Положительно определённые функции как инструмент математического анализа

Е. А. ГОРИН

Московский педагогический государственный университет e-mail: evgeny.gorin2012@gmail.com

УДК 517.98

Ключевые слова: асимптотический закон распределения простых чисел, неравенства Бернштейна, голоморфность, банахова эрмитовость.

Аннотация

Описываются близкие автору связи положительно определённых функций в некоторых разделах функционального анализа. Обзор может составить основу спецкурса.

Abstract

E. A. Gorin, Positive definite functions as an instrument of mathematical analysis, Fundamentalnaya i prikladnaya matematika, vol. 17 (2011/2012), no. 7, pp. 67—95.

For the subject in question, the paper describes its connections that are close to the author's interests with branches of functional analysis. The present survey may be suitable as a basis for a special course.

Введение

Положительно определённые комплексные функции на вещественной оси с точностью до положительного множителя совпадают с преобразованиями Фурье вероятностных мер на вещественной оси, т. е. с классом характеристических функций вероятностных распределений скалярных случайных величин. Положительно определённые функции на локально компактных абелевых группах допускают аналогичное истолкование. Теория вероятностей даёт многочисленные и разнообразные примеры, много интересных примеров знал Коши.

Цель данного обзора — предъявить не очень искушённому в этой области читателю некоторые примеры приложений понятия положительно определённой функции в ряде разделов анализа.

Мы напомним некоторые простые вещи, однако не будем повторять здесь все определения из комплексного и гармонического анализа, а также исходные факты теории комплексных коммутативных банаховых алгебр.

Фундаментальная и прикладная математика, 2011/2012, том 17, № 7, с. 67—95. © 2011/2012 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

1. Основные определения и терминология

Мы будем пользоваться следующими стандартными обозначениями:

 \mathbb{Z} — группа целых чисел,

 \mathbb{Q} — поле рациональных чисел,

 \mathbb{R} — поле вещественных чисел,

 $\mathbb{R}_+ = \{ t \in \mathbb{R} \mid t > 0 \},\$

 $\dot{\mathbb{R}}_+ = \{0\} \cup \mathbb{R}_+,$

 \mathbb{C} — поле комплексных чисел,

 $\mathbb{C}^* = \mathbb{C} \setminus \{0\},\$

 $\mathbb{D} = \{ \lambda \in \mathbb{C} \mid |\lambda| < 1 \},\$

 $\mathbb{T} = \{ \lambda \in \mathbb{C} \mid |\lambda| = 1 \}.$

Пусть X — абелева группа (пока без топологии). В случае абелевых групп мы в основном используем аддитивную запись операции. Исключения ясны из контекста, и важнейшее из них — группа $\mathbb T$. Функция $f\colon X\to\mathbb C$ называется положительно определённой, если для каждого конечного набора точек $\{x_1,x_2,\ldots,x_n\}\subset X$ и каждого конечного набора $\{\lambda_1,\lambda_2,\ldots,\lambda_n\}\subset\mathbb C$ выполняется неравенство

$$\sum_{1 \le i \le k \le n} f(x_i - x_k) \lambda_i \bar{\lambda}_k \geqslant 0.$$
 (1)

Из неравенства (1) легко следует, что $|f(x)| \leqslant f(0)$ при всех $x \in X$ и $f(\bar{x}) = f(x)$.

Класс всех положительно определённых функций на X обозначается $\operatorname{PD}(X)$.

2. Некоторые тождества и неравенства

Характером группы X называется каждый гомоморфизм $\chi\colon X\to \mathbb{T}$. Главным называется характер, равный 1 во всех точках $x\in X$. Если χ — произвольный характер, то непосредственно из определения вытекает, что $\chi\in \operatorname{PD}(X)$. Поэтому $\operatorname{PD}(X)$ содержит и линейные комбинации характеров с положительными коэффициентами. Для конечных групп в $\operatorname{PD}(X)$ больше ничего нет.

В принципе близко к такому описание $\operatorname{PD}(X)$ и в общем случае. Лучше начать с топологических локально компактных абелевых групп X. Совокупность всех непрерывных характеров образует абелеву группу (по отношению к поточечному умножению). Эта группа становится локально компактной, если её наделить топологией равномерной сходимости на компактах. Она называется двойственной к X и обозначается \hat{X} или Λ . По теореме Понтрягина двойственная к Λ группа совпадает с X.

Простейший пример даёт $X = \mathbb{R}^m$. Тогда и $\Lambda = \mathbb{R}^m$ (ясно, что здесь педантизм не соблюдён, речь идёт об изоморфизме).

Преобразованием Фурье комплексной регулярной борелевской меры μ на Λ называется функция на X, которая задаётся равенством

$$\hat{\mu}(x) = \int_{\Lambda} \langle x, \lambda \rangle \, \mu(d\lambda),$$

где $\langle x,\lambda \rangle$ — результат спаривания. Эта функция непрерывная и ограниченная. В частности, можно говорить о преобразовании Фурье $\hat{g}(\lambda)$ суммируемой функции g, ставя ей в соответствие (при фиксированной мере Хаара) меру $g(\lambda)d\lambda$. Для благополучных функций (например, если g и \hat{g} обе суммируемые и непрерывные) при согласованных мерах Хаара формула обращения имеет вид эквивалентности

$$\hat{g}(x) = \int\limits_{\Lambda} \langle x, \lambda \rangle g(\lambda) \, d\lambda \iff g(\lambda) = \int\limits_{X} \overline{\langle x, \lambda \rangle} \, \hat{g}(x) \, dx.$$

Оказывается (теорема Бохнера), каждая непрерывная функция $f \in PD(X)$ имеет представление $f = \hat{\mu}$, где μ — однозначно определённая неотрицательная регулярная борелевская мера на Λ .

Разрывность не мешает применять теорему Бохнера, так как часто X можно заменить алгебраически изоморфной дискретной группой.

Замечание. Довольно часто приходится рассматривать локально компактную группу X и одновременно алгебраически изоморфную дискретную группу. В таких случаях дискретная группа обозначается X_d . Двойственную группу мы будем обозначать Λ_b (классическое обозначение $b\Lambda$). Группа Λ_b компактна. Она называется компактом Бора и играет важную роль при изучении почти периодических функций Бора. Естественное отображение $\Lambda \to \Lambda_b$ непрерывно, инъективно и имеет всюду плотный образ в Λ_b . Однако топология на образе, индуцированная вложением, вообще говоря, слабее исходной топологии (на Λ). Поэтому Λ_b , вообще говоря, не является (би)компактным расширением (с точки зрения классической теоретико множественной топологии).

Приведём два примера применения теоремы Бохнера. В обоих примерах, чтобы не усложнять формулы, группа X считается дискретной. Первый пример — следующий хорошо известный факт.

Лемма 1. Пусть
$$f \in PD(X)$$
 и $f(0) = 1$. Если $|f(x_0)| = 1$, то

$$f(x_0 + x) = f(x) \cdot f(x_0)$$
 для всех $x \in X$.

Доказательство. Пусть $z = f(x_0)$. Тогда $|z_0| = 1$, и по теореме Бохнера

$$1 = \int_{\Lambda} \bar{z}_0 \cdot \langle x_0, \lambda \rangle \, \mu(d\lambda),$$

где μ — вероятностная мера. Поэтому

$$\operatorname{supp} \mu \subset \{\lambda \mid \langle x_0, \lambda \rangle = z_0\},\$$

Второй пример — теорема, которая была упомянута в [9,20]. При n=1 приводимое ниже неравенство совпадает с классическим неравенством M. Γ . Крейна.

Теорема 1. Пусть $f \in PD(X)$, и пусть $x_k, y_k \in X$, где $1 \le k \le n$. Тогда

$$\left| f\left(\sum_{k=1}^{n} x_k\right) - f\left(\sum_{k=1}^{n} y_k\right) \right|^2 \le 2nf(0) \sum_{k=1}^{n} \{f(0) - \operatorname{Re} f(x_k - y_k)\}. \tag{2}$$

Доказательство. Мы можем считать, что $f = \hat{\mu}$, где μ — вероятностная борелевская мера на Λ , так что f(0) = 1. При $\lambda \in \Lambda$ положим для краткости

$$\alpha_k = \langle x_k, \lambda \rangle, \quad \beta_k = \langle y_k, \lambda \rangle, \quad \gamma_k = \bar{\alpha}_k \cdot \beta_k,$$

так что α_k , β_k и γ_k — функции от λ , по модулю равные 1. Ниже суммы и произведения берутся по индексу k, $1\leqslant k\leqslant n$, причём пределы изменения индекса опущены.

Левая часть неравенства (2) совпадает с

$$\begin{split} \bigg| \int\limits_{\Lambda} \Big(\sum \langle x_k, \lambda \rangle - \sum \langle y_k, \lambda \rangle \Big) \mu(d\lambda) \bigg|^2 &= \\ &= \bigg| \int\limits_{\Lambda} \Big(\prod \alpha_k - \prod \beta_k \Big) \mu(d\lambda) \bigg|^2 = \bigg| \int\limits_{\Lambda} \Big(\prod \alpha_k \Big) \Big(1 - \prod \gamma_k \Big) \mu(d\lambda) \bigg|^2. \end{split}$$

Применяя к последнему члену неравенство Коши—Буняковского (в L^2 по мере), получаем, что он не превосходит

$$\int_{\Lambda} \left| 1 - \prod \gamma_k \right|^2 \mu(d\lambda).$$

Далее,

$$1 - \gamma_1 \cdot \gamma_2 \cdot \gamma_3 \cdot \ldots = (1 - \gamma_1) + \gamma_1 \cdot (1 - \gamma_2) + \gamma_1 \cdot \gamma_2 \cdot (1 - \gamma_3) + \ldots$$

Наконец, применим неравенство Коши—Буняковского к правой части последнего тождества. Тогда получится, что левая часть в (2) не превосходит

$$n\int_{\Lambda}\sum|1-\gamma_k|^2\,\mu(d\lambda),$$

П

и дальнейшее очевидно.

Заметим, что константу 2n в неравенстве (2), вообще говоря, нельзя уменьшить. Действительно, пусть $X=\mathbb{R}$. Положим $f(x)=\exp(ix),\ x_k=\varepsilon>0$ и $y_k=0$ при всех k. Если подставить эти данные в неравенство (2), разделить на ε^2 и положить $\varepsilon\to 0$, то получится точное равенство.

Неравенство М. Г. Крейна можно использовать для доказательства непрерывности PD -функции 1 .

