Квазипростые конечные группы существенной размерности **3***

Ю. Г. ПРОХОРОВ

Математический институт им. В. А. Стеклова РАН, Московский государственный университет им. М. В. Ломоносова, Национальный исследовательский университет «Высшая школа экономики» e-mail: prokhoro@mi.ras.ru

УДК 512.76

Ключевые слова: существенная размерность, группа, алгебраическое многообразие, представление, группа Кремоны.

Аннотация

Мы классифицируем квазипростые конечные группы существенной размерности 3.

Abstract

 ${\it Yu.~G.~Prokhorov,~Quasi-simple~finite~groups~of~essential~dimension~3,~Fundamentalnaya~i~prikladnaya~matematika,~vol.~22~(2019),~no.~4,~pp.~189-199.}$

We classify quasi-simple finite groups of essential dimension 3.

Памяти профессора Альфреда Львовича Шмелькина

1. Введение

Настоящая статья основана на докладе, прочитанном на конференции в Магадане.

Пусть G — конечная группа и V — точное представление G, рассматриваемое как алгебраическое многообразие. Сжатием называется G-эквивариантное доминантное рациональное отображение V — X G-многообразий C эффективным действием G. Существенной размерностью $\operatorname{ed}(G)$ группы G называется минимальная размерность всех G-многообразий X C эффективным действием G, появляющихся в сжатиях V — X. Это понятие было введено Дж. Бахлером и X0. Райхштейном X1 в связи X2 с некоторыми классическими проблемами теории многочленов. Оказывается, что существенная размерность зависит только

Фундаментальная и прикладная математика, 2019, том 22, № 4, с. 189—199. © 2019 Национальный Открытый Университет «ИНТУИТ»

^{*}Работа автора частично поддержана грантами РФФИ 15-01-02164 и 15-01-02158 и научным проектом государственной поддержки ведущих университетов Российской Федерации «5-100».

от группы G, т. е. не зависит от выбора линейного представления V [6, теорема 3.1]. Вычисление существенной размерности является сложной задачей алгебры и алгебраической геометрии. Конечные группы существенной размерности не больше 2 классифицированы (см. [10]). Простые конечные группы существенной размерности 3 были недавно найдены A. Бовилем [4] (см. также [9,18].

1.1. Теорема. Простые группы существенный размерности 3 — это \mathfrak{A}_6 и, возможно, $\mathrm{PSL}_2(11)$.

Существенная размерность p-групп была вычислена Н. Карпенко и А. Меркурьевым [12].

В этой короткой заметке мы найдём все конечные квазипростые группы существенной размерности 3.

1.2. Определение. Группа G называется κ вазипростой, если G совершенна, т. е. совпадает со своим коммутантом, а фактор G по её центру является простой группой.

Основным результатом работы является следующая теорема.

- **1.3. Теорема.** Пусть G конечная квазипростая непростая группа. Если ed(G) = 2, то $G \simeq 2.\mathfrak{A}_5$. Если ed(G) = 3, то $G \simeq 3.\mathfrak{A}_6$.
- **1.4. Обозначения.** Всюду в этой работе основное поле предполагается полем комплексных чисел $\mathbb C$. Мы используем следующие стандартные обозначения теории групп:
 - $\boldsymbol{\mu}_n$ обозначает мультипликативную группу порядка n (в \mathbb{C}^*),
 - $-\mathfrak{A}_n$ обозначает знакопеременную группу степени n,
 - $\mathrm{SL}_n(q)$ ($\mathrm{PSL}_n(q)$) обозначает специальную линейную группу (соответственно проективную специальную линейную группу) над конечным полем \mathbf{F}_q ,
 - -n.G обозначает нерасщепимое центральное расширение G при помощи μ_n ,
 - z(G) ([G, G]) обозначает центр (соответственно коммутант) группы G.

Все простые группы предполагаются нециклическими.

2. Доказательство теоремы 1.3

Следующее утверждение является непосредственным следствием соответствующего факта для простых групп [14].

2.1. Предложение. Пусть X — трёхмерное рационально связное многообразие и $G \subset \mathrm{Bir}(X)$ — конечная квазипростая непростая группа. Тогда G изоморфна одной из следующих групп:

$$SL_2(7)$$
, $SL_2(11)$, $Sp_4(3)$, $2.\mathfrak{A}_5$, $n.\mathfrak{A}_6$, $n.\mathfrak{A}_7$, $rge \ n=2,3,6.$ (2.1.1)

