О совпадении факторизационного ранга и ранга Гондрана—Мину матриц над полукольцом

Я. Н. ШИТОВ

Московский государственный университет им. М. В. Ломоносова e-mail: yaroslav-shitov@yandex.ru

УДК 512.643

Ключевые слова: полукольцо, факторизационный ранг, ранг Гондрана-Мину.

Аннотация

В работе рассматриваются функции матриц над полукольцами, обобщающие классическое понятие ранга матрицы над полем. Изучаются полукольца, факторизационный ранг матриц над которыми совпадает с рангом Гондрана—Мину. Показано, что любое полукольцо, матрицы над которым удовлетворяют данному условию, вложено в некоторое поле. Приведён пример целостного кольца, для матриц над которым это условие нарушается.

Abstract

Ya. N. Shitov, On the coincidence of the factor and Gondran—Minoux rank functions of matrices over a semiring, Fundamentalnaya i prikladnaya matematika, vol. 17 (2011/2012), no. 6, pp. 223—232.

We consider the rank functions of matrices over semiring, functions that generalize the classical notion of the rank of a matrix over a field. We study semirings over which the factor and Gondran—Minoux ranks of any matrix coincide. It is shown that every semiring satisfying that condition is a subsemiring of a field. We provide an example of an integral domain over which the factor and Gondran—Minoux ranks are different.

1. Введение

Множество $\mathcal S$ с бинарными операциями + и \cdot (называемыми *сложением* и *умножением* соответственно) и выделенными элементами $\mathbf 0$ и $\mathbf 1$ называется *полукольцом*, если $(\mathcal S,+,\mathbf 0)$ — абелев моноид, $(\mathcal S,\cdot,\mathbf 1)$ — моноид, умножение справа и слева дистрибутивно по сложению и для любого элемента x из $\mathcal S$ верно, что $x\cdot \mathbf 0=\mathbf 0\cdot x=\mathbf 0$. Иными словами, полукольцо отличается от кольца только тем, что его ненулевые элементы не обязаны быть обратимыми по сложению.

Полукольцо называется коммутативным, если его мультипликативная полугруппа коммутативна. В нашей работе мы будем рассматривать только такие полукольца, поэтому далее коммутативные полукольца будут называться просто полукольцами.

Фундаментальная и прикладная математика, 2011/2012, том 17, № 6, с. 223—232. © 2011/2012 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

Одной из активно развивающихся областей линейной алгебры является на данный момент теория матриц над полукольцами (см. [2,6,9]). Важность обобщения базовых понятий линейной алгебры на полукольцевой случай обусловлена рядом приложений, в том числе в комбинаторной оптимизации (см. [4]), теории сложности алгоритмов (см. [3]) и алгебраической геометрии (см. [9]). Оказывается, что различные приложения могут приводить к различным способам обобщения классических понятий линейной алгебры, поэтому существует несколько различных важных ранговых функций матриц над полукольцами. Отметим, что операции над векторами и матрицами с элементами из полукольца $\mathcal S$ определяются так же, как и в случае, когда $\mathcal S$ является полем, только обычные операции сложения и умножения элементов поля заменяются на их полукольцевые аналоги.

В данной работе изучаются функции факторизационного ранга и рангов Гондрана—Мину. Приведём сначала определение линейной зависимости в смысле Гондрана—Мину, которое обобщает классическое понятие линейной зависимости векторов над полем.

Определение 1 [11]. Пусть S — полукольцо. Система из n строк

$$\{a_i = (a_{i1}, \dots, a_{im}) \in \mathcal{S}^m\}, \quad i \in \{1, 2, \dots, n\},\$$

называется линейно зависимой в смысле Гондрана—Мину, если найдутся I и J— подмножества множества $\{1,2,\ldots,n\}$, такие что $I\cap J=\varnothing,\ I\cup J=\{1,\ldots,n\}$, найдутся $\lambda_i\in\mathcal{S},\ i\in\{1,\ldots,n\}$, не все равные $\mathbf{0}$, такие что для всех $k\in\{1,2,\ldots,m\}$ верно равенство

$$\sum_{i \in I} \lambda_i a_{ik} = \sum_{j \in J} \lambda_j a_{jk}. \tag{1}$$

Замечание 2. В определении 1 и далее результат суммирования элементов полукольца по пустому множеству полагается равным **0**. Например, если множество I пусто, мы считаем, что $\sum\limits_{i\in I}\lambda_ia_{ik}=\mathbf{0}.$

Понятие ранга Гондрана—Mину основано на определении линейной зависимости и является обобщением классической ранговой функции матриц над полем.

