Интерполяционные псевдоупорядоченные кольца

А. В. МИХАЛЁВ

Московский государственный университет им. М. В. Ломоносова e-mail: aamikhalev@mail.ru

Е. Е. ШИРШОВА

Московский педагогический государственный университет e-mail: shirshova.elena@gmail.com

УДК 512.545

Ключевые слова: частично упорядоченное кольцо, выпуклая подгруппа, направленная группа.

Аннотация

Рассматриваются частично псевдоупорядоченные (K-упорядоченные) кольца. Исследуются свойства множества L(R) всех выпуклых направленных идеалов частично псевдоупорядоченных колец. Под выпуклостью идеала псевдоупорядоченного кольца понимается абелева выпуклость, опирающаяся на определение выпуклой подгруппы частично упорядоченной группы. Доказано, что если R является интерполяционным кольцом, то в решётке L(R) операция объединения вполне дистрибутивна относительно операции пересечения. Исследуются свойства решётки L(R) в псевдо решёточно псевдоупорядоченных кольцах. Доказываются вторая и третья теоремы о порядковых изоморфизмах интерполяционных псевдоупорядоченных колец. Получены некоторые результаты, касающиеся свойств главных выпуклых направленных идеалов в интерполяционных псевдоупорядоченных кольцах. Главным выпуклым направленным идеалом I_a частично псевдоупорядоченного кольца R является наименьший выпуклый направленный идеал кольца R, содержащий данный элемент $a \in R$. Для главных выпуклых направленных идеалов в интерполяционных псевдоупорядоченных кольцах доказан аналог третьей теоремы о порядковых изоморфизмах колец.

Abstract

A. V. Mikhalev, E. E. Shirshova, Interpolation pseudo-ordered rings, Fundamentalnaya i prikladnaya matematika, vol. 24 (2022), no. 1, pp. 177—191.

Characteristics of partially pseudo-ordered (K-ordered) rings are considered. Properties of the set L(R) of all convex directed ideals in pseudo-ordered rings are described. The convexity of ideals has the meaning of the Abelian convexity, which is based on the definition of a convex subgroup for a partially ordered group. It is proved that if R is an interpolation pseudo-ordered ring, then, in the lattice L(R), the union operation is completely distributive with respect to the intersection. Properties of the lattice L(R) for pseudo-lattice pseudo-ordered rings are investigated. The second and third theorems of ring order isomorphisms for interpolation pseudo-ordered rings are proved. Some theorems are proved for principal convex directed ideals of interpolation pseudo-ordered ring R is the smallest convex directed ideal of the ring R that contains the element $a \in R$. The analog

Фундаментальная и прикладная математика, 2022, том 24, № 1, с. 177—191. © 2022 Национальный Открытый Университет «ИНТУИТ» for the third theorem of ring order isomorphisms for principal convex directed ideals is demonstrated for interpolation pseudo-ordered rings.

1. Введение

Пусть $R=\langle R,+,\cdot \rangle$ — произвольное кольцо (не обязательно ассоциативное). Принято называть R частично упорядоченным кольцом, если $\langle R,+,\leqslant \rangle$ является частично упорядоченной группой, удовлетворяющей условию

(1) из $a\leqslant b$ и 0< c следуют неравенства $ac\leqslant bc$ и $ca\leqslant cb$ для всех $a,b,c\in R$. Известно, что не всякий частичный порядок аддитивной группы кольца обладает свойством (1).

Было замечено, что порядок аддитивной группы ряда колец может обладать свойством, «противоположным» (в некотором смысле) условию (1).

Определение 1. Пусть аддитивная группа $\langle R, +, \leqslant \rangle$ кольца R является частично упорядоченной группой. Будем называть кольцо R частично псевдоупорядоченным справа кольцом, если выполняется условие

(2) из $0 \leqslant a$ следует неравенство $ab \leqslant a$ для всех элементов $b \in R$.

Будем называть кольцо R частично псевдоупорядоченным слева кольцом, если выполняется условие

(3) из $0 \le a$ следует неравенство $ba \le a$ для всех элементов $b \in R$.

Будем называть кольцо R частично псевдоупорядоченным кольцом, если условия (2) и (3) выполняются одновременно.

Частично упорядоченная группа называется *направленной*, если любые два элемента имеют в этой группе верхнюю грань.

Определение 2. Если порядок аддитивной группы псевдоупорядоченного кольца является линейным (решёткой, направленным), то кольцо называется линейно (решёточно, направленно) псевдоупорядоченным (слева, справа) кольцом.