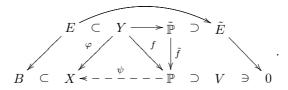
Доказательство. Мы можем считать, что группа G бирегулярно (и эффективно) действует на X. Пусть $Y := X/\operatorname{z}(G)$ и $G_1 := G/\operatorname{z}(G)$. Тогда Y — трёхмерное рационально связное многообразие, на котором действует конечная простая группа G_1 . Тогда согласно [14] группа G_1 принадлежит следующему списку:

$$PSL_2(7)$$
, $PSL_2(8)$, $PSL_2(11)$, $PSp_4(3)$, \mathfrak{A}_5 , \mathfrak{A}_6 , \mathfrak{A}_7 . (2.1.2)

Так как группа G_1 совершенна, то существует универсальная накрывающая \tilde{G}_1 , т. е. центральное расширение G_1 , такое что для любого другого центрального расширения \hat{G}_1 существует единственный гомоморфизм $\tilde{G}_1 \to \hat{G}_1$ центральных расширений (см., например, [11, § 11.7, теорема 7.4]). Ядро гомоморфизма $\tilde{G}_1 \to G_1$ является мультипликатором Шура $\mathrm{M}(G_1) = H^2(G_1,\mathbb{C}^*)$ группы G_1 . Таким образом, G однозначно (с точностью до изоморфизма) определяется $G/\mathrm{z}(G)$ и гомоморфизмом $\mathrm{M}(G_1) \to \mathrm{z}(G)$. Известно, что $\mathrm{M}(G_1) \simeq \mu_2$ во всех случаях (2.1.2), за исключением \mathfrak{A}_6 и \mathfrak{A}_7 , где мультипликатор Шура изоморфен μ_6 , и $\mathrm{PSL}_2(8)$, где мультипликатор Шура тривиален (см. [7; 11, § 12.3, теорема 3.2, § 16.3, теорема 3.2]). Это даёт нам список (2.1.1).

- **2.1.3. Замечание.** Мы не утверждаем, что все возможности (2.1.1) реализуются. Используя технику, разработанную в [1,14—17], можно получить полную классификацию действий квазипростых групп на рационально связанных многообразиях. Однако это гораздо более сложная задача.
- **2.1.4.** Следствие. Пусть G группа, удовлетворяющая условиям предложения 2.1. Тогда G имеет неприводимое точное представление. Минимальная размерность такого представления V задаётся следующей таблицей [7]:

2.2. Конструкция. Пусть G — конечная квазипростая непростая группа, имеющая точное неприводимое представление V. Пусть $\psi\colon V \dashrightarrow X$ — сжатие $\operatorname{cdim} X = \operatorname{ed}(G)$. Применяя эквивариантное разрешение особенностей (см. [3]), мы можем считать, что многообразие X является гладким (и проективным). Далее рассмотрим компактификацию $\mathbb{P} \colon= \mathbb{P}(V \oplus \mathbb{C})$, и пусть $X \xleftarrow{\varphi} Y \xrightarrow{f} \mathbb{P} \supset V$ — эквивариантное разрешение отображения ψ , где f — бирациональный морфизм, а многообразие Y гладкое и проективное. Мы также можем предположить, что f пропускается через раздутие $f\colon \tilde{\mathbb{P}} \to \mathbb{P}$ точки $0 \in V \subset \mathbb{P}$. Пусть $\tilde{E} \subset \tilde{V} - \tilde{f}$ -исключительный дивизор, $E \subset Y$ — его собственный прообраз и $B := \varphi(E)$. Таким образом, мы имеем следующую G-эквивариантную диаграмму:



Действие $\mathbf{z}(G)$ на $\tilde{E}\simeq \mathbb{P}(V)$ и на E тривиально, поскольку V — неприводимое представление. Следовательно, группа $G/\mathbf{z}(G)$ эффективно действует на E. По условию действие $\mathbf{z}(G)$ на X является эффективным. Следовательно, $B\neq X$, и поэтому B — рационально связное многообразие размерности меньше $\mathrm{ed}(G)$.

2.3. Предложение. Пусть G — конечная квазипростая непростая группа, имеющая точное неприводимое представление. Тогда $G/\operatorname{z}(G)$ эффективно действует на рационально связном многообразии размерности меньше $\operatorname{ed}(G)$.

Доказательство. Пусть V — точное неприводимое представление группы G, $\psi\colon V\dashrightarrow X$ — сжатие $\operatorname{c} \dim X=\operatorname{ed}(G)$. Применим конструкцию 2.2. Сначала предположим, что G имеет неподвижную точку $P\in X$. Тогда G имеет точное представление на касательном пространстве $T_{P,X}$. Пусть $T_{P,X}=\bigoplus T_i$ — разложение на неприводимые компоненты. По крайней мере одна из них, скажем T_1 , нетривиальна. Тогда группа $G/\operatorname{z}(G)$ эффективно действует на $\mathbb{P}(T_1)$, где $\mathbb{P}(T_1)<\dim X=\operatorname{ed}(G)$. Таким образом, можно считать, что G не имеет неподвижных точек на G0. Так как G0 не имеет неподвижных точек на G1. Так как G3 не имеет неподвижных точек на G4 и группа $G/\operatorname{z}(G)$ 6 проста, её действие на G6 должно быть эффективным.

