Простые решёточные матрицы

В. Е. МАРЕНИЧ

Мурманский государственный педагогический университет e-mail: vmarenich@yandex.ru

УДК 512.64

Ключевые слова: решёточные матрицы, простые матрицы.

Аннотация

В работе рассмотрены свойства простых решёточных матриц над цепями, над прямым произведением цепей, над булеаном и над булевыми решётками.

Abstract

 $V.\ E.\ Marenich,\ Prime\ lattice\ matrices,\ Fundamentalnaya\ i\ prikladnaya\ matematika,\ vol.\ 17\ (2011/2012),\ no.\ 4,\ pp.\ 167-179.$

We consider properties of prime lattice matrices over the following lattices: chains, direct sums of chains, Boolean lattices.

Введение

Данная работа — продолжение статьи [2], в которой рассмотрены простые матрицы над дистрибутивными решётками и

- доказано, что не существует простых матриц порядка 2;
- доказано существование простых матриц над конечными решётками;
- найдены условия существования простых $(n \times n)$ -матриц, $n \geqslant 3$;
- рассмотрены свойства простых матриц.

В данной работе изучаются свойства простых решёточных матриц над цепями, над прямым произведением цепей, над булеаном и над булевыми решётками.

Простые матрицы над двухэлементной решёткой изучались в [1,5-10,12,13,15,16]. Свойства простых $\{\tilde{0},\tilde{1}\}$ -булевых матриц рассматривались в [3,14].

Предварительные сведения

Пусть $(P, \land, \lor, \leqslant)$ — решётка с нулём $\tilde{0}$ и единицей $\tilde{1}$ (далее эту решётку будем обозначать P). Будем пользоваться обозначениями и терминологией работы [2].

Обозначим $P^{m \times n}$ множество всех решёточных матриц размера $m \times n$, где $n,m \geqslant 1$.

Фундаментальная и прикладная математика, 2011/2012, том 17, № 4, с. 167—179. © 2011/2012 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

Матрица ${}^{\mathrm{t}}A$ получена из матрицы A транспонированием.

Обозначим S_n множество всех подстановок степени n. Квадратная $\{\tilde{0},\tilde{1}\}$ -матрица называется nodстановочной матрицей (матрицей перестановки, матрицей подстановки, перестановочной матрицей), если в ней каждый столбец и каждая строка содержат только одну единицу $\tilde{1}$.

Подстановочная матрица $M(\pi)=(m(\pi)_{ij})$ порядка n определяется подстановкой $\pi\in \mathbf{S}_n$:

$$m(\pi)_{ij} = \begin{cases} \tilde{1}, & j = \pi(i), \\ \tilde{0}, & j \neq \pi(i), \end{cases}$$
 $i, j = 1, \dots, n.$

Матрицы $A,B\in P^{m\times n}$ называются nodc становочно эквивалентными, если существуют такие подстановочные матрицы $M(\pi),M(\sigma),$ что $A=M(\pi)BM(\sigma),$ другими словами, если матрица B получена перестановкой строк и столбцов матрицы A.

Матрица A называется вполне неразложимой, если она не содержит нулевых $(s \times t)$ -подматриц, где $s, t \geqslant 1, s+t=n$.

Если каждый элемент матрицы $A \in P^{m \times n}$ имеет дополнение, то матрица $\bar{A} \in P^{m \times n}$, где $\bar{a}_{ij} = \overline{a_{ij}}$ для всех $i = 1, \dots, m, \ j = 1, \dots, n$, называется матрицей дополнений.

 $\dot{\it E}$ диничная матрица — это матрица $E_{n \times n} = (e_{ij})_{n \times n} \in P^{n \times n}$, где

$$e_{ij} = \begin{cases} \tilde{1}, & i = j, \\ \tilde{0}, & i \neq j. \end{cases}$$

Матрица $A\in P^{n\times n}$ называется обратимой над решёткой P, если существует матрица $B\in P^{n\times n}$, такая что $AB=E_{n\times n}$ (или $BA=E_{n\times n}$). Обратимость матриц описывается следующими теоремами.

Теорема (теорема Гивеона—Скорнякова об обратимости матриц над дистрибутивными решётками [4,11]). Матрица $A \in P^{n \times n}$ обратима тогда и только тогда, когда

$$A \cdot {}^{t}A = {}^{t}A \cdot A = E_{n \times n}.$$

Теорема (теорема Скорнякова об изоморфизме [4]). Группа обратимых матриц совпадает с группой подстановочных матриц тогда и только тогда, когда только нуль $\tilde{0}$ и единица $\tilde{1}$ имеют дополнение в решётке P.

