерность $\dim_F L=n$ конечна и существует алгебраический элемент α степени n над F, то рассмотрим простое алгебраическое расширение $F(\alpha)$. Поле $F(\alpha)$ является абелевой алгеброй Ли размерности n и имеет точное неприводимое представление.

K числу полей, имеющих алгебраические элементы любой степени, относятся поле рациональных чисел и кольцо классов вычетов \mathbb{Z}_p , где p — простое число.

Если алгебра L над F бесконечномерна, рассмотрим поле K той же размерности над F. Оно тоже является реализацией абелевой примитивной алгебры Ли над F.

Пример 4. Покажем, что абелева алгебра $L = F \oplus \ldots \oplus F$ размерности k, где F — алгебраически замкнутое поле, $k \geqslant 2$, не является примитивной.

Универсальная обёртывающая алгебра U(L) алгебры Ли L изоморфна кольцу многочленов от k коммутирующих переменных: $U(L)=F[x_1,\ldots,x_k]$. Примитивность алгебры Ли L означает, что в U(L) существует максимальный регулярный правый идеал I, не содержащий переменные x_1,\ldots,x_k [7]. Алгебра U(L) коммутативна и содержит 1. Следовательно, идеал I является максимальным и фактор-алгебра H=U(L)/I является полем. Можно считать, что H — расширение поля F.

Отметим, что алгебра H порождена образами образующих U(L). Следовательно, элементы $\bar{x}_1,\dots,\bar{x}_k$ не могут быть трансцендентными — алгебра рациональных функций не может быть порождена как кольцо конечным числом элементов

Мы установили, что H — алгебраическое расширение поля F и, следовательно, H=F. Получили, что $x_1,\ldots,x_k\in I$, — противоречие. Следовательно, алгебра L не является примитивной.

Теорема 1 следует из леммы 1 и того, что любой ненулевой примитивный идеал артиновой алгебры Ли содержит единственный минимальный.

Доказательство теоремы 2. Пусть алгебры Ли L_1 и L_2 имеют такие точные неприводимые представления в алгебре эндоморфизмов модулей M_1 и M_2 , что их центроиды совпадают с основным полем F.

Рассмотрим модуль $M_1 \otimes_F M_2$ над $\operatorname{End}(M_1) \otimes_F \operatorname{End}(M_2)$ и вложения алгебр Ли $\varphi_i \colon L_i \to \operatorname{End}(M_i), \ i=1,2.$

Построим два отображения алгебр L_1 и L_2 в алгебру $\operatorname{End}(M_1)\otimes_F\operatorname{End}(M_2)$: $\varphi_1'(l_1)=\varphi_1(l_1)\otimes 1$ и $\varphi_2'(l_2)=1\otimes \varphi(l_2),\ l_1\in L_1,\ l_2\in L_2$. Тогда $\varphi_1+\varphi_2$ задаёт вложение $L_1\oplus L_2$ в $\left(\operatorname{End}(M_1)\otimes_F\operatorname{End}(M_2)\right)^{(-)}$.

Покажем, что $M_1\otimes_F M_2$ является $(L_1\oplus L_2)$ -неприводимым модулем. Рассмотрим ненулевой элемент $x\in M_1\otimes_F M_2$. Можно считать, что он представлен в виде

$$x = \sum_{i=1}^{k} \sum_{j=1}^{l} \alpha_{i,j} m_i \otimes n_j,$$

где хотя бы одно $\alpha_{i,j}$ отлично от 0 и элементы $m_1,\ldots,m_k\in M_1$ и $n_1,\ldots,n_l\in M_2$ линейно независимы над центроидами соответствующих модулей и, следовательно, над полем F. Без ограничения общности можно считать, что $\alpha_{1,1}\neq 0$.

Обозначим через $A(L_i)$ ассоциативные алгебры, порождённые в $\operatorname{End}(M_1)$ множествами L_i , где i=1,2.

Возьмём произвольный элемент $u\otimes v\in M_1\otimes_F M_2$. Согласно теореме плотности Джекобсона [7] существуют элементы $a\in A(L_1)$ и $b\in A(L_2)$, такие что

$$am_1 = \frac{1}{\alpha_{1,1}}u$$
, $am_2 = 0, \dots$, $am_k = 0$, $bn_1 = v$, $bn_2 = 0, \dots$, $bn_l = 0$.

Тогда $(a\otimes 1)(1\otimes b)x=u\otimes v$, что завершает доказательство неприводимости модуля $M_1\otimes_F M_2$ и примитивности алгебры $L_1\oplus L_2$.

Условие $\varphi_i(L_i)\cap \Delta_i=\varnothing$, где i=1,2, требуется для того, чтобы $a\otimes 1$ и $1\otimes b$ не могли совпадать.

Отметим, что в общем случае тензорное произведение неприводимых модулей может не быть примитивным, что показывает следующий пример.