Сравнивая список (2.1.1) с теоремой 3.1, получаем следующее утверждение.

2.4. Следствие. Пусть G — конечная квазипростая непростая группа $\operatorname{c} \operatorname{ed}(G) \leqslant 3$. Тогда для G мы имеем одну из следующих возможностей:

$$SL_2(7)$$
, $n.\mathfrak{A}_6$, где $n=2,3,6$. (2.4.1)

Рассмотрим последовательно возможности (2.4.1).

2.5. Лемма. $ed(2.\mathfrak{A}_5) = 2$ и $ed(3.\mathfrak{A}_6) = 3$.

Доказательство. Докажем, например, второе равенство. Так как $3.\mathfrak{A}_6$ имеет точное трёхмерное представление, $\operatorname{ed}(3.\mathfrak{A}_6) \leqslant 3$. С другой стороны, \mathfrak{A}_6 не может эффективно действовать на рациональной кривой. Следовательно, по предложению 2.3 имеем $\operatorname{ed}(3.\mathfrak{A}_6) \geqslant 3$.

- **2.5.1. Лемма.** Пусть G- квазипростая непростая группа. Предположим, что $G\not\simeq 2.\mathfrak{A}_5,\,3.\mathfrak{A}_6.$ Предположим также, что G содержит подгруппу \bar{H} , такую что
 - (i) \bar{H} неабелева, но её образ $H \subset G/\mathrm{z}(G)$ абелев,
 - (ii) для любого действия $G/\operatorname{z}(G)$ на рациональной проективной поверхности подгруппа $H\subset G/\operatorname{z}(G)$ имеет неподвижную точку.

Тогда $\operatorname{ed}(G) \geqslant 4$.

Доказательство. Поскольку $\bar{H}/(\mathrm{z}(G)\cap \bar{H})=H$, то $\mathrm{z}(G)\cap \bar{H}\supset [\bar{H},\bar{H}]$ и $[\bar{H},\bar{H}]\neq\{1\}$ (поскольку \bar{H} неабелева). Предположим, что $\mathrm{ed}(G)=3$. Применим конструкцию 2.2. Из списка (2.1.1) видно, что группа $G/\mathrm{z}(G)$ не может эффективно действовать на рациональной кривой, и по следствию 2.1.4 группа G не имеет неподвижных точек на X. Следовательно, B является (рациональной)

поверхностью. По лемме іі группа \bar{H} имеет неподвижную точку, скажем P, на $B\subset X$. Существует инвариантное разложение $T_{P,X}=T_{P,B}\oplus T_1$, где $\dim T_1=1$. Действие $[\bar{H},\bar{H}]$ на $T_{P,B}$ и T_1 тривиально. Следовательно, оно тривиально на $T_{P,X}$ и X. Противоречие.

2.6. Предложение. $ed(SL_2(7)) = 4$.

2.6.1. Лемма. Пусть S- гладкая проективная рациональная поверхность, допускающая действие $PSL_2(7)$. Пусть $H \subset PSL_2(7)$ — подгруппа, изоморфная $\mu_2 \times \mu_2$. Тогда H имеет неподвижную точку на S.

Доказательство. Поскольку H абелева, согласно [13] достаточно показать существование неподвижной точки на некоторой бирациональной модели S. По теореме 3.1 можно считать, что поверхность S изоморфна либо \mathbb{P}^2 , либо некоторой специальной поверхности дель Пеццо степени 2 (см. п. (ііі) теоремы 3.1). В первом случае $\mathbb{P}^2 = \mathbb{P}(W)$, где W — трёхмерное неприводимое представление $\mathrm{PSL}_2(7)$. Тогда абелева группа $H \simeq \boldsymbol{\mu}_2 \times \boldsymbol{\mu}_2$ имеет неподвижную точку на $\mathbb{P}^2 = \mathbb{P}(W)$. Таким образом, мы предполагаем, что S является поверхностью дель Пеццо степени 2. Пусть $\alpha \in H$ — элемент порядка 2. Предположим сначала, что α имеет кривую C неподвижных точек. Образ $\pi(C)$ при антиканоническом двойном накрытии $\pi\colon S\to \mathbb{P}^2$ должен быть прямой (поскольку действие на \mathbb{P}^2 линейно). Пусть $\alpha' \in H$, $\alpha' \neq \alpha$ — ещё один элемент порядка 2. Тогда $\alpha'(C)$ также является кривой α -неподвижных точек, а $\pi(\alpha'(C))$ также прямая. Следовательно, $\pi(\alpha'(C)) = \pi(C)$, и множество $\pi^{-1}(\pi(C))$ содержит $\alpha'(C)$ и C. Поскольку $\pi^{-1}(\pi(C)) \sim -K_S$ и множество неподвижных точек α является гладким, то $\alpha'(C) = C = \pi^{-1}(\pi(C)) \sim -K_S$ является обильным дивизором. Отметим, что все элементы порядка 2 сопряжены в $PSL_2(7)$. Следовательно, α' также имеет кривую неподвижных точек, например C' и $C' \sim -K_S$. Тогда точки пересечения $C \cap C'$ фиксируются группой $H = \langle \alpha, \alpha' \rangle$.