Матрица A называется npocmoй над решёткой P, если она не является обратимой и из равенства A=BC, где $B,C\in P^{n\times n}$, следует, что B или C — обратимая матрица.

Если A_1, A_2, \ldots, A_k — квадратные матрицы порядков n_1, \ldots, n_k соответственно, то определена блочно-диагональная матрица

$$A_1 \oplus A_2 \oplus \ldots \oplus A_k = \begin{pmatrix} A_1 & & & 0 \\ & A_2 & & \\ 0 & & \ddots & \\ & & & A_k \end{pmatrix}$$

порядка $n=n_1+n_2+\ldots+n_k$, где 0—нулевые матрицы. Матрицу $A_1\oplus A_2\oplus\ldots\oplus A_k$ называют nрямой суммой матриц A_1,A_2,\ldots,A_k . Определим $\mathrm{per}(A)$ —перманент матрицы $A\in P^{n\times n}$ —равенством

$$\operatorname{per}(A) = \bigvee_{\pi \in S_n} (a_{1\pi(1)} \wedge \ldots \wedge a_{n\pi(n)}).$$

1. Простые матрицы над цепями

Пусть $(P, \land, \lor, \leqslant)$ — цепь с нулём $\tilde{0}$ и единицей $\tilde{1}$.

Из [2, теорема 1 пункта «Вполне неразложимые простые решёточные матрицы»] получаем следующее уточнение для цепей.

Теорема 1.1. Пусть $A \in P^{n \times n}$ — простая матрица. Справедливо одно из следующих утверждений:

- 1) матрица A вполне неразложимая;
- 2) матрица А перестановочно эквивалентна блочной матрице

$$\begin{pmatrix} B_{11} & 0_{t \times s} \\ 0_{s \times t} & E_{s \times s} \end{pmatrix} = B_{11} \oplus E_{s \times s},$$

где B_{11} — вполне неразложимая простая $(t \times t)$ -матрица, $1 \leqslant s, t \leqslant n-1$, s+t=n.

Из теоремы 1.1 выводим следующее утверждение.

Теорема 1.2. Пусть $1\leqslant t\leqslant n$. Если $B\in P^{t\times t}$ — простая матрица, то прямая сумма $B\oplus E_{(n-t)\times (n-t)}$ — простая $(n\times n)$ -матрица.

Из [2, теорема 1 пункта «Свойства простых решёточных матриц»] получаем следующее утверждение.

Теорема 1.3. Каждая строка и каждый столбец простой матрицы содержит нуль $\tilde{0}$ и единицу $\tilde{1}$.

Пусть

$$S = \{s_0, s_1, \dots, s_p\} \subseteq P, \quad \tilde{0} = s_0 < s_1 < s_2 < \dots < s_p = \tilde{1}. \tag{1}$$

Определим функцию $\Im_S \colon P \to S$. Для всех $a \in P$ положим

$$\Im_S(a) = egin{cases} s_0, & ext{ если } a = \widetilde{0}, \\ s_t, & ext{ если } s_{t-1} < a \leqslant s_t, \ t=1,2,\ldots,p. \end{cases}$$

Заметим, что \Im_S — оператор замыкания решётки P. Для любых элементов $a,b\in P$ справедливы равенства

$$\Im_S(a \vee b) = \Im_S(a) \vee \Im_S(b), \quad \Im_S(a \wedge b) = \Im_S(a) \wedge \Im_S(b).$$

Для каждой матрицы $A \in P^{m \times n}$ определим матрицу

$$\Im_S(A) = (\Im_S(a_{ij}))_{m \times n}.$$

Функция $\Im_S \colon P^{m \times n} \to P^{m \times n}$ — оператор замыкания решётки $(P^{m \times n}, \wedge, \vee, \leqslant)$.

Если $S=\{\tilde{0},\tilde{1}\}$, то матрица $\Im_S(A)$ получена заменой всех элементов матрицы A, отличных от нуля $\tilde{0}$, на единицу $\tilde{1}$.

Рассмотрим свойства функции \Im_S .

Лемма 1.1. Справедливы следующие утверждения.

1. Для любых матриц $A,B \in P^{m \times n}$

$$\Im_S(A+B) = \Im_S(A) + \Im_S(B), \quad \Im_S(A \wedge B) = \Im_S(A) \wedge \Im_S(B).$$

2. Для любых матриц $A \in P^{m \times n}$, $B \in P^{n \times k}$

$$\Im_S(AB) = \Im_S(A)\Im_S(B).$$

3. Для любой матрицы $A \in P^{m \times n}$ и любого $\lambda \in P$

$$\Im_S(\lambda A) = \Im_S(\lambda)\Im_S(A).$$

4. Для любых $w_1,w_2,\ldots,w_k\in P^{m\times 1}$ и любых $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$

$$\Im_S(\lambda_1 w_1 + \lambda_2 w_2 + \ldots + \lambda_k w_k) =$$

$$= \Im_S(\lambda_1) \Im_S(w_1) + \Im_S(\lambda_2) \Im_S(w_2) + \ldots + \Im_S(\lambda_k) \Im_S(w_k). \quad \Box$$

Лемма 1.2. Пусть $A \in P^{n \times n}$. Справедливы следующие утверждения.