Подмножество $Q\subset X$ будем называть *насыщенным*, если для каждой точки $x_0\in Q$ из непрерывности PD-функции на $-x_0+Q$ вытекает её непрерывность всюду. Насыщенность следующих множеств можно выводить из неравенства М. Г. Крейна, но проще использовать неравенство (2): 1) замыкание непустого открытого множества; 2) поверхность положительной гауссовой кривизны; 3) орбита гладкой кривой $r=r(t),\ |t|<\varepsilon$, в \mathbb{R}^n , для которой векторы $r',r'',\ldots,r^{(n)}$ линейно независимы при каждом t.

3. Состояния

Пусть A — комплексная банахова алгебра с единицей $1\!\!1$ и стандартными условиями относительно нормы. Спектр элемента $a \in A$ обозначается $\operatorname{spec}(a)$. Для коммутативных алгебр это множество совпадает с множеством значений мультипликативных функционалов на элементе a.

Линейный функционал ψ называется положительным, если $\|\psi\|=\psi(1)$. Если дополнительно $\psi(1)=1$, то положительный функционал называется состоянием.

Совокупность всех состояний обозначается $\mathrm{St}(A)$. Состояния составляют слабо замкнутый выпуклый компакт в единичной сфере сопряжённого пространства. Крайние точки этого компакта называются чистыми состояниями. Например, в случае алгебры A=C(Q) всех непрерывных функций на компакте Q с поточечными операциями и \sup -нормой положительным функционалам отвечают неотрицательные борелевские меры, состояниям — вероятностные меры, а чистым состояниям — δ -меры.

Все мультипликативные функционалы — состояния, однако их множество может быть небольшим (и даже пустым в некоммутативной ситуации), тогда как состояний много, и это вытекает из теоремы Хана—Банаха.

Множество

$$V(a) \stackrel{\text{def}}{=} \{ \psi(a) \mid \psi \in \operatorname{St}(A) \}$$

называется uucnoвым образом элемента a, радиус наименьшего диска с центром в точке 0, содержащего V(a), обозначается v(a) и называется uucnoвым радиусом элемента a. Более аккуратные обозначения включают указание на алгебру.

Если алгебра B линейно изометрически вложена в A, причём $1\!\!1_A \in B$, то для каждого $b \in B$ имеем $\operatorname{St}_B(b) = \operatorname{St}_A(b)$, и это сразу вытекает из теоремы Хана—Банаха. В частности, в качестве B часто удобно брать замкнутую подалгебру, порождённую коммутативным семейством элементов из A.

 $^{^1}$ Тот факт, что из непрерывности $\mathrm{Re}\,f$ в точке 0 вытекает равномерная непрерывность, составляет содержание теоремы Артеменко. А. П. Артеменко (родился в 1909 г.) некоторое время был сотрудником M. Γ . Крейна. Во время Второй мировой войны он пропал без вести.

Пусть $z \in \mathbb{T}$. При $a \in A$ положим

$$\alpha_z(a) \stackrel{\text{def}}{=} \lim_{0 < t \to \infty} \frac{\log \| \exp(tza) \|}{t}$$

Е. А. Горин

(по лемме Фекете предел существует). Число $\alpha_z(a)$ — спектральная абсцисса в направлении вектора z. Это число — нижняя грань чисел, указанных справа. Верхняя грань по z совпадает со спектральным радиусом $|a|_{\infty}$.

Зеркальное рассуждение приводит к числовому радиусу по направлению,

$$\beta_z(a) \stackrel{\text{def}}{=} \lim_{0 < t \to 0} \frac{\log \| \exp(tza) \|}{t},$$

и это число — верхняя грань чисел, указанных справа. Поэтому v(a) — это нижняя грань таких чисел $c\geqslant 0$, что $\|\exp(\lambda a)\|\leqslant \exp(c|\lambda|)$ при всех $\lambda\in\mathbb{C}$. Следующая теорема устанавливает связь между введёнными величинами.

Теорема 2. Имеет место следующая цепочка неравенств:

$$|a|_{\infty} \leqslant v(a) \leqslant ||a|| \leqslant ev(a). \tag{3}$$

Доказательство. В доказательстве нуждается лишь последнее неравенство цепочки (3), но и оно устанавливается без труда. Действительно, по формуле Коши

$$a = \frac{1}{2\pi i} \int_{|\lambda| = r > 0} \frac{\exp(\lambda a) d\lambda}{\lambda^2},$$

так что при каждом r>0 имеем $\|a\|\leqslant \exp r/r$. Нижняя грань достигается при r=1 и даёт последнее из неравенств цепочки (3).

Пример. Приведём пример, показывающий, что константа e в неравенстве (3) точная. Рассмотрим пространство E всех целых функций f=f(z), для которых

$$||f|| \stackrel{\text{def}}{=} \sup |f(z)| \exp(-|z|) < \infty.$$

Оператор a=d/dz действует в E, причём ||a||=e и v(a)=1.

Следующее соотношение легко выводится из теоремы Хана—Банаха и, по существу, принадлежит Банаху:

$$\lim_{0 < t \to 0} \frac{\|b + ta\| - \|b\|}{t} = \sup \operatorname{Re} \psi(a),$$

где a,b — элементы банахова пространства, а верхняя грань берётся по таким функционалам ψ , что $\|\psi\|=1$ и $\psi(b)=\|b\|.$

Заметим, что снять условие t>0 в общем случае нельзя, но иногда можно, и последнее является ключевым моментом в доказательстве Банаха его теоремы о гомеоморфизме метрических компактов, на которых изометричны пространства непрерывных функций.

В применении к банаховым алгебрам получается, что

$$\lim_{0 < t \to 0} \frac{\| \mathbb{1} + ta \| - 1}{t} = \sup_{\psi \in St(A)} \operatorname{Re} \psi(a). \tag{4}$$

4. Неравенство фон Неймана

Первоначальный вариант неравенства фон Неймана состоит в следующем. Пусть T- такой оператор гильбертова пространства, что $\|T\|\leqslant 1$, и f- такой полином, что $|f(z)|\leqslant 1$ при $|z|\leqslant 1$. Тогда $\|f(T)\|\leqslant 1$.

Класс полиномов легко расширяется до аналитических в диске функций, так как оценка не включает степени полинома. Далее теорема распространяется на все C^* -алгебры A по теореме Гельфанда—Наймарка. С другой стороны, легко привести примеры алгебр, в которых это неравенство нарушается. Более того, если в алгебре всех ограниченных операторов банахова пространства с обычной нормой выполняется неравенство фон Неймана, то пространство гильбертово (Ч. Фояш, см. [16]).

Известно много доказательств теоремы фон Неймана. Наше доказательство (приведённое в [7]) очень близко к доказательству Надя—Фояша из [16], но мы иначе расставляем акценты. Идея доказательства состоит в том, чтобы условие $\|a\| \leqslant 1$ заменить эквивалентным условием положительной определённости некоторых последовательностей, естественно связанных с a, а затем убедиться, что последние условия сохраняются при замене a на b=f(a).

Доказательство разбито на несколько пунктов. Удобно предположить, что $|a|_{\infty} < 1$ (это условие легко снимается).

- 1. В случае C^* -алгебр условие $a=a^*$ вместе с условием $\mathrm{spec}(a)\subset\mathbb{R}$ эквивалентно условию $\psi(a)\geqslant 0$ для всех $\psi\in\mathrm{St}(A)$, и в дальнейшем мы пишем $a\geqslant 0$.
- 2. Если $a\geqslant 0$, то $c^*ac\geqslant 0$ для каждого обратимого элемента c. Для доказательства достаточно положить $a=b^2$ с $b^*=b$. Обратное также верно, так как c обратимый элемент.
 - 3. При $\psi \in \operatorname{St}(A)$ и $a \neq 0$ положим

$$\alpha_n = \begin{cases} \psi(a^n), & \text{ если } n > 0, \\ \frac{1}{\psi(a^{|n|})}, & \text{ если } n = 0, \\ \hline \psi(a^{|n|}), & \text{ если } n < 0. \end{cases}$$

Покажем, что выполнение условия $\{\alpha_n\}\subset \operatorname{PD}(\mathbb{Z})$ при всех ψ эквивалентно неравенству $\psi(a^*a)\leqslant 1$.

Предположим, что выполнено α -условие (при некотором ψ). Так как $\{\alpha_n\}$ — суммируемая последовательность, то $\sum\limits_{n}\alpha_n\geqslant 0$. Производя суммирование под знаком ψ и учитывая, что $\psi(u^*)=\overline{\psi(u)}$ для всех u, мы получаем, что $\psi(u)\geqslant 0$,

$$u = -1 + (1 - a)^{-1} + (1 - a^*)^{-1}$$
.

Воспользуемся пунктом 2 с $c=1\!\!1-a$. С учётом того, что ψ произвольно, после очевидных сокращений получается, что выполняется неравенство $\psi(a^*a)\leqslant 1$.

Заменяя a на λa , где $|\lambda|=1$, мы можем пройти путь в обратном порядке и на предпоследнем шаге получим, что $\sum\limits_n \alpha_n \lambda^n \geqslant 0$.

Перейдём теперь непосредственно к теореме фон Неймана. По теореме Бохнера (точнее, по теореме Герглотца — одном из исходных её вариантов) α -условие выполняется тогда и только тогда, когда имеет место представление

$$\alpha_n = \int_{\mathbb{T}} \lambda^n \, \mu(d\lambda),\tag{5}$$

где μ — неотрицательная регулярная борелевская мера. Если f — рассматриваемый полином и $\{\beta_n\}$ — отвечающая f(a) последовательность, аналогичная $\{\alpha_n\}$, то из $\{0\}$ вытекает, что

$$\beta_n = \int_{\mathbb{T}} f(\lambda)^n \, \mu(d\lambda).$$

Так как $|f(\lambda)| \leq 1$, то подынтегральная последовательность будет положительно определённой при каждом λ . Поэтому классу $\mathrm{PD}(\mathbb{Z})$ будет принадлежать и $\{\beta_n\}$.

5. Асимптотический закон распределения простых чисел

Ниже мы укажем обобщения теорем Б. М. Бредихина о распределении базисных элементов свободных абелевых полугрупп со счётным семейством образующих (и приведём точные формулировки и ссылки), однако для наглядности сначала рассмотрим классическую ζ -функцию Римана, которая при $\mathrm{Re}\,\lambda>1$ задаётся формулой

$$\zeta(\lambda) = \sum_{n=1}^{\infty} \frac{1}{n^{\lambda}}.$$

Из этого представления ясно, что функция вещественной переменной $t \to \zeta(\sigma+it)$ при каждом фиксированном $\sigma>1$ является положительно определённой. На самом деле можно утверждать большее: при таких же σ функция $t\to\log\zeta(\sigma+it)$ является положительно определённой. Отсюда, как мы покажем, легко вытекает лемма Адамара—Валле Пуссена об отсутствии нулей на прямой $\sigma=1$ и, стало быть, с точностью до простых тауберовых теорем, — асимптотический закон распределения простых чисел. Заметим, что ζ -функция имеет аналитическое продолжение налево, за прямую $\sigma=1$.