Таким образом, мы можем считать, что любой элемент $\alpha \in H$ порядка 2имеет только изолированные неподвижные точки. Голоморфная формула Лефшеца для числа неподвижных точек показывает, что число этих неподвижных точек равно $4\chi(\mathscr{O}_S) = 4$. Тогда по топологической формуле Лефшеца

$$\operatorname{Tr}_{H^2(S,\mathbb{C})} \alpha^* = 2.$$

Так как $\dim H^2(S,\mathbb{C}) = 8$ и все собственные значения оператора α^* равны ± 1 , то его определитель должен быть равен -1, и поэтому мы имеем нетривиальный характер группы $PSL_2(7)$. Это противоречит тому, что группа $PSL_2(7)$ проста.

Доказательство предложения 2.6. Рассмотрим подгруппу $\bar{H} \subset \mathrm{SL}_2(7)$, порождённую матрицами

$$A = \begin{pmatrix} 1 & 1 \\ 5 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 5 \\ 1 & -1 \end{pmatrix}.$$

Пусть H-её образ в $\mathrm{PSL}_2(7)$. Легко проверить, что $A^2=B^2=-I$ и [A,B]=-I. Следовательно, \bar{H} изоморфна группе кватернионов Q_8 , и $H\simeq \mathrm{Q}_8/\mathrm{z}(\mathrm{Q}_8)\simeq \pmb{\mu}_2\times \pmb{\mu}_2$. По лемме 2.6.1 группа \bar{H} имеет неподвижную точку на $B\subset X$. Поэтому мы можем применить лемму 2.5.1.

2.7. Предложение. $ed(2.\mathfrak{A}_6) = 4$, $ed(6.\mathfrak{A}_6) \ge 4$.

Доказательство. Как и выше, мы собираемся применить лемму 2.5.1. Пусть S — проективная рациональная поверхность, на которой действует $G/\operatorname{z}(G)=\mathfrak{A}_6$. По теореме 3.1 можно считать, что $S\simeq \mathbb{P}^2$. Группа $2.\mathfrak{A}_6$ изоморфна $\operatorname{SL}_2(9)$ (см. [7]). Как и в доказательстве предложения 2.6, возьмём подгруппу $\operatorname{Q}_8\simeq \bar{H}\subset\operatorname{SL}_2(9)$, порождённую матрицами

$$A = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 1 \\ 1 & -4 \end{pmatrix}, \tag{2.7.1}$$

и применим лемму 2.5.1. В случае $G=6.\mathfrak{A}_6$ пусть $Z\subset \mathrm{z}(G)$ — подгруппа порядка 3. Тогда $6.\mathfrak{A}_6/Z\simeq 2.\mathfrak{A}_6\simeq \mathrm{SL}_2(9).$ Пусть \hat{H} — прообраз подгруппы $\mathrm{SL}_2(9),$ порождённой A и B из (2.7.1) и $\bar{H}\subset \hat{H}$ — силовская 2-подгруппа. Тогда, как и выше, $\bar{H}\simeq \mathrm{Q}_8$ и мы можем применить лемму 2.5.1.

2.7.2. Замечание. Поскольку $6.\mathfrak{A}_6$ имеет шестимерное точное представление, то $\mathrm{ed}(6.\mathfrak{A}_6)\leqslant 6.$ Однако нам не удалось вычислить $\mathrm{ed}(6.\mathfrak{A}_6).$

3. Приложение: простые подгруппы в группе Кремоны плоскости

Следующая теорема может быть легко получена из классификации [8]. Для удобства читателя мы предлагаем относительно короткое и самодостаточное доказательство.

- **3.1. Теорема [8].** Пусть $G \subset \operatorname{Cr}_2(\mathbb{C})$ конечная простая подгруппа. Тогда вложение $G \subset \operatorname{Cr}_2(\mathbb{C})$ индуцируется одним из следующих действий:
 - (i) группы \mathfrak{A}_5 , $\mathrm{PSL}_2(7)$ или \mathfrak{A}_6 , действующие на \mathbb{P}^2 ;
 - (ii) группа \mathfrak{A}_5 , действующая на поверхности дель Пеццо степени 5;
- (ііі) группа $PSL_2(7)$, действующая на некоторой специальной поверхности дель Пеццо степени 2, которая может быть реализована как двойное покрытие \mathbb{P}^2 , разветвлённой в кривую Клейна;
- (iv) группа \mathfrak{A}_5 , действующая на $\mathbb{P}^1 imes \mathbb{P}^1$ через первый сомножитель.
- **3.2. Замечание.** Известно (см. [2, § B; 8, § 8]), что перечисленные выше действия не являются сопряжёнными между собой в $\mathrm{Cr}_2(\mathbb{C})$.