- 1. Если матрица A обратима над цепью P, то и матрица $\Im_S(A)$ обратима над цепью P.
- 2. Если матрица $\Im_S(A)$ обратима над цепью P, то

$$A = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) M(\pi)$$

для некоторой подстановочной матрицы $M(\pi)$ и некоторых элементов $\lambda_1, \lambda_2, \ldots, \lambda_n \in P, \lambda_1, \lambda_2, \ldots, \lambda_n > \tilde{0}$.

Доказательство. Докажем утверждение 2. Пусть $\Im_S(A)$ — обратимая матрица. Тогда $\Im_S(A)$ — подстановочная матрица. Пусть $\Im_S(A) = M(\pi)$. Из неравенства $A \leqslant \Im_S(A)$ следует, что матрица $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n) M(\pi)$ имеет нужный вид.

Пусть $(S, \land, \lor, \leqslant)$ — цепь, где множество S определено формулой (1). Рассмотрим признак простоты матриц.

Теорема 1.4. Пусть каждая строка и каждый столбец матрицы $A \in P^{n \times n}$ содержит единицу $\tilde{1}$. Если $\Im_S(A)$ — простая матрица над цепью S, то A — простая матрица над цепью P.

Доказательство. Пусть $\Im_S(A)$ — простая матрица над цепью $S,\ A=BC,$ где $B,C\in P^{n\times n}$. Докажем, что матрица A не является обратимой. Если матрица A обратима, то по теореме Скорнякова об изоморфизме A — подстановочная матрица и $\Im_S(A)=A$ — подстановочная матрица. Получили противоречие.

Имеем $\Im_S(A) = \Im_S(B)\Im_S(C)$. Так как $\Im_S(A)$ — простая матрица над цепью S, то одна из матриц $\Im_S(B)$ или $\Im_S(C)$ обратима.

Пусть обратима матрица $\Im_S(B)$. Тогда

$$B = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) M(\pi)$$

для некоторой подстановочной матрицы $M(\pi)$ и некоторых $\lambda_1,\lambda_2,\dots,\lambda_n\in P,$ $\lambda_1,\lambda_2,\dots,\lambda_n>\tilde{0}.$

Если существует $\lambda_i < \tilde{1}$, то из равенства

$$A = BC = \operatorname{diag}(\lambda_1, \dots, \lambda_n) M(\pi) C$$

получаем, что никакой элемент строки $A_{(i)}$ не превосходит $\lambda_i < \tilde{1}$ — противоречие.

Доказано, что $B=M(\pi)$. Значит, B — обратимая матрица, A — простая матрица над цепью P.

Пусть

$$Set(A) = \{a_{ij} \mid i = 1, 2, \dots, m, j = 1, 2, \dots, n\}.$$

Следствие 1.1. Пусть $A \in P^{n \times n}$, $S = \mathrm{Set}(A) \cup \{\tilde{0}, \tilde{1}\}$. Матрица A проста над цепью P тогда и только тогда, когда она проста над цепью S.

Доказательство. Пусть матрица A проста над цепью P. Ясно, что матрица $\Im_S(A) = A$ не является обратимой над цепью S. Если матрица $\Im_S(A)$ не является простой над цепью S, то существуют необратимые $B, C \in S^{n \times n}$, такие что $A = \Im_S(A) = BC$ — противоречие.

Следствие 1.1 сводит задачу нахождения простых матриц над бесконечными цепями к задаче нахождения простых матриц над конечными цепями.

Следствие 1.2. Пусть $A \in P^{n \times n} - \{\tilde{0}, \tilde{1}\}$ -матрица. Матрица A проста над решёткой $\{\tilde{0}, \tilde{1}\}$ тогда и только тогда, когда она проста над цепью P.

Приведем примеры простых матриц над цепями.

