Аддитивные отображения матриц, монотонные относительно порядков, заданных групповой обратной матрицей*

м. а. Ефимов

Московский государственный университет им. М. В. Ломоносова e-mail: efimov.mikhail@gmail.com

УДК 512.643

Ключевые слова: аддитивные отображения, групповая обратная матрица, частичные порядки.

Аннотация

Получена характеризация аддитивных отображений пространства матриц над произвольным полем из трёх или более элементов, монотонных относительно порядков \sharp cn \leqslant и \leqslant . Построены примеры неаддитивных отображений, монотонных относительно указанных частичных порядков.

Abstract

 $\it M.~A.~Efimov,~Additive~matrix~maps~that~are~monotone~with~respect~to~the~orders~induced~by~group~inverse,~Fundamentalnaya~i~prikladnaya~matematika,~vol.~17~(2011/2012),~no.~6,~pp.~23-40.$

We characterize additive maps on the matrix algebra over an arbitrary field with three or more elements that are monotone with respect to the \leqslant - and \leqslant -orders and build some examples of nonadditive monotone maps.

1. Введение

Пусть $\mathrm{M}_n(\mathbb{F})$ обозначает пространство квадратных матриц порядка n с коэффициентами из произвольного поля \mathbb{F},\leqslant — отношение частичного порядка на $\mathrm{M}_n(\mathbb{F}).$

Определение 1.1. Отображение $T\colon \mathrm{M}_n(\mathbb{F})\to \mathrm{M}_n(\mathbb{F})$ монотонно относительно порядка \leqslant , если для любых матриц A и B из того, что $A\leqslant B$, следует, что $T(A)\leqslant T(B)$.

^{*}Работа выполнена при частичной финансовой поддержке гранта МД-2502.2012.1.

Отметим, что характеризация отображений, монотонных относительно данного порядка \leqslant , часто оказывается полезной при изучении свойств этого частичного порядка. При этом случай линейных и аддитивных монотонных отображений наиболее интересен. Исследования в этой области начаты де Пиллисом в работе [20] и активно ведутся сейчас (см. [4, 9, 10, 19]). Многие вопросы, касающиеся данного отношения порядка, могут быть сведены к изучению аддитивных монотонных отображений на $\mathrm{M}_n(\mathbb{F})$ (см. [5]). С другой стороны, для некоторых порядков при дополнительных предположениях может быть получена полная характеризация монотонных отображений, в том числе неаддитивных (см. [13, 14, 18, 23]).

В данной работе мы рассмотрим отношения частичного порядка, заданные при помощи групповой обратной матрицы.

Определение 1.2. *Групповая обратная матрица* A^{\sharp} для матрицы A — это матрица, удовлетворяющая соотношениям

$$AA^{\sharp}A = A$$
, $A^{\sharp}AA^{\sharp} = A^{\sharp}$, $AA^{\sharp} = A^{\sharp}A$.

Определение 1.3. Матрица $A \in \mathrm{M}_n(\mathbb{F})$ имеет *индекс* k (Ind A = k), если $\mathrm{rk}\,A^k = \mathrm{rk}\,A^{k+1}$ и k есть наименьшее натуральное число с таким свойством.

Известно (см. [7,15]), что групповая обратная матрица для данной матрицы A существует тогда и только тогда, когда A имеет индекс 1, т. е. $\operatorname{rk} A = \operatorname{rk} A^2$. Кроме того, если матрица с такими свойствами существует, то она единственна (см. [16,22]). Более подробно свойства групповой обратной матрицы описаны в [6,8,21].

Определение 1.4 [16]. Пусть матрица $A \in \mathrm{M}_n(\mathbb{F})$ имеет индекс 1, а матрица $B \in \mathrm{M}_n(\mathbb{F})$ произвольная. Будем говорить, что $A \leqslant B$, если $AA^\sharp = BA^\sharp = A^\sharp B$.

Следующее разложение произвольной матрицы $A\in \mathrm{M}_n(\mathbb{F})$ существует и единственно (см. [6, гл. 4.8]).

Определение 1.5. Нильпотентным разложением квадратной матрицы $A \in M_n(\mathbb{F})$ называется представление $A = C_A + N_A$, где C_A имеет индекс 1, а N_A нильпотентна, причём $C_A N_A = N_A C_A = 0$.

Определение 1.6 [11,17]. $A \leqslant B$ для произвольных матриц $A,B \in \mathrm{M}_n(\mathbb{F})$ тогда и только тогда, когда $\mathrm{rk}(B-A) = \mathrm{rk}\,B - \mathrm{rk}\,A.$

Определение 1.7 [12]. Пусть $A,B\in \mathrm{M}_n(\mathbb{F})$. Тогда $A\overset{\mathrm{cn}}{\leqslant} B$, если и только если $C_A\overset{\sharp}{\leqslant} C_B$ и $N_A\overline{\leqslant} N_B$.

Все три определённые отношения действительно являются отношениями частичного порядка, т. е. рефлексивны, антисимметричны и транзитивны (доказательства можно найти в [12]). Согласно общепринятым обозначениям $A \stackrel{\sharp}{<} B$ ($A \subseteq B, A \stackrel{\mathrm{cn}}{\leq} B$), если $A \neq B$ и $A \stackrel{\sharp}{\leqslant} B$ ($A \subseteq B, A \stackrel{\mathrm{cn}}{\leqslant} B$).

В [1] И. И. Богданов и А. Э. Гутерман охарактеризовали линейные биективные отображения над произвольным полем, монотонные относительно порядков

 $\stackrel{\mbox{\tiny cn}}{<}$ и $\stackrel{\mbox{\tiny cn}}{<}$ В [2] был предложен метод, позволивший снять ограничение биективности из [1].

В данной работе исследуются нелинейные отображения, монотонные относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$. В частности, получена характеризация аддитивных монотонных отображений над полем из трёх или более элементов и построены примеры неаддитивных монотонных отображений. Кроме того, в работе доказано, что эндоморфизмы кольца матриц монотонны относительно порядка $\stackrel{\sharp}{\leqslant}$, и, как следствие, получена характеризация всех эндоморфизмов кольца $\mathrm{M}_n(\mathbb{F})$. Подобная характеризация для алгебр известна как теорема Hëтер—Сколема (см. [3]).

Лемма 1.8. Следующие отображения пространства матриц аддитивны и монотонны относительно порядков $\stackrel{\sharp}{<}, \overline{<}$ и $\stackrel{\mathrm{cn}}{<}$.

- 1. $T_{\alpha}(X) = \alpha X$, где $\alpha \in \mathbb{F}$.
- 2. $T_P(X) = P^{-1}XP$, где $P \in \mathrm{GL}_n(\mathbb{F})$.
- 3. $T_{\varphi}(X)=X^{\varphi}$, где $\varphi\colon \mathbb{F}\to \mathbb{F}$ эндоморфизм поля $\mathbb{F}.$
- 4. $T_t(X) = X^t$.

В разделе 2 настоящей работы мы изучим некоторые свойства монотонных аддитивных отображений. После этого, в разделе 3, мы получим характеризацию аддитивных отображений, монотонных относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$. Прямые следствия основной теоремы описаны в разделе 4. Кроме того, в этом разделе мы охарактеризуем эндоморфизмы кольца $\mathrm{M}_n(\mathbb{F})$. В заключение, в разделе 5, даны некоторые примеры.

2. Свойства монотонных отображений

Нам потребуются следующие определения.

Определение 2.1. Будем говорить, что матрицы $A, B \in \mathrm{M}_n(\mathbb{F})$ *ортогональны*, если AB = BA = 0.

Определение 2.2. Набор из n матриц $A_1,A_2,\ldots,A_n\in \mathrm{M}_n(\mathbb{F})$ будем называть B-набором, если выполнены следующие условия:

- 1) все A_i имеют ранг и индекс 1;
- 2) A_i и A_j ортогональны при любых различных i и j.

В дальнейшем через E_{ij} будем обозначать матрицу с 1 в позиции (i,j) и 0 в остальных, через $\mathrm{GL}_n(\mathbb{F})$ обозначим полную линейную группу.

Лемма 2.3. Пусть $A=\{a_{ij}\}$ — произвольная квадратная матрица. Матрицы A и E_{ii} ортогональны, если и только если $a_{ij}=a_{ji}=0$ для всех $j=1,2,\ldots,n$.

Доказательство. Имеем

$$E_{ii}A = \sum_{j} a_{ij}E_{ij} = 0,$$

откуда получаем, что $a_{ij}=0$ для всех $j=1,2,\ldots,n$. Аналогично получаем, что $a_{ji}=0$ для всех $j=1,2,\ldots,n$.

Лемма 2.4. Пусть матрицы $X_1, X_2, \ldots, X_n \in \mathrm{M}_n(\mathbb{F})$ образуют В-набор. Тогда существуют такие ненулевые $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F}$ и такая матрица $P \in \mathrm{GL}_n(\mathbb{F})$, что $P^{-1}X_iP = \alpha_iE_{ii}$ для всех $i=1,2,\ldots,n$.