Определение 3 [2]. Пусть \mathcal{S} — полукольцо, $a_1,\ldots,a_m\in\mathcal{S}^n$ — система строк. Максимальное число строк в тех подсистемах системы a_1,\ldots,a_m , которые не являются линейно зависимыми в смысле Гондрана—Мину, называется рангом Гондрана—Мину этой системы. Ранг Гондрана—Мину системы строк матрицы $A\in\mathcal{S}^{m\times n}$ обозначается через $\mathrm{GMr}(A)$, ранг Гондрана—Мину системы строк транспонированной матрицы A^\top (столбцов матрицы A) — через $\mathrm{GMc}(A)$.

Отметим, что строчный и столбцовый ранги Гондрана—Мину матрицы над полукольцом, вообще говоря, не совпадают. Исследованию матриц над бинарным булевым и тропическим полукольцами, для которых эти ранговые функции различаются, посвящена работа [1].

Понятие факторизационного ранга полезно для изучения полуколец, а также для решения некоторых задач теории сложности и тропической геометрии (см., например, [5, 7, 9]).

Определение 4 [2,9]. Пусть S — полукольцо, $A \in S^{m \times n}$. Если матрица Aсодержит хотя бы один элемент, отличный от 0, её факторизационным рангом $\mathrm{f}(A)$ называется наименьшее целое число k, для которого существуют такие матрицы $B \in \mathcal{S}^{m \times k}$ и $C \in \mathcal{S}^{k \times n}$, что $A = B \cdot C$. В противном случае полагаем f(A) = 0.

Заметим, что рассматриваемые ранговые функции действительно задают обобщение классической ранговой функции над полем: одним из базовых результатов линейной алгебры является равенство f(A) = GMr(A) = GMc(A) = $= \operatorname{rank}(A)$, верное для матриц над полем. Тем не менее факторизационный ранг матрицы, вообще говоря, не обязан совпадать ни с её строчным, ни со столбцовым рангом Гондрана-Мину. Проиллюстрируем данные определения на следующем примере.

Пример 5. Пусть элементы a, b, c полукольца S таковы, что $a \neq b, c \neq \mathbf{0}$ и ac = bc. Положим

$$A = \begin{pmatrix} a & 1 \\ b & 1 \end{pmatrix} \in \mathcal{S}^{2 \times 2}.$$

Тогда GMr(A) = GMc(A) = 1, f(A) = 2.

Доказательство. 1. Заметим сначала, что для любого элемента $\lambda \in \mathcal{S} \setminus \{0\}$ верно, что $\lambda \cdot (a, 1) = (a \cdot \lambda, \lambda) \neq (0, 0)$. Согласно определению 1 это означает, что набор, состоящий из первой строки матрицы A, не является линейно зависимым в смысле Гондрана-Мину, поэтому из определения 3 следует, что $\mathrm{GMr}(A)\geqslant 1$. Аналогично показывается, что набор, состоящий из второго столбца матрицы A, не является линейно зависимым в смысле Гондрана—Mину, поэтому также $\mathrm{GMc}(A) \geqslant 1$.

2. Теперь воспользуемся определением 1, чтобы показать, что строки матрицы A линейно зависимы в смысле Гондрана—Мину. Положим $I = \{1\}, J = \{2\},$ $\lambda_1=\lambda_2=c$. Тогда по условиям примера имеем, что $c\cdot(a,\mathbf{1})=c\cdot(b,\mathbf{1})$, что доказывает выполнение равенства (1). Таким образом, из определения 3 следует, что $GMr(A) \leq 1$. Аналогично равенство

$$c \cdot \begin{pmatrix} a \\ b \end{pmatrix} = ac \cdot \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \end{pmatrix}$$

доказывает линейную зависимость столбцов матрицы A в смысле Гондрана—Мину, поэтому $\mathrm{GMc}(A) \leqslant 1$.