Пример 1.1. Пусть $n\geqslant 3$ и $\lambda_1,\lambda_2,\ldots,\lambda_n\in P$ такие, что $\tilde{0}<\lambda_1,\lambda_2,\ldots,\lambda_n\leqslant \tilde{1}.$ Если в матрице

$$C(n,2,\lambda) = \begin{pmatrix} \tilde{1} & \lambda_1 & \tilde{0} & \dots & \tilde{0} & \tilde{0} \\ \tilde{0} & \tilde{1} & \lambda_2 & \dots & \tilde{0} & \tilde{0} \\ \dots & \dots & \dots & \dots & \dots \\ \tilde{0} & \tilde{0} & \tilde{0} & \dots & \tilde{1} & \lambda_{n-1} \\ \lambda_n & \tilde{0} & \tilde{0} & \dots & \tilde{0} & \tilde{1} \end{pmatrix}$$

заменить все элементы $\lambda_1,\lambda_2,\ldots,\lambda_{n-1}$ единицей $\tilde{1},$ то получим циркулянт C(n,2).

Известно [13], что циркулянт C(n,2) — простая матрица над решёткой $\{\tilde{0},\tilde{1}\}$. Значит, $C(n,2,\lambda)$ — простая матрица над цепью P.

Доказанные утверждения позволяют найти все простые (3×3) -матрицы.

Теорема 1.5. Справедливы следующие утверждения.

1. Каждая матрица вида

$$\begin{pmatrix} \tilde{0} & * & * \\ * & \tilde{0} & * \\ * & * & \tilde{0} \end{pmatrix}, \tag{2}$$

где * — это элементы, не равные нулю, такие что каждая строка и каждый столбец матрицы (2) содержат единицу $\tilde{1}$, является простой.

2. Каждая простая (3×3) -матрица подстановочно эквивалентна матрице вида (2).

Доказательство. Докажем утверждение 1. Если A — матрица вида (2), то для множества $S=\{\tilde{0},\tilde{1}\}$ матрица $\Im_S(A)=\overline{E_{3\times 3}}$ простая над цепью S. Поэтому A — простая матрица над цепью P.

Докажем утверждение 2. Каждая простая матрица $A \in P^{3 \times 3}$ является вполне неразложимой. Поэтому каждая строка и каждый столбец матрицы A содержат ровно один нуль $\tilde{0}$. Каждая строка и каждый столбец матрицы (2) содержат единицу $\tilde{1}$. Значит, матрица A подстановочно эквивалентна матрице вида (2).

Следствие 1.3. Перманенты простых (3×3) -матриц над цепями могут принимать любые ненулевые значения.

Доказательство. Из теоремы 1.5 следует, что

$$A = \begin{pmatrix} \tilde{0} & \tilde{1} & \tilde{1} \\ \tilde{1} & \tilde{0} & \lambda \\ \tilde{1} & \lambda & \tilde{0} \end{pmatrix} -$$

простая (3×3) -матрица для любого λ , $\tilde{0} < \lambda \leqslant \tilde{1}$. Имеем $\operatorname{per}(A) = \lambda$.

2. Прямое произведение матриц

Пусть $\{P_z \mid z \in I\}$ — произвольное семейство множеств, проиндексированное элементами множества индексов I. Определим декартово произведение множеств

$$P = \times \prod_{z \in I} P_z$$

как семейство всех функций $f\colon I\to \bigcup_{z\in I}P_z$, для которых $f(z)\in P_z$ для всех $z\in I$. Будем называть f(z) проекцией функции f на множество P_z и писать $\mathrm{pr}_z(f)=f(z).$

Если на каждом множестве P_z определён частичный порядок \leqslant , то и на декартовом произведении P определён частичный порядок \leqslant . Неравенство $f \leqslant g$

означает, что $\operatorname{pr}_z(f)\leqslant \operatorname{pr}_z(g)$ для всех $z\in I$. Частично упорядоченное множество (P,\leqslant) называется прямым произведением частично упорядоченных множеств $\{P_z\mid z\in I\}.$

Если каждое из множеств P_z образует решётку с решёточными операциями пересечения \wedge и объединения \vee , то прямое произведение $P = \times \prod_{z \in I} P_z$ является решёткой, операции пересечения \wedge и объединения \vee в которой определены «покомпонентно». Другими словами, $f \wedge g = h$ означает, что $\operatorname{pr}_z(f) \wedge \operatorname{pr}_z(g) = \operatorname{pr}_z(h)$ для всех $z \in I$, $f \vee g = q$ означает, что $\operatorname{pr}_z(f) \vee \operatorname{pr}_z(g) = \operatorname{pr}_z(h)$ для всех $z \in I$.

