Rolling simplexes and their commensurability. IV. Прощай, оружие!*

О. В. ГЕРАСИМОВА, Ю. П. РАЗМЫСЛОВ

Московский государственный университет им. М. В. Ломоносова e-mail: ynona_olga@rambler.ru

УДК 512.543.7+512.544.33+512.815.8+517.984.5+514.84

Ключевые слова: дифференциальная алгебра, аффинная кривая, параметризация, степенные ряды, аналитичность.

Аннотация

В работе чисто алгебраическими средствами объясняется, почему спектр $\mathrm{Spec}_{\mathbb C}A$ произвольной счётномерной комплексной коммутативно-ассоциативной дифференциальной алгебры A, являющейся областью целостности степени трансцендентности 1, локально аналитичен, т. е. для любого $\mathbb C$ -гомоморфизма $\psi_M:A\to\mathbb C$ $(M\in\mathrm{Spec}_{\mathbb C}A)$ и $a\in A$ ряд Тейлора $\tilde\psi_M(a)=\sum_{m=0}^\infty \psi_M(a^{(m)})\frac{z^m}{m!}$ имеет ненулевой радиус сходимости, зависящий от элемента $a\in A$.

Abstract

O. V. Gerasimova, Yu. P. Razmyslov, Rolling simplexes and their commensurability. IV. (A farewell to arms!), Fundamentalnaya i prikladnaya matematika, vol. 21 (2016), no. 2, pp. 145—156.

The text by pure algebraic reasons outlines why the spectrum of maximal ideals $\operatorname{Spec}_{\mathbb C} A$ of a countable-dimensional differential $\mathbb C$ -algebra A of transcendence degree 1 without zero divisors is locally analytic, which means that for any $\mathbb C$ -homomorphism $\psi_M\colon A\to\mathbb C$ $(M\in\operatorname{Spec}_{\mathbb C} A)$ and any $a\in A$ the Taylor series $\tilde\psi_M(a)=\sum_{m=0}^\infty \psi_M(a^{(m)})\frac{z^m}{m!}$ has nonzero radius of convergence depending on the element $a\in A$.

Мы реалисты, а не мистики. И в дифурах нам равных нет. Алгебраисты мы, не физики, Мозги— наш главный инструмент! Из манифеста ЛВМ

Начнём с одного интуиционистского, чисто алгебраического трюка, позволяющего разрешать некоторые типы обыкновенных дифференциальных уравнений относительно входящей в них старшей производной.

^{*}Дифференциально-алгебраических кривых не существует.

Лемма об аффинности промежуточной подалгебры. Пусть конечно порождённая коммутативно-ассоциативная область целостности A является алгеброй (с единицей) над произвольным алгебраически замкнутым полем k (char $k=0,2,3,5,7,11,13,17,19,23,29,31,37,\ldots$), а её поле частных Q(A) имеет над k степень трансцендентности, равную 1. Тогда если в цепочке k-подалгебр $A\subseteq C\subseteq B\subset Q(A)$ алгебры A и B содержат конечное число образующих, то это верно и для подалгебры C.

Доказательство. Так как B имеет конечное число образующих, то C счётномерная k-алгебра. Выберем в C элементы $\{e_i \mid i=1,2,\ldots\}$ так, чтобы они дополняли базис k-алгебры A до базиса C. Положим

$$C_0 \stackrel{\text{def}}{=} A$$
, $C_{i+1} \stackrel{\text{def}}{=} C_i[e_{i+1}]$, $C_{\infty} \stackrel{\text{def}}{=} B$.

Целые замыкания («нормализации») всех этих конечно порождённых подалгебр в Q(A) будем обозначать $\bar{C}_0, \bar{C}_1, \ldots, \bar{C}_i, \ldots, \bar{C}_\infty$ соответственно. Общеизвестно, что каждая такая подалгебра имеет над k конечное число образующих. Более того, в ходе доказательства этого факта устанавливается (см. [2]), что \bar{C}_i как модуль над C_i конечно порождён и, следовательно, нётеров. Покажем, что возрастающие цепочки k-подалгебр $\{\bar{C}_i\}, \{C_i\}$ $(i=1,2,3,\ldots)$ стабилизируются.

Предложение 1. Если в цепочке областей целостности $F\subseteq G\subset Q(F)$ k-подалгебры F и G имеют конечное число образующих, $F=\bar{F}$ (τ . е. F целозамкнута), $\deg_k Q(F)=1$, то для естественного отображения $\nu\colon \operatorname{Spec}_k G\to \operatorname{Spec}_k F$ выполняются следующие свойства:

- а) ν инъективное отображение;
- б) если ν сюръективно, то G совпадает с F;
- в) $(\operatorname{Spec}_k F) \setminus \nu(\operatorname{Spec}_k G)$ конечное множество.

Это предложение — точный перевод на язык коммутативной алгебры утверждения следствия 2 теоремы 2 из параграфа 2 главы 2 монографии [2] (с. 136).