Доказательство. Применяя стандартные аргументы (см., например, $[8, \S 3]$), можно считать, что G эффективно действует на гладкой проективной рациональной поверхности X, которая является либо поверхностью дель Пеццо,

либо эквивариантным расслоением на коники. Кроме того, в случае дель Пеццо (расслоения на коники) имеем $\operatorname{rk}\operatorname{Pic}(X)^G=1$ (соответственно $\operatorname{rk}\operatorname{Pic}(X)^G=2$).

Сначала рассмотрим случай, когда X имеет эквивариантную структуру расслоения на коники $\pi\colon X\to B\simeq \mathbb{P}^1$. Так как группа G проста, то действие эффективно либо на базе B, либо на общем слое. Следовательно, G может быть вложена в $\operatorname{PGL}_2(\mathbb{C})$. Это возможно, только если $G\simeq \mathfrak{A}_5$. Покажем, что π является \mathbb{P}^1 -расслоением. Предположим, что π имеет вырожденный слой F. Тогда его компоненты $F', F''\subset F$ должны переставляться элементом $\alpha\in G$ порядка 2. Точка пересечения $P=F'\cap F''$ неподвижна для α , а действие α на касательном пространстве $T_{P,X}$ диагонализируемо. Так как касательные направления к F' и F'' переставляются, то действие α на $T_{P,X}$ имеет вид $\operatorname{diag}(1,-1)$. Это означает, что α имеет кривую C неподвижных точек, проходящую через P. Очевидно, что C накрывает B, и поэтому действие α на B тривиально. Все элементы порядка α в α тривиально. Но тогда точка α должна быть неподвижна для α , и следовательно, α имеет точное двумерное представление на α противоречие.

Таким образом, π является \mathbb{P}^1 -расслоением, а X является рациональной линейчатой поверхностью (поверхностью Хирцебруха) \mathbb{F}_n . Пусть F_1 —слой и F_1,\ldots,F_r —его орбита. Применяя элементарные преобразования в слоях F_1,\ldots,F_r , мы получаем эквивариантные бирациональные отображения $\mathbb{F}_n \dashrightarrow \mathbb{F}_{n+r}$ и (только если $n \geqslant r$) $\mathbb{F}_n \dashrightarrow \mathbb{F}_{n-r}$. Такие орбиты существуют для $r=12,\ 20,\ 30,\ 60$. Используя этот трюк, можно заменить \mathbb{F}_n на $\mathbb{F}_{n'}$, где n'=0 или n'=1. Если n'=1, то, стягивая отрицательное сечение, получаем действие на \mathbb{P}^2 с неподвижной точкой. Это невозможно для $G\simeq \mathfrak{A}_5$. Следовательно, мы можем считать, что $X\simeq \mathbb{P}^1\times \mathbb{P}^1$. Дополнительные элементарные преобразования позволяют тривиализировать действие на втором множителе. Это случай (iv). Подробности можно найти в $[2,\S]$ В $[2,\S]$.

Начиная с этого места мы предполагаем, что X — поверхность дель Π ещцо 1 с $\mathrm{rk}\,\mathrm{Pic}(X)^G=1$. Рассмотрим возможности согласно значению степени $d=K_X^2$.

Случай d=1. Этот случай не реализуется, так как $|-K_X|$ имеет одну базисную точку P, а группа G должна действовать на $T_{P,X}$ эффективно. Следовательно, $G\subset \mathrm{GL}(T_{P,X})$. Однако $\mathrm{GL}_2(\mathbb{C})$ не содержит простых конечных подгрупп. Противоречие.

Случай d=2. В этом случае антиканоническое отображение $X\to \mathbb{P}^2$ является двойным накрытием с дивизором ветвления $B\subset \mathbb{P}^2$ — гладкой квартикой. Действие G в X опускается на \mathbb{P}^2 , и кривая B является G-инвариантной. Следовательно, $G\subset \operatorname{Aut}(B)$. Согласно оценке Гурвица $|G|\leqslant 168$. Более того, $\operatorname{Aut}(B)$ не содержит элементов порядка 5. Тогда единственной возможностью является $G\simeq\operatorname{PSL}_2(7)$ и $B=\{x_1^3x_2+x_2^3x_3+x_3^3x_1=0\}$. Получаем случай (iii).

¹В общем случае действия простых групп на поверхностях дель Пеццо с логтерминальными особенностями изучались в [5].