3. Равенство

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} a & \mathbf{1} \\ b & \mathbf{1} \end{pmatrix} = \begin{pmatrix} a & \mathbf{1} \\ b & \mathbf{1} \end{pmatrix}$$

показывает, как следует из определения 4, что $f(A) \leq 2$.

4. Покажем теперь, что $f(A) \neq 1$. Предположим противное. Тогда для некоторых элементов p, q, r и s полукольца $\mathcal S$ верно, что

$$\begin{pmatrix} p \\ q \end{pmatrix} \cdot \begin{pmatrix} r & s \end{pmatrix} = \begin{pmatrix} a & \mathbf{1} \\ b & \mathbf{1} \end{pmatrix},$$

или, в иной записи,

$$pr = a, \quad qr = b,$$
 (2)

$$ps = 1, \quad qs = 1. \tag{3}$$

Из равенств (3) следует, что $sp=\mathbf{1},\ qsp=p.$ Поэтому $q\cdot\mathbf{1}=p,$ или q=p. Из равенств (2) теперь следует, что a=b. Полученное равенство противоречит условию примера, поэтому $\mathrm{f}(A)\neq 1.$

В силу пунктов 1 и 2 $\mathrm{GMr}(A)=\mathrm{GMc}(A)=1$, в силу пунктов 3 и 4 $\mathrm{f}(A)\in$ \in $\{0,2\}$. По условию примера $a\neq b$, поэтому либо $a\neq \mathbf{0}$, либо $b\neq \mathbf{0}$. Таким образом, из определения 4 следует также, что $\mathrm{f}(A)\neq 0$. Тогда получаем, что $\mathrm{f}(A)=2$, что завершает доказательство.

В данной работе изучаются полукольца, факторизационный ранг матриц над которыми совпадает со строчным и столбцовым рангами Гондрана—Мину. Заметим, что $(A\cdot B)^\top=B^\top\cdot A^\top$ для матриц над полукольцом $\mathcal S$, поэтому факторизационный ранг матрицы инвариантен относительно транспонирования. Это означает, что функция факторизационного ранга совпадает с функцией строчного ранга Гондрана—Мину для всех матриц над $\mathcal S$ в том и только том случае, когда она совпадает с функцией столбцового ранга.

Работа имеет следующую структуру. В разделе 2 вводятся дополнительные необходимые определения и доказывается, что некоторый класс полуколец не удовлетворяет условию совпадения функций факторизационного ранга и ранга Гондрана—Мину. В разделе 3 показано, что любое полукольцо, удовлетворяющее этому условию, вложено в некоторое поле. Приведён пример целостного кольца, для которого это условие нарушается.

2. Антинегативные полукольца без делителей нуля

Для доказательства результатов данного раздела нам потребуются дополнительные определения.

Определение 6 [10,11]. Полукольцо S называется антинегативным, если для любых элементов $a, b \in S \setminus \{0\}$ верно, что $a + b \neq \mathbf{0}$.

Определение 7 [11]. Полукольцо $\mathcal S$ называется *полукольцом с сокращением*, если для любых элементов $a,b,c\in\mathcal S$ из ac=bc и $c\neq \mathbf 0$ следует, что a=b.

Определение 8 [10]. Ненулевой элемент a полукольца $\mathcal S$ называется ∂e -лителем нуля, если найдётся элемент $b \in \mathcal S \setminus \{\mathbf 0\}$, для которого $a \cdot b = \mathbf 0$. Полукольцо $\mathcal S$ называется полукольцом без делителей нуля, если ни один его ненулевой элемент не является делителем нуля.

Следующее утверждение следует непосредственно из определений.

Лемма 9. Любое полукольцо с сокращением является полукольцом без делителей нуля.

Доказательство. Пусть S — полукольцо с сокращением и элементы $a \in S$, $b \in \mathcal{S} \setminus \{\mathbf{0}\}$ таковы, что $a \cdot b = \mathbf{0}$. Тогда имеем $a \cdot b = \mathbf{0} \cdot b$, и в силу определения $7 \ a = \mathbf{0}$. Из определения 8 теперь следует, что никакой ненулевой элемент полукольца $\mathcal S$ не является делителем нуля. Лемма доказана.

Теперь приведём пример полукольца, важный для наших дальнейших рассуждений.