По свойству б) заключаем, что если $\bar{C}_i \neq \bar{C}_{i+1}$, то некоторый максимальный идеал $M \in \operatorname{Spec}_k \bar{C}_i$ не поднимается до идеала в $\operatorname{Spec}_k \bar{C}_{i+1}$, а тогда из свойства а) вытекает, что $M \cap \bar{C}_0 \in \operatorname{Spec}_k \bar{C}_0$ не поднимается до идеала в $\operatorname{Spec}_k \bar{C}_\infty$. Но в \bar{C}_0 по свойству в) конечное число максимальных идеалов, которые не поднимаются до идеала в $\operatorname{Spec}_k \bar{C}_\infty$. Следовательно, в возрастающей цепочке «нормализаций»

$$\bar{C}_0 \subseteq \bar{C}_1 \subseteq \ldots \subseteq \bar{C}_m \subseteq \ldots$$

лишь конечное число мест, где включения строгие, т. е. $\bar{C}_N = \bar{C}_{N+i}$ для достаточно большого $N \in \mathbb{N}$ $(i=1,2,\ldots)$ и

$$C_N \subseteq C = \bigcup_m C_m \subseteq \bar{C}_N.$$

Но, как было отмечено выше, \bar{C}_N как модуль над C_N нётеров. Поэтому его C_N -подмодуль C конечно порождён и должен совпадать с C_{N+q} для некоторого $q \in \mathbb{N}$, что доказывает лемму.

Отсюда без труда выводятся следующие утверждения.

Теорема 1. Любая конечно порождённая дифференциальная k-алгебра без делителей нуля и степени трансцендентности 1 имеет конечное число образующих как коммутативно-ассоциативная алгебра. В частности, эта дифференциальная k-алгебра является конечно определённой.

Следствие. Спектр максимальных идеалов $\operatorname{Spec}_{\mathbb C} A$ произвольной конечно порождённой дифференциальной коммутативно-ассоциативной $\mathbb C$ -алгебры A без делителей нуля степени трансцендентности 1 аналитичен, τ . е. для любого $\mathbb C$ -гомоморфизма $\psi_M\colon A\to \mathbb C$ ($M\in\operatorname{Spec}_{\mathbb C} A$) при гомоморфизме Тейлора $\tilde\psi_M\colon A\to \mathbb C[[z]]$ все степенные ряды

$$\tilde{\psi}_M(a) \stackrel{\text{def}}{=} \sum_{m=0}^{\infty} \psi_M(a^{(m)}) \frac{z^m}{m!}$$

сходятся в некоторой окрестности нуля.

Теорема 2. Пусть X — неприводимая аффинная алгебраическая кривая над алгебраически замкнутым полем k, а k[X] — её алгебра регулярных функций. Тогда любая k-подалгебра в k[X] порождается конечным числом своих элементов.

Следствие. Пусть поле K имеет степень трансцендентности 1 над алгебраически замкнутым полем k, а $\mathrm{Der}_k K$ — алгебра \mathcal{J} и всех k-дифференцирований $K \to K$. Тогда для любых $a_1,\ldots,a_n \in K$, $D_1,\ldots,D_l \in \mathrm{Der}_k K$ наименьшая коммутативно-ассоциативная k-подалгебра A в K, для которой $a_1,\ldots,a_m \in A$ и $D_i(A) \subset A$ $(i=1,\ldots,l)$, является конечно порождённой.

Проиллюстрируем сказанное конкретными примерами.

1. Дифференциальные алгебры Пикара (доказательство следствия теоремы 1, см. [1])

Зададим дифференциальную \mathbb{C} -алгебру P образующими x_1,\dots,x_n и n определяющими соотношениями $x_i'=f_i(x_1,\dots,x_n)$ $(i=1,2,\dots,n)$, где все f_i — произвольные фиксированные элементы алгебры многочленов $\mathbb{C}[x_1,\dots,x_n]$. Очевидно, что эта алгебра не имеет делителей нуля и P можно реализовать на $\mathbb{C}[x_1,\dots,x_n]$, взяв в качестве дифференцирования

$$D \stackrel{\text{def}}{=} \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i}.$$

Спектр этой дифференциальной алгебры совпадает с аффинным пространством \mathbb{C}^n . Для коэффициентов ряда Тейлора

$$\tilde{\psi}_M(f) \stackrel{\text{def}}{=} \sum_{m=0}^{\infty} (D^m \times f)|_{x_i = \alpha_i, \dots, x_n = \alpha_n} \cdot \frac{z^m}{m!}$$

 $(f\in\mathbb{C}[x_1,\dots,x_n],\ M\stackrel{\mathrm{def}}{=}(lpha_1,\dots,lpha_n))$ мгновенно выводится оценка $\left|\frac{(D^m imes f)|_{x=M}}{m!}\right|\leqslant n^m a^{m+1},$

где a — максимум модуля значений функций f, f_1, \dots, f_n и всех их частных производных произвольного порядка в точке M. Следовательно, все степенные ряды $\tilde{\psi}_M(x_1), \dots, \tilde{\psi}_M(x_n)$ сходятся в некоторой окрестности нуля. Равенство

$$\tilde{\psi}_M(f) = f(\tilde{\psi}_M(x_1), \dots, \tilde{\psi}_M(x_n))$$

показывает, что для любого $f \in \mathbb{C}[x_1,\ldots,x_n]$ ряд $\tilde{\psi}(f)$ сходится в той же окрестности. Так как любая конечно порождённая коммутативно-ассоциативная \mathbb{C} -алгебра A с фиксированным дифференцированием $D \in \mathrm{Der}_{\mathbb{C}}A$ является гомоморфным образом алгебры Пикара P при подходящем выборе n и f_1,\ldots,f_n , то $\mathrm{Spec}_{\mathbb{C}}A$ также аналитичен для любого $D \in \mathrm{Der}_{\mathbb{C}}A$. Это доказывает следствие теоремы 1.