При вещественном x>0 обозначим через $\pi(x)$ количество простых чисел, меньших x. Асимптотический закон распределения простых чисел устанавливает, что $\pi(x) \sim x/\log x$. Здесь запись $f(x) \sim g(x)$ для вещественных функций на полуоси \mathbb{R}_+ означает, что обе функции отличны от нуля при достаточно больших x и, кроме того, $\lim_{x\to\infty} f(x)/g(x)=1$. Заметим, что при x>0 через $\log x$ мы обозначаем натуральный логарифм числа x.

Формулировка асимптотического закона распределения простых чисел (вместе с некоторыми уточнениями, но без доказательств) обнаружена в записных

книжках К. Ф. Гаусса. В начале 1850-х годов очень близко подошёл к доказательству П. Л. Чебышёв.

Знаменитый мемуар Б. Римана «Über die Anzahl der Primzahlen unter einer gegebenen Grösse» [15, с. 216] был опубликован в 1859 г. В этом небольшом по объёму, но богатом по содержанию сочинении часть утверждений приводится с ясными доказательствами, тогда как относительно других Б. Риман ограничивается намёками. Последнее относится и к асимптотическому закону распределения простых чисел. Так или иначе, принято считать, что первые полные доказательства асимптотического закона были получены Ж. Адамаром и Ш. Ж. Валле Пуссеном в 1896 г. В обоих доказательствах сначала устанавливается принципиальный факт, что $\zeta(1+it)\neq 0$ при вещественных t. Довольно часто повторяют утверждение Б. Римана, что отсутствие нулей у ζ -функции на (критической) прямой $\mathrm{Re}\,\lambda=1$ эквивалентно асимптотическому закону, хотя трудно понять, что (после Ж. Адамара и Ш. Ж. Валле Пуссена) означает эквивалентность двух верных утверждений.

В классической монографии [17, гл. 3] Е. Титчмарш приписывает Ш. Ж. Валле Пуссену неравенство

$$\zeta(\sigma)^3 |\zeta(\sigma+it)|^4 |\zeta(\sigma+2it)| \geqslant 1 \quad (\sigma > 1),$$

из которого вытекает, что $\zeta(1+it)\neq 0$, однако Γ . Дэвенпорт [10, п. 13] указывает, что только в 1898 г. таким способом Φ . Мертенс упростил первоначальные доказательства, а годом позже Ш. Ж. Валле Пуссен обобщил его рассуждение и установил, что $\zeta\lambda\neq 0$ в некоторой конкретной (узкой) области слева от прямой $\mathrm{Re}\,\lambda=1$.

Вслед за Ф. Мертенсом указанное неравенство обычно выводится при помощи эйлерова произведения из тригонометрического неравенства

$$3 + 4\cos\theta + \cos 2\theta \geqslant 0,$$

важной особенностью которого является то, что коэффициент при $\cos\theta$ больше свободного члена. С алгебраических позиций привлечение тригонометрического неравенства всё равно выглядит довольно искусственным. Ниже среди прочего будет показано, как при доказательстве неравенства $\zeta(1+it)\neq 0$ обойтись простыми общими соображениями. Решающим является обстоятельство, связанное с положительной определённостью. Нужно отметить, что косвенно это обстоятельство используется и в рассуждении Ф. Мертенса.

Мы начнём со следующей простой общей теоремы, детально разобранной в [7], но сформулированной существенно раньше. В этой теореме для вещественной функции f(x) как обычно

$$f_{+}(x) \stackrel{\text{def}}{=} \max\{0, f\}, \quad f_{-} = f - f_{+}.$$

Обе компоненты неотрицательны.

Теорема 3. Пусть f — вещественная непрерывная положительно определённая функция на локально компактной абелевой группе X. Тогда

$$\int f_- \leqslant \int f_+$$

(интегралы берутся по мере Хаара).

Доказательство. Если функции f и \hat{f} обе суммируемые, то

$$\int f_{+} - \int f_{-} = \hat{f}(0),$$

а общий случай сводится к этому усреднениями.

Для ζ -функции известны многочисленные интегральные представления, дающие возможность аналитически продолжить её на $\mathbb C$ с простым полюсом при $\lambda=1$ с вычетом 1.

Мы ограничимся следующими тождествами, которые почти дословно распространяются на более общую ситуацию (здесь $\lfloor t \rfloor$ непрерывна слева и совпадает с [t] при $t \notin \mathbb{Z}$):

$$\frac{\zeta(\lambda)}{\lambda} = \int_{0}^{\infty} \lfloor e^x \rfloor e^{-\lambda x} \, dx,$$

так что

$$\frac{\zeta(\lambda)}{\lambda} = \frac{1}{\lambda - 1} - \int_{0}^{\infty} \{e^x\}e^{-\lambda x} dx,$$

и поэтому ζ -функция имеет аналитическое продолжение в полуплоскость $\operatorname{Re}\lambda>0.$

Для ζ -функции имеется очень важное представление в виде так называемого эйлерова произведения. Именно, при $\sigma>1$

$$\zeta(\lambda) = \prod_{p} (1 - p^{-\lambda})^{-1}$$

(произведение по простым p). Отсюда следует, что

$$\log \zeta(\lambda) = \sum_{n,p} (np^{\lambda n})^{-1} \tag{6}$$

(суммирование по натуральным n и простым p, ряд хорошо сходится). Из представления (6) следует, что функция $t \to \log \zeta(\sigma + it)$ принадлежит классу $\mathrm{PD}(\mathbb{R})$. Поэтому тому же классу принадлежит её вещественная часть и, следовательно, функция l, определяемая равенством

$$l(t) = \lim_{\sigma \to 1} \log |\zeta(\sigma + it)|.$$

Пусть $\{m_k\}$ — набор кратностей нулей ζ -функции, расположенных на верхней части оси $\sigma=1$. Так как функция ζ чётная, то, применяя теорему (3) к l

в случае $\partial uc\kappa pemhoй$ вещественной оси (заметим, что l(it)=0 вне нулей и полюсов), мы получим, что

$$2\sum_{k}m_{k}\leqslant 1,$$

а это означает, что нулей нет.

Асимптотический закон распределения простых чисел и по форме и по содержанию относится только к одной операции на множестве натуральных чисел — умножению.

Переходя от n к $\log n$, мы заменяем умножение сложением и попадаем в аддитивную абелеву полугруппу неотрицательных чисел. В свободной полугруппе $X = \{\log n\}$ система $Y = \{\log p\}$ составляет счётное семейство свободных образующих.

Теперь мы опишем схему Б. М. Бредихина. Заметим, что он использовал мультипликативную запись, вводил норму и, следуя П. Г. Дирихле, П. Л. Чебышёву и Ю. В. Линнику, рассматривал ζ -функцию только в вещественной области (изложение результатов Б. М. Бредихина в исходной форме дано в [14]).

Пусть Y — счётное множество положительных чисел, линейно независимых над полем $\mathbb Q$ рациональных чисел, и X — полугруппа конечных сумм вида $\sum_k n_k \cdot y_k$, где n_k — неотрицательные целые числа и $y_k \in Y$, причём они попарно различны. Тогда X — свободная абелева полугруппа с базисом Y.

Элементы такой полугруппы X могут располагаться весьма хаотично. Поэтому, чтобы наблюсти (термин А. Н. Колмогорова) что-то закономерное, требуется сузить класс рассматриваемых полугрупп. Первое ограничение состоит в следующем. Мы требуем, чтобы при каждом x>0 множество $\{\xi\in X\mid \xi< x\}$ было конечным. Обозначим через u(x) количество элементов в этом множестве. Функция u кусочно-постоянна и непрерывна слева. В классической ситуации $u(x)=\lfloor e^x\rfloor$.

Через w(x) обозначается аналогичное число, которое возникает при замене X на Y. Классическому случаю отвечает $w(x)=\pi(e^x)$. Теперь естественно спросить, как связаны между собой асимптотики функций u и w при $x\to\infty$ в ситуации более общей, чем классическая. Эту проблему в общей постановке и рассматривал Б. М. Бредихин.

Качественно теоремы Б. М. Бредихина можно сформулировать так.

Прямая теорема. Если $w(x) \approx a \cdot e^x/x$ при некотором a>0, то $u(x) \sim c \cdot x^{a-1} e^x$ при некотором c>0.

Обратная теорема. Если $u(x) \approx c \cdot e^x$ при некотором c > 0, то $w(x) \sim e^x/x$.

Здесь \approx означает нечто большее, чем эквивалентность. Например, в обратной теореме — что

$$u(x) = c \cdot e^x + O(e^{\theta x}),$$

где $0 \leqslant \theta < 1$.

Бросается в глаза, что между прямой и обратной теоремами имеется заметный зазор. Действительно, в прямой теореме допустимо произвольное a>0.

Поэтому естественно было бы попытаться доказать и обратную теорему в предположении, что

$$u(x) = c \cdot e^x + O(e^{\theta x})$$

с $0 \leqslant \theta < 1$, однако у Б. М. Бредихина это сделано только для a=1. Нельзя ли ликвидировать этот зазор, тем более что «человека с улицы» больше может интересовать как раз обратная теорема, поскольку именно она включает в себя асимптотический закон распределения простых чисел?

Описанный ниже подход к проблеме указан в [5]. Определим ζ -функцию полугруппы равенством

$$\zeta_X(\lambda) = \sum_{x \in X} e^{-\lambda x}$$

(предполагается, что этот ряд (Дирихле) сходится).

Информацию о связи между u и w мы получаем как следствие из общих фактов, касающихся преобразования Лапласа (положительных) мер, сосредоточенных на полуоси \mathbb{R}_+ . Таким образом, мы применяем не элементарный, а аналитический подход (и нет ничего удивительного в том, что таким способом можно получить не меньше). Более того, наше исходное предположение (в ситуации обратной теоремы) состоит в том, что на полуоси $\mathrm{Re}\,\lambda>1$ имеет место представление

$$\zeta_X(\lambda) = \frac{f_0(\lambda)}{(\lambda - 1)^a} + f_1(\lambda)$$

в котором f_0 , f_1 — функции, аналитические в окрестности полуплоскости $\operatorname{Re} \lambda \geqslant 1$, причём $f_0(1) \neq 0$. Ясно, что это условие выполняется, если выполняется указанное выше условие, аналогичное условию обратной теоремы Бредихина (но с a>0 вместо a=1).