Понятие частично псевдоупорядоченного кольца было определено в работе В. Н. Бибаевой и Е. Е. Ширшовой [1]. Некоторые свойства линейно псевдоупорядоченных (K-упорядоченных) справа (слева) колец рассматривались в работе Е. Е Ширшовой [13].

Первоначально эти кольца были названы частично K-упорядоченными по аналогии с названием частично упорядоченных алгебр (см. [5,6]), так как данное упорядочение колец согласуется с определением частично упорядоченной алгебры Ли, принадлежащим В. М. Копытову [3,4].

Алгебра Ли $L=\langle L,+,\{\alpha\mid\alpha\in F\},\cdot\rangle$ над частично упорядоченным полем F называется $\mathit{частично}$ упорядоченной алгеброй $\mathit{Лu},$ если $\langle L,+,\leqslant\rangle$ является частично упорядоченной группой, удовлетворяющей одновременно следующим условиям:

из $a \leqslant b$ следует $\alpha a \leqslant \alpha b$ для всех $a, b \in L$ и $\alpha > 0$ из поля F;

(4) если $a \leq b$, то $a + ac \leq b + bc$ для всех элементов $a, b, c \in L$.

Сравнив условия (2) и (4), можно сделать вывод, что частично упорядоченная алгебра $\mathit{Л}$ и L является частично псевдоупорядоченным справа кольцом. Из свойства антикоммутативности следует, что L является частично псевдоупорядоченным кольцом.

Вариация понятия первичного радикала кольца в подклассе направленно псевдоупорядоченных колец исследовались в работе А. В. Михалёва и Е. Е Ширшовой [7].

Следует отметить, что частично псевдоупорядоченное справа (слева) кольцо R не может содержать единицу. Действительно, если 0 < a и $1 \in R$, то из условия (2) (условия (3)) следует неравенство $a(1+1) \leqslant a$ ($(1+1)a \leqslant a$), т. е. $a \leqslant 0$.

Часто условиям (2) и (3) удовлетворяют аддитивные группы колец без единицы (колец Ли, йордановых колец, например).

Целью данной работы является исследование свойств выпуклых направленных идеалов в классе интерполяционных псевдоупорядоченных колец.

В статье используются терминология и обозначения, общепринятые в теории частично упорядоченных алгебраических систем (см. [2,4,8]).

Напомним, что подгруппа M частично упорядоченной группы G называется выпуклой, если для $a,b\in M$ и $g\in G$ из неравенств $a\leqslant g\leqslant b$ всегда следует $g\in M$.

Определение 3. Идеал I кольца $R = \langle R, +, \cdot, \leqslant \rangle$ называется выпуклым идеалом, если группа $\langle I, +, \leqslant \rangle$ является выпуклой подгруппой группы $\langle R, +, \leqslant \rangle$.

Пусть R — частично псевдоупорядоченное кольцо.

Будем обозначать через R^+ множество $\{x \in R \mid 0 \leqslant x\}$ всех положительных элементов кольца R.

Определение 4. Отображение f частично псевдоупорядоченного кольца R в частично псевдоупорядоченное кольцо S называется o-гомоморфизмом (порядковым гомоморфизмом) колец, если выполняются следующие условия:

- 1) f(a+b) = f(a) + f(b) для всех $a, b \in R$;
- 2) f(ab) = f(a)f(b) для всех $a, b \in R$;
- 3) $f(R^+) \subseteq S^+$.

При этом f называется строгим o-гомоморфизмом колец, если выполняется условие

4) $f(R^+) = S^+ \cap f(R)$.

Если для o-гомоморфизма колец f существует o-гомоморфизм колец f^{-1} , то f называется o-изоморфизмом колец.

Отметим, что если f-o-гомоморфизм псевдоупорядоченных колец, являющийся изоморфизмом колец, то он не обязан быть o-изоморфизмом.

Например, пусть R — кольцо верхнетреугольных матриц над кольцом $\mathbb Z.$ Введём обозначение

$$\begin{pmatrix} 0 & a & c \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} = (a, b, c).$$

Упорядочим группу $\langle R, + \rangle$, считая, что $(0,0,0) \leqslant_1 (a,b,c)$, если 0 < a и 0 < b или a = b = 0 и $0 \leqslant c$. Получим частично псевдоупорядоченное кольцо

$$S = \langle R, +, \cdot, \leqslant_1 \rangle.$$

Упорядочим группу $\langle R, + \rangle$, считая, что $(0,0,0) \leqslant_2 (a,b,c)$, если 0 < a, или 0 < b, или a = b = 0 и $0 \leqslant c$. Получим частично псевдоупорядоченное кольцо

$$T = \langle R, +, \cdot, \leqslant_2 \rangle.$$

Определим функцию $f\colon S\to T$ по правилу (a,b,c)f=(a,b,c). Тогда f-изоморфизм колец. Кроме того, $f(S^+)\subset T^+$, т. е. f-o-гомоморфизм псевдоупорядоченных колец.