2. «Рациональные» дифференциально-алгебраические параметризации плоских аффинных неприводимых алгебраических кривых

Обозначим через X_H плоскую аффинную неприводимую алгебраическую кривую, заданную уравнением H(x,y)=0 ($H(x,y)\in k[x,y]$). Пусть $k[X_H]$ — её алгебра регулярных функций над алгебраически замкнутым полем k произвольной характеристики. Мы предполагаем, что в разделах 2.1-2.3 и 3 задаваемые дифференциально-алгебраическими соотношениями дифференциальные k-алгебры («параметризации») естественным образом содержат $k[X_H]$ в качестве подалгебры. Разумеется, это должно накладывать некоторые ограничения на неприводимый многочлен H(x,y). Сразу явно укажем необходимые и достаточные условия, обеспечивающие такое включение:

- а) $\partial H/\partial y \not\equiv 0$ в разделах 2.1, 2.3;
- б) $x \cdot (\partial H/\partial x) + y \cdot (\partial H/\partial y) \notin k \cdot H(x,y)$ в разделе 2.2;
- в) $(\partial H/\partial x)^2 + (\partial H/\partial y)^2 \not\equiv 0$ в разделе 3.

2.1. Однопорождённые дифференциально-алгебраические кривые (доказательство теоремы 1)

Зададим дифференциальную k-алгебру с единицей W_H двумя образующими ω , ω_1 и двумя определяющими соотношениями $H(\omega,\omega_1)=0,~\omega'=\omega_1$, где $H(\omega,\omega_1)$ — неприводимый многочлен в $k[\omega,\omega_1]$, для которого $\partial H/\partial\omega_1\not\equiv 0$. К сожалению, в данный момент неизвестно, содержит ли эта коммутативно-ассоциативная алгебра делители нуля. Чтобы избавиться (при $\partial H/\partial\omega_1\not\equiv 0$) от такого рода виртуальных элементов, рассмотрим в W_H дифференциальный идеал

$$I_H \stackrel{\text{def}}{=} \left\{ a \in W_H \mid \left(\frac{\partial H}{\partial \omega_1} \right)^m \cdot a = 0, \ m = m(a) \right\}$$

и пролокализуем W_H по элементу

$$d \stackrel{\text{def}}{=} \frac{\partial H}{\partial \omega_1} \in W_H.$$

Тогда ядро канонического гомоморфизма дифференциальных алгебр

$$\nu \colon W_H \to (W_H)_d \stackrel{\text{def}}{=} \left\{ \frac{b}{d^k} \mid b \in W_H \right\}$$

совпадает с идеалом I_H . Положим

$$\bar{W}_H \stackrel{\text{def}}{=} \nu(W_H), \quad \bar{\omega} \stackrel{\text{def}}{=} \nu(\omega), \quad \bar{d} \stackrel{\text{def}}{=} \nu(d), \quad \bar{\omega}_1 \stackrel{\text{def}}{=} \nu(\omega_1), \quad k[X_H] \stackrel{\text{def}}{=} k[\bar{\omega}, \bar{\omega}_1].$$

Тогда из равенства $\bar{\omega}'=\bar{\omega}_1$ вытекает, что \bar{W}_H дифференциально порождается одним элементом $\bar{\omega}$, а из равенства

$$0 = H' = \frac{\partial H}{\partial \omega} \omega' + \frac{\partial H}{\partial \omega_1} \omega''$$

выводим, что при $\nu\colon W_H\to (W_H)_d$ все элементы $\nu(W_H)=\bar W_H$ лежат в коммутативно-ассоциативной подалгебре $(W_H)_d$, порождённой тремя элементами ω , $\omega_1,\ d^{-1}=(\partial H/\partial \omega_1)^{-1}.$ Это позволяет реализовать $\bar W_H$ как дифференциальную k-подалгебру в поле $k(X_H)$, где X_H – плоская неприводимая аффинная алгебраическая кривая, заданная уравнением $H(\omega,\omega_1)=0\ (\partial H/\partial \omega_1\not\equiv 0)$, взяв в качестве дифференцирования

$$D \stackrel{\text{def}}{=} \omega_1 \left(\frac{\partial}{\partial \omega} - \left(\frac{\partial H}{\partial \omega} / \frac{\partial H}{\partial \omega_1} \right) \frac{\partial}{\partial \omega_1} \right).$$

Следовательно, мы получаем цепочку k-алгебр

$$k[X_H] \subseteq \bar{W}_H \subseteq (\bar{W}_H)_{\bar{d}} \subseteq k(X_H),$$

удовлетворяющую всем условиям леммы об аффинности промежуточной подалгебры, и \bar{W}_H является конечно порождённой. Очевидно, что любая однопорождённая дифференциальная подалгебра в произвольной дифференциальной области целостности (степени трансцендентности 1) является гомоморфным образом \bar{W}_H при подходящем выборе $H(\omega,\omega_1)$ ($\partial H/\partial\omega_1\not\equiv 0$). Это доказывает теорему 1 об аффинности дифференциально-алгебраических кривых.