Случай d=3. Тогда X — кубическая поверхность в \mathbb{P}^3 . Действие G на решётке $\Lambda{:=}K_X^\perp\subset {\rm Pic}(X)$ является точным. Следовательно, наша группа G имеет представление на векторном пространстве $\Lambda/2\Lambda=(\mathbf{F}_2)^6$ над полем \mathbf{F}_2 . Форма пересечения индуцирует чётную квадратичную форму на Λ и, следовательно, индуцирует квадратичную форму на $\Lambda/2\Lambda$

$$q(x) := \frac{1}{2}(x, x) \mod 2.$$

Возьмём стандартный базис $\mathbf{h}, \mathbf{e}_1, \dots, \mathbf{e}_6$ в $\mathrm{Pic}(X)$, где $(\mathbf{h}, \mathbf{h}) = 1$, $(\mathbf{h}, \mathbf{e}_i) = 0$, $(\mathbf{e}_i, \mathbf{e}_j) = -\delta^i_j$. Тогда в базисе $\mathbf{e}_1 - \mathbf{e}_2$, $\mathbf{e}_2 - \mathbf{e}_3$, $\mathbf{e}_4 - \mathbf{e}_5$, $\mathbf{e}_5 - \mathbf{e}_6$, $\mathbf{h} - \mathbf{e}_1 - \mathbf{e}_2 - \mathbf{e}_3$, $\mathbf{h} - \mathbf{e}_4 - \mathbf{e}_5 - \mathbf{e}_6$ пространства Λ форму q(x) можно записать в следующем виде:

$$Q(x) = x_1^2 + x_2^2 + x_1x_2 + x_3^2 + x_4^2 + x_3x_4 + x_5^2 + x_6^2 + x_5x_6.$$

Тогда легко видеть, что инвариант Арфа формы q(x) равен 1. Группа сохраняет форму пересечения и квадратичную форму q(x). Следовательно, существует естественное вложение $G \hookrightarrow \mathrm{O}_6(\mathbf{F}_2)^-$. Поскольку G проста, то $G \subset [\mathrm{O}_6(\mathbf{F}_2)^-, \mathrm{O}_6(\mathbf{F}_2)^-]$. Известно, что $[\mathrm{O}_6(\mathbf{F}_2)^-, \mathrm{O}_6(\mathbf{F}_2)^-] \simeq \mathrm{PSp}_4(3)$ (см., например, [7]). Кроме того, G изоморфна одной из следующих групп: $\mathrm{PSp}_4(3),\,\mathfrak{A}_6$ или \mathfrak{A}_5 . С другой стороны, G эффективно действует на $H^0(X, -K_X) \simeq \mathbb{C}^4$. Тогда единственная возможность $G\simeq \mathfrak{A}_5$. Уравнение $\psi(z)=0$ поверхности $X\subset \mathbb{P}^3$ является кубическим инвариантом на $H^0(X, -K_X)$. Следовательно, представление на $H^0(X, -K_X)$ является стандартным неприводимым представлением \mathfrak{A}_5 . Тогда в подходящем базисе мы можем записать $\psi = z_1^3 + \ldots + z_4^3 - (z_1 + \ldots + z_4)^3$. Множество неподвижных точек элемента $\alpha \in G$ второго порядка является объединением прямой и трёх изолированных точек. По топологической формуле Лефшеца для числа неподвижных точек действие α на Λ диагонализуемо следующим образом: $\alpha = \operatorname{diag}(1, 1, 1, 1, -1, -1)$. Это означает, что представление Gна Λ является суммой неприводимого четырёхмерного представления и тривиального. Это противоречит предположению минимальности $\operatorname{rk}\operatorname{Pic}(X)^G=1$.

Случай d=4. Тогда $X=X_{2\cdot 2}=Q'\cap Q''\subset \mathbb{P}^4$ является пересечением двух квадрик. Группа G действует на пучке квадрик $\langle Q',Q''\rangle\simeq \mathbb{P}^1$, оставляя инвариантом подмножество пяти особых элементов. Легко видеть, что в этом случае действие на $\langle Q',Q''\rangle$ должно быть тривиальным. Следовательно, G фиксирует вершины P_1,\ldots,P_5 пяти G-инвариантных квадратичных конусов $Q_i\in \langle Q',Q''\rangle$. Поскольку эти точки P_1,\ldots,P_5 порождают \mathbb{P}^5 , группа G должна быть абелевой. Противоречие.