С другой стороны, $(3,-2,1)\in T^+$, но $(3,-2,1)f^{-1}\parallel (0,0,0)$ в кольце S. Следовательно, f^{-1} не является o-гомоморфизмом псевдоупорядоченных колец.

В [7] приводится доказательство первой теоремы об o-изоморфизмах про-извольных частично псевдоупорядоченных колец (см. теорему 3). Там доказано, что если $f\colon R\to S$ — строгий o-гомоморфизм частично псевдоупорядоченных колец, то существует o-изоморфизм частично псевдоупорядоченных колец $\varphi\colon R/\ker f\to f(R)$, где $\varphi(r+\ker f)=f(r)$ для всех $r\in R$.

Заметим, что для произвольных частично псевдоупорядоченных колец справедливы не все аналоги теорем об изоморфизмах для колец.

Например, упорядочим группу матриц $\langle R, + \rangle$, считая что $(0,0,0) \leqslant_3 (a,b,c)$, если $0 \leqslant a$ и 0 < b, или a=b=0 и $0 \leqslant c$. Получим частично псевдоупорядоченное кольцо $P=\langle R, +, \cdot, \leqslant_3 \rangle$.

Рассмотрим в частично псевдоупорядоченном кольце P, выпуклые идеалы

$$A = \{(a, 0, c)\}, \quad B = \{(0, b, c)\}, \quad C = A \cap B.$$

В этом случае, фактор-кольцо A/C упорядочено тривиально, а P/B — линейно псевдоупорядоченное кольцо.

Учитывая вышесказанное, для доказательства некоторых следствий из упомянутой теоремы (второй и третьей теорем об o-изоморфизмах псевдоупорядоченных колец) нам пришлось рассмотреть более узкий класс частично псевдоупорядоченных колец.

Напомним, что частично упорядоченная группа G называется интерполяционной группой, если для любых элементов $a_1,a_2,b_1,b_2\in G$ из неравенств $a_1,a_2\leqslant b_1,b_2$ следует существование элемента $c\in G$, для которого верны неравенства $a_1,a_2\leqslant c\leqslant b_1,b_2$. Класс интерполяционных групп включает классы решёточно упорядоченных групп, линейно упорядоченных групп и групп Рисса.

Определение 5. Частично псевдоупорядоченное кольцо $R = \langle R, +, \cdot, \leqslant \rangle$ будем называть интерполяционным псевдоупорядоченным кольцом, если аддитивная группа $R = \langle R, +, \leqslant \rangle$ является интерполяционной группой.

Во втором разделе данной статьи содержится доказательство второй теоремы о порядковых изоморфизмах интерполяционных псевдоупорядоченных колец.

Теорема 1. Пусть R — интерполяционное псевдоупорядоченное кольцо, I и J — выпуклые направленные идеалы в кольце R, $I \subset J$. Тогда существует о-изоморфизм интерполяционного псевдоупорядоченного кольца R/J на интерполяционное псевдоупорядоченное кольцо (R/I)/(J/I).

Обозначим через L(R) множество всех выпуклых направленных идеалов частично псевдоупорядоченного кольца R. Свойства множества L(R) исследуются в третьем разделе статьи.

Пусть R — произвольное кольцо, $\{I_s \mid s \in S\}$ — семейство идеалов кольца R. Объединением

$$\bigvee_{s \in S} I_s$$

идеалов будем считать их сумму

$$\sum_{s \in S} I_s,$$

а пересечением

$$\bigwedge_{s \in S} I_s$$

идеалов будем считать их теоретико-множественное пересечение

$$\bigcap_{s\in S}I_s.$$

Для интерполяционных псевдоупорядоченных колец справедлива следующая теорема.