Особо отметим, что проведённое рассуждение справедливо и над полями положительной характеристики p, так как из равенств

$$\frac{\partial H}{\partial w_1} \equiv 0, \quad \frac{\partial H}{\partial \omega} \equiv 0$$

следует, что

$$H(\omega, \omega_1) = (F(\omega, \omega_1))^p$$

а это противоречит неприводимости H.

Завершим этот раздел одной незамысловатой (возможно, никчёмной, но запоминающейся) версией теоремы 1.

Предложение 2. Если в дифференциальной области целостности F над алгебраически замкнутым полем k элементы f и f' связаны некоторым ненулевым полиномиальным соотношением H(f,f')=0 ($H(x,y)\in k[x,y],\ H\not\equiv 0$), то для некоторого натурального числа N «N-я производная» $f^{(N)}$ полиномиально выражается через предыдущие $f,f',f'',\ldots,f^{(N-1)}$.

Следствие. Если на действительном интервале (a,b) бесконечно дифференцируемая комплекснозначная функция f(t) является решением дифференциального уравнения H(f,f')=0, где $H(x,y)\in\mathbb{C}[x,y]$ — неприводимый (ненулевой) полином, то для некоторого натурального числа N функция $f^{(N)}(t)$ полиномиально выражается через $f(t),f'(t),f''(t),\ldots,f^{(N-1)}(t)$.

2.2. Кеплеровы параметризации плоской кривой

Зададим дифференциальную k-алгебру с единицей G_H , образующими x,y и двумя дифференциальными определяющими соотношениями H(x,y)=0, $xy'-x'y=\sigma,$ где H— неприводимый многочлен в k[x,y], для которого

$$x \cdot \frac{\partial H}{\partial x} + y \cdot \frac{\partial H}{\partial y} \notin k \cdot H(x, y)^{(1)},$$

 $0 \neq \sigma \in k$ (например, $\sigma = \hbar/m_e$). Решая систему уравнений

$$0 = H' = \frac{\partial H}{\partial x} \cdot x' + \frac{\partial H}{\partial y} \cdot y',$$
$$-yx' + xy' = \sigma$$

относительно x', y', получаем, что

$$\mathcal{L}(x,y) \cdot \begin{pmatrix} x' \\ y' \end{pmatrix} = \sigma \begin{pmatrix} -\partial H/\partial y \\ \partial H/\partial x \end{pmatrix},$$

где

$$\mathcal{L} \stackrel{\text{def}}{=} \frac{\partial H}{\partial x} \cdot x + \frac{\partial H}{\partial y} \cdot y.$$

Если неприводимая аффинная кривая X_H (заданная уравнением H(x,y)=0) является гладкой, то идеал, порождённый $\partial H/\partial x$, $\partial H/\partial y$ в $k[X_H]$ должен совпадать со всей алгеброй. Поэтому

 $\overline{^{(1)}}$ Если $H=H_0+H_1+\ldots+H_m-$ разложение полинома H(x,y) на однородные компоненты, то

$$x \cdot \left(\frac{\partial H}{\partial x}\right) + y \cdot \left(\frac{\partial H}{\partial y}\right) = 0 \cdot H_0 + 1 \cdot H_1 + \dots + m \cdot H_m$$

и для случая нулевой характеристики основного поля включение

$$x\cdot\left(\frac{\partial H}{\partial x}\right)+y\cdot\left(\frac{\partial H}{\partial y}\right)\in k\cdot H(x,y)$$

возможно только для однородного многочлена H(x,y). Но из неприводимости H вытекает, что тогда $H(x,y)=H_1$, т. е. уравнение H(x,y)=0 задаёт прямую, проходящую через начало координат.

$$a\frac{\partial H}{\partial x} + b\frac{\partial H}{\partial y} = 1$$

для некоторых a, b из $k[X_H]$. Следовательно, $\mathcal{L} \cdot (-ax'+by') = \sigma$, т. е. элемент \mathcal{L} обратим в G_H . Отсюда немедленно следует, что G_H (как коммутативно-ассоциативная k-алгебра)

- а) порождается тремя элементами: x, y, \mathcal{L}^{-1} ;
- б) вкладывается в поле $k(X_H)$ и не содержит делителей нуля;
- в) реализуется как дифференциальная подалгебра в $k(X_H)$ относительно дифференцирования

$$D_H \stackrel{\text{def}}{=} \sigma \cdot \mathcal{L}^{-1} \left(-\frac{\partial H}{\partial y} \frac{\partial}{\partial x} + \frac{\partial H}{\partial x} \frac{\partial}{\partial y} \right).$$