Оказывается, что при выполнении данного условия функция $\zeta_X(\lambda)$ имеет на прямой $\mathrm{Re}\,\lambda=1$ не более a нулей. В частности, при a<2 нулей нет (так как общее их число чётное), и в этом случае $w(x)\sim a\cdot e^x/x$.

При $a\geqslant 2$ нули могут появиться (или нет), однако это не означает наступление хаоса. Напротив, положение интереснее, чем можно было предположить: $w(x)\sim T(x)\cdot e^x/x$, где T(x) — тригонометрический полином со свободным членом a, имеющий не более 1+a компонент, и inf T(x)>0.

Асимптотический закон распределения простых чисел имеет стандартную форму тогда и только тогда, когда T(x) сводится к константе, и это (на самом деле) эквивалентно тому, что ζ_X не имеет нулей на прямой $\operatorname{Re} \lambda = 1$.

Таким образом, в описанных рамках асимптотический закон распределения базисных элементов имеет стандартный вид тогда и только тогда, когда на этой прямой нет нулей. Ясно, что обнаружить это препятствие, оставаясь на вещественной оси, нелегко.

Доказательства в принципе копируют приведённое выше для классической ζ -функции. Дело в том, что имеются аналоги большинства основных функций

теории чисел, например функции Мёбиуса 1 , сохраняется эйлерово произведение и т. д. В частности, есть возможность применить теорему 3. Если появляются нули, то каждая пара комплексно сопряжённых влияет на структуру полинома T(x).

6. Банахова эрмитовость

Понятие эрмитова оператора в банаховом пространстве изобрёл Г. Люмер в связи с задачей погружения линейной изометрии банахова пространства в однопараметрическую группу таких изометрий. Историческая справка, библиография и детальное изложение части из приводимого ниже материала имеются в [19].

Мы будем говорить об элементах комплексной банаховой алгебры A с единицей и стандартными условиями относительно нормы, поскольку будем использовать введённые выше понятия, в частности числовой образ. Элемент a называется эрмитовым, если

$$\|\exp(ita)\| = 1$$
 для всех $t \in \mathbb{R}$.

Теорема 4. Элемент a эрмитов тогда и только тогда, когда $V(a) \subset \mathbb{R}$.

Доказательство. Пусть a эрмитов и $\psi \in \mathrm{St}(A)$. Тогда $\left|\psi\left(\exp(ita)\right)\right|\leqslant 1$. Вместе с тем

$$\psi(\exp(ita)) = 1 + it\psi(a) + o(t).$$

Поэтому если ${\rm Im}\, \varphi(a) \neq 0$, то при небольших по модулю t соответствующего знака правая часть станет больше 1. Следовательно, $\psi(a) \in \mathbb{R}$.

Обратно, пусть $V(a)\subset\mathbb{R}.$ Тогда по формуле (4) имеем $\|1+ita\|=1+o(t)$ при $t\to 0.$ Очевидно, что тогда и $\|\exp(ita)\|=1+o(t).$ Поэтому

$$\lim_{0 < t \to 0} \|\exp(ita)\|^{1/t} \leqslant 1$$

и, стало быть, $\|\exp(ita)\|\leqslant 1$ при $t\geqslant 0$. То же верно и для левой полуоси. Так как алгебру A можно считать коммутативной, то обратное неравенство очевидно.

Множество эрмитовых элементов обозначается $\mathrm{H}(A)$. По теореме 4 $\mathrm{H}(A)$ является \mathbb{R} -линейным пространством.

Теорема 5. *Если* $a, b \in H(A)$, то $i[a, b] \in H(A)$.

Доказательство. Здесь, как обычно, $[a,b]\stackrel{\mathrm{def}}{=} ab-ba$. Пусть $\psi\in\mathrm{St}(A)$. При фиксированных $t\in\mathbb{R}$ и $a\in\mathrm{H}(A)$ рассмотрим функционал ω на A, определяемый равенством

$$\omega(z) = \psi(\exp(ita)) \cdot z \cdot (\exp(-ita)).$$

 $^{^{1}}$ Некоторый общий подход к функции Мёбиуса дан в [8].

80 Е. А. Горин

Легко убедиться, что $\omega\in\mathrm{St}(A)$. Поэтому $\omega(b)\in\mathbb{R}$. Подставим b вместо z и будем считать t вещественной переменной. Остаётся взять производную при t=0

Элементы вида a+ib, где $a,b\in \mathrm{H}(A)$, называются разложимыми. Заметим, что разложение, если оно существует, единственно¹. Действительно, если a+ib=x+iy, то a-x=i(y-b), так что $\psi(a-x)=0$ для всех $\psi\in\mathrm{St}(A)$.

Множество разложимых элементов обозначается $H_{\mathbb{C}}(A)$. Из теоремы 5 вытекает, что $H_{\mathbb{C}}(A)$ — банахова алгебра $\mathcal{J}u$.

Если $A=H_{\mathbb{C}}(A)$, то A является C^* -алгеброй относительно естественной инволюции на $H_{\mathbb{C}}(A)$

$$a + ib = z \rightarrow z^* = a - ib$$

(теорема Пальмера—Видава, см. [19]). В частности, в таком случае $\|z^*\| = \|z\|$. Ниже мы приведём несколько доказательств того, что $\|a\| = |a|_{\infty}$ для всех эрмитовых элементов a. Отсюда легко следует, что для разложимых элементов $\|z^*\| \leqslant 2\|z\|$. Оказывается [6], существует такая константа $\gamma \approx 1,92 < 2$, что $\|z^*\| \leqslant \gamma \|z\|$.

Пусть $\sigma>0$. Обозначим через \mathbf{B}_{σ} линейное пространство (Бернштейна) всех целых функций экспоненциального типа не больше σ и ограниченных на вещественной оси. По теореме Фрагмена—Линделёфа для всех $f\in\mathbf{B}_{\sigma}$ выполняется неравенство

$$|f(\lambda)| \leqslant e^{\sigma |\operatorname{Im} \lambda|} \sup_{\mathbb{R}} |f|.$$

Из этого неравенства вытекает, что \mathbf{B}_{σ} — банахово пространство относительно sup-нормы по $\Lambda=\mathbb{R}.$

 ${f B}_{\sigma}$ составляют в точности те ограниченные непрерывные на ${\Bbb R}$ функции, преобразования Фурье которых (в смысле S-распределений Шварца) сосредоточены на отрезке $[-\sigma,\sigma]$. Отсюда следует, что спектр оператора a=-id/d совпадает с этим отрезком. В частности, $|a|_{\infty}=\sigma$.

Классическое неравенство Бернштейна (1930-е годы) фактически устанавливает, что $\|a\|=\sigma$. Таким образом, в этом случае $\|a\|=|a|_{\infty}$. В 1960-х годах независимо Ф. Браудер и В. Э. Кацнельсон показали, как из неравенства Бернштейна вывести, что это равенство распространяется на все эрмитовы элементы. По формуле Тейлора оператор $-id/d\lambda$ в \mathbf{B}_{σ} является эрмитовым (так как $\exp(-itd/d\lambda)$ — это сдвиг вдоль вещественной оси). Так как утверждение об эрмитовых элементах носит общий характер, естественно было ожидать, что найдётся простое непосредственное доказательство этого факта, и такое доказательство изобрёл А. М. Синклер (см. [19]).

Функции от элементов банаховой алгебры определяются формулой Гельфанда

$$g(a) \stackrel{\text{def}}{=} \frac{1}{2\pi i} \int_{\Gamma} (\lambda \mathbb{1} - a)^{-1} g(\lambda) d\lambda.$$

¹Существенно более сильные теоремы единственности указаны в [4].

В простейшем случае (достаточном для многих целей) Γ — объединение конечного набора простых замкнутых дуг без пересечений. Контур Γ служит границей области, содержащей $\operatorname{spec}(a)$. Его компоненты ориентированы так, чтобы при обходе область оставалась слева. Функциональное исчисление, основанное на формуле Гельфанда, функториально (т. е. естественно). Доказательство А. М. Синклера начинается с несущественного предположения, что $|a|_{\infty} < \pi/2$, и тождества

$$x = \arcsin(\sin x)$$
.

Это тождество выполняется в интервале $(-\pi/2,\pi/2)$ и, более того, в обширной комплексной окрестности этого интервала. Имея в виду функциональное исчисление Гельфанда, легко обосновать подстановку a вместо x в последнее тождество. Применяя формулу Эйлера для оценки нормы $\sin ka$ и используя тот факт, что сумма модулей коэффициентов Фурье для $\arcsin x$ равна $\pi/2$, мы получаем, что $\|a\| \leqslant \pi/2$. Отсюда вытекает, что $\|a^2\| = |a|_{\infty}$, хотя оператор a^2 не эрмитов даже в простейшем нетривиальном случае (достаточно применить лемму ван дер Корпута). Как убедиться в неэрмитовости квадрата эрмитова элемента практически без вычислений, мы объясним в дальнейшем.

Такие примеры заставляют выяснить nричину, по которой доказательство А. М. Синклера стало возможно. Она оказывается очень простой. Именно, график функции $y = \arcsin(\sin x)$ на всей вещественной оси представляет собой пилообразную кривую. Если сдвинуть его влево так, чтобы максимум пришёлся на точку 0, то получится график nоложительно onpedenenhoй функции.

Стандартной редукцией непрерывной функции g на отрезке $[-\sigma,\sigma]$, не равной 0 тождественно, будем называть функцию $g(x+x_0)/g(x_0)$, где x_0 — такая точка, в которой |g| достигает максимума (таких точек может быть больше одной).

Теорема 6. $||g(a)|| = |g(a)|_{\infty}$ тогда и только тогда, когда (каждая) стандартная редукция функции g имеет положительно определённое продолжение на всю вещественную ось.

Теорема сформулирована несколько «размашисто». Мы не будем здесь уточнять формулировку и приводить доказательство, так как в разделе 8 детально рассмотрим более общую ситуацию.

7. Голоморфная однородность

В этом разделе существенно используется не сама положительная определённость, а тесно связанные с ней понятия положительного функционала и эрмитова элемента в ситуации комплексных банаховых алгебр (в частности, алгебр операторов).