Теорема 2. Если R — интерполяционное псевдоупорядоченное кольцо, то множество L(R) образует подрешётку в решётке всех идеалов кольца R. Кроме того,

- 1) L(R) полная подрешётка сверху;
- 2) в решётке L(R) операция объединения вполне дистрибутивна относительно операции пересечения, т. е.

$$J \wedge \left(\bigvee_{s \in S} I_s\right) = \bigvee_{s \in S} (J \wedge I_s)$$

для всех выпуклых направленных идеалов J и I_s псевдоупорядоченного кольца R

Положительные элементы a и b частично упорядоченной группы $G=\langle G,+,\leqslant \rangle$ называются почти ортогональными в G, если из неравенств $g\leqslant a,b$ следует верность неравенств $ng\leqslant a,b$ для всех элементов $g\in G$ и всех целых чисел n>0 [15]. Частично упорядоченная группа $G=\langle G,+,\leqslant \rangle$ называется группой с условием почти ортогональности, если любой элемент $g\in G$ представим в виде g=a-b для некоторых почти ортогональных элементов a и b группы G.

Определение 6. Интерполяционное псевдоупорядоченное кольцо $R=\langle R,+,\cdot,\leqslant \rangle$ будем называть псевдо решёточно псевдоупорядоченным кольцом, если абелева частично упорядоченная группа $\langle R,+,\leqslant \rangle$ является группой с условием почти ортогональности.

В случае псевдо решёточно псевдоупорядоченных колец справедлива следующая теорема.

Теорема 3. Множество L(R) всех выпуклых направленных идеалов псевдо решёточно псевдоупорядоченного кольца R — полная дистрибутивная решётка с единицей и нулём, являющаяся брауэровой решёткой.

Решётку S называют *брауэровой решёткой*, если для любых элементов a и b из S множество $\{x \in S \mid a \land x \leqslant b\}$ содержит наибольший элемент.

Четвёртый раздел данной статьи содержит доказательство третьей теоремы о порядковых изоморфизмах интерполяционных псевдоупорядоченных колец.

Теорема 4. Пусть R — интерполяционное псевдоупорядоченное кольцо, I и J — выпуклые направленные идеалы в кольце R. Тогда

- 1) существует строгий о-гомоморфизм интерполяционного псевдоупорядоченного кольца I на интерполяционное псевдоупорядоченное кольцо (I+J)/J с ядром $I\cap J$;
- 2) существует строгий о-гомоморфизм интерполяционного псевдоупорядоченного кольца J на интерполяционное псевдоупорядоченное кольцо (I+J)/I с ядром $I\cap J$;
- 3) интерполяционное псевдоупорядоченное кольцо $I/(I \cap J)$ о-изоморфно интерполяционному псевдоупорядоченному кольцу (I+J)/J;
- 4) интерполяционное псевдоупорядоченное кольцо $J/(I \cap J)$ о-изоморфно интерполяционному псевдоупорядоченному кольцу (I+J)/I.

Определение 7. Наименьший выпуклый направленный идеал I_r частично псевдоупорядоченного кольца R (если он существует), содержащий элемент $r \in R$, назовём главным выпуклым направленным идеалом для элемента $r \in R$.

В [7] показано, что в частично псевдоупорядоченных кольцах главные выпуклые направленные идеалы существуют для всех положительных элементов этих колец (см. лемму 21).

Свойства главных выпуклых направленных идеалов интерполяционных псевдоупорядоченных колец рассматриваются в пятом разделе данной статьи. В частности, там содержится доказательство следующей теоремы.

Теорема 5. Пусть R — интерполяционное псевдоупорядоченное кольцо. Если a>0 и b>0 в R, то

1) существует строгий о-гомоморфизм интерполяционного псевдоупорядоченного кольца I_a на интерполяционное псевдоупорядоченное кольцо I_{a+b}/I_b с ядром $I_a \cap I_b$;

- 2) существует строгий о-гомоморфизм интерполяционного псевдоупорядоченного кольца I_b на интерполяционное псевдоупорядоченное кольцо I_{a+b}/I_a с ядром $I_a \cap I_b$;
- 3) интерполяционное псевдоупорядоченное кольцо $I_a/(I_a\cap I_b)$ о-изоморфно интерполяционному псевдоупорядоченному кольцу I_{a+b}/I_b ;
- 4) интерполяционное псевдоупорядоченное кольцо $I_b/(I_a \cap I_b)$ о-изоморфно интерполяционному псевдоупорядоченному кольцу I_{a+b}/I_a .

2. Вторая теорема об *о*-изоморфизмах интерполяционных псевдоупорядоченных колец

Нам понадобятся некоторые свойства интерполяционных групп и колец.

Лемма 6. Всякая выпуклая подгруппа интерполяционной группы сама является интерполяционной группой.