Доказательство. Докажем утверждение по индукции. Если n=1, то $X_1=\alpha_1E_{11}$, причём $\alpha_1\neq 0$, так как матрица X_1 имеет ранг 1. Пусть n>1. По условию матрица X_1 имеет индекс и ранг 1, поэтому существует такая матрица $P_1\in \mathrm{GL}_n(\mathbb{F})$, что $X_1=\alpha_1P_1^{-1}E_{11}P_1$ для некоторого $\alpha_1\neq 0$. Но тогда матрицы $P_1X_1P_1^{-1}=\alpha_1E_{11},\ P_1X_2P_1^{-1},\dots,P_1X_nP_1^{-1}$ также образуют В-набор. Без ограничения общности можем считать, что $X_1=\alpha_1E_{11}$. Будем обо-

Без ограничения общности можем считать, что $X_1=\alpha_1E_{11}$. Будем обозначать через M_{ij} элемент матрицы M, стоящий на позиции (i,j). Применяя лемму 2.3, получим, что $(X_k)_{1j}=(X_k)_{j1}=0$ при всех значениях индексов $j,k\in\{1,2,\ldots,n\}$ с условием k>1, т. е. X_k — блочно-диагональная матрица вида

$$\begin{pmatrix} 0 & 0 \\ 0 & X_k' \end{pmatrix}$$
.

Отметим, что ранг X_k' совпадает с рангом X_k и равен 1, $(X_k')^2 \neq 0$, т. е. индекс X_k' также равен 1. Тогда из правил умножения матриц следует, что матрицы $X_2', X_3', \ldots, X_n' \in \mathrm{M}_{n-1}(\mathbb{F})$ образуют В-набор. По предположению индукции найдётся такая обратимая матрица $P' \in \mathrm{GL}_{n-1}(\mathbb{F})$, что $(P')^{-1}X_{i+1}'P' = \beta_i E_{ii}$ для всех $i=1,2,\ldots,n-1,\ \beta_i \neq 0$. Обозначим $\alpha_2=\beta_1,\ \alpha_3=\beta_2,\ldots,\alpha_n=\beta_{n-1},$

$$P = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix}.$$

Тогда имеют место соотношения $P^{-1}X_1P = \alpha_1E_{11}$ и $P^{-1}X_iP = \alpha_iE_{ii}$ при всех i>1. Утверждение доказано.

Нам потребуются определение и лемма из работы [1].

Определение 2.5 [1, определение 3.2]. Будем называть последовательность матриц $(A_1,A_2,\ldots,A_n)\in \left(\mathrm{M}_n(\mathbb{F})\right)^n$ выделенной, если существуют такие ненулевые элементы $\alpha_1,\alpha_2,\ldots,\alpha_n\in\mathbb{F}$ и матрица $P\in\mathrm{GL}_n(\mathbb{F})$, что $A_i=P(\alpha_1E_{11}+\alpha_2E_{22}+\ldots+\alpha_iE_{ii})P^{-1}$ для всех $i=1,2,\ldots,n$.

Лемма 2.6 [1, лемма 3.4]. Для последовательности

$$(A_1, A_2, \dots, A_n) \in (M_n(\mathbb{F}))^n$$

равносильны следующие утверждения:

1) последовательность (A_1, A_2, \ldots, A_n) является выделенной;

2)
$$0 \stackrel{\sharp}{<} A_1 \stackrel{\sharp}{<} A_2 \stackrel{\sharp}{<} \dots \stackrel{\sharp}{<} A_n;$$

3) $0 \stackrel{\text{cn}}{<} A_1 \stackrel{\text{cn}}{<} A_2 \stackrel{\text{cn}}{<} \dots \stackrel{\text{cn}}{<} A_n.$

3)
$$0 \stackrel{\text{ch}}{<} A_1 \stackrel{\text{ch}}{<} A_2 \stackrel{\text{ch}}{<} \dots \stackrel{\text{ch}}{<} A_n$$

Вообще говоря, непосредственная проверка условия монотонности для данного отображения - трудная техническая задача. Поэтому следующее свойство аддитивных монотонных отображений является важнейшим для их характеризации.

Теорема 2.7. Пусть матрицы $X_1, X_2, \dots, X_n \in \mathrm{M}_n(\mathbb{F})$ образуют B-набор, аддитивное отображение $T\colon \mathrm{M}_n(\mathbb{F}) o\mathrm{M}_n(\mathbb{F})$ монотонно относительно порядка $\stackrel{\sharp}{\leqslant}$ или $\stackrel{\mathrm{cn}}{\leqslant}$. Кроме того, $X_i \notin \mathrm{Ker}\, T$ для каждого $i=1,2,\ldots,n$. Тогда матрицы $T(X_1), T(X_2), \ldots, T(X_n)$ образуют В-набор.

Доказательство. Согласно лемме 2.4 найдётся такая матрица $P \in GL_n(\mathbb{F})$, что $P^{-1}X_iP=\alpha_iE_{ii}$ для некоторых ненулевых $\alpha_1,\alpha_2,\ldots,\alpha_n\in\mathbb{F}$. Рассмотрим выделенную последовательность $(X_1, X_1 + X_2, \dots, X_1 + X_2 + \dots + X_n)$ и применим лемму 2.6. Получим

$$0 \leqslant X_1 \leqslant X_1 + X_2 \leqslant \dots \leqslant X_1 + X_2 + \dots + X_n$$

или

$$0 \stackrel{\text{cn}}{\leqslant} X_1 \stackrel{\text{cn}}{\leqslant} X_1 + X_2 \stackrel{\text{cn}}{\leqslant} \dots \stackrel{\text{cn}}{\leqslant} X_1 + X_2 + \dots + X_n.$$

По условию теоремы T — аддитивное отображение, монотонное относительно порядка $\stackrel{\sharp}{\leqslant}$ или $\stackrel{\mathrm{cn}}{\leqslant}$. Обозначая $Y_i=T(X_i),$ с учётом равенства T(0)=0 получим

$$0 \leqslant Y_1 \leqslant Y_1 + Y_2 \leqslant \dots \leqslant Y_1 + Y_2 + \dots + Y_n$$

или

$$0 \stackrel{\text{cn}}{\leqslant} Y_1 \stackrel{\text{cn}}{\leqslant} Y_1 + Y_2 \stackrel{\text{cn}}{\leqslant} \dots \stackrel{\text{cn}}{\leqslant} Y_1 + Y_2 + \dots + Y_n.$$

Так как $X_i \notin \operatorname{Ker} T$ для любого $i=1,2,\ldots,n$, получим, что $Y_i=T(X_i)\neq 0$ для каждого i = 1, 2, ..., n. Поэтому все неравенства строгие. Повторно применяя лемму 2.6, можем утверждать, что последовательность матриц

$$(Y_1, Y_1 + Y_2, \dots, Y_1 + Y_2 + \dots + Y_n)$$

выделенная. Но тогда существует такая $Q \in \mathrm{GL}_n(\mathbb{F})$, что

$$Y_1 + Y_2 + \ldots + Y_i = Q(\beta_1 E_{11} + \beta_2 E_{22} + \ldots + \beta_i E_{ii})Q^{-1}$$

для некоторых ненулевых $\beta_1,\beta_2,\ldots,\beta_n\in\mathbb{F}$, откуда следует, что $Y_i=$ $= \beta_i Q E_{ii} Q^{-1}$. Таким образом, матрица Y_i имеет ранг и индекс 1 для каждого i. Кроме того, $E_{ii}E_{jj}=E_{jj}E_{ii}=0$ при $i\neq j$. Следовательно, Y_i и Y_j ортогональны при $i \neq j$. Таким образом, матрицы Y_1, Y_2, \ldots, Y_n образуют В-набор.

В дальнейшем нам потребуется следующее определение.

Определение 2.8. Матрицу $A\in \mathrm{M}_n(\mathbb{F})$ будем называть матрицей типа (i,j), где $i,j=1,2,\ldots,n$, если существуют такие $a_{ii},a_{ij},a_{ji},a_{jj}\in\mathbb{F}$, что

$$A = a_{ii}E_{ii} + a_{ij}E_{ij} + a_{ji}E_{ji} + a_{jj}E_{jj}.$$

Сумма и произведение матриц типа (i, j) есть матрица типа (i, j).

Замечание 2.9. В теореме 2.7 рассматриваются В-наборы, никакая матрица которых не лежит в ядре отображения T. В связи с этим возникает вопрос о существовании таких наборов. Ответ на него даёт следующая лемма: если В-наборов с этим свойством нет, то отображение T тождественно нулевое (достаточно положить $V = \operatorname{Ker} T$).

Лемма 2.10. Пусть \mathbb{F} — произвольное поле с числом элементов $|\mathbb{F}| \geqslant 3$, $n \geqslant 1$ — целое число, V — некоторая аддитивная подгруппа $\mathrm{M}_n(\mathbb{F})$, такая что в любом B-наборе найдётся матрица, лежащая в V. Тогда $V = \mathrm{M}_n(\mathbb{F})$.

Доказательство. Докажем утверждение индукцией по n. При n=1 утверждение очевидно верно. Пусть n>1. Предположим, что найдётся матрица A_1 ранга и индекса 1, такая что $A_1\notin V$. Рассмотрим некоторый B-набор $\{A_1,A_2,\ldots,A_n\}$. Тогда $A_j\in V$ для некоторого j>1. По определению матрицы A_1 и A_j ортогональны и $\operatorname{rk} A_j=\operatorname{Ind} A_j=1$. Следовательно, существуют такие $P_1\in\operatorname{GL}_n(\mathbb{F})$ и $\lambda_1\neq 0$, что $A_j=\lambda_1P_1^{-1}E_{11}P_1$. Обозначим $V_1=P_1VP_1^{-1}$ и $B_1=P_1A_1P_1^{-1}$. Получим, что $\lambda_1E_{11}\in V_1$, $B_1\notin V_1$. Более того, матрицы λ_1E_{11} и B_1 ортогональны.