Пусть E и F — банаховы пространства над полем $\mathbb C$ комплексных чисел. Совокупность всех ограниченных линейных операторов из E в F с операторной нормой обозначается $\mathcal L(E,F)$.

82 Е. А. Горин

Пусть $f\colon V\to F$ — отображение области V пространства E в F. Отображение f называется голоморфным, если для каждой точки $z\in V$ существует такой оператор $L_z\in\mathcal{L}(E,F)$, что при малых h

$$f(z+h) = f(z) + L_z h + o(h).$$

Вместо L_z пишут f'(z), как в одномерном случае. Этот оператор называется *производной Фреше* в точке z. Многие факты конечномерного комплексного анализа дословно распространяются на общую банахову ситуацию (см., например, [1]). В частности, отображение $f'\colon V\to \mathcal{L}(E,F)$ голоморфно. Однако есть и отличия, связанные с некомпактностью шаров. Например, отображение, голоморфное всюду в E, не обязательно является ограниченным на всех шарах. В качестве примера можно рассмотреть голоморфное отображение

$$f(z) = \sum_{k=1}^{\infty} z_k^k$$

координатного пространства l_2 в $\mathbb C$. Это отображение не является ограниченным в шаре $\|z\| < r$ при r>1. Далее, если сужения отображения на (сдвинутые) конечномерные подпространства голоморфны, то отображение не обязательно голоморфно (разрывный линейный функционал), так что простого варианта теоремы Хартогса нет.

Функцию f'' можно рассматривать как билинейную форму, и т. д. В результате возникает локально сходящийся ряд Тейлора:

$$f(z+h) = f(z) + f'(z)h + \dots + f^{(n)}(z)(h,h,\dots,h) + \dots$$

В теории конечномерных многообразий имеется много эквивалентных определений векторного поля. Если многообразие сводится к области, то понятие векторного поля становится неотличимым от понятия отображения. Отличие, конечно, состоит в том, что мы намерены делать с объектом. Довольно часто это намерение провоцирует введение новых обозначений (например, наряду с f(z) пишут $\xi(z)$ или $f(z)\partial/\partial z)$, но мы этого делать не будем: из контекста всегда будет ясно, какой конечномерный «прообраз» имеется в виду.

Голоморфное отображение областей

$$E\supset U\stackrel{f}{\longrightarrow} V\subset F$$

называется $\mathit{биголомор}\phi\mathit{ным}$, если оно биективно и обратное отображение также голоморфно. Совокупность всех голоморфных отображений области U в себя обозначается $\mathrm{Hol}(U)$.

Согласно лемме А. Картана голоморфное отображение f ограниченной области U в себя является тождественным, если f(a)=a и f'(a)=1 для некоторой точки $a\in U$.

Если группа $\mathrm{Aut}(U)$ биголоморфных автоморфизмов действует транзитивно, то область называется (биголоморфно) однородной. В дальнейшем нас будут интересовать банаховы пространства (и алгебры) с биголоморфно однородными единичными шарами.

Симметрией ограниченной области в точке a называется такая голоморфная инволюция s, что s(a)=a и s'(a)=1. Область называется симметричной, если в каждой точке у неё есть симметрия. Все симметричные области однородны. Полная классификация таких ограниченных конечномерных областей дана Э. Картаном. Она включает несколько серий и две исключительные области в размерностях 16 и 27.

Методика Э. Картана использует конечномерность. Бесконечномерный вариант теории был развит в 1970-е годы. Обзор и достаточно полные указания на литературу даёт В. Кауп [22], внёсший решающий вклад в становление и развитие бесконечномерной теории. Один из центральных результатов теории составляет следующая теорема (мы не будем здесь делать попытку предъявить хотя бы схему доказательства, некоторые намёки на применяемую технику будут даны ниже).

Теорема 7. Если единичные шары двух банаховых пространств биголоморфно эквивалентны, то пространства изометрически изоморфны.

Следующую теорему мы также оставим без доказательства.

Теорема 8. Каждая ограниченная симметрическая область биголоморфно эквивалентна единичному шару некоторого банахова пространства.

Отметим, что теорема 8 относится и к исключительным областям классификации Э. Картана.

В $l_p^{(n)}$ -серии шары попарно не эквивалентны. Среди них однородным отвечают p=2 и $p=\infty$. При n=2 неэквивалентность последней пары отмечал ещё А. Пуанкаре. Оказывается, что для конечных $p\neq 2$ справедливо $\mathrm{Aut}(U)(0)=0$ (детали см., например, в [21]).

Сказанное делает важным выяснение вопроса о действии ${\rm Aut}(U)$ на единичном шаре. В частности, хотелось бы понять, когда шар однороден. Ясно, что тенденция состоит в том, что группа ${\rm Aut}(U)$ очень бедна, однако есть исключения.

Следующий вариант преобразования Мёбиуса показывает, что единичный шар C^* -алгебры однороден:

$$z \to (\mathbb{1} - aa^*)^{-1/2} (z - a)(\mathbb{1} - a^*z)(\mathbb{1} - a^*a)^{1/2}$$
 (7)

(детали и дальнейшие ссылки см., например, в [19]]). Формула (7) продолжает действовать в подпространствах, инвариантных относительно преобразования $a \to aa^*a$, так что шары таких подпространств однородны. В полученное семейство включаются все (неприводимые) области картановской классификации, кроме исключительных, и на этом пути классификация Э. Картана была продолжена Φ . Φ . Харрисом в специальную бесконечномерную среду.

Теперь мы ограничимся шарами. Мы снова не останавливаемся на доказательствах, лишь намечаем канву. До доказательств можно добраться, обратившись к обзору [22] или к монографии [24], автор которой принимал деятельное

участие в формировании теории. Отметим ещё, что ясное и доступное введение в предмет дано в [21].

В дальнейшем U — единичный шар банахова пространства E и $f\colon U\to E$ — голоморфное отображение, которое здесь уместно именовать векторным полем. Голоморфное векторное поле f называется *полным*, если для каждого $z\in U$ задача Коши

$$\begin{cases} \dot{u}(t) = f(u(t)), \\ u(0) = z \end{cases}$$

разрешима всюду на \mathbb{R} , причём $u(t)=u(t,z)\in U$ при каждом t. Единственность решения всегда имеет место. Решение называется глобальным потоком.

Совокупность $\operatorname{aut}(U)$ полных векторных полей составляет подалгебру Ли в алгебре всех голоморфных векторных полей (которая отождествляется с $\operatorname{Hol}(U)$). Отметим, что эта декларация далеко не безобидна.

Простейшим примером полного векторного поля служит поле $f(w)=i\mathfrak{a}w$, где $\mathfrak{a}\colon E\to E$ — эрмитов оператор. Не только для этого, но и для всех других голоморфных полных векторных полей задача Коши имеет решение u(t) и в случае $\|z\|=1$, и тогда $\|u(t)\|=1$ при всех $t\in\mathbb{R}$.

Частный случай одного из общих основных фактов состоит в следующем.

Теорема 9. *Каждое голоморфное полное векторное поле на шаре допускает представление*

$$f(w) = c + i\mathfrak{a}w - \mathfrak{q}_c(w, w), \tag{8}$$

где a-(произвольный) эрмитов оператор и \mathfrak{q}_c- непрерывная симметричная билинейная форма, однозначно определённая вектором c и зависящая от c сопряжённо-линейно. Совокупность тех c, для которых векторное поле (8) является полным, составляет замкнутое \mathbb{C} -линейное подпространство $E_0\subset E$, инвариантное относительно двустороннего действия эрмитовых операторов, и $\mathrm{Aut}(U)(0)=E_0\cap U$.

Хорошо известно, что уравнение Риккати тесно связано с дробно-линейными отображениями. Представление (8) показывает, что эта связь сохраняется и в бесконечномерной ситуации.

Следующая лемма уже довольно просто вытекает из сказанного (см., например, [21, с. 140].

Лемма 2. Пусть $z \in E$, причём $\|z\|=1$, и пусть ψ — такой функционал, что $\|\psi\|=\psi(z)=1$. Тогда в обозначениях теоремы 9 имеем

$$\psi(\mathfrak{q}_c(z,z)) = \overline{\psi(z)}. (9)$$

Замечание. В случае \mathbb{C}^* -алгебр вместо тождества (9) можно написать более универсальное соотношение: если $||a||, ||b||, ||\psi|| \leq 1$, то

$$|\psi(az^*b) - \overline{\psi(z)}|^2 \le 8||z||^2 \left\{1 - \frac{1}{2}\operatorname{Re}\psi(a+b)\right\}$$

с точной константой 8.

Теперь в качестве банахова пространства мы будем рассматривать банахову алгебру A с единицей и стандартными условиями относительно нормы.

Прежде чем переходить к формулировке теоремы, напомним, что $A_0=0$ в случае, когда $A=L^1(\mathbb{Z})$. Кроме того, в этом случае сопряжённое пространство весьма обширно и это позволяет доказать, что в $L^1(\mathbb{Z})$ нет эрмитовых элементов, кроме констант. Поэтому в этом случае $H_{\mathbb{C}}(A)$ одномерно, однако оно всё-таки шире, чем $A_0=0$.

Мы предпошлем теореме простую лемму (в духе [4]), включающую известную лемму Капланского: если I — замкнутый двусторонний идеал в \mathbb{C}^* -алгебре, то $z^* \in I$. если $z \in I$.

Лемма 3. Пусть A- банахова алгебра и I- замкнутый двусторонний идеал в A. Пусть z_1 и z_2- такие элементы, что функции $\exp(i\lambda z_1)$ и $\exp(i\lambda z_2)$ ограничены на вещественной оси. Если $z_1-iz_2\in I$, то $z_1\in I$ и $z_2\in I$.

Доказательство. Пусть ζ_1 , ζ_2 — канонические образы z_1 , z_2 в A/I. Тогда функция $\lambda \to \exp(\lambda \zeta_1) = \exp(i\lambda \zeta_2)$ будет функцией конечного экспоненциального типа, ограниченной на мнимой и вещественной осях. Поэтому она сводится к константе, а её производная — к нулю.

Теорема 10. Подпространство A_0 является двусторонним модулем над $H_{\mathbb{C}}(A)$, причём $A_0 \subset H_{\mathbb{C}}(A)$. Наконец, A_0 вместе с каждым элементом содержит эрмитово сопряжённый в банаховом смысле.

Доказательство. Первое утверждение сразу вытекает из теоремы 9. Пусть $w \to c - \mathfrak{q}_c(w,w)$ — полное голоморфное векторное поле. Пусть $\psi \in \operatorname{St}(A)$. Положим $b = \mathfrak{q}_c(\mathbb{1},\mathbb{1})$ По лемме 2 имеем $\psi(b) = \overline{\psi(c)}$.