Доказательство.	Доказательство	утверждения	можно	найти	в [11,	лемма	1]
или в [12, лемма 2].							

Следствие 7. Если R — интерполяционное псевдоупорядоченное кольцо, I — выпуклый идеал в кольце R, то I — интерполяционное псевдоупорядоченное кольцо.

Доказательство.	Утверждение	является	следствием	определения	5	И	лем-
мы 6.							

Лемма 8. Пусть G — интерполяционная группа, M — выпуклая направленная нормальная подгруппа в G. Тогда фактор-группа G/M является интерполяционной группой.

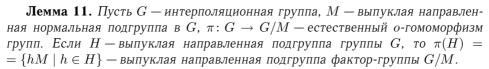
Доказательство.	Доказательство	утверждения	ОНЖОМ	найти	в [11,	лемма 2]
или в [12, лемма 1].						

Лемма 9. Пусть R — частично псевдоупорядоченное кольцо. Если I — выпуклый идеал в кольце R, то фактор-кольцо R/I является частично псевдоупорядоченным кольцом.

,	Доказательство.	Доказательство	утверждения	можно	найти	В	[1,	теоре-
ма :	3].							

Следствие 10. Пусть R — интерполяционное псевдоупорядоченное кольцо. Если I — выпуклый направленный идеал в кольце R, то фактор-кольцо R/I является интерполяционным псевдоупорядоченным кольцом.

Доказательство. По лемме 9 кольцо R/I является частично псевдоупорядоченным кольцом. Из леммы 8 следует, что группа $\langle R/I, + \rangle$ является интерполяционной группой. Остаётся применить определение 5.



Доказательство. Доказательство можно найти в [11, теорема 1].

Лемма 12. Пусть R — частично псевдоупорядоченное кольцо. Если M — выпуклая направленная подгруппа группы $\langle R, +, \leqslant \rangle$, то M является идеалом кольца R.

Доказательство. Доказательство можно найти в [1, теорема 5].

Лемма 13. Пусть R — интерполяционное псевдоупорядоченное кольцо, I — выпуклый направленный идеал в кольце R, $\pi\colon R\to R/I)$ — естественный о-гомоморфизм частично псевдоупорядоченных колец (действующий по правилу $\pi(r)=r+I)$. Если J — выпуклый направленный идеал в R, то $\pi(J)=\{r+I\mid r\in J\}$ — выпуклый направленный идеал в кольце R/I.

Доказательство. По следствию 10 фактор-кольцо R/I является интерполяционным псевдоупорядоченным кольцом. Из леммы 11 следует, что $\langle \pi(J), + \rangle$ — выпуклая направленная подгруппа интерполяционной группы $\langle R/I, + \rangle$. По лемме $12 \ \pi(J)$ — идеал кольца R/I.

Лемма 14. Пусть R является частично псевдоупорядоченным кольцом. Тогда справедливы следующие утверждения:

- 1) если I- выпуклый идеал кольца R, то канонический гомоморфизм $\pi\colon R\to R/I$ является строгим o-гомоморфизмом колец;
- 2) если $f: R \to S$ строгий о-гомоморфизм частично псевдоупорядоченных колец, то существует о-изоморфизм частично псевдоупорядоченных колец $\varphi \colon R/\ker f \to f(R)$, где $\varphi(r+\ker f)=f(r)$ для всех $r\in R$.

Доказательство. Доказательство можно найти в [7, теорема 3].

Замечание 1. Пусть $f\colon R\to S$ — строгий сюръективный *о*-гомоморфизм частично псевдоупорядоченных колец. Тогда $f(R^+)=S^+$.

Доказательство теоремы 1. По лемме 9 существуют частично псевдоупорядоченные кольца R/I и R/J. По следствию 10 они являются интерполяционными псевдоупорядоченными кольцами.

Рассмотрим отображение $f\colon R/I\to R/J$: для любого элемента $r\in R$ положим f(r+I)=r+J. Из свойств смежных классов следует, что f- сюръективный гомоморфизм колец. Докажем, что f- строгий o-гомоморфизм псевдоупорядоченных колец.

Из пункта 1) леммы 14 следует существование строгих сюръективных o-гомоморфизмов колец $\pi_1\colon R\to R/I$ и $\pi_2\colon R\to R/J$. Ввиду замечания 1 заключаем, что

- 1) $\pi_1(R^+) = (R/I)^+;$
- 2) $\pi_2(R^+) = (R/J)^+$.