Пример 10. Множество $\mathbb{B} = \{0, 1\}$, на котором заданы операции \oplus и \otimes равенствами

$$\mathbf{0}\oplus\mathbf{0}=\mathbf{0},\quad \mathbf{0}\oplus\mathbf{1}=\mathbf{1}\oplus\mathbf{0}=\mathbf{1}\oplus\mathbf{1}=\mathbf{1},\quad \mathbf{0}\otimes\mathbf{0}=\mathbf{0}\otimes\mathbf{1}=\mathbf{1}\otimes\mathbf{0}=\mathbf{0},\quad \mathbf{1}\otimes\mathbf{1}=\mathbf{1},$$
 является полукольцом.

Доказательство. Утверждение следует непосредственно из определения полукольца. Заметим также, что определения операций \oplus и \otimes соответствуют определениям логических операций ИЛИ и И.

Полукольцо В из примера 10 называется бинарным булевым полукольцом. Нам потребуется утверждение, связывающее бинарное булево полукольцо с антинегативными полукольцами без делителей нуля. Аналогичные утверждения упоминаются, например, в [8, § 3.2], тем не менее мы приведём доказательство для полноты изложения.

Теорема 11. Пусть $(S, +, \cdot, 0', 1')$ — антинегативное полукольцо, не содержащее делителей нуля, и $0' \neq 1'$. Зададим отображение $\varphi \colon \mathcal{S} \to \mathbb{B}$, положив $\varphi(\mathbf{0}') = \mathbf{0}, \ \varphi(s) = \mathbf{1}$ при $s \in \mathcal{S} \setminus \{\mathbf{0}'\}$. Отображение φ является гомоморфизмом полуколец.

Доказательство. Согласно определению отображения φ справедливы равенства $\varphi(\mathbf{0}')=\mathbf{0},\ \varphi(\mathbf{1}')=\mathbf{1}.$ Поэтому достаточно для любых элементов $a,b\in\mathcal{S}$ проверить равенства

$$\varphi(a+b) = \varphi(a) \oplus \varphi(b), \tag{4}$$

$$\varphi(ab) = \varphi(a) \otimes \varphi(b). \tag{5}$$

По определению полукольца x + 0' = 0' + x = x для любого $x \in \mathcal{S}$, откуда следует равенство (4) для любых $a,b \in \mathcal{S}$, хотя бы одно из которых равно $\mathbf{0}'$. Если же $a,b \in \mathcal{S} \setminus \{0'\}$, то по определению 6 $a+b \neq 0'$, что заканчивает проверку равенства (4).

Согласно определению полукольца $x \cdot \mathbf{0}' = \mathbf{0}' \cdot x = \mathbf{0}'$, что доказывает равенство (5) для любых $a,b \in \mathcal{S}$, хотя бы одно из которых равно $\mathbf{0}'$. Наконец, если $a,b \in \mathcal{S} \setminus \{\mathbf{0}'\}$, то по определению $8 \ a \cdot b \neq \mathbf{0}'$, что завершает доказательство равенства (5).

Следующий пример тоже будет полезен для доказательства основных результатов.

Пример 12. Пусть

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \in \mathbb{B}^{4 \times 4},$$

а матрицы $R\in\mathbb{B}^{4 imes k}$ и $S\in\mathbb{B}^{k imes 4}$ таковы, что $R\otimes S=A.$ Тогда $k\geqslant 4.$

Доказательство. Предположим, что утверждение не выполняется, тогда $k \leqslant 3$. Рассмотрим возможные случаи.

- 1. Предположим, что некоторый столбец матрицы S или некоторая строка матрицы R состоят только из элементов $\mathbf{0}$. Тогда из определения операций на полукольце $\mathbb B$ следует, что матрица A содержит соответственно либо нулевой столбец, либо нулевую строку. Это противоречит определению матрицы A, поэтому случай 1 не реализуется.
- 2. Пусть либо матрица R содержит две совпадающие строки, либо матрица S содержит два совпадающих столбца. В этом случае из определения умножения матриц следует, что матрица A содержит либо две совпадающих строки, либо два совпадающих столбца. Это опять противоречит определению матрицы A и показывает, что случай 2 невозможен.
- 3. Предположим, что некоторая строка (обозначим её номер через t) матрицы R состоит только из элементов ${\bf 1}$. По определению матрицы A найдётся индекс $q\in\{1,2,3,4\}$, для которого $a_{tq}={\bf 0}$. В этом случае по определению произведения матриц

$$(r_{t1} \otimes s_{1q}) \oplus \ldots \oplus (r_{tk} \otimes s_{kq}) = \mathbf{0}.$$