Наконец, пусть B — минимальная замкнутая подалгебра (с единицей) алгебры A, содержащая $H_{\mathbb{C}}(A)$. По доказанному A_0 — замкнутый двусторонний идеал в B. Пусть $z\in A$. Тогда $z\in A_0\subset H_{\mathbb{C}}(A)$, так что $z=z_1-iz_2$, где z_1,z_2 эрмитовы. По лемме 3 имеем $z_1,z_2\in A_0$.

Следующая теорема, непосредственно вытекающая из предыдущей и формулы (7), была в 1980-е годы независимо и практически одновременно получена несколькими авторами.

Теорема 11. Если единичный шар банаховой алгебры биголоморфно однороден, то все её элементы разложимы и она изометрически изоморфна с сохранением инволюции \mathbb{C}^* -алгебре. Обратно, единичный шар каждой \mathbb{C}^* -алгебры биголоморфно однороден.

8. Символы

Исходную локально компактную абелеву группу мы обозначаем здесь Λ . Одна из главных алгебр, с которой мы будем иметь дело, — это алгебра $M=M(\Lambda)$ комплексных регулярных борелевских мер ограниченной вариации с обычными линейными операциями, свёрткой в качестве умножения и

86 Е. А. Горин

(полной) вариацией в качестве нормы. Через $M_0=M_0(\Lambda)$ обозначается результат присоединения (когда это необходимо) δ -меры к замкнутому идеалу $L=L(\Lambda)$ мер, абсолютно непрерывных по мере Хаара, так что $L\subset M_0\subset M$.

Точки x_0 двойственной группы X порождают гомоморфизмы $\mu \to \hat{\mu}(x_0)$ алгебры M в поле $\mathbb C$ комплексных чисел. Такие гомоморфизмы исчерпывают весь запас гомоморфизмов только в том случае, когда группа Λ дискретна. Вместе с тем для L других гомоморфизмов нет.

Согласно теореме Шилова алгебры $\hat{L}(X)$ и $\hat{M}(X)$ локально совпадают, т. е. совпадают их сужения на каждый компакт $Q \subset X$.

Пусть K — замкнутый идеал в M. Оболочкой идеала называется совокупность максимальных идеалов, включающих этот идеал (иначе говоря, совокупность комплексных гомоморфизмов, аннулирующих этот идеал, $\mathrm{Ann}(K)$).

Предположим, что оболочкой служат гомоморфизмы, отвечающие некоторому компакту $Q \subset X$. Среди замкнутых идеалов с оболочкой Q имеется самый большой, именно идеал I(Q), включающий все меры μ , для которых $\hat{\mu}|Q=0$.

Из локального совпадения M с L вытекает ещё одна теорема Шилова: среди таких идеалов имеется и самый маленький J(Q), он получается в результате замыкания идеала тех мер μ , для которых $\hat{\mu}(x)=0$ в некоторой (своей) окрестности компакта Q. Поэтому

$$J(Q) \subset K \subset I(Q), \tag{10}$$

если оболочкой идеала $K\subset M$ служит компакт $Q\subset X$. В формуле (10) все идеалы можно заменить их пересечениями с L.

Если зафиксировать меру Хаара, то произойдёт отождествление алгебры L с L_1 и сопряжённого пространства с L^∞ .

Мы будем рассматривать пространство $C_b(\Lambda)$ как вложенное в $L^\infty(\Lambda)$ (т. е. в сопряжённое к L). Вводимые ниже абстрактные аналоги пространств Бернштейна погружаются в так реализованное $C_b(\Lambda)$.

Пусть $g \in C_b(\Lambda)$. Рассмотрим g как функционал на L. Так как L полупроста и регулярна по Шилову, то имеет смысл говорить о носителе g в X. Фиксируем компакт $Q \subset X$. Множество всех тех g, носитель которых (в указанном смысле) содержится в Q, по определению и составляет npocmpahcmbo Бернштейна $\mathbf{B}(Q)$. Разумеется, здесь снова удобно рассматривать g как комплексную функцию на Λ . При $\Lambda = \mathbb{R}$ и $Q = [-\sigma, \sigma]$ получится в точности \mathbf{B}_{σ} .

Вернёмся к интерпретации g как функционала. Принадлежность к $\mathbf{B}(Q)$ эквивалентна тому, что этот функционал аннулирует $L\cap J(Q)$. Такие функционалы составляют пространство, изометрически изоморфное сопряжённому к $L/(L\cap J(Q))$. Так как Q — компакт, то L можно заменить на M и возникает изоморфизм

$$B(Q) = \left(M/J(Q)\right)^*. \tag{11}$$

Символом на группе X называется комплексная функция f, которая на каждом компакте совпадает с некоторой функцией вида $\hat{\mu}$, где $\mu \in M(\Lambda)$. Символы составляют алгебру $\mathrm{Sym}(X)$ относительно поточечных операций. В случае

 $X=\mathbb{R}^n$ символами являются все достаточно гладкие функции, в частности полиномы. Полиномы являются символами дифференциальных операторов с постоянными коэффициентами.

Пусть $S\colon \lambda \to s_\lambda$ — регулярное представление группы Λ левыми сдвигами в пространстве $C_b(\Lambda)$, $(s_\lambda g)(\xi)=g(\lambda+\xi)$. Каждое из пространств $\mathbf{B}(Q)$ инвариантно относительно операторов представления S. В дальнейшем мы считаем Q фиксированным и, не меняя обозначений, рассматриваем сужение представления S на $\mathbf{B}(Q)$. Представление S продолжается до представления алгебры $M(\Lambda)$ по формуле

$$(s_{\mu})(\lambda) = \int_{\Lambda} g(\lambda + \xi) \,\mu(d\xi)$$

(операторам s_λ отвечают сдвинутые δ -меры). Нам удобно будет писать $\hat{\mu}(S)$ вместо s_μ .

Заметим, что оператор $\mu(S)$ является сопряжённым к оператору умножения на $\hat{\mu}$ в пространстве $\hat{M}/\hat{J}(Q)$. В частности,

$$\operatorname{spec}(\hat{\mu}(S)) = \{\mu(x) \mid x \in Q\}.$$

Лемма 4. Если $\mu(x)=0$ в некоторой окрестности V компакта Q, то $\hat{\mu}(S)=0$.

Доказательство. Не ограничивая общности, будем считать, что V имеет компактное замыкание. Пусть W — такая окрестность компакта Q, что $\bar{W} \subset V$. Существует такая мера $\nu \in M$, что $\hat{\nu}(x) = 0$ вне V и $\hat{\nu}(x) = 1$ на W. Тогда $\mu * \nu = 0$ и $\hat{\mu}(S) \cdot \hat{\nu}(S) = 0$. Вместе с тем оператор $\nu(S)$ обратим.

Пусть $f\in \mathrm{Sym}(X)$. Ниже речь идёт об операторах в $\mathbf{B}(Q)$. Положим $f(S)\stackrel{\mathrm{def}}{=}\hat{\mu}(S)$, если f и $\hat{\mu}$ совпадают в некоторой окрестности компакта Q. По лемме 4 это определение корректно, и теперь мы собираемся выяснить в терминах теории функций, когда $\|f(S)\|=|f(S)|_{\infty}$. Оказывается, необходимые и достаточные условия, вообще говоря, не смыкаются (и это обстоятельство оказывается полезным). Первоначальный вариант основных теорем данного раздела был упомянут ещё в обзоре [2], а более полный описан в [3].

Пусть $E\subset X$ и f — какая-нибудь комплексная функция на E. Допустим, что E содержит такую точку x_0 , что $|f(x)|\leqslant |f(x_0)|\neq 0$) для всех $x\in E$. Функцию $h(x)=f(x+x_0)/f(x_0)$, определённую на $-x_0+E$, будем называть стандартной редукцией функции f (выше рассматривался случай $X=\mathbb{R}$).

Будем писать $f \in \mathrm{QD}(E,x_0)$, если h имеет положительно определённое продолжение на X. Из леммы 1 вытекает, что $f \in \mathrm{QD}(E,x_1)$, если $|f(x_1)| = |f(x_0)|$. Поэтому можно писать $f \in \mathrm{QD}(E)$, по умолчанию предполагая, что точка, в которой верхняя грань |f(x)| достигается, существует.

Замечание. Непрерывность PD-продолжения функции h не предполагается. Поэтому вероятностная мера, представляющая продолжение, сосредоточена не на Λ , а на Λ_b . Существование такой меры эквивалентно существованию (комплексной) меры ν на Λ_b , преобразование Фурье которой даёт продолжение

функции f и удовлетворяет условию ${\rm var}(\nu)=|f(x_0)|$. Кстати, аналогичное замечание можно сделать и относительно непрерывных PD-продолжений, причём в этом случае Λ не требуется расширять.

В приводимых ниже теоремах Q — компакт в X, A — алгебра ограниченных операторов в $\mathbf{B}(Q)$, $f \in \mathrm{Sym}(X)$. Кроме того, не меняя обозначения, мы рассматриваем сужение оператора f(S) на $\mathbf{B}(Q)$.

Теорема 12. Если $||f(S)||_A = |f(S)|_A$, то $f \in QD(Q)$.

Теорема 13. Пусть $\{V\}$ — фундаментальная система (открытых) окрестностей компакта Q. Если $f \in \mathrm{QD}(\bar{V})$ для всех V из этой системы, то $\|f(S)\|_A = \|f(S)\|_A$.

Напомним, что компакт Q называется множеством спектрального синтеза, если J(Q)=I(Q). Как и выше, мы называем компакт Q насыщенным, если для каждой точки $x_0\in Q$ из непрерывности положительно определённой функции на $-x_0+Q$ вытекает её непрерывность в точке 0 (и, стало быть, всюду).

Теорема 14. Предположим, что компакт Q является насыщенным множеством спектрального синтеза. В таком случае условие $\|f(S)\|_A = |f(S)|_A$ равносильно условию $f \in \mathrm{QD}(Q)$.

Отметим, что теорема 14 влечёт за собой теорему 6, поскольку отрезок на оси, как легко убедиться, является насыщенным множеством спектрального синтеза.

Доказательство теоремы 12. Мы будем считать, что $0 \in Q$ и что $|f(x)| \leqslant \leqslant f(0) = 1$. В этой ситуации следует убедиться, что f имеет положительно определённое продолжение на X.