Рассмотрим смежный класс $r+I\in (R/I)^+$. По условию 1) существует элемент $u\in R^+$, для которого r+I=u+I. Тогда по условию 2) $f(r+I)=u+J\in (R/J)^+$. Значит, $f\left((R/I)^+\right)\subseteq (R/J)^+$. Следовательно, f-o-гомоморфизм частично псевдоупорядоченных колец.

Пусть $s+J\in (R/J)^+$. Тогда по условию 2) существует элемент $v\in R^+$, для которого s+J=v+J. В силу условия 1) $v+I\in (R/I)^+$, т. е. $s+J\in f\big((R/I)^+\big)$. Таким образом, $(R/J)^+\subseteq f\big((R/I)^+\big)$. Следовательно, $f\big((R/I)^+\big)=(R/J)^+$, и f — строгий o-гомоморфизм колец.

Из леммы 13 следует, что в кольце R/I существует выпуклый направленный идеал $\pi(J)=\{r+I\mid r\in J\}=J/I$. Если $r+I\in J/I$, то f(r+I)=J. Значит, $J/I\subseteq\ker f$. Если $r+I\in\ker f$, то f(r+I)=J, т. е. $r\in J$. Таким образом, $\ker f\subseteq J/I$ Следовательно, $\ker f=J/I$.

Из пункта 2) леммы 14 следует, что $(R/I)/(\ker f)\cong \operatorname{Im} f$, где $\operatorname{Im} f=R/J$.

3. Идеалы частично псевдоупорядоченных колец, доказательство теорем 2 и 3

Начнём с некоторых утверждений.

Предложение 15. Пусть $R=\langle R,+,\cdot,\leqslant \rangle$ — частично псевдоупорядоченное кольцо, $\{I_s\mid s\in S\}$ — семейство выпуклых направленных идеалов кольца R. Если

$$I = \sum_{s \in S} I_s,$$

то $\langle I, +, \leqslant \rangle$ — подгруппа, порождённая выпуклыми направленными подгруппами I_s в абелевой частично упорядоченной группе $\langle R, + \leqslant \rangle$.

Лемма 16. Пусть G — интерполяционная группа и $\{H_i \mid i \in I\}$ — семейство выпуклых направленных подгрупп группы G. Если H — подгруппа, порождённая теоретико-множественным объединением подгрупп H_i , то H является выпуклой направленной подгруппой группы G.

Доказательство. Доказательство можно найти в [11, лемма 9] или в [12, теорема 2]. \Box

Теорема 17. Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — интерполяционное псевдоупорядоченное кольцо, $\{I_s \mid s \in S\}$ — семейство выпуклых направленных идеалов кольца R. Тогда сумма идеалов

$$I = \sum_{s \in S} I_s$$

является выпуклым направленным идеалом кольца R.

Доказательство. Из определения суммы идеалов следует, что I — идеал кольца R. По предложению 15 группа $\langle I,+,\leqslant \rangle$ порождается выпуклыми направленными подгруппами I_s в абелевой частично упорядоченной группе $\langle R,+\leqslant \rangle$. Так как по условию теоремы группа $\langle R,+\leqslant \rangle$ является интерполяционной группой, то по лемме 16 группа $\langle I,+,\leqslant \rangle$ — выпуклая направленная подгруппа в группе $\langle R,+\leqslant \rangle$. По лемме 12 I — выпуклый направленный идеал кольша R

Напомним свойство интерполяционных групп.

Лемма 18. Если H и K — выпуклые направленные подгруппы интерполяционной группы G, то $H \cap K$ — выпуклая направленная подгруппа группы G.

Доказательство. Доказательство можно найти в [14, лемма 10].

Следствие 19. Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — интерполяционное псевдоупорядоченное кольцо, I, J — выпуклые направленные идеалы кольца R. Тогда пересечение идеалов $I \cap J$ является выпуклым направленным идеалом кольца R.

Доказательство. По определению 3 I и J- выпуклые направленные подгруппы в абелевой частично упорядоченной группе $\langle R, + \leqslant \rangle$. Так как по условию теоремы группа $\langle R, + \leqslant \rangle$ является интерполяционной группой, то группа $\langle I\cap J, +, \leqslant \rangle -$ выпуклая направленная подгруппа в группе $\langle R, + \leqslant \rangle$. По лемме 12 $I\cap J-$ выпуклый направленный идеал кольца R.