Полученная решётка P называется *прямым произведением решёток* $P_z, z \in I$. Для любой матрицы $A \in P^{m \times n}$ определены матрицы

$$\operatorname{pr}_{z}(A) = (\operatorname{pr}_{z}(a_{ij}))_{m \times n}, \quad z \in I.$$

Матрица $\operatorname{pr}_z(A)$ называется *проекцией матрицы* A на множество $P_z^{m \times n}$. Будем говорить, что матрица A есть прямое произведение матриц $\operatorname{pr}_z(A), \ z \in I,$ и писать

$$A = \times \prod_{z \in I} \operatorname{pr}_z(A).$$

Заметим, что для любых матриц $A,B\in P^{m\times n}$ равенство A=B равносильно тому, что $\operatorname{pr}_z(A)=\operatorname{pr}_z(B)$ для всех $z\in I$.

Справедливы следующие свойства матричных проекций:

— для любых матриц $A,B\in P^{m\times n}$ и любых $\lambda\in P,\,z\in I$

$$\operatorname{pr}_{z}(A+B) = \operatorname{pr}_{z}(A) + \operatorname{pr}_{z}(B), \quad \operatorname{pr}_{z}(A \wedge B) = \operatorname{pr}_{z}(A) \wedge \operatorname{pr}_{z}(B),$$
$$\operatorname{pr}_{z}(\lambda A) = \operatorname{pr}_{z}(\lambda)\operatorname{pr}_{z}(A);$$

— для любых матриц $A \in P^{m \times n}$, $B \in P^{n \times k}$ и любых $z \in I$

$$\operatorname{pr}_{z}(AB) = \operatorname{pr}_{z}(A)\operatorname{pr}_{z}(B);$$

— для любой матрицы $A \in P^{n \times n}$ и любого $z \in I$

$$\operatorname{pr}_{z}(\operatorname{per}(A)) = \operatorname{per}(\operatorname{pr}_{z}(A)).$$

Матрица A делится на матрицу B слева (или справа) тогда и только тогда, когда матрица $\operatorname{pr}_z(A)$ делится на матрицу $\operatorname{pr}_z(B)$ слева (или справа) для всех $z \in I$.

Пример 2.1. Пусть P- прямое произведение решёток $\{P_z \mid z \in I\}$ с нулём $\tilde{0}$ и единицей $\tilde{1}, E_{n \times n} \in P^{n \times n}-$ единичная матрица. Тогда для всех $z \in I$ $\mathrm{pr}_z(E_{n \times n})-$ единичная матрица.

Пример 2.2. Пусть $P={
m Div}(12)=\{1,2,4\} imes\{1,3\}$ — решётка делителей числа 12. Для матрицы

$$A = \begin{pmatrix} 1 & 4 & 2 \\ 1 & 3 & 6 \\ 3 & 12 & 3 \end{pmatrix} \in P^{3 \times 3}$$

имеем

$$A = \begin{pmatrix} 1 & 4 & 2 \\ 1 & 1 & 2 \\ 1 & 4 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix}.$$

3. Простые матрицы

над прямым произведением решёток

Пусть решётка P — прямое произведение дистрибутивных решёток $P_z,\,z\in I,$ с нулём $\tilde{0}$ и единицей $\tilde{1}.$

Рассмотрим критерий простоты матрицы над произведением решёток.

Теорема 3.1. Пусть $A \in P^{n \times n}$. Следующие утверждения равносильны.

- 1. Матрица А является простой над решёткой Р.
- 2. Существует индекс $w \in I$, такой что проекция $\operatorname{pr}_w(A)$ является простой матрицей над решёткой P_w , а для любого индекса $u \neq w$ проекция $\operatorname{pr}_u(A)$ является обратимой матрицей над решёткой P_u .

Доказательство. Заметим, что матрица обратима тогда и только тогда, когда все её проекции обратимы.

Докажем импликацию $1\Longrightarrow 2$. Пусть A — простая матрица над решёткой P. Предположим, что все проекции матрицы A обратимы. Тогда A — обратимая матрица. Получили противоречие. Значит, существует хотя бы одна необратимая проекция матрицы A.

Предположим, что существуют две необратимые проекции матрицы A. Пусть $\operatorname{pr}_w(A)$ и $\operatorname{pr}_u(A)$ — необратимые матрицы над P_w и P_u соответственно, $u \neq w$. Рассмотрим матрицы A' и A'', заданные следующими условиями:

$$\operatorname{pr}_z(A') = \begin{cases} \operatorname{pr}_z(A), & \text{если } z \neq u, \\ E_u, & \text{если } z = u, \end{cases} \qquad \operatorname{pr}_z(A'') = \begin{cases} E_z, & \text{если } z \neq u, \\ \operatorname{pr}_u(A), & \text{если } z = u. \end{cases}$$

Из равенств $\operatorname{pr}_z(A)=\operatorname{pr}_z(A')\operatorname{pr}_z(A'')$ для любого $z\in I$ следует, что A=A'A''. Матрица A' имеет необратимую проекцию $\operatorname{pr}_w(A),\ w\neq u.$ Матрица A'' имеет необратимую проекцию $\operatorname{pr}_u(A).$ Поэтому матрицы A' и A'' необратимы, т. е. матрица A раскладывается в произведение необратимых матриц, что невозможно, так как A — простая матрица над решёткой P. Получили противоречие. Доказано, что существует только одна необратимая проекция матрицы A. Ясно, что она является простой.