- 1. Предположим, что в каждом B-наборе матриц, содержащем $\lambda_1 E_{11}$, найдётся отличная от $\lambda_1 E_{11}$ матрица, принадлежащая V_1 . Применим утверждение индукции к матрицам с нулевыми первой строкой и столбцом. Получим, что любая матрица такого вида лежит в V_1 , в том числе и B_1 в силу леммы 2.3. Противоречие.
- 2. Найдётся В-набор матриц $\{X_1=\lambda_1E_{11},X_2,X_3,\dots,X_n\}$, такой что $X_i\notin V_1$ для всех $i=2,3,\dots,n$. Согласно лемме 2.4 найдутся матрица $P_2\in \mathrm{GL}_n(\mathbb{F})$ и ненулевые $\lambda_2,\lambda_3,\dots,\lambda_n\in\mathbb{F}$, такие что $X_i=\lambda_iP_2^{-1}E_{ii}P_2$ для всех $i=1,2,3,\dots,n$. Обозначим $V_2=P_2^{-1}V_1P_2$. Нетрудно убедиться, что $\lambda_iE_{ii}\in V_2$, если и только если i=1.
- 1) Фиксируем некоторое ненулевое $\lambda \in \mathbb{F}$. Рассмотрим В-набор матриц $\lambda E_{11}, \lambda_2 E_{22}, \lambda_3 E_{33}, \ldots, \lambda_n E_{nn}$. По предположениям и с учётом условия теоремы $\lambda E_{11} \in V_2$. Поэтому можем утверждать, что $\lambda E_{11} \in V_2$ при любом $\lambda \in \mathbb{F}$, так как при $\lambda = 0$ это также верно.

Далее будем рассматривать В-наборы вида $A, B, \lambda_3 E_{33}, \ldots, \lambda_n E_{nn}$, где матрицы A и B имеют ранг и индекс 1, ортогональны и являются матрицами типа (1,2). Из условия леммы следует, что либо $A \in V_2$, либо $B \in V_2$.

2) Покажем, что найдётся такое ненулевое $y\in\mathbb{F}$, что $yE_{12}\in V_2$. Пусть $A=E_{11}+xE_{12},\,B=-xE_{12}+E_{22},$ где $x\in\mathbb{F}$ и $x\neq 0$. Если при некотором значении $x=x_0$ матрица $A=E_{11}+x_0E_{12}$ лежит в V_2 , то, используя аддитивность V_2

и условие $E_{11}\in V_2$, получим, что $x_0E_{12}\in V_2$. Тогда положим $y=x_0\neq 0$ и имеем требуемое.

Если же такого значения x_0 нет, то в силу условия $|\mathbb{F}|\geqslant 3$ найдутся такие ненулевые $x_1\neq x_2$, что $-x_1E_{12}+E_{22}\in V_2$ и $-x_2E_{12}+E_{22}\in V_2$. Используя аддитивность V_2 , получим, что $(x_2-x_1)E_{12}\in V_2$, и положим $y=x_2-x_1\neq 0$.

Можем утверждать, что $-yE_{12}+\lambda_2E_{22}\notin V_2$, так как иначе $\lambda_2E_{22}\in V_2$, что неверно. Рассматривая $A=\mu(\lambda_2E_{11}+yE_{12}),\ B=-yE_{12}+\lambda_2E_{22}$ при любом ненулевом $\mu\in\mathbb{F}$, получим, что $\mu\lambda_2E_{11}+\mu yE_{12}\in V_2$ при любом ненулевом $\mu\in\mathbb{F}$. Кроме того, при $\mu=0$ условие $\mu\lambda_2E_{11}+\mu yE_{12}\in V_2$ также выполнено. Но, как отмечалось выше, $\nu E_{11}\in V_2$ при любом $\nu\in\mathbb{F}$, откуда следует, что $\mu yE_{12}\in V_2$. Таким образом, $\alpha E_{12}\in V_2$ при любом $\alpha\in\mathbb{F}$ ($\mu=\alpha/y$).

- 3) Полагая $A=E_{11}+xE_{21},\ B=-xE_{21}+E_{22},$ аналогично пункту 2) получаем, что $\beta E_{21}\in V_2$ при любом $\beta\in\mathbb{F}.$
- 4) Покажем, что найдутся такие $\alpha_0,\beta_0\in\mathbb{F}$, что $\alpha_0\beta_0\neq 0$ и $\alpha_0\beta_0\neq -1$. Действительно, если бы для всех $\alpha\neq 0$ и $\beta\neq 0$ было выполнено $\alpha\beta=-1$, то при ненулевых $\alpha_1\neq \alpha_2$ получим, что $\alpha_1\beta=-1=\alpha_2\beta$, откуда следует, что $\alpha_1=\alpha_2$.

Положим

 $A=\alpha_0\beta_0E_{11}+\alpha_0E_{12}+\beta_0E_{21}+E_{22},\quad B=\alpha_0^{-1}\beta_0^{-1}E_{11}-\beta_0^{-1}E_{12}-\alpha_0^{-1}E_{21}+E_{22}.$ Проверим, что эти матрицы ортогональны:

$$AB =$$

$$= (\alpha_0 \beta_0 E_{11} + \alpha_0 E_{12} + \beta_0 E_{21} + E_{22})(\alpha_0^{-1} \beta_0^{-1} E_{11} - \beta_0^{-1} E_{12} - \alpha_0^{-1} E_{21} + E_{22}) =$$

$$= (E_{11} - \alpha_0 E_{12}) + (-E_{11} + \alpha_0 E_{12}) + (\alpha_0^{-1} E_{21} - E_{22}) + (-\alpha_0^{-1} E_{21} + E_{22}) = 0,$$

$$BA =$$

$$= (\alpha_0^{-1}\beta_0^{-1}E_{11} - \beta_0^{-1}E_{12} - \alpha_0^{-1}E_{21} + E_{22})(\alpha_0\beta_0E_{11} + \alpha_0E_{12} + \beta_0E_{21} + E_{22}) =$$

$$= (E_{11} + \beta_0^{-1}E_{12}) + (-E_{11} - \beta_0^{-1}E_{12}) + (-\beta_0E_{21} - E_{22}) + (\beta_0E_{21} + E_{22}) = 0.$$

По условиям $\alpha_0 \neq 0$, $\beta_0 \neq 0$, $\alpha_0\beta_0 \neq -1$, имеем, что $\operatorname{rk} A = \operatorname{rk} B = 1$. Покажем, что $\operatorname{Ind} A = 1$. Рассмотрим матрицу $E_{11}A^2E_{11}$:

$$E_{11}A^{2}E_{11} = E_{11}(\alpha_{0}\beta_{0}E_{11} + \alpha_{0}E_{12} + \beta_{0}E_{21} + E_{22}) \times \times (\alpha_{0}\beta_{0}E_{11} + \alpha_{0}E_{12} + \beta_{0}E_{21} + E_{22})E_{11} = = (\alpha_{0}\beta_{0}E_{11} + \alpha_{0}E_{12})(\alpha_{0}\beta_{0}E_{11} + \beta_{0}E_{21}) = \alpha_{0}\beta_{0}(\alpha_{0}\beta_{0} + 1)E_{11} \neq 0.$$

Таким образом $A^2 \neq 0$, откуда получаем, что $0 < \operatorname{rk} A^2 \leqslant \operatorname{rk} A = 1$. Следовательно, $\operatorname{rk} A^2 = 1 = \operatorname{rk} A$, $\operatorname{Ind} A = 1$. Аналогично $\operatorname{Ind} B = 1$. Можем утверждать, что либо $\lambda_2 A \in V_2$, либо $\lambda_2 B \in V_2$. С учётом пунктов 1), 2) и 3) имеем, что $\lambda_2 E_{22} \in V_2$. Противоречие.

Таким образом, все матрицы ранга и индекса 1 лежат в V. Покажем, что произвольная матрица лежит в V. Для этого представим её в виде суммы матриц ранга 1. Если среди слагаемых встретится матрица S индекса, отличного от 1, то

 $S=Q^{-1}E_{12}Q$ для некоторой матрицы $Q\in \mathrm{GL}_n(\mathbb{F}).$ Но $E_{12}=(E_{11}+E_{12})-E_{11},$ причём E_{11} и $E_{11}+E_{12}$ имеют ранг и индекс 1. Поэтому

$$S = Q^{-1}(E_{11} + E_{12})Q - Q^{-1}E_{11}Q = A_1 - A_2 \in V,$$

так как сопряжение переводит матрицы ранга и индекса 1 в матрицы ранга и индекса 1. Тем самым показано, что все матрицы ранга 1, а значит и их сумма, лежат в V. Это наблюдение завершает доказательство.

Лемма 2.11. Пусть аддитивное отображение $T\colon \mathrm{M}_n(\mathbb{F}) \to \mathrm{M}_n(\mathbb{F})$ монотонно относительно порядка $\stackrel{\sharp}{\leqslant} (\stackrel{\mathrm{cn}}{\leqslant}), \ n\geqslant 2$ — целое число. Известно, что существуют ненулевые $\alpha_1,\alpha_2,\ldots,\alpha_n,\beta_1,\beta_2,\ldots,\beta_n\in\mathbb{F}$ с условием $T(\alpha_k E_{kk})=\beta_k E_{kk}$ для любого $k=1,2,\ldots,n$. Кроме того, матрицы X и Y имеют ранг и индекс 1, ортогональны и являются матрицами типа (i,j). Тогда T(X) и T(Y) также ортогональны. Если они обе ненулевые, то имеют тип (i,j), $\mathrm{rk}\,T(X)=\mathrm{rk}\,T(Y)=1$, $\mathrm{rk}\,\big(T(X)+T(Y)\big)=2$.