По предположению этого пункта каждый элемент строки с номером t матрицы R равен $\mathbf{1}$, т. е. равен нейтральному по умножению элементу полукольца \mathbb{B} . Таким образом, мы получаем, что $s_{1q}\oplus\ldots\oplus s_{kq}=\mathbf{0}$, откуда по определению операций на полукольце \mathbb{B} следует, что $s_{1q}=\ldots=s_{kq}=\mathbf{0}$. Таким образом, столбец матрицы S с номером q состоит только из элементов $\mathbf{0}$, что противоречит результату пункта 1.

4. Предположим теперь, что k=3 и некоторая строка (её номер мы будем обозначать через u) матрицы R содержит ровно два элемента ${\bf 1}$. Таким образом, $r_{ux}=r_{uy}={\bf 1},\ r_{uz}={\bf 0},\ \text{где}\ \{x,y,z\}=\{1,2,3\}.$ По определению матрицы A найдутся два различных индекса $g_1,g_2\in\{1,2,3,4\},\$ для которых $a_{ug_1}=a_{ug_2}={\bf 0}.$ В этом случае по определению произведения матриц

$$(r_{ux} \otimes s_{xg_i}) \oplus (r_{uy} \otimes s_{yg_i}) \oplus (r_{uz} \otimes s_{zg_i}) = \mathbf{0}$$

при любом $i\in\{1,2\}$. По определению операций на полукольце $\mathbb B$ верно, что $s_{xg_i}=s_{yg_i}=\mathbf 0$. Отсюда следует, что либо один из столбцов матрицы S с индексами $g_1,\,g_2$ состоит только из элементов $\mathbf 0$, либо эти два столбца совпадают. Таким образом, мы получаем противоречие с результатами пунктов 1 и 2.

5. Остаётся разобрать случай, когда все строки матрицы R содержат ровно по одному элементу 1. В этом случае согласно принципу Дирихле матрица R содержит совпадающие строки, что противоречит результату пункта 2.

Осталось заметить, что пункты 1-5 исчерпывают все возможные случаи. \Box

Теперь мы можем привести пример матрицы над произвольным антинегативным полукольцом, не содержащим делителей нуля, факторизационный ранг которой не совпадает с её рангами Гондрана—Мину.

Пример 13. Пусть $(\mathcal{S},+,\cdot,\mathbf{0},\mathbf{1})$ — антинегативное полукольцо, не содержащее делителей нуля, в котором $\mathbf{0} \neq \mathbf{1}$. Положим

$$H = egin{pmatrix} 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Тогда f(H) > GMr(H) = GMc(H).

Доказательство. Сначала покажем, что $\mathrm{f}(H)\geqslant 4$. Предположим, что это не так. Тогда по определению 4 $H=P\cdot Q$ для некоторых матриц $P\in\mathcal{S}^{4\times k}$ и $Q\in\mathcal{S}^{k\times 4}$ и некоторого k<4. Через R и S обозначим булевы матрицы, полученные соответственно из P и Q покомпонентным применением отображения φ из теоремы 11. Тогда, поскольку φ — гомоморфизм, произведение $R\otimes S$ булевых матриц оказывается равно матрице A из примера 12. Противоречие с результатом примера 12 показывает, что на самом деле $\mathrm{f}(H)\geqslant 4$.

Теперь покажем, что $\mathrm{GMc}(H)\leqslant 3$. Согласно определению 3 нам требуется показать, что столбцы матрицы H линейно зависимы в смысле Гондрана—Мину. По определению 1 их линейная зависимость следует из равенства

$$egin{aligned} \mathbf{1} \cdot egin{pmatrix} \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \end{pmatrix} + \mathbf{1} \cdot egin{pmatrix} \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \end{pmatrix} = \mathbf{1} \cdot egin{pmatrix} \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \end{pmatrix} + \mathbf{1} \cdot egin{pmatrix} \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \end{pmatrix}.$$

Наконец, равенство $\mathrm{GMr}(H)=\mathrm{GMc}(H)$ следует из определения 3 ввиду того, что матрица H совпадает со своей транспонированной.