Докажем импликацию $2\Longrightarrow 1$. Пусть $\operatorname{pr}_w(A)$ — единственная простая проекция матрицы A, остальные проекции обратимы. Ясно, что матрица A необратима, так как имеет необратимую проекцию. Предположим, что A=BC, где матрицы B и C необратимы над решёткой P. Из простоты матрицы $\operatorname{pr}_w(A)$ над P_w и равенства $\operatorname{pr}_w(A)=\operatorname{pr}_w(B)\operatorname{pr}_w(C)$ следует, что одна из матриц $\operatorname{pr}_w(B)$ или $\operatorname{pr}_w(C)$ обратима над P_w . Для любого $z\neq w$ матрица $\operatorname{pr}_z(A)$

обратима над P_z и справедливо равенство $\operatorname{pr}_z(A)=\operatorname{pr}_z(B)\operatorname{pr}_z(C)$. Поэтому для любого $z\neq w$ проекции $\operatorname{pr}_z(B)$ и $\operatorname{pr}_z(C)$ — обратимые матрицы над P_z . Получили, что все проекции одной из матриц B или C обратимы, т. е. B или C является обратимой матрицей над решёткой P — противоречие.

Пример 3.1. Пусть $P={
m Div}(12).$ Имеем, что $P=\{1,2,4\} imes \{1,3\}.$ Простыми матрицами над решёткой ${
m Div}(12)$ являются только матрицы вида B imes C, определённые следующими условиями:

1) матрица B перестановочно эквивалентна матрице

$$\begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix};$$

матрица C перестановочно эквивалентна матрице

$$\begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix};$$

2) матрица B перестановочно эквивалентна матрице

$$\begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & 1 \end{pmatrix},$$

где на помеченных местах расположены числа 2 и 4 так, что каждая строка и каждый столбец матрицы содержит число 4; матрица C перестановочно эквивалентна матрице

$$\begin{pmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ 3 & 3 & 1 \end{pmatrix}.$$

Следствие 3.1. Пусть решётка P есть прямое произведение нетривиальных цепей, $n \geqslant 3$. Следующие утверждения равносильны.

- 1. $\lambda \in \{\operatorname{per}(A) \mid A \operatorname{простая} \ \operatorname{матрица}, \ A \in P_{n \times n}\}.$
- 2. Существует индекс $z\in I$, такой что $\tilde{0}<\mathrm{pr}_z(\lambda)\leqslant \tilde{1}$ и $\mathrm{pr}_u(\lambda)=\tilde{1}$ для всех индексов $u\neq z$.

4. Простые матрицы над булеаном

Пусть U — непустое множество, $\tilde{0}=\varnothing$, $\tilde{1}=U$. Булеан $\mathrm{Bul}(U)$ — это прямое произведение двухэлементных цепей,

$$\mathrm{Bul}(U)\cong\times\prod_{z\in U}[\varnothing,\{z\}]_{\subseteq},$$

где $[\varnothing,\{z\}]_{\subseteq}$ — двухэлементная цепь.

Простые матрицы над двухэлементной решёткой определяют простые матрицы над булеаном.

Теорема 4.1. Пусть $n\geqslant 3$. Тогда простыми $(n\times n)$ -матрицами над булеаном $\mathrm{Bul}(U)$ являются только матрицы вида

$$\{u\}B + \sum_{z \in U - \{u\}} \{z\}M(\pi_z),\tag{3}$$

где $u \in U$, B — некоторая простая матрица размера $n \times n$, $M(\pi_z)$ — некоторая подстановочная матрица размера $n \times n$ над двухэлементной решёткой $\{\tilde{0}, \tilde{1}\}$.

Доказательство. Нужное утверждение — следствие теоремы 3.1.

Следствие 4.1. *Каждая простая матрица над булеаном есть линейная комбинация подстановочных матриц.*

Доказательство. Каждая простая матрица над двухэлементной решёткой есть линейная комбинация подстановочных матриц. Отсюда и из теоремы 4.1 получаем нужное утверждение.