Случай d=5. Поверхность дель Пеццо степени 5 единственна с точностью до изоморфизма. Рассмотрим (эффективное) действие G на пространстве $\mathrm{Pic}(X)\otimes \mathbb{C}$ и на ортогональном дополнении $K_X^\perp\subset \mathrm{Pic}(X)\otimes \mathbb{C}$. Форма пересечения индуцирует невырожденную квадратичную форму на K_X^\perp . Следовательно, G эффективно действует на двумерной квадрике в \mathbb{P}^3 . Тогда единственная возможность $G\simeq \mathfrak{A}_5$. Известно, что $\mathrm{Aut}(X)$ изоморфно симметрической группе \mathfrak{S}_5 , и поэтому поверхность дель Пеццо степени 5 допускает действие \mathfrak{A}_5 . Получаем случай (ii).

Случай $6\leqslant d\leqslant 8$. Тогда действие G на ${\rm Pic}(X)\simeq \mathbb{Z}^{10-d}$ должно быть тривиальным. Это противоречит предположению минимальности ${\rm rk}\,{\rm Pic}(X)^G=1$.

Случай d=9. Тогда $X=\mathbb{P}^2$. Здесь $G\subset \mathrm{PGL}_3(\mathbb{C})$, и по классификации конечных подгрупп в $\mathrm{PGL}_2(\mathbb{C})$ получаем случай (i).

Теорема 3.1 доказана.

3.3. Теорема [8,19]. Пусть $G \subset \operatorname{Cr}_2(\mathbb{C})$ — конечная квазипростая непростая подгруппа. Тогда $G \simeq 2.\mathfrak{A}_5$.

Доказательство. Как и в доказательстве теоремы 3.1, мы можем считать, что G эффективно действует на гладкой проективной рациональной поверхности Пеццо X с $\operatorname{rk}\operatorname{Pic}(X)^G=1$ или эквивариантным расслоением на коники с $\operatorname{rk}\operatorname{Pic}(X)^G=2$. Пусть $\bar{G}:=G/\operatorname{z}(G)$. Тогда \bar{G} — простая группа, действующая на рациональной поверхности $X/\operatorname{z}(G)$. Следовательно, \bar{G} вложима в $\operatorname{Cr}_2(\mathbb{C})$, и по теореме 3.1 мы имеем $\bar{G}\simeq\mathfrak{A}_5$, $\bar{G}\simeq\mathfrak{A}_6$ или $\bar{G}\simeq\operatorname{PSL}_2(7)$. Поэтому, как и в доказательстве предложения 2.1, мы имеем одну из следующих возможностей: $G\simeq 2.\mathfrak{A}_5$, $\operatorname{SL}_2(7)$ или $n.\mathfrak{A}_6$ для n=2, n=3 или n=6. Если X имеет эквивариантную структуру расслоения на коники $\pi\colon X\to B\simeq\mathbb{P}^1$, то G нетривиально действует либо на базе B, либо на общем слое. Это возможно, только если $G\simeq 2.\mathfrak{A}_5$. Предположим, что X — поверхность дель Пеццо с $\operatorname{rk}\operatorname{Pic}(X)^G=1$. Пусть $Z\subset\operatorname{z}(G)$ — циклическая подгруппа простого порядка p и $\pi\colon X\to Y:=X/Z$ — фактор. Поверхность Y рациональна, и $\bar{G}:=G/Z$ эффективно действует на Y.

Сначала рассмотрим случай, когда Z имеет только изолированные неподвижные точки. Если p=2, то по голоморфной формуле Лефшеца число неподвижных точек равно 4. Эти точки не могут переставляться группой G, поэтому они фиксируются G. Аналогично в случае p=3 обозначим через n_0 (n_1, n_2) число неподвижных точек с действием типа $\frac{1}{3}(1,-1)$ (соответственно $\frac{1}{3}(1,1), \frac{1}{3}(-1,-1)$). Тогда снова по голоморфной формуле Лефшеца $n_1=n_2, n_0+n_1=3$. Следовательно, существует не более трёх точек каждого типа, и поэтому, как и выше, все эти точки фиксированы G. Так как группы $\mathrm{SL}_2(7)$ и $n.\mathfrak{A}_6$ не могут корректно действовать в касательном пространстве к неподвижной точке, единственной возможностью является $G\simeq 2.\mathfrak{A}_5$.

Рассмотрим теперь случай, когда множество неподвижных точек X^Z группы Z одномерно. Пусть C — объединение всех кривых в X^Z . Заметим, что многообразие C неособо, поскольку оно является объединением компонент множества неподвижных точек. Ясно, что C также является G-инвариантным. Тогда класс C должен быть пропорционален $-K_X$ в $\mathrm{Pic}(X)$. Следовательно, C — обильный и связный дивизор. Поскольку C неособо, то оно неприводимо. Группа G/Z нетривиально действует на C. Следовательно, C не может быть эллиптической кривой. Более того, если кривая C рациональна, то $G/Z \simeq \mathfrak{A}_5$, что и требовалось. Таким образом, мы можем считать, что $C \sim -aK_X$ с a > 1. Если дивизор $-K_X$ очень обилен, то C содержится в гиперплоском сечении и a = 1. Противоречие. Таким образом, осталось рассмотреть только две возможности: $K_X^2 = 1$ и $K_X^2 = 2$. Если $K_X^2 = 1$, то антиканоническая линейная система имеет