В общем случае не исключено, что в G_H существуют делители нуля. Пусть I — произвольный дифференциальный идеал в G_H , для которого G_H/I не имеет таких элементов. Допустим, что I пересекается с подалгеброй $k[X_H]$, порождённой x,y в G_H ненулевым образом. Тогда фактор-алгебра $k[X_H]/(I\cap k[X_H])$ нульмерна и область целостности G_H/I должна совпадать с $k\cdot 1$, а это противоречит тому, что $xy'-x'y=\sigma\neq 0$. Если же $I\cap k[X_H]=0$, то элемент $\mathcal{L}\in k[X_H]$ не равен нулю в области целостности G_H/I и, локализуя по \mathcal{L} , получаем, что $(G_H/I)_{\mathcal{L}}=(G_H)_{\mathcal{L}}/I_{\mathcal{L}}$. Следовательно, идеал I должен совпадать с идеалом

$$I(H) \stackrel{\text{def}}{=} \{ a \in G_H \mid \mathcal{L}^m \cdot a = 0 \text{ B } G_H, \ m = m(a) \}.$$

Это доказывает, что существует единственная область целостности \bar{G}_H , заданная образующими x,y и двумя дифференциальными соотношениями $H(x,y)\!=\!0$, $xy'\!-\!x'y=\sigma$ ($\sigma\in k,\,\sigma\neq 0,\,\mathcal{L}\notin k\!\cdot\! H(x,y)$), для которой выполняются следующие свойства:

а) $ar{G}_H$ вкладывается в $k(X_H)$ относительно дифференцирования

$$D_H \stackrel{\text{def}}{=} \mathcal{L}^{-1} \cdot \sigma \left(-\frac{\partial H}{\partial y} \frac{\partial}{\partial x} + \frac{\partial H}{\partial x} \frac{\partial}{\partial y} \right);$$

б) при этом вложении

$$k[X_H] \subseteq \bar{G}_H \subseteq (\bar{G}_H)_{\mathcal{L}} \subset k(X_H)$$

и локализация $(\bar{G}_H)_{\mathcal{L}}$ как коммутативно-ассоциативная k-алгебра порождается тремя элементами $x,y,\mathcal{L}^{-1};$

в) \bar{G}_H — простая дифференциальная k-алгебра, и сигнатурное дифференцирование не исчезает ни в одной точке спектра $\mathrm{Spec}_k\,\bar{G}_H$.

Таким образом, $X_{\bar{G}_H}=\operatorname{Spec}_k \bar{G}_H$ — это гладкая аффинная неприводимая алгебраическая кривая и \bar{G}_H содержит $k[X_H^{\nu}]$, где X_H^{ν} — нормализация кривой X_H . Это показывает, что кеплеров наблюдатель \bar{G}_H исключает из рассмотрения все нелинейчатые ветви X_H^{ν} , но, немного сдвинувшись из начала координат, может заметить все линейчатые.

Такой наблюдатель способен, обозревая кривую X_H , поступить более радикально: взбежать из начала координат по прямой x=0 на галёрку.

2.3. Параметризации Пюизо

Рассмотрим дифференциальную k-алгебру с единицей P_H , заданную образующими x,y и двумя дифференциальными соотношениями H(x,y)=0, x'=c $(c\in k,c\neq 0)$, где H(x,y) — неприводимый многочлен, для которого $\partial H/\partial y\not\equiv 0$. Аргументы, приведённые в предыдущих двух примерах, гарантируют, что в P_H существует единственный (возможно, нулевой) дифференциальный идеал

$$I \stackrel{\text{def}}{=} \left\{ a \in P_H \mid \left(\frac{\partial H}{\partial y} \right)^m \cdot a = 0, \ m = m(a) \right\},$$

фактор-алгебра по которому не содержит делителей нуля. Обозначим её \bar{P}_H . Равенство

$$0 = H' = \frac{\partial H}{\partial x}c + \frac{\partial H}{\partial y}y'$$

показывает, что локализация \bar{P}_H по элементу $\partial H./\partial y$ порождается как коммутативно-ассоциативная k-алгебра тремя элементами $x,\ y,\ (\partial H/\partial y)^{-1},\ a\ \bar{P}_H$ реализуется как дифференциальная подалгебра в поле $k(X_H)$ относительно дифференцирования

$$D = D(H) = c \left(\frac{\partial}{\partial x} - \left(\frac{\partial H}{\partial x} / \frac{\partial H}{\partial y} \right) \frac{\partial}{\partial y} \right).$$

Тогда

$$k[X_H] \subset \bar{P}_H \subseteq (\bar{P}_H)_{\partial H/\partial y} \subset k(X_H),$$

а в силу единственности идеала I дифференциальная k-алгебра \bar{P}_H не исчезает ни в одной точке $\operatorname{Spec}_k \bar{P}_H$ и так же, как и в предыдущем примере, $X_{\bar{P}_H} \stackrel{\text{def}}{=} \operatorname{Spec}_k \bar{P}_H -$ это гладкая аффинная неприводимая алгебраическая кривая, для которой $k[X_{\bar{P}_H}] = \bar{P}_H$ содержит $k[X_H^{\nu}]$, где X_H^{ν} — нормализация плоской кривой X_H^{ν} . При этом \bar{P}_H исключает из рассмотрения те ветви кривой X_H^{ν} , для которых проекция касательной на плоскость Oxy параллельна прямой x=0 (включая и нелинейчатые ветви).