Следствие 4.2. Перманент каждой простой матрицы над булеаном $\mathrm{Bul}(U)$ равен единице $\tilde{1}=U.$

Доказательство. Пусть $u \in U$ и простая матрица A записана в виде (3). Имеем, что

$$\operatorname{per}(A) \geqslant \operatorname{per}(\{u\}B) = \{u\} \land \operatorname{per}(B) \geqslant \{u\},$$
$$\operatorname{per}(A) \geqslant \operatorname{per}\left(\sum_{z \in U - \{u\}} \{z\}M(\pi_z)\right) \geqslant \{v\}$$

для любого $v \neq u$. Отсюда получаем нужное утверждение.

Приведём примеры простых матриц над булеаном.

Пример 4.1. Пусть U — непустое множество, $u \in U$.

1. Выберем матрицу $B = \overline{E_{3\times 3}}$ и подстановочные матрицы $M(\pi_z) = E_{3\times 3}$ для всех $z \in U - \{u\}$. Из теоремы 4.1 следует, что

$$A = \begin{pmatrix} U - \{u\} & \{u\} & \{u\} \\ \{u\} & U - \{u\} & \{u\} \\ \{u\} & \{u\} & U - \{u\} \end{pmatrix} -$$

простая матрица над булеаном $\mathrm{Bul}(U)$. Заметим, что матрица A не содержит нулей и единиц булеана $\mathrm{Bul}(U)$.

 $\frac{2.}{E_{n imes n}}$, где $n \geqslant 3$, раскладывается в произведение матриц:

Простые решегочные матрицы
$$\overline{E}_{n \times n} = \begin{pmatrix} \overline{\{u_1\}} & \{u_1\} & \dots & \{u_1\} \\ \{u_1\} & \overline{\{u_1\}} & \dots & \{u_1\} \\ \dots & \dots & \dots & \dots \\ \{u_1\} & \{u_1\} & \dots & \overline{\{u_1\}} \end{pmatrix} \begin{pmatrix} \overline{\{u_2\}} & \underline{\{u_2\}} & \dots & \{u_2\} \\ \underline{\{u_2\}} & \overline{\{u_2\}} & \dots & \{u_2\} \\ \dots & \dots & \dots & \dots \\ \underline{\{u_2\}} & \{u_2\} & \dots & \overline{\{u_2\}} \end{pmatrix} \times \dots \times \begin{pmatrix} \overline{\{u_k\}} & \underline{\{u_k\}} & \dots & \{u_k\} \\ \underline{\{u_k\}} & \overline{\{u_k\}} & \dots & \underline{\{u_k\}} \\ \dots & \dots & \dots & \dots \\ \underline{\{u_k\}} & \overline{\{u_k\}} & \dots & \overline{\{u_k\}} \end{pmatrix}.$$

Для n=3 имеем разложение матрицы $\overline{E_{3 imes3}}$ в произведение простых матриц.

3. Матрица

$$A = \begin{pmatrix} \{u\} & U - \{u\} & \dots & U - \{u\} \\ U - \{u\} & \{u\} & \dots & U - \{u\} \\ \dots & \dots & \dots & \dots \\ U - \{u\} & U - \{u\} & \dots & \{u\} \end{pmatrix} \in P^{n \times n}, \quad n \geqslant 3,$$

не является простой матрицей над булеаном $\operatorname{Bul}(U)$.

5. Простые матрицы над булевыми решётками

Пусть $(P, \land, \lor, \leqslant)$ — булева решётка с $\tilde{0}$ и $\tilde{1}$, $\mathrm{Lbul}(A)$ — конечная булева подрешётка решётки P, порождённая элементами матрицы $A \in P^{n \times n}$.

Рассмотрим критерий существования простых матриц над булевыми решётками.

Теорема 5.1. Пусть $A \in P^{n \times n}$. Следующие утверждения равносильны.

- 1. Mатрица A проста над решёткой P.
- 2. Матрица A проста над любой конечной булевой подрешёткой Q решётки P, содержащей подрешётку $\mathrm{Lbul}(A)$.

Доказательство. Импликация $1 \Longrightarrow 2$ следует из [2, теорема 3 пункта «Существование простых матриц над дистрибутивными решётками»].

Докажем импликацию $2\Longrightarrow 1$. Предположим противное: матрица A факторизуема над решёткой P. Тогда существуют необратимые над решёткой P матрицы $B,C\in P^{n\times n}$, такие что A=BC.

Пусть Q — конечная булева подрешётка решётки P, порождённая элементами матриц $A,\,B,\,C.$

Решётка Q содержит подрешётку $\mathrm{Lbul}(A)$. Мы получили, что A — факторизуемая матрица над решёткой Q. Противоречие.

Из теоремы 4.1 и следствия 4.1 получаем следующий результат.