Для наглядности будем считать, $f(x)=\hat{\mu}(x)$ в окрестности компакта Q. Здесь $\mu\in M(\Lambda)$. Таким образом,

$$(f(S)g)(\lambda) = \int_{\Lambda} g(\lambda + \xi) \, \mu(d\xi).$$

Зададим функционал ψ на $\mathbf{B}(Q)$, полагая

$$\psi(g) = \int_{\Lambda} g(\xi) \, \mu(d\xi).$$

Так как $\|f(S)\|_A = |f(S)|_A$, то $\|\psi\| = \psi(1) = 1$, где $1 - \varphi$ ункция на Λ , тождественно равная 1.

Пусть $e_x(\lambda)\stackrel{\mathrm{def}}{=}\langle x,\lambda\rangle$. Ясно, что $\psi(e_x)=f(x)$, если $x\in Q$. Продолжим функционал ψ на $C_b=C_b(\Lambda)$ с сохранением нормы (и обозначения).

Достаточно убедиться, что функция $x \to \psi(e_x)$ является положительно определённой. Но C_b есть C^* -алгебра относительно поточечных операций и ѕир-нормы. В силу сказанного выше $\psi \in \operatorname{St}(C_b)$ и, стало быть, является положительным функционалом в обычном смысле. Поэтому положительная определённость указанной функции проверяется непосредственно.

Доказательство теоремы 13. Мы снова будем считать, что $0 \in Q$ и что $|f(x)| \leq f(0) = 1$ при всех $x \in q$.

Пусть $\varepsilon > 0$. Выберем такую окрестность $V = V_{\varepsilon}$, чтобы при всех $x \in \bar{V}_{\varepsilon}$ выполнялось неравенство $|f(x)| \leqslant 1 + \varepsilon$.

Пусть z — такая точка из \bar{V}_{ε} , что $|f(x)|\leqslant |f(z)|$ при всех $x\in \bar{V}_{\varepsilon}$. По условию функция f(x+z)/f(z) имеет положительно определённое продолжение h с $-z+\bar{V}_{\varepsilon}$. Если W — какая-нибудь открытая окрестность точки z, то множество $W\cap V$ имеет положительную меру Хаара. Поэтому из теоремы 1 вытекает, что h — непрерывная функция. По теореме Бохнера $h=\hat{\mu}$, где μ — вероятностная мера на Λ . Отсюда следует, что на \bar{V}_{ε} выполняется равенство $f=\hat{\nu}$, где ν — такая (комплексная) борелевская мера на Λ , что $\mathrm{var}(\nu)\leqslant 1+\varepsilon$.

Доказательство теоремы 14. Мы опять будем считать, что $0 \in Q$ и что $|f(x)| \leqslant f(0) = 1$. В одну сторону утверждение вытекает из теоремы 12, поэтому нам остаётся убедиться, что в указанных условиях $\|f(S)\|_A = 1$.

Так как $f \in \mathrm{Sym}(X)$, то существует такая мера $\mu \in M(\Lambda)$, что $f(x) = \hat{\mu}(x)$ в некоторой окрестности компакта Q. По условию функция f имеет положительно определённое продолжение h с компакта Q. Поскольку этот компакт — насыщенное множество, функция h является непрерывной. По теореме Бохнера $h = \hat{\nu}$ для некоторой вероятностной меры ν на Λ .

Ясно, что $\mu-\nu\in I(Q)$ и (по условию) $\mu-\nu\in J(Q)$. Ввиду регулярности по Шилову алгебры \hat{L} для каждого $\varepsilon>0$ существует такая мера ω , что $\mathrm{var}(\omega)<\varepsilon$ и $\hat{\omega}(x)=\hat{\mu}(x)-\hat{\nu}(x)$ в некоторой окрестности компакта Q. Поэтому $\hat{\mu}(S)_A<<1+\varepsilon$.

Замечание. Наши рассуждения близки к тем, которые применяются для доказательства теоремы Эберлейна (см., например, [23, § 1.9]). Однако в доказательстве теоремы Эберлейна понятие положительной определённости играет малозаметную промежуточную роль, тогда как у нас это понятие имеет важное значение не только в доказательствах, но и в формулировках теорем.

Теперь мы приведём два содержательных примера.

Пример 1. В основной теореме (не устаревшей) статьи [18] предъявляется «уравнение Эйлера» для экстремалей некоторого класса операторов (точнее, функционалов, связанных с операторами) в пространстве \mathbf{B}_{σ} . В этом классе, в частности, символ f — вещественная неограниченная аналитическая функция на оси \mathbb{R} . В рассматриваемой задаче нетривиальная экстремаль единственна, однако не исключается, что экстремалью может служить и константа. Вместе с тем авторы отмечают, что не знают ни одного примера, где экстремаль — константа, и что в простых случаях констант не бывает. Тем не менее им приходится усложнять формулировку за счёт как бы существующих экстремалей-констант. Такие примеры не попадались и в дальнейшем, и дело, оказывается, в том, *что и в других ситуациях их нет*.

Действительно, если экстремаль — константа, то норма и спектральный радиус совпадают, а тогда f есть QD-функция. Можно считать, что f(0) = 1.

Тогда продолжение будет положительно определённой вещественной функцией, аналитической в вещественной окрестности начала координат. Так как на отрезке $[-\sigma,\sigma]$ она сводится к константе, то будет константой всюду. Ввиду аналитичности таким же был бы и символ, но он по предположению неограниченный.

В [12] показано, что общая проблема из [18] заметно усложняется, если допустить не только вещественные, но и комплексные символы. В частности, даже в простых с виду случаях при описании экстремалей сразу возникают гиперэллиптические интегралы.

Пример 2. Мы покажем, что замена идеала J на I в сторону достаточности (теорема 14), вообще говоря, невозможна. Разумеется, дело в том, что эти идеалы не всегда совпадают (поскольку, вообще говоря, нет «спектрального синтеза»). Первый пример такого типа построил в первой половине прошлого века J. Шварц. В дальнейшем выяснилось, что такие пары есть для всех групп Λ , кроме компактных. Однако с расширением класса групп необходимые вычисления не упрощались и наиболее простым, пожалуй, оставался пример Шварца.

Мы покажем, что по модулю сделанных замечаний в примере Шварца можно фактически совсем освободиться от вычислений. Обозначим через $|\lambda|$ евклидову норму вектора $\lambda \in \mathbb{R}_n$. Функция $u(\lambda) = \cos |\lambda|$ является целой, и её преобразование Фурье сосредоточено в шаре $|x| \leqslant 1$. При нечётных n носителем преобразования Фурье служит сфера $S^{n-1} = \{x \in \mathbb{R}^n \mid |x| = 1\}$ (подобно тому, как это происходит при n=1).

Символом оператора Лапласа $-\Delta$ служит квадратичная форма f(x), равная сумме квадратов координат. Так как $(f-1)|S^{n-1}=0$, то спектр оператора $-\Delta$ в пространстве $\mathbf{B}(S^{n-1})$ при нечётных n сводится к 1. Вместе с тем $-(\Delta u)(0)=n$, так что при $n\geqslant 3$ норма и спектральный радиус не совпадают, и согласно теореме 14 единственным препятствием к совпадению служит тот факт, что $J(S^{n-1})\neq I(S^{n-1})$, поскольку сфера при $n\geqslant 2$ является насыщенным множеством. Кстати, получается, что при $n\geqslant 3$ оператор $-\Delta$ в пространстве $\mathbf{B}(S^{n-1})$ неэрмитов, тогда как $\partial/\partial \lambda_k$ эрмитовы. Аналогично может быть рассмотрен целый ряд других примеров такого типа.

При $\sigma>0$ обозначим через E_{σ} пространство всех целых функций на плоскости экспоненциального типа не выше σ . Пусть

$$H^p_\sigma \stackrel{\mathrm{def}}{=} L^p(\mathbb{R} \cap E_\sigma).$$

Относительно $L^p(\mathbb{R})$ -нормы это пространство является банаховым.

Действительно, если $f \in E_{\sigma}$ и

$$\int\limits_{\mathbb{D}}\frac{\log^+|f(\lambda)|\,d\lambda}{1+\lambda^2}<\infty,$$

где

$$\log^+ t \stackrel{\text{def}}{=} \max\{0, \log t\}$$

при t>0, то (согласно одной из форм неравенства Иенсена) при $y={\rm Im}\,z>0$

$$|f(z)| \le \sigma y + \frac{y}{\pi} \int_{\mathbb{R}} \frac{\log^+ |f(\lambda)| d\lambda}{|\lambda - z|^2}.$$
 (12)

Неравенство (12), в частности, выполняется для всех $f \in H^p_\sigma$, поэтому $H^p_\sigma \subset \mathbf{B}_\sigma$. Отсюда вытекает, что при p>1 пространство H^p_σ является банаховым.

Это пространство инвариантно относительно сдвигов, причём сдвиги — это изометрии. Легко показать, что оператор $a=-id/d\lambda$ действует в этом пространстве, является эрмитовы и $\operatorname{spec}(a)=[-\sigma,\sigma]$. Известно, что и $\|a\|=\sigma$, и этот факт содержится в указанной выше теореме (о норме эрмитова элемента). Вместе с тем примеры такого типа наводят на мысль распространить достаточные условия, указанные в двух последних теоремах, с (регулярного) представления S на более общие.

Пусть A — комплексная банахова алгебра с единицей, причём норма удовлетворяет стандартными условиям. Обозначим (как обычно) через A^{-1} группу обратимых элементов алгебры A. Группа A^{-1} является топологической в топологии индуцированной вложением в A.

Пусть

$$\Lambda \ni \lambda \stackrel{T}{\longrightarrow} t_{\lambda} \in A -$$

представление (непрерывный гомоморфизм) локально компактной группы Λ в A^{-1} . Будем говорить, что представление T нормальное, если дополнительно $\|t_{\lambda}\|=1$ при всех $\lambda\in\Lambda$.

Нормальное представление индуцирует представление алгебр

$$M = M(\Lambda) \to A$$

по формуле

$$\hat{\mu}(T) = \int_{\Lambda} t_{\lambda} \, \mu(d\lambda).$$

Это представление обозначается тем же символом T.

Пусть $K=\ker(T)$ — ядро гомоморфизма алгебр. Тогда K— замкнутый идеал. Оболочка этого идеала (т. е. совокупность гомоморфизмов в $\mathbb C$, аннулирующих этот идеал) называется спектром представления T и обозначается $\operatorname{Spec}(T)$. Легко проверить, что

$$\operatorname{Spec}(\hat{\mu}(T)) = \{\widehat{\mu(x)} \mid x \in \operatorname{Spec}(T)\}.$$

Обозначение x для точки пространства максимальных идеалов имеет определённый смысл, так как мы собираемся проверить, что $\operatorname{Spec}(T)$ — компакт, попадающий в X (при естественном отождествлении объектов).