Лемма 20. Пусть G — интерполяционная группа. Тогда множество всех выпуклых направленных подгрупп L(G) — подрешётка с нулём в решётке всех подгрупп группы G, являющаяся полной подрешёткой сверху. В решётке L(G) операция объединения вполне дистрибутивна относительно пересечения, т. е.

$$M \wedge \left(\bigvee_{i \in I} H_i\right) = \bigvee_{i \in I} (M \wedge H_i)$$

для всех выпуклых направленных подгрупп M и H_i в группе G.

Доказательство. Под пересечением выпуклых направленных подгрупп понимается их теоретико-множественное пересечение. Объединением подгрупп

$$\bigvee_{i \in I} H_i$$

считается подгруппа, порождённая теоретико-множественным объединением

$$\bigcup_{i\in I} H_i.$$

Доказательство можно найти в [14, теорема 1].

Доказательство теоремы 2. Пусть $I,J\in L(R)$. Из теоремы 17 следует, что $I\vee J=I+J$ является выпуклым направленным идеалом кольца R. По следствию 19 $I\wedge J=I\cap J-$ выпуклый направленный идеал кольца R. Значит, $\langle L(R),\vee,\wedge\rangle-$ подрешётка решётки всех идеалов кольца R.

Пусть $\{I_s \mid s \in S\}$ — семейство выпуклых направленных идеалов кольца R. Из теоремы 17 следует, что

$$\bigvee_{s \in S} I_s$$

является выпуклым направленным идеалом кольца R, т. е. справедливо утверждение 1) теоремы.

Для доказательства утверждения 2) теоремы рассмотрим множества

$$K = \bigvee_{s \in S} (J \wedge I_s)$$
 и $I = \bigvee_{s \in S} I_s,$

где I_s и J — выпуклые направленные идеалы кольца R. Учитывая определение 3, заключаем, что $\langle I_s,+,\leqslant \rangle$ ($s\in S$) и $\langle J,+,\leqslant \rangle$ являются выпуклыми направленным подгруппами частично упорядоченной группы $\langle R,+,\leqslant \rangle$. По следствию 19 $J\wedge I_s=J\cap I_s$ — выпуклый направленный идеал в кольце R для любого $s\in S$, т. е. по определению 3 $\langle J\wedge I_s,+,\leqslant \rangle$ — выпуклая направленная подгруппа частично упорядоченной группы $\langle R,+,\leqslant \rangle$ для любого $s\in S$.

Из теоремы 17 следует, что K и I являются выпуклыми направленными идеалами кольца R, т. е. по предложению 15 $\langle K,+,\leqslant \rangle$ и $\langle I+,\leqslant \rangle$ — выпуклые направленные подгруппы частично упорядоченной группы $\langle R,+,\leqslant \rangle$. По следствию 19 $J \wedge I = J \cap I$ — выпуклый направленный идеал в кольце R, т. е. по определению 3 $\langle J \wedge I,+,\leqslant \rangle$ — выпуклая направленная подгруппа частично упорядоченной группы $\langle R,+,\leqslant \rangle$. Применяя лемму 20, получаем равенство $\langle K,+,\leqslant \rangle = \langle J \wedge I,+,\leqslant \rangle$. Из леммы 12 следует, что $\langle K,+,\leqslant \rangle$ и $\langle I,+,\leqslant \rangle$ — выпуклые направленные идеалы кольца R.

Напомним утверждение.

Лемма 21. Пусть G- группа c условием почти ортогональности, $\{H_i \mid i \in I\}-$ семейство выпуклых направленных подгрупп группы G,

$$H = \bigcap_{i \in I} H_i.$$

Тогда H — выпуклая направленная подгруппа группы G.

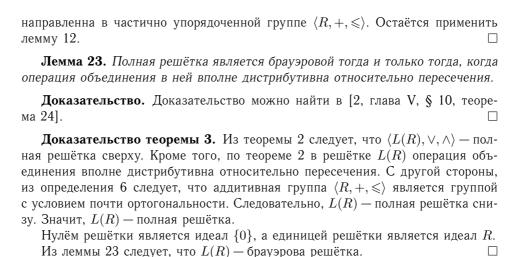
Доказательство. Доказательство можно найти в [15, теорема 1].

Теорема 22. Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — почти ортогональное псевдоупорядоченное кольцо, $\{I_s \mid s \in S\}$ — семейство выпуклых направленных идеалов кольца R. Если

$$I = \bigcap_{s \in S} I_s,$$

то I- выпуклый направленный идеал кольца R.