Пример 5. Мы уже использовали то, что поле комплексных чисел является двумерной абелевой примитивной алгеброй Ли над \mathbb{R} . Рассмотрим модуль $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ над алгеброй Ли $\mathbb{C} \oplus \mathbb{C}$. Отметим, что ассоциативная подалгебра $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ алгебры $\mathrm{End}_{\mathbb{R}}(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C})$, порождённая множествами $\mathbb{C} \otimes 1$ и $1 \otimes \mathbb{C}$, содержит также элементы $1 \otimes 1$, $i \otimes i$. Покажем, что модуль $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ не является неприводимым.

Элементы $1\otimes 1, \ 1\otimes i, \ i\otimes 1, \ i\otimes i$ образуют базис $\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}$ над \mathbb{R} . Рассмотрим подпространство $M\subseteq\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}$ над \mathbb{R} , порождённое элементами $1\otimes 1+i\otimes i, \ 1\otimes i-i\otimes 1$, и подпространство N, порождённое элементами $1\otimes 1-i\otimes i, \ 1\otimes i+i\otimes 1$. Легко проверить, что M и N являются подмодулями $\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}$ над $\mathbb{C}\oplus\mathbb{C}$ и $\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}=M\oplus N$. Следовательно, модуль $\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}$ не является неприводимым над алгеброй Ли $\mathbb{C}\oplus\mathbb{C}$.

Мы уже отмечали, что алгебра Ли $(\mathbb{C} \oplus \mathbb{C})^{(-)}$ не является примитивной. Пример 5 даёт одно из представлений алгебры $(\mathbb{C} \oplus \mathbb{C})^{(-)}$, не являющееся неприводимым.

Доказательство следствия 1. Пусть L- простая конечномерная алгебра Ли над алгебраически замкнутым полем F характеристики нуль. Рассмотрим представление $\mathrm{ad}\colon L \to \mathrm{Ad}\,L^{(-)}$. Алгебра Ли L, рассматриваемая как модуль, является неприводимым L-модулем. Центроид этого представления Δ является полем (см., например, [3, с. 314]). Из конечномерности L следует, что $\Delta-$ конечное расширение поля F. Конечным расширением алгебраически замкнутого поля может быть только оно само. Следовательно, ad является центральным представлением алгебры Ли L. Из простоты L получим, что $\mathrm{ad}(L)\cap \Delta=0$.

Выполнены условия теоремы 2. Осталось использовать разложение полупростой конечномерной алгебры Ли над полем характеристики нуль в прямую сумму простых [2,3].

Пример 6. Пусть алгебра $\mathit{Лu}$ G является прямой суммой счётного количества алгебр, изоморфных алгебре L из примера 1 над полем \mathbb{Q} . Покажем, что она является примитивной. Очевидно, что G не является артиновой алгеброй $\mathit{Лu}$.

Пусть $\alpha_1,\alpha_2,\ldots,\alpha_n,\ldots$ — различные иррациональные алгебраические числа, $M=F[x_1,x_2,\ldots,x_n,\ldots]$ — кольцо многочленов от счётного числа коммутирующих переменных с коэффициентами из поля $F=Q(\alpha_1,\alpha_2,\ldots,\alpha_n,\ldots)$. Рассмотрим следующие линейные отображения векторного пространства M:

$$a_k(f) = \frac{\partial f}{\partial x_k}, \quad b_k(f) = \alpha_k x_k \cdot f, \quad e_k(f) = \alpha_k f, \quad f \in M.$$

Легко проверить соотношение $[a_k,b_k]=e_k$. Рассмотрим представления $\varphi_k\colon L o (\operatorname{End}_{\mathbb Q} M)^{(-)},$ заданные соотношениями

$$\varphi_k(a) = a_k, \quad \varphi_k(b) = b_k, \quad \varphi_k(e) = e_k, \quad k = 1, 2, \dots$$

Гомоморфизм $\varphi_1+\varphi_2+\ldots+\varphi_n+\ldots$ задаёт представление алгебры Ли G в $\operatorname{End}_{\mathbb O} M^{(-)}.$

Проверка того, что M является неприводимым G-модулем, предоставляется читателю.

Аналогично можно показать, что прямая сумма конечного числа алгебр, изоморфных алгебре L из примера 1 над полем $\mathbb Q$, является примитивной алгеброй Ли.

Литература

- [1] Бейдар К. И., Пихтильков С. А. Первичный радикал специальных алгебр Ли // Фундамент. и прикл. мат. 2000. Т. 6, вып. 3. С. 643-648.
- [2] Бурбаки Н. Группы и алгебры Ли (главы I—III). М.: Мир, 1976.
- [3] Джекобсон Н. Алгебры Ли. М.: Мир, 1964.
- [4] Диксмье Ж. Универсальные обёртывающие алгебры. М.: Мир, 1978.
- [5] Латышев В. Н. Об алгебрах Ли с тождественными соотношениями // Сиб. мат. журн. 1963. Т. 4, № 4. С. 821—829.
- [6] Пихтильков С. А. Примитивность свободной ассоциативной алгебры с конечным числом образующих // Успехи мат. наук. 1974. 1.00 1. С. 183-184.
- [7] Херстейн И. Некоммутативные кольца. М.: Мир, 1972.