3. Доказательство основных результатов

В данном разделе мы докажем, что любое полукольцо, удовлетворяющее условию совпадения функций факторизационного ранга и ранга Гондрана—Мину, вложено в некоторое поле. Сначала мы докажем достаточное условие существование полукольца частных коммутативного кольца. Отметим, что глубокое изучение полуколец частных было проведено в [10]. Для наших же рассуждений будет достаточно более слабого условия, чем те, которые рассматривались в [10].

Теорема 14. Пусть $(S,+,\cdot,\mathbf{0},\mathbf{1})$ — коммутативное полукольцо с сокращением, в котором $\mathbf{0} \neq \mathbf{1}$. На множестве $S \times (S \setminus \{\mathbf{0}\})$ зададим отношение \sim по правилу $(a,b) \sim (c,d)$ тогда и только тогда, когда ad = bc. Тогда

- 1) ~ является отношением эквивалентности;
- 2) множество Quot $\mathcal S$ классов эквивалентности $\langle a,b \rangle$ пар $(a,b) \in \mathcal S \times (\mathcal S \setminus \{\mathbf 0\})$ является полукольцом относительно операций $\langle a,b \rangle + \langle c,d \rangle = \langle ad+bc,bd \rangle$, $\langle a,b \rangle \cdot \langle c,d \rangle = \langle ac,bd \rangle$; нейтральным по сложению является класс эквивалентности элемента $(\mathbf 0,\mathbf 1)$, по умножению элемента $(\mathbf 1,\mathbf 1)$. Любой ненулевой элемент полукольца Quot $\mathcal S$ обратим по умножению.

Доказательство. Рефлексивность и симметричность отношения \sim следуют непосредственно из его определения. Если же $(a,b)\sim(c,d)$ и $(c,d)\sim(g,h)$, то ad=bc и ch=dg. Тогда имеем adch=bcdg, откуда следует, что ah=bg, или $(a,b)\sim(g,h)$. Таким образом, \sim действительно является отношением эквивалентности.

Проверим теперь, что операции на множестве $\mathrm{Quot}\,\mathcal{S}$ определены корректно. Действительно, пусть $(a_1,b_1)\sim (a_2,b_2)$ и $(c_1,d_1)\sim (c_2,d_2)$, т. е.

$$a_1b_2 = a_2b_1, \quad c_1d_2 = c_2d_1.$$
 (6)

Тогда $\langle a_i,b_i\rangle\cdot\langle c_i,d_i\rangle=\langle a_ic_i,b_id_i\rangle$ при $i\in\{1,2\}$, а из (6) следует, что $a_1c_1b_2d_2=a_2c_2b_1d_1$. Это означает, что $\langle a_1,b_1\rangle\cdot\langle c_1,d_1\rangle=\langle a_2,b_2\rangle\cdot\langle c_2,d_2\rangle$. Кроме того, $\langle a_i,b_i\rangle+\langle c_i,d_i\rangle=\langle a_id_i+b_ic_i,b_id_i\rangle$. Опять из равенств (6) следует, что $(a_1d_1+b_1c_1)b_2d_2=(a_2d_2+b_2c_2)b_1d_1$, поэтому $\langle a_1,b_1\rangle+\langle c_1,d_1\rangle=\langle a_2,b_2\rangle+\langle c_2,d_2\rangle$. Итак, операции на Quot $\mathcal S$ определены корректно.

Теперь мы можем доказывать второе утверждение теоремы. Коммутативность сложения и умножения элементов $\mathrm{Quot}\,\mathcal{S}$, также как и ассоциативность умножения, следуют непосредственно из определения этих операций. Кроме того, заметим, что

$$\langle \mathbf{0}, \mathbf{1} \rangle + \langle a, b \rangle = \langle \mathbf{0} \cdot b + \mathbf{1} \cdot a, b \cdot \mathbf{1} \rangle = \langle a, b \rangle,$$

$$\langle \mathbf{0}, \mathbf{1} \rangle \cdot \langle a, b \rangle = \langle \mathbf{0} \cdot a, \mathbf{1} \cdot b \rangle = \langle \mathbf{0}, b \rangle = \langle \mathbf{0}, \mathbf{1} \rangle,$$

$$\langle \mathbf{1}, \mathbf{1} \rangle \cdot \langle a, b \rangle = \langle a, b \rangle.$$