2.4. Общий случай

Общий случай

$$D = \frac{P}{Q} \left(\frac{\partial H}{\partial y} \frac{\partial}{\partial x} - \frac{\partial H}{\partial x} \frac{\partial}{\partial y} \right) \colon k(X_H) \to k(X_H)$$

рассматривается аналогично случаям в 2.1-2.3.

3. Параметризации Ферма (натуральный параметр)

Зададим дифференциальную k-алгебру с единицей F_H , образующими x,y и двумя определяющими соотношениями $H(x,y)=0,\ x'^2+y'^2=c^2$ (char $k\neq 2$,

 $0 \neq c \in k$), где H(x,y) — неприводимый полином, для которого

$$\Delta \stackrel{\text{def}}{=} \left(\frac{\partial H}{\partial x}\right)^2 + \left(\frac{\partial H}{\partial y}\right)^2 \not\equiv 0^{(1)}.$$

Очевидно, что сигнатурное дифференцирование не исчезает ни в одной точке спектра $\operatorname{Spec}_k F_H$ k-алгебры F_H , поэтому если мы покажем, что любой гомоморфный образ \bar{F}_H алгебры F_H , не содержащий делителей нуля, имеет над k степень трансцендентности, равную 1, то \bar{F}_H окажется простой конечно определённой дифференциальной k-алгеброй с аналитическим спектром. Пусть $\varphi\colon F_H \to \bar{F}_H$ — соответствующий эпиморфизм и $\bar{x} \stackrel{\operatorname{def}}{=} \varphi(x), \ \bar{y} \stackrel{\operatorname{def}}{=} \varphi(y), \ k[X_H]$ — алгебра регулярных функций плоской аффинной кривой X_H , заданной уравнением H(x,y)=0. Ясно $^{(2)}$, что $k[X_H]$ изоморфна k-подалгебре, порождённой x,y в F_H , и $k[X_H] \cap \operatorname{Ker} \varphi=0$ (в противном случае нульмерная подалгебра $\varphi(k[X_H])$ порождала бы \bar{F}_H и $x', \ \bar{y}'$ должны были быть равными нулю, а это

 $^{(1)}$ Если $\Delta=0$, то

$$0 = \left(\frac{\partial H}{\partial x} + (-1)^{1/2} \cdot \frac{\partial H}{\partial y}\right) \cdot \left(\frac{\partial H}{\partial x} - (-1)^{1/2} \cdot \frac{\partial H}{\partial y}\right) = \frac{\partial H}{\partial t_1} \cdot \frac{\partial H}{\partial t_2},$$

где $t_1\stackrel{\mathrm{def}}{=}(1/2)\cdot(x+(-1)^{1/2}\cdot y),\,t_2\stackrel{\mathrm{def}}{=}(1/2)\cdot(x-(-1)^{1/2}\cdot y).$ Но тогда, если $\mathrm{char}\,k=0$, ввиду неприводимости многочлена H(x,y) над алгебраически замкнутым полем k либо $H=\alpha\cdot t_1+\beta$, либо $H=\alpha\cdot t_2+\beta$. Таким образом, в этом случае условие

$$\left(\frac{\partial H}{\partial x}\right)^2 + \left(\frac{\partial H}{\partial y}\right)^2 \not\equiv 0$$

исключает из рассмотрения две пачки параллельных прямых, задаваемых уравнениями $x+y\cdot (-1)^{1/2}=\delta,\ x-y\cdot (-1)^{1/2}=\delta,$ для которых

$$x'^{2} + y'^{2} = (x' + y' \cdot (-1)^{1/2}) \cdot (x' - y' \cdot (-1)^{1/2}) = 0.$$

 $^{(2)}$ Непосредственно проверяется, что из равенства H(x,y)=0 следует, что

$$0 = H = x' \cdot \frac{\partial H}{\partial x} + y' \cdot \frac{\partial H}{\partial y}$$

в частности.

$$x'^2 \cdot \left(\frac{\partial H}{\partial x}\right)^2 = y'^2 \cdot \left(\frac{\partial H}{\partial y}\right)^2,$$

Учитывая соотношение $x'^2 + y'^2 = c^2$, отсюда получаем, что

$${x'}^2 \cdot \Delta = c^2 \cdot \left(\frac{\partial H}{\partial x}\right)^2, \quad y'^2 \cdot \Delta = c^2 \cdot \left(\frac{\partial H}{\partial y}\right)^2.$$

Так как $\Delta \not\equiv 0$, то из равенства

$$\Delta = \left(\frac{\partial H}{\partial x} + (-1)^{1/2} \cdot \frac{\partial H}{\partial y}\right) \cdot \left(\frac{\partial H}{\partial x} - (-1)^{1/2} \cdot \frac{\partial H}{\partial y}\right),\,$$

вытекает, что многочлен Δ не делится на H(x,y), т. е. $\Delta \neq 0$ в $k[X_H]$ и $\bar x'^2, \bar y'^2 \in k[X_H]_\Delta \subset (k(X_H))$.