Доказательство. Если среди матриц T(X) и T(Y) есть нулевая, то

$$T(X)T(Y) = 0, \quad T(Y)T(X) = 0.$$

Пусть $T(X) \neq 0$, $T(Y) \neq 0$. Обозначим $\Gamma_0 = \{\alpha_1 E_{11}, \dots, \alpha_n E_{nn}\}$. Заменим $\alpha_i E_{ii}$ на X и $\alpha_j E_{jj}$ на Y в наборе Γ_0 , получим набор Γ . Нетрудно убедиться, что Γ является В-набором. Так как T монотонно относительно порядков $\stackrel{\text{cn}}{\leqslant}$ и $\stackrel{\text{cn}}{\leqslant}$, то $T(\Gamma)$ также является В-набором. В частности, матрицы T(X) и T(Y) ортогональны.

Применяя лемму 2.3 к матрицам T(X) и $T(\alpha_k E_{kk}) = \beta_k E_{kk}$ при всех $k \neq i$, $k \neq j$, получаем, что T(X) имеет тип (i,j). Аналогично T(Y) имеет тип (i,j).

Кроме того, найдутся такая обратимая матрица $P \in GL_n(\mathbb{F})$ и такие ненулевые $\lambda_1, \lambda_2 \in \mathbb{F}$, что $T(X) = \lambda_1 P^{-1} E_{11} P$, $T(Y) = \lambda_2 P^{-1} E_{22} P$. Следовательно, $\operatorname{rk} T(X) = \operatorname{rk} T(Y) = 1$ и $\operatorname{rk} (T(X) + T(Y)) = 2$.

Замечание 2.12. Если выполнены условия предыдущей леммы и известно, что ранг матрицы T(X) больше 1, то матрица T(Y) нулевая.

Лемма 2.13. Пусть $\mathbb{F}-$ произвольное поле с числом элементов $|\mathbb{F}|\geqslant 3$, $n\geqslant 2-$ целое число, аддитивное отображение $T\colon \mathrm{M}_n(\mathbb{F})\to \mathrm{M}_n(\mathbb{F})$ монотонно относительно порядка $\stackrel{\sharp}{\leqslant} \stackrel{\mathrm{cn}}{\leqslant}$. Пусть, кроме того, существуют такие ненулевые скаляры $\alpha_1,\alpha_2,\ldots,\alpha_n,\beta_1,\beta_2,\ldots,\beta_n\in\mathbb{F}\setminus\{0\}$, что $T(\alpha_kE_{kk})=\beta_kE_{kk}$ при всех $k=1,2,\ldots,n$. Тогда существуют такие аддитивные инъективные функции $f_1,f_2,\ldots,f_n\colon\mathbb{F}\to\mathbb{F}$, что выполнено соотношение $T(tE_{ii})=f_i(t)E_{ii}$ для всех $t\in\mathbb{F}$ и всех $i=1,2,\ldots,n$.

Доказательство. Покажем, что для любого $t \in \mathbb{F}$ и любого $i = 1, 2, \ldots, n$ найдётся такое $s \in \mathbb{F}$, что $T(tE_{ii}) = sE_{ii}$. В силу равенства T(0) = 0 при t = 0 соответствующее s равно 0. Пусть $t \neq 0$. Рассмотрим В-набор $\Gamma = \{\alpha_1 E_{11}, \ldots, \alpha_n E_{nn}\}$. Заменяя $\alpha_i E_{ii}$ на tE_{ii} в Γ , получим В-набор Γ_t . По

теореме 2.7 $T(\Gamma_t)$ также является В-набором. Так как $T(\alpha_j E_{jj}) = \beta_j E_{jj}$ при всех $j=1,2,\ldots,n$, то $T(tE_{ii})=sE_{ii}$ для некоторого $s\in\mathbb{F}$.

С учётом выражения для $T(tE_{ii})$ при $t\in\mathbb{F}$ определим n функций $f_i\colon\mathbb{F}\to\mathbb{F}$ равенствами $T(tE_{ii})=f_i(t)E_{ii}$. В силу аддитивности отображения T для любых $t_1,t_2\in\mathbb{F}$ выполнено $T\left((t_1+t_2)E_{ii}\right)=T(t_1E_{ii})+T(t_2E_{ii})$, откуда следует, что $f_i(t_1+t_2)=f_i(t_1)+f_i(t_2)$. Поэтому f_i — аддитивные функции при $i=1,2,\ldots,n$.

Покажем, что $f_i(t) \neq 0$ при $t \neq 0$ и $i=1,2,\ldots,n$. Предположим, что найдётся такое ненулевое $\lambda \in \mathbb{F}$, что $f_i(\lambda)=0$. Фиксируем некоторые $t \in \mathbb{F}$ и $j \in \{1,2,\ldots,n\}, i \neq j$. Рассмотрим матрицы $\lambda E_{ii} + t E_{ij}$ и $-t E_{ij} + \lambda E_{jj}$. Как показано выше, эти матрицы имеют ранг и индекс 1, они ортогональны и являются матрицами типа (i,j). Итак, можем применить лемму 2.11.

Отметим, что

$$T(\lambda E_{ii} + \lambda E_{jj}) = f_i(\lambda)E_{ii} + f_j(\lambda)E_{jj} = f_j(\lambda)E_{jj},$$

откуда следует, что $\operatorname{rk} T(\lambda E_{ii} + \lambda E_{jj}) = \operatorname{rk}(f_j(\lambda) E_{jj}) \leqslant 1$. С другой стороны, если $T(\lambda E_{ii} + t E_{ij}) \neq 0$ и $T(-t E_{ij} + \lambda E_{jj}) \neq 0$, то из леммы 2.11 следует, что

$$\operatorname{rk} T(\lambda E_{ii} + \lambda E_{jj}) = \operatorname{rk} \left(T(\lambda E_{ii} + t E_{ij}) + T(-t E_{ij} + \lambda E_{jj}) \right) = 2.$$

Тем самым $T(\lambda E_{ii}+tE_{ij})=0$ или $T(-tE_{ij}+\lambda E_{jj})=0$. Поэтому либо $T(tE_{ij})=$ $=-f_i(\lambda)E_{ii}=0$, либо $T(tE_{ij})=f_j(\lambda)E_{jj}$. Таким образом, определена функция $g_{ij}\colon \mathbb{F}\to \mathbb{F}$, такая что выполнено $T(tE_{ij})=g_{ij}(t)E_{jj}$. Аналогично существует функция $g_{ji}\colon \mathbb{F}\to \mathbb{F}$, удовлетворяющая соотношению $T(tE_{ji})=g_{ji}(t)E_{jj}$. Для доказательства этого факта достаточно рассмотреть матрицы $\lambda E_{ii}+tE_{ji}$ и $-tE_{ji}+\lambda E_{jj}$.

Так как $|F|\geqslant 3$, то найдутся такие ненулевые $\mu,\nu\in\mathbb{F}$, что $\mu\nu\neq -1$.

Нетрудно заметить, что матрицы $\alpha_i(E_{ii}+\nu^{-1}E_{ij}+\mu^{-1}E_{ji}+\mu^{-1}\nu^{-1}E_{jj})$ и $\alpha_i(E_{ii}-\mu E_{ij}-\nu E_{ji}+\mu\nu E_{jj})$ ортогональны, имеют ранг и индекс 1 и тип (i,j). В самом деле, мы проверили аналогичное утверждение при доказательстве леммы 2.10. По лемме 2.11 образы этих матриц при отображении T также ортогональны. Следовательно,

$$T(\alpha_{i}(E_{ii} + \nu^{-1}E_{ij} + \mu^{-1}E_{ji} + \mu^{-1}\nu^{-1}E_{jj})) \times \times T(\alpha_{i}(E_{ii} - \mu E_{ij} - \nu E_{ji} + \mu \nu E_{jj})) = 0, (f_{i}(\alpha_{i})E_{ii} + (g_{ij}(\alpha_{i}\nu^{-1}) + g_{ji}(\alpha_{i}\mu^{-1}) + f_{j}(\alpha_{i}\mu^{-1}\nu^{-1}))E_{jj}) \times \times (f_{i}(\alpha_{i})E_{ii} + (g_{ij}(-\alpha_{i}\mu) + g_{ji}(-\alpha_{i}\nu) + f_{j}(\alpha_{i}\mu\nu))E_{jj}) = 0.$$

Отметим, что коэффициент при E_{ii} равен $f_i^2(\alpha_i) = \beta_i^2 \neq 0$. Полученное противоречие доказывает, что $f_i(t) \neq 0$ при $t \neq 0$. По аддитивности f_i имеем инъективность f_i при всех $i = 1, 2, \ldots, n$.

Лемма 2.14. Пусть $\mathbb{F}-$ произвольное поле с числом элементов $|\mathbb{F}|\geqslant 3$, $n\geqslant 2-$ целое число, аддитивное отображение $T\colon \mathrm{M}_n(\mathbb{F})\to \mathrm{M}_n(\mathbb{F})$ монотонно относительно порядка $\stackrel{\sharp}{\leqslant} (\stackrel{\mathrm{cn}}{\leqslant})$. Пусть, кроме того, существуют инъективные

аддитивные функции $f_1, f_2, \ldots, f_n \colon \mathbb{F} \to \mathbb{F}$, удовлетворяющие условию $T(tE_{ii}) = f_i(t)E_{ii}$ для всех $t \in \mathbb{F}$ и $i=1,2,\ldots,n$. Тогда для любых значений индексов $i,j=1,2,\ldots,n$ и любых $p,q \in \mathbb{F}$ существуют такие $r,s \in \mathbb{F}$, что $T(pE_{ij}+qE_{ji}) = rE_{ij}+sE_{ji}$, причём число нулевых элементов в паре (p,q) совпадает с числом нулевых элементов в паре (r,s).