Приводимое ниже рассуждение аналогично применяемому в [11] по близкому поводу.

Обозначим через A_T минимальную замкнутую подалгебру с единицей, содержащую все элементы t_λ , $\lambda \in \Lambda$. Ясно, что A_T будет содержать весь образ алгебры M в A. Если заменить область значений A на A_T , то ядро представления не изменится. Это позволяет считать, что с самого начала $A_T = A$. В частности, алгебру A можно считать коммутативной, а образ — всюду плотным в A.

Пусть R=T|L— сужение представления T на L и φ — мультипликативный функционал на алгебре A. Если R^* — сопряжённое отображение (оно инъективно), то $R^*\varphi$ — мультипликативный функционал на алгебре L. Все такие функционалы реализуются точками группы X, т. е. имеют форму $\mu \to \hat{\mu}(x_0)$. Так как R слабо-слабо непрерывно, то $Q \stackrel{\mathrm{def}}{=} R^* \big(\mathrm{Spec}(A) \big)$ — компакт в X. Этот компакт, как вытекает из следующей леммы, совпадает со $\mathrm{Spec}(T)$.

Лемма 5. $J(Q) \subset K \subset I(Q)$, т. е. выполняется соотношение (10).

Доказательство. Достаточно было бы доказать только правое включение, однако для доказательства правого нам потребуется левое, поэтому мы начнём с него.

Пусть $\mu \in M$ и $\hat{\mu}(x) = 0$ в некоторой окрестности V компакта Q, имеющей компактное замыкание. Существует такая мера $\nu \in L$, что $\hat{\nu}|Q=1$ и $\hat{\nu}(x)=0$ вне V. Тогда $\mu*\nu=0$ и $\hat{\mu}(T)\cdot\hat{\nu}(T)=0\in A$. Но $\hat{\nu}(T)\in A^{-1}$, поэтому $\hat{\mu}(T)=0$, т. е. $\mu\in K$. Поэтому $J(Q)\subset K$.

Пусть теперь $\mu \in K$. Существует такая мера $\nu \in L$, что $\mu(x) = \nu(x)$ в некоторой окрестности компакта Q. По доказанному $\mu - \nu \in K$, так что $\nu \in K$. Следовательно, $\hat{\nu}|Q=0$. Поэтому $\hat{\mu}|Q=0$, т. е. $\mu \in I(Q)$.

Из определения сразу следует, что $\|\hat{\mu}(T)\| \leqslant \text{var}(\mu)$. В правой части этого неравенства можно перейти к нижней грани по мерам, сравнимым с μ по модулю K. Но эта нижняя грань совпадает с $\hat{\mu}(S)_{\mathbb{B}(Q)}$. В частности, если норма оператора \hat{S} в $\mathbf{B}(Q)$ совпадает со спектральным радиусом, то это остаётся верным и в отношении $\hat{\mu}(T)$, так как спектры (и, стало быть, спектральные радиусы) этих операторов совпадают.

Ясно, что практически всё сказанное распространяется с функций вида $\hat{\mu}$ на произвольные символы.

9. Универсальные символы

Символ f называется yниверсальным, если $||f(T)|| = |f(T)|_{\infty}$ для каждого нормального представления T.

Символ тогда и только тогда является универсальным, когда совпадение нормы и спектрального радиуса имеет место для сужений оператора f(S) на каждое из пространств $\mathbf{B}(Q)$. При $X=\mathbb{R}^n$ универсальные символы изучались в [12], а общий случай рассматривался в [20], где, в частности, был предъявлен заметно более простой критерий универсальности.

Особенное место при изучении универсальных символов занимают связные группы. К таким группам относятся все \mathbb{R}^n , причём этот случай является центральным. Говоря неформально, в этом случае нет типично многомерных универсальных символов, что отмечалось ещё в [12]. Мы увидим, что в этом случае достаточные условия можно варьировать.

Универсальным символам посвящена недавняя работа [9], поэтому здесь мы ограничимся формулировками и набросками доказательств.

Теорема 15. Символ f тогда и только тогда является универсальным, когда для каждого конечного подмножества $F \subset X$ стандартная редукция сужения f|F имеет положительно определённое продолжение на X.

Схема доказательства. Необходимость условия, связанного с конечными подмножествами, — простое следствие теоремы 12.

Для доказательства достаточности рассмотрим какое-нибудь подмножество $E\subset X$, содержащее точку 0, и предположим, что $|f(x)|\leqslant f(0)=1$ при всех $x\in E$. Достаточно проверить, что f имеет положительно определённое продолжение с E, так как затем можно будет заменить Q замыканием небольшой окрестности этого компакта и применить то же рассуждение, которое привело к доказательству теоремы 13.

Вместе с тем f имеет согласованные положительно определённые продолжения с каждого конечного подмножества F, содержащего точку 0.

Теорема 16. Каждый универсальный символ f на связной локально компактной группе X допускает представление

$$f = \chi \cdot (f_1 \circ \varphi), \tag{13}$$

где χ — непрерывный характер, f_1 — одномерный символ и φ — непрерывный аддитивный гомоморфизм из X в $\mathbb R$.

Формула (13) показывает, что информация об одномерных символах важна. Более того, путь к доказательству теоремы 16 начинается с тщательного изучения одномерных символов. К числу таких символов, конечно, относятся все чётные полиномы с неотрицательными коэффициенты и полиномы, нули которых расположены на прямой, ортогональной вещественной оси. Для неотрицательных универсальных символов имеется достаточное условие, аналогичное так называемому критерию Пойа. Однако в целом это довольно загадочный класс. Роль неотрицательных универсальных символов на прямой понятна, так как вместе с f_1 к этому классу принадлежит и $|f_1|^2$.

Несколько странно выглядит тот факт, что для таких символов $\kappa a \mathcal{m} \partial \omega u$ локальный максимум является глобальным минимумом. Однако типичный неотрицательный одномерный символ — функция $\max\{0, x^2 - 1\}$.

Из отмеченного свойства вытекает принцип максимума: если неотрицательный одномерный символ достигает верхней грани на интервале, то этот символ — константа на этом интервале.

Достаточным условием универсальности является возможность положительно определённого продолжения стандартной регуляризации с каждой пары отрезков одинаковой длины (аналогичное условие имеется в \mathbb{R}^n и, более того, в произвольной связной локально компактной группе). После изучения одномерного случая теорема 16 устанавливается для плоскости, затем по индукции в \mathbb{R}^n и, наконец, в общем случае. Некоторые факты сохраняются для локально выпуклых топологических векторных пространств.

Литература

- [1] Бурбаки Н. Дифференцируемые и аналитические многообразия (сводка результатов). М.: Мир, 1975.
- [2] Горин Е. А. Об исследованиях Г. Е. Шилова по теории коммутативных банаховых алгебр и о некоторых направлениях их дальнейшего развития // Успехи мат. наук. 1978.-T.~33,~N 4. С. 169-188.
- [3] Горин Е. А. Неравенства Бернштейна с точки зрения теории операторов // Вестн. Харьков. ун-та. Сер. прикл. мат. и мех. — 1980. — Т. 205, вып. 45. — С. 77—105.
- [4] Горин Е. А. Обобщение одной теоремы Фугледе // Алгебра и анализ. 1993. Т. 5, № 4. С. 83—97.
- [5] Горин Е. А. Асимптотический закон распределения простых чисел в контексте абелевых полугрупп (исходный текст) // Чебышёвский сб. 2005. Т. 6, № 2. С. 100—128.
- [6] Горин Е. А. Оценки инволюции разложимых элементов комплексной банаховой алгебры // Функц. анализ и его прил. 2005. Т. 39, № 4. С. 14—31.
- [7] Горин Е. А. Фрагменты научной биографии Д. А. Райкова: гармонический анализ // Успехи мат. наук. -2006. Т. 61, № 5. С. 157–172.
- [8] Горин Е. А. Функция Мёбиуса на абелевых полугруппах // Функц. анализ и его прил. 2011. Т. 45, \mathbb{N} 1. С. 88—93.
- [9] Горин Е. А., Норвидас С. Универсальные символы на локально компактных абелевых группах // Функц. анализ и его прил. 2013. T. 47, № 1. С. 1—16.
- [10] Дэвенпорт Г. Мультипликативная теория чисел. М.: Наука, 1971.
- [11] Любич Ю. И., Мацаев В. И., Фельдман Г. М. О представлениях с отделимым спектром // Функц. анализ и его прил. 1973. Т. 7, № 2. С. 52—61.
- [12] Норвидас С. Т. Об устойчивости дифференциальных операторов в пространствах целых функций // ДАН СССР. 1986. Т. 291, № 3. С. 548—551.
- [13] Норвидас С. Функциональное исчисление эрмитовых элементов и неравенства Бернштейна // Функц. анализ и его прил. 2006. Т. 41, № 2. С. 79—81.
- [14] Постников А. Г. Введение в аналитическую теорию чисел. М.: Наука, 1971.
- [15] Риман Б. Сочинения. М.; Л.: ОГИЗ, Гостехиздат, 1948.
- [16] Сёкельфальви-Надь Б., Фояш Ч. Гармонический анализ операторов в гильбертовом пространстве. М.: Мир, 1970.
- [17] Титчмарш Е. Теория дзета-функции Римана. М.: Изд. иностр. лит., 1953.
- [18] Boas R. M., Jr, Schaffer A. C. Variational method in entire functions // Am. J. Math. 1957. Vol. 79, no. 4. P. 857—884.

- [19] Bonsall F. F., Duncan J. Complete Normed Algebras. Berlin: Springer, 1973.
- [20] Gorin E. A. Universal symbols on locally compact Abelian groups // Bull. Polish Acad. Sci. $-\,2003.-$ Vol. 51, no. 2. $-\,P.\,199-204.$
- [21] Isidro J., Stachò L. Holomorphhic Automorphism Groups in Banach Spaces: An Elementary Introduction. Amsterdam: North-Holland, 1984.
- [22] Kaup W. Bounded symmetric domains and generalized operator algebras // Real Analysis and Functional Analysis Joint Symposium, $2007.-P.\ 45-56$.
- [23] Rudin W. Fourier Analysis on Groups. New York: Interscience Publishers, 1967.
- [24] Upmeier H. Symmetric Banach Manifolds and Jordan C^* -Algebras. Amsterdam: North-Holland, 1985.