единственную базовую точку, например O. Поскольку представление G в касательном пространстве $T_{O,X}$ является точным, единственной возможностью является $G\simeq 2.\mathfrak{A}_5$. Наконец, предположим, что $K_X^2=2$. Тогда антиканоническое отображение является двойным накрытием $\Phi_{|-K_X|}\colon X\to \mathbb{P}^2$. Действие Z на \mathbb{P}^2 должно быть тривиальным (иначе a=1). Следовательно, p=2, Z порождается инволюцией Гейзера γ , а C — кривой ветвления $\Phi_{|-K_X|}$. С другой стороны, существует гомоморфизм

$$\lambda \colon \operatorname{Aut}(X) \hookrightarrow \operatorname{GL}(\operatorname{Pic}(X)) = \operatorname{GL}_8(\mathbb{Z}) \xrightarrow{\operatorname{det}} \{\pm 1\},$$

где $\lambda(\gamma)=-1$. Поскольку наша группа G совершенна, $\gamma\notin G$. Противоречие. $\ \square$

3.4. Замечание. Точно так же можно описать действия $G=2.\mathfrak{A}_5$ на рациональных поверхностях, т. е. вложения $2.\mathfrak{A}_5 \hookrightarrow \operatorname{Cr}_2(\mathbb{C})$ (см. [19]).

Автор благодарит рецензента за тщательное прочтение рукописи и многочисленные полезные замечания и предложения.

Литература

- [1] Прохоров Ю. Г. О трехмерных G-многообразиях Фано // Изв. РАН. Сер. матем. 2015.-T. 79, № 4.-C. 159—174.
- [2] Чельцов И. А. Два локальных неравенства // Изв. РАН. Сер. матем. 2014. Т. 78. С. 167-224.
- [3] Abramovich D., Wang J. Equivariant resolution of singularities in characteristic 0 // Math. Res. Lett. -1997. Vol. 4, no. 2-3. P. 427-433.
- [4] Beauville A. Finite simple groups of small essential dimension // Trends in Contemporary Mathematics. Selected Talks Based on the Presentations at the INdAM Day, June 18, 2014. Cham: Springer, 2014. P. 221—228.
- [5] Belousov G. Log del Pezzo surfaces with simple automorphism groups // Proc. Edinburgh Math. Soc., II. Ser. -2015. Vol. 58, no. 1. P. 33-52.
- [6] Buhler J., Reichstein Z. On the essential dimension of a finite group // Compos. Math. -1997. Vol. 106, no. 2. P. 159-179.
- [7] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford: Clarendon Press, 1985.
- [8] Dolgachev I. V., Iskovskikh V. A. Finite subgroups of the plane Cremona group // Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin. Vol. I. Boston: Birkhäuser, 2009. (Progr. Math.; Vol. 269). P. 443—548.
- [9] Duncan A. Essential dimensions of A_7 and S_7 // Math. Res. Lett. 2010. Vol. 17, no. 2. P. 263—266.
- [10] Duncan A. Finite groups of essential dimension 2 // Comment. Math. Helv. 2013. Vol. 88, no. 3. — P. 555—585.
- [11] Karpilovsky G. Group Representations. Vol. 2. Amsterdam: North-Holland, 1993. (North-Holland Math. Stud.; Vol. 177).

- [12] Karpenko N., Merkurjev A. Essential dimension of finite p-groups // Invent. Math. 2008. Vol. 172. P. 491-508.
- [13] Kollár J., Szabó E. Fixed points of group actions and rational maps // Canad. J. Math. -2000.- Vol. 52, no. 5. P. 1054-1056.
- [14] Prokhorov Yu. Simple finite subgroups of the Cremona group of rank 3 // J. Algebraic Geom. 2012. Vol. 21, no. 3. P. 563—600.
- [15] Prokhorov Yu., Shramov C. Finite groups of birational selfmaps of threefolds.— 2016.—arXiv:1611.00789.
- [16] Prokhorov Yu., Shramov C. Jordan constant for Cremona group of rank 3. 2016. arXiv:1608.00709.
- [17] Prokhorov Yu., Shramov C. p-subgroups in the space Cremona group. 2016. arXiv:1610.02990.
- [18] Serre J.-P. Le groupe de Cremona et ses sous-groupes finis // Séminaire Bourbaki. Volume 2008/2009. Exposés 997—1011. — Paris: Soc. Math. de France, 2010. — P. 75—100.
- [19] Tsygankov V. I. The conjugacy classes of finite nonsolvable subgroups in the plane Cremona group // Adv. Geom. -2013. Vol. 13, no. 2. P. 323-347.