Доказательство. Фиксируем $p \in \mathbb{F}$ и $i,j \in \{1,2,\ldots,n\}$. Если i=j, то можем положить $r=f_i(p)$ и $s=f_i(q)$.

Пусть $i \neq j$, $t \in \mathbb{F} \setminus \{0\}$. Как отмечалось выше, матрицы $tE_{ii} + pE_{ij}$ и $-pE_{ij} + tE_{jj}$ имеют ранг и индекс 1, ортогональны и являются матрицами типа (i,j). Следовательно, к ним применима лемма 2.11.

Предположим, что $T(t_1E_{ii}+pE_{ij})=0$ при некотором $t_1\neq 0$. Тогда $T(pE_{ij})=-f_i(t_1)E_{ii}$. Так как f_i и f_j инъективны, то

$$\operatorname{rk} T(-pE_{ij} + tE_{jj}) = \operatorname{rk}(f_i(t_1)E_{ii} + f_j(t)E_{jj}) = 2$$

при всех ненулевых $t \in \mathbb{F}$. По замечанию $2.12\ T(tE_{ii}+pE_{ij})=0$ при $t \in \mathbb{F}\setminus\{0\}$. Отметим также, что $|\mathbb{F}|\geqslant 3$ и найдётся ненулевое $t_2\in \mathbb{F},\ t_2\neq t_1$. Но тогда

$$0 = T(t_1 E_{ii} + p E_{ij}) - T(t_2 E_{ii} + p E_{ij}) = T((t_1 - t_2) E_{ii}) = f_i(t_1 - t_2) E_{ii} \neq 0.$$

Противоречие.

Итак, $T(tE_{ii}+pE_{ij})\neq 0$ при $t\neq 0$. Аналогично $T(-pE_{ij}+tE_{jj})\neq 0$ при $t\neq 0$. По лемме 2.11 эти матрицы имеют ранг 1 и тип (i,j). Более того, матрица $T(tE_{ii})=f_i(t)E_{ii}$ имеет тип (i,j), откуда следует, что $T(pE_{ij})$ также имеет тип (i,j). Обозначим $S=T(pE_{ij})$.

Пусть $S=aE_{ii}+bE_{ij}+cE_{ji}+dE_{jj}$. По доказанному выше матрицы $f_i(t)E_{ii}+S$ и $f_j(t)E_{jj}-S$ имеют ранг 1. Тем самым (2×2) -минор, образованный пересечением строк i и j со столбцами i и j, нулевой. Следовательно,

$$(f_i(t) + a)d - bc = 0, \quad (-a)(f_i(t) - d) - (-b)(-c) = 0$$

при всех $t \in \mathbb{F} \setminus \{0\}$.

Пусть $t_1,t_2\in\mathbb{F}$ — различные ненулевые скаляры. Имеем

$$0 = ((f_i(t_1) + a)d - bc) - ((f_i(t_2) + a)d - bc) = f_i(t_1 - t_2)d.$$

Но $f_i(t_1-t_2)\neq 0$, откуда следует, что d=0. Кроме того, из второго равенства получим, что a=0. Следовательно, bc=0. Другими словами, мы показали, что при всех $p\in \mathbb{F}$ найдутся такие $b,c\in \mathbb{F}$, что bc=0 и $T(pE_{ij})=bE_{ij}+cE_{ji}$. Аналогично при всех $q\in \mathbb{F}$ существуют такие $b',c'\in \mathbb{F}$, что b'c'=0 и $T(qE_{ji})=b'E_{ij}+c'E_{ji}$. Итак, доказано, что для любых $p,q\in \mathbb{F}$ существуют $r,s\in \mathbb{F}$, удовлетворяющие соотношению $T(pE_{ij}+qE_{ji})=rE_{ij}+sE_{ji}$. Отметим также, что rs=0 при pq=0.

Пусть $pq \neq 0, pq \neq -1.$ Аналогично доказательству леммы 2.10 проверяем, что матрицы

$$A_0 = E_{ii} + pE_{ij} + qE_{ji} + pqE_{jj}, \quad A_1 = -pqE_{ii} + pE_{ij} + qE_{ji} - E_{jj}$$

ортогональны, имеют ранг и индекс 1 и тип (i, j). Более того,

$$T(A_0) = f_i(1)E_{ii} + rE_{ij} + sE_{ji} + f_j(pq)E_{jj}$$

для некоторых $r,s\in\mathbb{F}$. Так как f_i и f_j инъективны, то $T(A_0)\neq 0$. Аналогично $T(A_1)\neq 0$. По лемме 2.11 $\mathrm{rk}\big(T(A_0)\big)=1$, откуда получаем, что $f_i(1)f_j(pq)-rs=0$, следовательно, $rs=f_i(1)f_j(pq)\neq 0$.

Если p=q=0, то r=s=0. Покажем, что если $p\neq 0$ и q=0, то в паре (r,s) ровно один нулевой элемент. Пусть это не так, r=s=0 и $T(pE_{ij})=0$. Фиксируем некоторое $q_0\in \mathbb{F},\ q_0\neq 0,\ pq_0\neq -1$. Тогда $T(pE_{ij})=0$ и

$$T(q_0 E_{ji}) = T(p E_{ij} + q_0 E_{ji}) = r_0 E_{ij} + s_0 E_{ji},$$

т. е. соотношения $r_0s_0=0$ и $r_0s_0\neq 0$ выполнены одновременно. Противоречие. Аналогично доказываем, что при p=0 и $q\neq 0$ в паре (r,s) ровно один нулевой элемент

Как показано выше, если $pq \neq 0$ и $pq \neq -1$, то $rs \neq 0$. Пусть pq = -1. Докажем, что в этом случае $rs \neq 0$. Предположим противное: pq = -1, rs = 0, $T(pE_{ij} + qE_{ji}) = rE_{ij} + sE_{ji}$. Так как $|\mathbb{F}| \geqslant 3$, то существует ненулевое $p_1 \in \mathbb{F}$, $p \neq p_1$.

Обозначим ненулевые коэффициенты матрицы $T(p_1E_{ij}+qE_{ji})=r_1E_{ij}+s_1E_{ji}$ через $r_1,s_1\in\mathbb{F}$. Кроме того, обозначим $p_2=p-p_1,\ r_2=r-r_1,\ s_2=s-s_1,\ T(p_2E_{ij})=r_2E_{ij}+s_2E_{ji}$. Как показано выше, $r_1s_1\neq 0,\ r_2s_2=0.$

Без ограничения общности будем считать, что s=0. Тогда $s_2=-s_1\neq 0$, $r_2=0,\ r=r_1\neq 0$. Таким образом, либо $T(qE_{ji})=s_1E_{ji}$, либо $T(qE_{ji})=r_1E_{ij}$. Если $T(qE_{ji})=s_1E_{ji}$, то $T(p_2E_{ij}+qE_{ji})=(s_2+s_1)E_{ji}=0$, хотя $p_2q\neq -1$. Итак, $T(qE_{ji})=r_1E_{ij}=T(pE_{ij}+qE_{ji})$ и $T(pE_{ij})=0$. Полученное противоречие доказывает, что число нулевых элементов в паре (p,q) совпадает с числом нулевых элементов в паре (r,s).

Лемма 2.15. Пусть инъективное отображение $T \colon \mathrm{M}_n(\mathbb{F}) \to \mathrm{M}_n(\mathbb{F})$ аддитивно и монотонно относительно порядка $\stackrel{\sharp}{\leqslant} (\stackrel{\mathrm{cn}}{\leqslant})$. Пусть A — некоторая матрица ранга и индекса 1. Тогда T(A) также имеет ранг и индекс 1.

Доказательство. Так как $\mathrm{rk}\,A=\mathrm{Ind}\,A=1$, то существуют такая обратимая матрица $P\in\mathrm{GL}_n(\mathbb{F})$ и ненулевое $\lambda\in\mathbb{F}$, что $A=\lambda P^{-1}E_{11}P$. Рассмотрим матрицы $X_1=A,\ X_2=P^{-1}E_{22}P,\ldots,\ X_n=P^{-1}E_{nn}P$. Легко показать, что $\Gamma=\{X_1,X_2,\ldots,X_n\}$ является В-набором. Более того, T инъективно и $X_i\notin\mathrm{Ker}\,T$ при всех $i=1,2,\ldots,n$ По теореме $2.7\ T(\Gamma)$ также является В-набором. Поэтому матрица $T(A)=T(X_1)$ имеет ранг и индекс 1. Но это именно то, что требовалось доказать.