Следствие 5.1. Перманент каждой простой матрицы над булевой решёткой P равен единице $\tilde{1}$.

Матрица SM(n), $n \geqslant 3$,

$$SM(n) = \begin{pmatrix} \tilde{0} & \dots & \tilde{0} & \tilde{1} & \tilde{1} \\ \tilde{0} & \dots & \tilde{1} & \tilde{0} & \tilde{1} \\ \dots & \dots & \dots & \dots \\ \tilde{1} & \dots & \tilde{0} & \tilde{0} & \tilde{1} \\ \tilde{1} & \dots & \tilde{1} & \tilde{1} & \tilde{0} \end{pmatrix}$$

является простой над решёткой $\{\tilde{0},\tilde{1}\}$.

Теорема 5.2. Пусть булева решётка P содержит хотя бы один атом. Тогда над решёткой P существуют простые $(n \times n)$ -матрицы для всех $n \geqslant 3$.

Доказательство. Для элементов $x \in P$ определим $(n \times n)$ -матрицы

$$SM(x,n) = \begin{pmatrix} \bar{x} & \dots & \tilde{0} & x & x \\ \tilde{0} & \dots & x & \tilde{0} & x \\ \dots & \dots & \ddots & \dots \\ x & \dots & \tilde{0} & \bar{x} & x \\ x & \dots & x & x & \bar{x} \end{pmatrix}.$$

Пусть $n\geqslant 3$. Если x — атом решётки P, то $\mathrm{SM}(x,n)$ — простая матрица над решёткой P.

Действительно, по теореме 5.1 достаточно проверить, что матрица $\mathrm{SM}(x,n)$ проста над любой конечной булевой подрешёткой Q решётки P, содержащей подрешётку $L\big(\mathrm{SM}(x,n)\big)=\{\tilde{0},x,\bar{x},\tilde{1}\}$. Известно, что каждая конечная булева решётка является булеаном. Простота матрицы $\mathrm{SM}(x,n)$ следует из теоремы 4.1.

Литература

- [1] Девадзе Х. М. Порождающие множества полугруппы всех бинарных отношений в конечном множестве // Докл. АН БССР. 1968. Т. 12, № 9. С. 765—768.
- [2] Маренич В. Е. Простые матрицы над дистрибутивными решётками // Фундамент. и прикл. мат. 2008. Т. 14, вып. 7. С. 157—173.
- [3] Сачков В. Н., Тараканов В. Е. Комбинаторика неотрицательных матриц. M.: ТВП, 2000.
- [4] Скорняков Л. А. Обратимые матрицы над дистрибутивными структурами // Сиб. мат. журн. 1986. Т. 27, № 2. С. 182—185.
- [5] Borosh J., Hartfiel D. J., Maxson C. J. Answers to questions posed by Richman and Schneider // Linear and Multilinear Algebra. $-1976.-Vol.\ 3.-P.\ 255-258.$
- [6] De Caen D. Prime Boolean matrices: M. Sci. Thesis, Queen's Univ., Kingston, Ontario, 1979.
- [7] De Caen D., Gregory D. A. Prime Boolean matrices // Combinatorial Mathematics VII. Proc. 7th Aust. Conf., Newcastle, 1979. — Berlin: Springer, 1980. — (Lect. Notes Math.; Vol. 829). — P. 76—82.

- [8] De Caen D., Gregory D. A. Primes in the semigroup of Boolean matrices // Linear Algebra Appl. 1981. Vol. 37. P. 119-134.
- [9] Cho H. H. Prime Boolean matrices and factorizations // Linear Algebra Appl. 1993. — Vol. 190. — P. 87—98.
- [10] Cho H. H. Permanents of prime Boolean matrices // Bull. Korean Math. Soc. 1998. Vol. 35, no. 3. P. 605-613.
- [11] Giveon J. Lattice matrices // Inform. Control. 1964. Vol. 7. P. 477-484.
- [12] Gregory D. A., Pullman N. J. Prime Boolean matrices, a graph theoretic approach // Ars Combinatoria. — 1981. — Vol. 12. — P. 81—110.
- [13] Gregory D. A., Pullman N. J. Semiring rank: Boolean rank and nonnegative rank factorization // J. Combin. Inform. Syst. Sci. 1983. Vol. 8, no. 3. P. 223—233.
- [14] Kim K. H. Boolean Matrix Theory and Applications. New York: Marcel Dekker, 1982.
- [15] Richman D. J., Schneider H. Primes in the semigroup of nonnegative matrices // Linear and Multilinear Algebra. -1974. Vol. 2. P. 135-140.
- [16] Tchuente M. On the Decomposition of Boolean Matrices. Grenoble: Univ. of Grenoble, 1980.