Если же $a \neq \mathbf{0}$, т. е. если $(\mathbf{0},\mathbf{1})$ не принадлежит классу эквивалентности пары (a,b), то $\langle a,b \rangle \cdot \langle b,a \rangle = \langle ab,ab \rangle = \langle \mathbf{1},\mathbf{1} \rangle$. Для доказательства теоремы теперь достаточно проверить ассоциативность сложения и дистрибутивность:

$$(\langle a,b\rangle + \langle c,d\rangle) + \langle g,h\rangle = \langle adh + bch + bdg, bdh\rangle = \langle a,b\rangle + (\langle c,d\rangle + \langle g,h\rangle),$$

$$(\langle a,b\rangle + \langle c,d\rangle) \cdot \langle g,h\rangle = \langle adgh + bcgh, bdhh\rangle = (\langle a,b\rangle \cdot \langle g,h\rangle) + (\langle c,d\rangle \cdot \langle g,h\rangle).$$

Замечание 15. В условиях теоремы 14 имеет место естественное вложение полукольца $\mathcal S$ в полукольцо Quot $\mathcal S$. Действительно, для любых $s_1,s_2\in\mathcal S$ верно, что

$$\langle s_1, \mathbf{1} \rangle + \langle s_2, \mathbf{1} \rangle = \langle s_1 + s_2, \mathbf{1} \rangle, \quad \langle s_1, \mathbf{1} \rangle \cdot \langle s_2, \mathbf{1} \rangle = \langle s_1 s_2, \mathbf{1} \rangle.$$

Теперь мы можем доказать один из главных результатов работы.

Теорема 16. Пусть полукольцо ${\mathcal S}$ таково, что для любой матрицы A над ${\mathcal S}$ верно, что f(A) = GMc(A). Тогда S вложено в некоторое поле.

Доказательство. Если нейтральные по сложению и умножению элементы полукольца ${\mathcal S}$ совпадают, то ${\mathcal S}=\{{\mathbf 0}\}$, и поэтому ${\mathcal S}$ вложено в поле. Далее считаем, что $0 \neq 1$.

Согласно примеру 5 S является полукольцом с сокращением. Тогда из леммы 9 следует, что полукольцо $\mathcal S$ не содержит делителей нуля. Как показывает пример 13, полукольцо S не является антинегативным. Таким образом, найдутся ненулевые элементы $a, b \in \mathcal{S}$, для которых $a + b = \mathbf{0}$.

По теореме 14 полукольцо S обладает полукольцом частных Quot S, каждый ненулевой элемент которого обратим по умножению. Из замечания 15 следует, что ${\mathcal S}$ вложено в ${
m Quot}\,{\mathcal S}$. Теперь нам достаточно показать, что любой элемент полукольца $\mathrm{Quot}\,\mathcal{S}$ обратим по сложению. Действительно, при любом $x\in\mathcal{S}$ и $y \in \mathcal{S} \setminus \{\mathbf{0}\}$ имеем $ay \neq \mathbf{0}$ и $\langle x, y \rangle + \langle bx, ay \rangle = \langle \mathbf{0}, \mathbf{1} \rangle$.

В завершение мы покажем, что вложенности полукольца ${\mathcal S}$ в поле недостаточно для совпадения функций факторизационного ранга и ранга Гондрана-Mину матриц над ${\cal S}$. Оказывается, что даже при дополнительном ограничении, что ${\mathcal S}$ является кольцом, могут найтись матрицы над ${\mathcal S}$ с различными факторизационным рангом и рангом Гондрана-Мину.

Пример 17. Пусть S — кольцо вещественных многочленов от трёх переменных $\mathbb{R}[x,y,z]$. Рассмотрим матрицу

$$A = \begin{pmatrix} x & -z & 0 \\ 0 & y & x \\ y & 0 & z \end{pmatrix}$$

над полукольцом S. Тогда $\mathrm{GMc}(A)=2$, $\mathrm{f}(A)=3$.