3. Характеризация монотонных отображений

Теорема 3.1. Пусть $\mathbb{F}-$ произвольное поле с числом элементов $|\mathbb{F}|\geqslant 3$, $n\geqslant 2-$ целое число, аддитивное отображение $T\colon \mathrm{M}_n(\mathbb{F})\to \mathrm{M}_n(\mathbb{F})$ мо-

нотонно относительно порядка $\stackrel{\sharp}{\leqslant}$ ($\stackrel{\mathrm{cn}}{\leqslant}$). Тогда T имеет одну из следующих форм:

- 1) $T(X) = \alpha P^{-1} X^{\varphi} P$ для всех $X \in M_n(\mathbb{F})$;
- 2) $T(X) = \alpha P^{-1}(X^{\varphi})^{t} P$ для всех $X \in M_{n}(\mathbb{F})$

(здесь $\alpha \in \mathbb{F}$, $P \in \mathrm{GL}_n(\mathbb{F})$, $\varphi \colon \mathbb{F} \to \mathbb{F}$ — инъективный эндоморфизм поля \mathbb{F}).

Доказательство. Очевидно, $T \equiv 0$, если $\alpha = 0$. Пусть $T \not\equiv 0$.

Для доказательства теоремы будем модифицировать отображение T. Фактически, мы будем комбинировать T с различными сопряжениями, умножениями на скаляры и транспонированиями. Нетрудно понять, что результатом этих операций будет аддитивное отображение T', монотонное относительно порядка $\stackrel{\text{cn}}{\leqslant}$ или $\stackrel{\text{cn}}{\leqslant}$. Доказательство теоремы будет завершено, если $T'(X) = X^{\varphi}$ для всех матриц $X \in M_n(\mathbb{F})$, где φ — инъективный эндоморфизм поля \mathbb{F} .

Как следует из замечания 2.9, существует В-набор $\{X_1,X_2,\ldots,X_n\}$, такой что $X_i \notin \operatorname{Ker} T$ при всех $i=1,2,\ldots,n$. Обозначим $Y_i=T(X_i)$ при всех $i=1,2,\ldots,n$. По теореме 2.7 набор из n матриц $\{Y_1,Y_2,\ldots,Y_n\}$ также является В-набором. Из леммы 2.4 следует, что существуют такие ненулевые скаляры $\alpha_1,\alpha_2,\ldots,\alpha_n,\beta_1,\beta_2,\ldots,\beta_n\in\mathbb{F}$ и обратимые матрицы $P,Q\in\operatorname{GL}_n(\mathbb{F})$, что $X_i=\alpha_iP^{-1}E_{ii}P,Y_i=\beta_iQ^{-1}E_{ii}Q$ при всех $i=1,2,\ldots,n$. Положим $T_1(X)=QT(P^{-1}XP)Q^{-1}$ при всех $X\in\operatorname{M}_n(\mathbb{F})$. По лемме 1.8 отображение T_1 аддитивно и монотонно относительно порядка $\stackrel{\sharp}{\leqslant}$ или $\stackrel{\mathrm{cn}}{\leqslant}$. Кроме того, $T_1(\alpha_iE_{ii})=\beta_iE_{ii}$ при всех $i=1,2,\ldots,n$.

Применяя лемму 2.13, получаем, что существуют аддитивные инъективные отображения $f_1, f_2, \ldots, f_n \colon \mathbb{F} \to \mathbb{F}$, такие что $T_1(tE_{ii}) = f_i(t)E_{ii}$ при всех $t \in \mathbb{F}$ и $i=1,2,\ldots,n$. Но тогда в силу леммы 2.14 для любых $i,j \in \{1,2,\ldots,n\}$ с условием $i \neq j$ и любых $p,q \in \mathbb{F}$ существуют такие $r,s \in \mathbb{F}$, что $T(pE_{ij}+qE_{ji}) = rE_{ij}+sE_{ji}$, причём число нулевых элементов в паре (p,q) совпадает с числом нулевых элементов в паре (r,s).

Докажем, что отображение T_1 инъективно. Пусть матрица X такова, что $T_1(X)=0,~X=\{x_{ij}\}.$ Обозначим $X_{ij}=x_{ij}E_{ij}$ и $Y_{ij}=T_1(X_{ij})$ при всех $i,j\in\{1,2,\ldots,n\}.$ Тогда $X=\sum_{i,j}X_{ij}$ и $\sum_{i,j}Y_{ij}=0.$

По доказанному выше $Y_{ii}=T_1(x_{ii}E_{ii})=f_i(x_{ii})E_{ii}=y_iE_{ii}$ при некоторых $y_i\in\mathbb{F},\ i=1,2,\ldots,n.$ Кроме того, $Y_{ij}+Y_{ji}=y_{ij}E_{ij}+y_{ji}E_{ji}$ при некоторых $y_{ij}\in\mathbb{F}$ и $y_{ji}\in\mathbb{F},\ i< j.$ Таким образом,

$$\sum_{i} y_{i} E_{ii} + \sum_{i < j} (y_{ij} E_{ij} + y_{ji} E_{ji}) = 0.$$

Легко убедиться, что коэффициенты y_i и y_{ij} нулевые. Так как функции f_i инъективны и $f_i(x_{ii})=y_i=0$, то $x_{ii}=0$ при всех $i=1,2,\ldots,n$. Более того, $y_{ij}=y_{ji}=0$ и $x_{ij}=x_{ji}=0$ по лемме 2.14 при всех i< j. В результате X=0 и отображение T_1 инъективно.

Применяя лемму 2.15, получаем, что T_1 переводит матрицы ранга и индекса 1 в матрицы ранга и индекса 1.

Если $T_1(E_{12})=c_{12}E_{12}$ для некоторого ненулевого $c_{12}\in \mathbb{F}$, пусть $T_2(X)=T_1(X)$ для всех матриц $X\in \mathrm{M}_n(\mathbb{F})$. Иначе положим $T_2(X)=\left(T_1(X)\right)^{\mathrm{t}}$ для всех $X\in \mathrm{M}_n(\mathbb{F})$. В обоих случаях имеем, что $T_2(E_{12})=c_{12}E_{12}$ для некоторого ненулевого $c_{12}\in \mathbb{F}$.

Ясно, что при всех значениях $q \neq 0$ существует такое $s \in \mathbb{F}$, что $T_2(qE_{21}) = sE_{21}$. Тогда $T_2(pE_{12}) = rE_{12}$ для некоторого $r \in \mathbb{F}$ при $p \in \mathbb{F}$.

Покажем, что для каждого j>2 имеем $T_2(pE_{1j})=rE_{1j}$ для подходящего $r\in\mathbb{F}$ при $p\in\mathbb{F}$. Рассмотрим матрицу $E_{11}+E_{12}+pE_{1j}$. Нетрудно проверить, что эта матрица имеет ранг и индекс 1. Предположим, что $T_2(pE_{1j})=s_pE_{j1}$ для $s_p\in\mathbb{F}$. Тогда $T_2(E_{11}+E_{12}+pE_{1j})=E_{11}+c_{12}E_{12}+s_pE_{j1}=S$.

Ввиду неравенства $s_p \neq 0$ имеем, что $rk\ S=2$. С другой стороны, $rk\ S=1$ по лемме 2.15. Это противоречие доказывает, что $T_2(pE_{1j})=rE_{1j}$ для некоторого $r\in\mathbb{F}$ при любом $p\in\mathbb{F}$ и j>1. Аналогично при всех $q\in\mathbb{F}$ и i>1 существует $s\in\mathbb{F}$, такое что $T_2(qE_{i1})=sE_{i1}$. Обозначим $T_2(E_{i1})=c_{i1}E_{i1}$.

Докажем равенство $T_2(pE_{ij})=rE_{ij}$ для подходящего $r\in\mathbb{F}$ при $p\in\mathbb{F}$ и i>1, j>1, $i\neq j$ В силу условий на i и j матричные единицы E_{ii}, E_{i1} и E_{ij} различны, а потому матрица $E_{ii}+E_{i1}+pE_{ij}$ имеет ранг и индекс 1. Если $T_2(pE_{ij})=s_pE_{ji}$, то матрица $T_2(E_{ii}+E_{i1}+pE_{ij})=E_{ii}+c_{i1}E_{i1}+s_pE_{ji}$ имеет ранг 2, что противоречит лемме 2.15. Тем самым доказано, что $T_2(pE_{ij})=rE_{ij}$ для подходящего $r\in\mathbb{F}$ при всех $p\in\mathbb{F}$ и $i,j\in\{1,2,\ldots,n\}$. Таким образом, определены n^2 аддитивных инъективных функций $f_{ij}\colon\mathbb{F}\to\mathbb{F}$ с условием $T_2(tE_{ij})=f_{ij}(t)E_{ij}$ при всех $i,j\in\{1,2,\ldots,n\}$ и $t\in\mathbb{F}$.

Фиксируем произвольные различные $i,j\in\{1,2,\ldots,n\}$ и $t\in\mathbb{F}\setminus\{0\}$. Как отмечалось выше, матрицы $tE_{ii}+E_{ij}$ и $E_{ij}-tE_{jj}$ ортогональны. Кроме того, они имеют ранг и индекс 1 и тип (i,j). По лемме 2.11 матрицы $T_2(tE_{ii}+E_{ij})$ и $T_2(E_{ij}-tE_{jj})$ также ортогональны:

$$0 = T_2(tE_{ii} + E_{ij})T_2(E_{ij} - tE_{jj}) = (f_{ii}(t)E_{ii} + f_{ij}(1)E_{ij}) \times \times (f_{ij}(1)E_{ij} - f_{jj}(t)E_{jj}) = (f_{ii}(t)f_{ij}(1) - f_{ij}(1)f_{jj}(t))E_{ij}.$$

Следовательно, $f_{ij}(1)\big(f_{ii}(t)-f_{jj}(t)\big)=0$. Так как $f_{ij}(1)\neq 0$, то $f_{ii}(t)=f_{jj}(t)$ при всех $t\in\mathbb{F}\setminus\{0\}$ и $i,j\in\{1,2,\ldots,n\}$. Кроме того, $f_{ii}(0)=0=f_{jj}(0)$. Обозначим $\alpha=f_{11}(1)\neq 0$, $f'_{ij}(t)=\alpha^{-1}f_{ij}(t)$ при всех $t\in\mathbb{F}$, $T_3(X)=\alpha^{-1}T_2(X)$ для всех матриц $X\in\mathrm{M}_n(\mathbb{F})$. Из леммы 1.8 следует, что отображение T_3 аддитивно и монотонно относительно порядка \leqslant или \leqslant . Очевидно, $T_3(tE_{ij})=f'_{ij}(t)E_{ij}$ и $f'_{ii}(1)=1$.