противоречит равенству $x'^2 + y'^2 = c^2 \neq 0$). Равенства

$$\frac{\partial H}{\partial x} \equiv 0, \quad \frac{\partial H}{\partial y} \equiv 0$$

возможны, если $\operatorname{char} k = p > 0$, но ввиду неприводимости H(x,y) либо

$$\frac{\partial H}{\partial x} \not\equiv 0,$$

либо

$$\frac{\partial H}{\partial y} \not\equiv 0.$$

Рассмотрим случай, когда

$$\frac{\partial H}{\partial y} \not\equiv 0.$$

Тогда

$$d \stackrel{\text{def}}{=} \varphi \left(\frac{\partial H}{\partial y} \right) -$$

ненулевой элемент в области целостности \bar{F}_H , и из равенств

$$0 = \varphi(H') = \varphi\left(\frac{\partial H}{\partial x}\right)\bar{x}' + \varphi\left(\frac{\partial H}{\partial y}\right)\bar{y}', \quad \bar{x}'^2 + \bar{y}'^2 = c^2$$

получаем, что

$$\bar{y}' = - \bigg(\varphi \bigg(\frac{\partial H}{\partial x} \bigg) / d \bigg) \bar{x}', \quad \bar{x}'^2 \bigg(1 + \bigg(\varphi \bigg(\frac{\partial H}{\partial x} \bigg) / d \bigg)^2 \bigg) = c^2$$

в поле частных $Q(\bar{F}_H)$ алгебры \bar{F}_H . Из последнего соотношения следует, что

- а) k-подалгебра E, порождённая \bar{x} , \bar{y} , \bar{x}' , \bar{y}' содержится в «квадратичном расширении» поля $\varphi(k(X_H))$;
- 6) $\bar{x}^{(i)}, \bar{y}^{(i)} \in Q(E) \ (i = 2, 3, \ldots).$

Это доказывает, что область целостности \bar{F}_H содержится в Q(E) и $\deg_k \bar{F}_H = \deg_k Q(E) = 1$. По теореме 1 коммутативно-ассоциативная k-алгебра \bar{F}_H порождается конечным числом своих элементов и является конечно определённой как дифференциальная k-алгебра. Так как сигнатурное дифференцирование ' не исчезает ни в одной точке $X_{\bar{F}_H} \stackrel{\mathrm{def}}{=} \mathrm{Spec}_k \, \bar{F}_H$, то \bar{F}_H — целозамкнутая k-алгебра и \bar{F}_H содержит $k[X_H^{\nu}]$, где X_H^{ν} — нормализация кривой X_H .

4. Неаффинные дифференциально-алгебраические поверхности существуют

Зададим дифференциальную $\mathbb C$ -алгебру (с единицей) E образующими x,y и определяющими соотношениями $x'=1,\ x^2y'+y-x=0.$ Положим

$$\bar{x}(z) \stackrel{\text{def}}{=} z, \quad \bar{y}(z) \stackrel{\text{def}}{=} \sum_{m=0}^{\infty} (-1)^m m! \cdot z^{(m+1)}$$

и породим элементами \bar{x} , \bar{y} в степенных рядах $\mathbb{C}[[z]]$ дифференциальную \mathbb{C} -подалгебру \bar{E} относительно дифференцирования d/dz. Непосредственная проверка показывает, что

$$\frac{d\bar{x}}{dz} = 1, \quad \bar{x}^2 \frac{d\bar{y}}{dz} + \bar{y} - \bar{x} = 0$$

в $\mathbb{C}[[z]]$. Поэтому область целостности \bar{E} является гомоморфным образом E при $\varphi\colon E\to \bar{E}\ (\varphi(x)=\bar{x},\ \varphi(y)=\bar{y}),$ и мы последовательно получаем следующее:

- a) Ker $\varphi = \{a \in E \mid x^{2m} \cdot a = 0 \ (m = m(a))\},\$
- б) для максимального идеала $M\in \operatorname{Spec}_{\mathbb{C}}\bar{E}$, являющегося пересечением \bar{E} с единственным максимальным идеалом в $\mathbb{C}[[z]]$, при гомоморфизме Тейлора $\tilde{\psi}_M\colon \bar{E}\to \mathbb{C}[[z]]$ имеем, что $\tilde{\psi}_M(\bar{x})=\bar{x},\; \tilde{\psi}_M(\bar{y})=\bar{y},\; \mathrm{t.}\; \mathrm{e.}\; \operatorname{Spec}_{\mathbb{C}}\bar{E}$ неаналитичен в точке M;
- в) элементы \bar{x} , \bar{y} алгебраически независимы над \mathbb{C} (в противном случае \bar{E} совпадала бы с некоторой параметризацией Пюизо \bar{P}_H ($H(x,y) \in \mathbb{C}[x,y]$) и $\mathrm{Spec}_{\mathbb{C}}\bar{E}$ был бы аналитичным);
- г) подалгебра ar E может быть реализована в поле рациональных функций $\mathbb C(x,y)$ как дифференциальная $\mathbb C$ -подалгебра относительно дифференцирования

$$D \stackrel{\text{def}}{=} \frac{\partial}{\partial x} + \frac{x - y}{x^2} \frac{\partial}{\partial y}.$$

Таким образом, дифференциальная область целостности \bar{E} имеет над $\mathbb C$ степень трансцендентности, равную 2, её спектр максимальных идеалов не аналитичен и, следовательно \bar{E} как коммутативно-ассоциативная $\mathbb C$ -алгебра не может порождаться конечным числом своих элементов.