Доказательство. Заметим, что первые два столбца матрицы A линейно независимы, поэтому $\mathrm{GMc}(A)\geqslant 2$. С другой стороны, по определению 1 равенство

$$z \cdot \begin{pmatrix} x \\ 0 \\ y \end{pmatrix} + x \cdot \begin{pmatrix} -z \\ y \\ 0 \end{pmatrix} = y \cdot \begin{pmatrix} 0 \\ x \\ z \end{pmatrix}$$

показывает, что столбцы матрицы A линейно зависимы в смысле Γ ондрана-Mину. Из определения 3 следует, таким образом, что $\mathrm{GMc}(A)=2$.

Заметим, что

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x & -z & 0 \\ 0 & y & x \\ y & 0 & z \end{pmatrix} = \begin{pmatrix} x & -z & 0 \\ 0 & y & x \\ y & 0 & z \end{pmatrix},$$

поэтому $f(A) \leq 3$.

Теперь нам достаточно доказать, что $f(A)\geqslant 3$. Предположим противное. Тогда найдутся матрицы $B\in\mathbb{B}^{3\times k}$ и $C\in\mathbb{B}^{k\times 3}$, для которых k<3 и A=BC. Заметим, что классический ранг матрицы A в поле Quot $\mathcal S$ равен 2, поэтому в нашем случае k=2 и строки матрицы C образуют базис линейного пространства, порождённого строками матрицы A. В этом случае строки матрицы C являются линейными комбинациями (с коэффициентами из поля Quot $\mathcal S$) строк матрицы A и потому ортогональны строке $(z\ x-y)$. Таким образом, $c_{i1}z+c_{i2}x-c_{i3}y=0$ при $i\in\{1,2\}$. Из последнего равенства следует, что свободные члены многочленов $c_{i1},\ c_{i2}$ и c_{i3} равны нулю. Таким образом, свободные члены всех элементов матрицы C равны нулю. Аналогично показывается, что свободные члены всех элементов матрицы C также равны нулю. Отсюда следует, что многочлен C0 противоречие C1 противоречие C3 противоречие C4 определением матрицы C5 завершает доказательство.

Я благодарен моему научному руководителю А. Э. Гутерману за постоянное внимание к моей работе. Работа выполнена при частичной финансовой поддержке грантов МД-2502.2012.1 и РФФИ 12-01-00140-а.

Литература

- [1] Шитов Я. Минимальный пример матрицы, различающей GM- и d-ранги в макс-алгебрах // Фундамент. и прикл. мат. 2008.- Т. 14, вып. 4.- С. 231-268.
- [2] Akian M., Gaubert S., Guterman A. Linear independence over tropical semirings and beyond // Tropical and Idempotent Mathematics. Int. Workshop TROPICAL-07, Moscow, Russia, August 25—30, 2007 / G. L. Litvinov, ed. Providence: Amer. Math. Soc., 2009. (Contemp. Math.; Vol. 495). P. 1—38.
- [3] Akian M., Gaubert S., Guterman A. Tropical polyhedra are equivalent to mean payoff games // Int. J. Algebra Comput. 2012. Vol. 22, no. 1. P. 1250001.
- [4] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P. Synchronization and Linearity. Wiley, 1992.
- [5] Barvinok A., Johnson D. S., Woeginger G. J. The maximum traveling salesman problem under polyhedral norms // Integer Programming and Combinatorial Optimization. Berlin: Springer, 1998. (Lect. Notes Comput. Sci.; Vol. 1412). P. 195—201.
- [6] Beasley L. B., Guterman A. E. Rank inequalities over semirings // J. Korean Math. Soc. -2005. Vol. 42, no. 2.- P. 223-241.
- [7] Beasley L. B., Pullman N. J. Boolean-rank-preserving operators and Boolean-rank-1 spaces // Linear Algebra Appl. — 1984. — Vol. 59. — P. 55—77.
- [8] Beasley L. B., Pullman N. J. Semiring rank versus column rank // Linear Algebra Appl. -1988. Vol. 101. P. 33-48.
- [9] Develin M., Santos F., Sturmfels B. On the rank of a tropical matrix // Discrete and Computational Geometry / E. Goodman, J. Pach, E. Welzl, eds. Cambridge: Cambridge Univ. Press, 2005. (MSRI Publ.).
- [10] Golan J. S. Semirings and Their Applications. Dordrecht: Kluwer Academic, 1999.
- [11] Gondran M., Minoux M. Graphs, Dioids and Semirings: New Models and Algorithms. Springer Science+Business Media, 2008.