Через c'_{ij} обозначим $f'_{ij}(1)$ при всех $i,j\in\{1,2,\ldots,n\}$. По доказанному $c'_{ii}=1$ при всех $i=1,2,\ldots,n$. Рассмотрим матрицу

$$B = \sum_{i=1}^{n} c'_{1i} E_{ii} \in \mathrm{GL}_{n}(\mathbb{F}).$$

Обозначим

$$T_4(X) = BT_3(X)B^{-1}, \quad T_4(tE_{ij}) = \tilde{f}_{ij}(t)E_{ij}, \quad \tilde{c}_{ij} = \tilde{f}_{ij}(1).$$

Так как $T_4(E_{ii}) = E_{ii}$ и $T_4(E_{1i}) = E_{1i}$ при любом $i = 1, 2, \dots, n$, то

$$\tilde{c}_{ii} = \tilde{c}_{1i} = 1, \quad i = 1, 2, \dots, n.$$

Положим $\varphi(t)=\tilde{f}_{11}(t)$. Итак, отображение φ аддитивно и инъективно, $\varphi(1)=1$. Кроме того, $\tilde{f}_{ii}(t)=\varphi(t)$ при всех $i=1,2,\ldots,n$ и $t\in\mathbb{F}$.

Вновь фиксируем произвольные индексы i и $j, i \neq j$. Пусть для начала $x,y \in \mathbb{F}$ таковы, что $xy \neq 0, \ xy \neq -1$. Рассмотрим матрицу $E_{ii} + xE_{ij} + yE_{ji} + xyE_{jj}$. Так как эта матрица имеет ранг и индекс 1, то $\mathrm{rk}\,T_4(E_{ii} + xE_{ij} + yE_{ji} + xyE_{jj}) = 1$. Тогда $\tilde{f}_{ii}(1)\tilde{f}_{jj}(xy) - \tilde{f}_{ij}(x)\tilde{f}_{ji}(y) = 0$. Более того, $\tilde{f}_{ii}(1) = 1$, $\tilde{f}_{jj}(xy) = \varphi(xy)$. Таким образом,

$$\varphi(xy) = \tilde{f}_{ij}(x)\tilde{f}_{ji}(y). \tag{*}$$

Если x=0 или y=0, то соотношение (*) также выполнено. Пусть xy=-1. Так как $|\mathbb{F}|\geqslant 3$, то найдётся ненулевое $x_1\in\mathbb{F},\ x_1\neq x$. Следовательно, $x_1y\neq -1$ и $\varphi(x_1y)=\tilde{f}_{ij}(x_1)\tilde{f}_{ji}(y)$. Кроме того, $x_2=x-x_1\neq x,\ x_2y\neq -1$ и $\varphi(x_2y)=\tilde{f}_{ij}(x_2)\tilde{f}_{ji}(y)$,

$$\varphi(xy) = \varphi(x_1y + x_2y) = \varphi(x_1y) + \varphi(x_2y) = = \tilde{f}_{ij}(x_1)\tilde{f}_{ji}(y) + \tilde{f}_{ij}(x_2)\tilde{f}_{ji}(y) = \tilde{f}_{ij}(x_1 + x_2)\tilde{f}_{ji}(y) = \tilde{f}_{ij}(x)\tilde{f}_{ji}(y).$$

Тем самым доказано, что соотношение (*) имеет место при всех $x,y\in\mathbb{F}$ и всех $i,j\in\{1,2,\ldots,n\}$ с условием $i\neq j$.

Если x=y=1 и j=1, то $\tilde{c}_{i1}\tilde{c}_{1i}=1$, откуда следует, что $\tilde{c}_{i1}=1$ при всех i>1.

Докажем, что $\tilde{c}_{ij}=1$ при всех $i>1,\ j>1,\ i\neq j$. Рассмотрим матрицу $C=(E_{11}+E_{1j})+(E_{i1}+E_{ij})$. Очевидно, $C^2\neq 0$, rk C=1. Итак, Ind C=1. Но тогда и

$$\operatorname{rk} T_4(C) = (E_{11} + E_{1i}) + (E_{i1} + \tilde{c}_{ii}E_{ii}) = 1.$$

Следовательно, $\tilde{c}_{ij}=1$ для всех $i,j\in\{1,2,\ldots,n\}$.

В заключение докажем, что $\hat{f}_{ij}(t)=\varphi(t)$ при всех i и j, $i\neq j$. Для этого положим x=t, y=1 в (*) и воспользуемся равенством $\tilde{f}_{ji}(1)=1$. Получим, что $T_4(X)=X^\varphi$ для любой матрицы X. Кроме того, так как $\tilde{f}_{ij}(x)=\varphi(x)$ и $\tilde{f}_{ji}(y)=\varphi(y)$, то имеем равенство $\varphi(xy)=\varphi(x)\varphi(y)$ при всех $x,y\in\mathbb{F}$. Следовательно, φ — инъективный эндоморфизм поля \mathbb{F} .

4. Следствия

Укажем некоторые непосредственные следствия теоремы 3.1.

Следствие 4.1. Пусть $\mathbb{F}-$ произвольное поле с числом элементов $|\mathbb{F}|\geqslant 3$, $n\geqslant 2-$ целое число, а аддитивное отображение $T\colon \mathrm{M}_n(\mathbb{F})\to \mathrm{M}_n(\mathbb{F})$ монотонно относительно порядка \leqslant или \leqslant . Тогда отображение T либо тождественно нулевое, либо инъективное.

Следствие 4.2. Пусть $\mathbb{F}-$ произвольное поле с числом элементов $|\mathbb{F}|\geqslant 3$, $n\geqslant 2-$ целое число, $T\colon \mathrm{M}_n(\mathbb{F})\to \mathrm{M}_n(\mathbb{F})-$ аддитивное отображение. Тогда T монотонно относительно порядка $\stackrel{\mathrm{cn}}{\leqslant}$, если и только если T монотонно относительно порядка $\stackrel{\mathrm{cn}}{\leqslant}$.

Следующая теорема представляет собой кольцевую версию известной теоремы Нётер—Сколема для алгебр. Мы получим доказательство этой теоремы в качестве следствия теоремы 3.1.

Теорема 4.3. Пусть $\mathbb{F}-$ произвольное поле c числом элементов $|\mathbb{F}|\geqslant 3$, $n\geqslant 2$ — целое число, $T\colon \mathrm{M}_n(\mathbb{F})\to \mathrm{M}_n(\mathbb{F})$ — эндоморфизм кольца матриц $\mathrm{M}_n(\mathbb{F})$. Тогда существуют такая матрица $P\in \mathrm{GL}_n(\mathbb{F})$ и эндоморфизм $\varphi\colon \mathbb{F}\to \mathbb{F}$ поля \mathbb{F} , что $T(X)=P^{-1}X^\varphi P$ для всех матриц $X\in \mathrm{M}_n(\mathbb{F})$.

Доказательство. Покажем, что T монотонно относительно порядка $\stackrel{\mathfrak{p}}{\leqslant}$.

- 1. Заметим, что $T(X^\sharp) = \left(T(X)\right)^\sharp$ для произвольной матрицы X индекса 1. В самом деле, нетрудно проверить, что $T(X^\sharp)$ удовлетворяет всем трём тождествам для $\left(T(X)\right)^\sharp$, и равенство следует из единственности групповой обратной матрицы.
- 2. Пусть $X\stackrel{\sharp}{\leqslant} Y$. Тогда $XX^{\sharp}=YX^{\sharp}=X^{\sharp}Y$, откуда получаем, что $T(X)\big(T(X)\big)^{\sharp}=T(Y)\big(T(X)\big)^{\sharp}=\big(T(X)\big)^{\sharp}T(Y),$ и $T(X)\stackrel{\sharp}{\leqslant} T(Y)$.

Аддитивность эндоморфизма T очевидна. Следовательно, имеем возможность применить теорему 3.1. Таким образом, существуют такие $\alpha \in \mathbb{F}$, $P \in \mathrm{GL}_n(\mathbb{F})$ и ψ — инъективный эндоморфизм поля \mathbb{F} , что отображение T имеет вид $T(X) = \alpha P^{-1} X_\psi P$ для всех матриц $X \in \mathrm{M}_n(\mathbb{F})$ или $T(X) = \alpha P^{-1} X_\psi^t P$ для всех матриц $X \in \mathrm{M}_n(\mathbb{F})$.

Ясно, что $T(E)=\alpha E$, где $E=E_{11}+E_{22}+\ldots+E_{nn}\in \mathrm{M}_n(\mathbb{F})$ — единичная матрица. Кроме того, $T(E)=T(EE)=\left(T(E)\right)^2$, откуда получаем, что $\alpha E==\alpha^2 E$. Следовательно, $\alpha(\alpha-1)=0$, и либо $\alpha=0$, либо $\alpha=1$.