Мы оставляем читателю в качестве упражнения проверку ещё двух свойств \mathbb{C} -алгебры \bar{E} :

- д) $\mathbb{C}[x,y] \subset \bar{E} \subset \mathbb{C}[x,y,x^{-1}] \subset \mathbb{C}(x,y);$
- e) \bar{E} простая дифференциальная \mathbb{C} -алгебра.

5. Доказательство теоремы 2

Так как алгебра k[X] конечно порождена, то её произвольная k-подалгебра C счётномерна. Если C содержит единичный элемент алгебры k[X], то выберем в C базис $\{e_i \mid i=0,1,\ldots\}$ так, чтобы $e_0 \stackrel{\mathrm{def}}{=} 1$. Положим

$$C_0 \stackrel{\text{def}}{=} k \cdot e_0, \quad C_{i+1} \stackrel{\text{def}}{=} C_i[e_{i+1}] \quad (i = 0, 1, 2, \ldots).$$

Так как поле k алгебраически замкнуто, то k-алгебра C_1 изоморфна алгебре многочленов $k[e_1]$. Рассмотрим возрастающую цепочку полей частных $Q(C_i)$ k-алгебр C_i . Так как k[X] конечно порождена и $\deg_k k(X)=1$, то поле k(X) является конечным расширением подполя $Q(C_1)$ и

$$\dim_{Q(C_1)} Q(C_i) \leqslant \dim_{Q(C_1)} Q(C_{i+1}) \leqslant \dim_{Q(C_1)} k(X).$$

Следовательно, возрастающая цепочка полей $Q(C_i)$ $(i=0,1,2,\ldots)$ стабилизируется начиная с некоторого номера N: $Q(C_N)=Q(C_{N+i})$ $(i=1,2,\ldots)$. Положим $A\stackrel{\mathrm{def}}{=} C_N$. Тогда $Q(A)=Q(C)\subseteq k(X)$ и вложение $A\subset k[X]$ задаёт регулярное отображение $\nu\colon X\to X_A\stackrel{\mathrm{def}}{=} \operatorname{Spec}_k A$. Так как $\deg_k k(X)=1$, то множество $X_A\setminus \nu(X)$ конечно и X_A содержит конечное число особых точек. Поэтому в k-алгебре A можно выбрать такой элемент d, что

- а) локализация $A_d \stackrel{\mathrm{def}}{=} A[d^{-1}] \subset Q(A)$ алгебры A по элементу d целозамкнутая k-алгебра;
- б) локализация $(k[X])_d$ состоит из алгебраических над A_d элементов и любой идеал из ${\rm Spec}_k\,A_d$ поднимается до идеала из ${\rm Spec}_k(k[X])_d$, в частности до идеала из ${\rm Spec}_k(C_{N+i})_d$.

Применяя предложение 1 при $F=A_d,\ G=(C_{N+i})_d,\$ заключаем, что $A_d=(C_{N+i})_d=C_d.$ Мы получаем цепочку подалгебр

$$A \stackrel{\text{def}}{=} C_N \subseteq C \subseteq B \stackrel{\text{def}}{=} A_d = (C_{N+i})_d \subseteq Q(A)$$

удовлетворяющую всем условиям леммы об аффинности промежуточной подалгебры. Это завершает доказательство теоремы в случае, когда k-подалгебра C содержит единицу.

В противном случае рассмотрим k-подалгебру $C_{\mathrm{id}} \stackrel{\mathrm{def}}{=} k \cdot 1 \oplus C$, которая по уже доказанному порождается некоторыми своими элементами $e_i = \lambda_i \cdot 1 \oplus c_i$ $(i=1,\ldots,m,\ m=m(C),\ c_i \in C,\ \lambda_i \in k)$. Но тогда $c_1,\ldots,c_m \in C$ порождают C. Теорема 2 полностью доказана.

Авторы считают своим долгом выразить глубокую благодарность Игорю Ростиславовичу Шафаревичу за его неизменный интерес к результатам наших исследований и поддержку в работе.

Литература

- [1] Герасимова О. В., Погудин Г. А., Размыслов Ю. П. Rolling simplexes and their commensurability. III (соотношения Капелли и их применения в дифференциальных алгебрах) // Фундамент. и прикл. матем. 2014.-T. 19, вып. 6.-C. 7—24.
- [2] Шафаревич И. Р. Основы алгебраической геометрии. М.: МЦНМО, 2007.