Рассмотрим случай $\alpha=0.$ Положим $\varphi(t)=0$ для всех $t\in\mathbb{F}.$ Тогда для всех матриц $X\in\mathrm{M}_n(\mathbb{F})$ имеем $T(X)=P^{-1}X^\varphi P$, и теорема доказана.

Рассмотрим случай $\alpha=1$. Положим $\varphi(t)=\psi(t)$ для всех $t\in\mathbb{F}$. Предположим, что $T(X)=P^{-1}(X^\varphi)^{\rm t}P$ для всех матриц $X\in\mathrm{M}_n(\mathbb{F})$, и рассмотрим матрицу $T(E_{11})$:

$$\begin{split} P^{-1}E_{11}P &= T(E_{11}) = T(E_{12}E_{21}) = T(E_{12})T(E_{21}) = \\ &= (P^{-1}E_{21}P)(P^{-1}E_{12}P) = P^{-1}E_{22}P. \end{split}$$

Следовательно, $E_{11}=E_{22}$ в этом случае, что неверно. Тем самым доказано, что $T(X)=P^{-1}X^{\varphi}P$ для всех матриц $X\in \mathrm{M}_n(\mathbb{F})$.

5. Примеры

Если $|\mathbb{F}|=2$ и n=2, то существуют линейные отображения, монотонные относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$, но не представимые в том виде, который мы получили в теореме 3.1.

Пример 5.1. Пусть $|\mathbb{F}|=2,\ n=2,\ T$ линейно, $T(E_{ii})=E_{ii},\ T(E_{ij})=0$ при $i\neq j$. Тогда T монотонно относительно порядков $\stackrel{\sharp}{\leqslant}$ $\stackrel{\mathrm{cn}}{\leqslant}$.

Доказательство. Имеем три пары ортогональных матриц:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \mathsf{H} \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \quad \mathsf{H} \quad \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad \mathsf{H} \quad \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

Таким образом, имеется всего три В-набора, переходящих при действии отображения T в В-набор $\{E_{11},E_{22}\}.$

Покажем, что отображение T монотонно относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$. Пусть матрицы X и Y таковы, что $X \stackrel{\sharp}{\leqslant} Y$ ($X \stackrel{\mathrm{cn}}{\leqslant} Y$). Если X = Y или X = 0, то $T(X) \stackrel{\sharp}{\leqslant} T(Y)$ ($T(X) \stackrel{\mathrm{cn}}{\leqslant} T(Y)$), и всё доказано. Пусть $X \neq Y$, $X \neq 0$. Тогда $0 \stackrel{\sharp}{\leqslant} X \stackrel{\sharp}{\leqslant} Y$ ($0 \stackrel{\mathrm{cn}}{\leqslant} X \stackrel{\mathrm{cn}}{\leqslant} Y$) и $\mathrm{rk}\,Y = 2$, т. е. матрица Y невырожденная. Следовательно, матрицы X и Y - X образуют B-набор. По доказанному выше матрицы T(X) и T(Y - X) также образуют B-набор. Поэтому $0 \stackrel{\sharp}{\leqslant} T(X) \stackrel{\sharp}{\leqslant} T(X) + T(Y - X) = T(Y)$ и $0 \stackrel{\mathrm{cn}}{\leqslant} T(X) \stackrel{\mathrm{cn}}{\leqslant} T(Y)$.

Пусть $\mathbb F$ — произвольное поле, $n\geqslant 2$ — целое число. Следующий пример показывает, что существует неаддитивное отображение T, монотонное относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$.

Пример 5.2. Пусть

$$T(X) = egin{cases} 0, & ext{если } X = E_{11}, \ X & ext{иначе}. \end{cases}$$

Тогда T монотонно относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$.

Доказательство. Пусть $X\overset{\sharp}\leqslant Y.$ Ясно, что при $X=E_{11}$ или X=0 имеем $T(X)=0\overset{\sharp}\leqslant T(Y).$ Более того, если $Y=E_{11},$ то либо $X=E_{11},$ либо X=0.

Пусть $X \neq E_{11}$ и $Y \neq E_{11}$. Тогда $T(X) = X \stackrel{\sharp}{\leqslant} Y = T(Y)$. Таким образом, T монотонно относительно порядка $\stackrel{\text{cn}}{\leqslant}$. Аналогично T монотонно относительно порядка $\stackrel{\text{cn}}{\leqslant}$.

Отметим, что отображение T в примере 5.2 не является монотонным относительно порядков $\stackrel{\sharp}{<}$ и $\stackrel{\rm cn}{<}$. С другой стороны, существует неаддитивное монотонное отображение, монотонное относительно порядков $\stackrel{\sharp}{<}$ и $\stackrel{\rm cn}{<}$.

Пример 5.3. Пусть $T(X)=E_{11}+E_{22}+\ldots+E_{kk}$ для всех $X\in \mathrm{M}_n(\mathbb{F})$, где $k=\mathrm{rk}\,X$. Тогда T монотонно относительно порядков $\stackrel{\sharp}{<}$ и $\stackrel{\mathrm{cn}}{<}$.

Доказательство. Пусть $X\overset{\sharp}{<}Y$ или $X\overset{\mathrm{cn}}{<}Y$. Тогда $\mathrm{rk}\,X<\mathrm{rk}\,Y$. Нетрудно убедиться, что $T(X)\overset{\sharp}{<}T(Y)$ и $T(X)\overset{\mathrm{cn}}{<}T(Y)$. Таким образом, T монотонно относительно порядков $\overset{\sharp}{<}$ и $\overset{\mathrm{cn}}{<}$.

Автор благодарен своему научному руководителю А. Э. Гутерману за постоянное внимание к работе.

Литература

- [1] Богданов И. И., Гутерман А. Э. Монотонные отображения матриц, заданные групповой обратной, и одновременная диагонализуемость // Мат. сб. 2007. Т. 198, \mathbb{N} 1. С. 3—20.
- [2] Ефимов М. А. Линейные отображения матриц, монотонные относительно порядков $\stackrel{\sharp}{\leqslant}$ и $\stackrel{\mathrm{cn}}{\leqslant}$ // Фундамент. и прикл. мат. 2007. Т. 13, вып. 4. С. 53—66.
- [3] Пирс Р. Ассоциативные алгебры. М: Мир, 1986.
- [4] Alieva A., Guterman A. Monotone linear transformations on matrices are invertible // Commun. Algebra. 2005. Vol. 33. P. 3335—3352.
- [5] Baksalary J. K., Pukelsheim F., Styan G. P. H. Some properties of matrix partial orderings // Linear Algebra Appl. 1989. Vol. 119. P. 57—85.
- [6] Ben-Israel A., Greville T. Generalized Inverses: Theory and Applications. New York: John Wiley and Sons, 1974.
- [7] Englefield M. J. The commuting inverses of a square matrix // Proc. Cambridge Philos. Soc. —1966. Vol. 62. P. 667—671.
- [8] Erdelyi I. On the matrix equation $Ax = \lambda Bx$ // J. Math. Anal. Appl. 1967. Vol. 17. P. 117—132.
- [9] Guterman A. Linear preservers for Drazin star partial order // Commun. Algebra. $-2001.-Vol.\ 29,\ no.\ 9.-P.\ 3905-3917.$
- [10] Guterman A. Linear preservers for matrix inequalities and partial orderings // Linear Algebra Appl. — 2001. — Vol. 331, no. 1-3. — P. 75—87.
- [11] Hartwig R. E. How to partially order regular elements // Math. Japon. 1980. Vol. 25, no. 1. P. 1-13.

- [12] Hartwig R. E., Mitra S. K. Partial orders based on outer inverses // Linear Algebra Appl. -1982. Vol. 176. P. 3-20.
- [13] Legiša P. Automorphisms of M_n , partially ordered by rank subtractivity ordering // Linear Algebra Appl. -2004. Vol. 389. P. 147–158.
- [14] Legiša P. Automorphisms of M_n , partially ordered by the star order // Linear and Multilinear Algebra. -2006. Vol. 54, no. 3. P. 157-188.
- [15] Mitra S. K. A new class of g-inverse of square matrices // Sankhyā. Ser. A. 1963. Vol. 30. P. 323-330.
- [16] Mitra S. K. On group inverses and the sharp order // Linear Algebra Appl. 1987. Vol. 92. P. 17-37.
- [17] Nambooripad K. S. S. The natural partial order on a regular semigroup // Proc. Edinburgh Math. Soc. -1980. Vol. 23. P. 249-260.
- [18] Ovchinnikov P. G. Automorphisms of the poset of skew projections // J. Funct. Anal. 1993. — Vol. 115. — P. 184—189.
- [19] Pierce S. et al. A survey of linear preserver problems // Linear and Multilinear Algebra. -1992.-Vol.~33.-P.~1-119.
- [20] De Pillis J. Linear transformations which preserve Hermitian and positive semidefinite operators // Pacific J. Math. 1967. Vol. 23. P. 129—137.
- [21] Rao C. R., Mitra S. K. Generalized Inverse of Matrices and its Applications. New York: Wiley, 1971.
- [22] Robert P. On the group-inverse of a linear transformation // J. Math. Anal. Appl. 1968. Vol. 22. P. 658—669.
- [23] Šemrl P. Order-preserving maps on the poset of idempotent matrices // Acta Sci. Math. (Szeged). -2003. Vol. 69. P. 481-490.