Доказательство. Учитывая определение 3, заключаем, что $\langle I_s, +, \leqslant \rangle$ ($s \in S$) и $\langle J, +, \leqslant \rangle$ являются выпуклыми направленными подгруппами частично упорядоченной группы $\langle R, +, \leqslant \rangle$. В силу леммы 21 подгруппа $\langle I, +, \leqslant \rangle$ выпукла и



4. Третья теорема об *о*-изоморфизмах интерполяционных псевдоупорядоченных колец

Лемма 24. Пусть R — интерполяционное псевдоупорядоченное кольцо. Если I и J — выпуклые направленные идеалы кольца R, то

- 1) I + J интерполяционное псевдоупорядоченное кольцо;
- 2) $I \cap J$ выпуклый направленный идеал кольца R.

Доказательство. Первое утверждение является следствием теоремы 17 и леммы 6.

Второе утверждение верно в силу следствия 19.

Замечание 2. Пусть G — частично упорядоченная группа, A и B — выпуклые направленные подгруппы группы G и $B\subseteq A$. Тогда B — выпуклая направленная подгруппа группы A.

Лемма 25. Пусть R — интерполяционное псевдоупорядоченное кольцо. Если I и J — выпуклые направленные идеалы кольца R, то

- 1) $I, J, I \cap J$ выпуклые направленные идеалы в интерполяционном псевдоупорядоченном кольце I+J;
- 2) I и J интерполяционные псевдоупорядоченные кольца;
- 3) $I \cap J$ выпуклый направленный идеал в кольцах I и J.

Доказательство. В силу леммы $24\ I+J$ — интерполяционное псевдоупорядоченное кольцо.

Справедливость утверждения 2) следует из леммы 6. Утверждения 1) и 3) справедливы в силу замечания 2. **Лемма 26.** Для частично упорядоченной группы $G = \langle G, +, \leqslant \rangle$ следующие условия равносильны:

- 1) G интерполяционная группа;
- 2) если $0\leqslant x\leqslant a+b$ для $0\leqslant a$ и $0\leqslant b$ в группе G, то x=y+z, где $0\leqslant y\leqslant a$ и $0\leqslant z\leqslant b$.

Доказательство. Доказательство леммы можно найти в [12, теорема 1]. \square **Лемма 27.** Если $G = \langle G, + \rangle$ — частично упорядоченная группа, то следующие условия равносильны:

- 1) G является направленной группой;
- 2) для нуля группы G и каждого элемента $a \in G$ существует верхняя грань;
- 3) каждый элемент $g \in G$ представим в виде g = a b, где a и b положительные элементы группы G.

Доказательство. Доказательство леммы можно найти в [8, предложение 1, c. 23].

Лемма 28. Пусть R — интерполяционное псевдоупорядоченное кольцо, I и J — выпуклые направленные идеалы кольца R. Если $0 \leqslant c \in I+J$, то существуют элементы $a \in I^+$ и $b \in J^+$, для которых c=a+b.

Доказательство. Так как $c \in I+J$, то существуют элементы $u \in I$ и $v \in J$, для которых c=u+v. По определению 3 $\langle I,+,\leqslant \rangle$ и $\langle J,+,\leqslant \rangle$ — выпуклые направленные подгруппы интерполяционной группы $\langle R,+,\leqslant \rangle$. Тогда по условию 2) леммы 27 найдутся элементы $r \in I^+$ и $s \in J^+$, удовлетворяющие неравенствам $0 \leqslant u \leqslant r$ и $0 \leqslant v \leqslant s$. Из последних неравенств следует, что $c \leqslant r+s$.

В силу леммы 26 в интерполяционной группе $\langle R,+,\leqslant \rangle$ существуют элементы a и b, для которых c=a+b, удовлетворяющие неравенствам $0\leqslant a\leqslant r$ и $0\leqslant b\leqslant s$. Так как $\langle I,+,\leqslant \rangle$ и $\langle J,+,\leqslant \rangle$ — выпуклые подгруппы интерполяционной группы $\langle R,+,\leqslant \rangle$, то $a\in I$ и $b\in J$.

Доказательство теоремы 4. По лемме 24 существует интерполяционное псевдоупорядоченное кольцо I+J. По лемме 25 идеалы I и J выпуклы и направленны в кольце I+J.

Докажем утверждение 1). Из леммы 14 следует существование строгого сюръективного o-гомоморфизма частично псевдоупорядоченных колец $\pi\colon I+J\to (I+J)/J$ по правилу $\pi(c)=c+J$ для каждого элемента $c\in I+J$. Рассмотрим отображение $f\colon I\to I+J/J$, определённое правилом $f(a)=\pi(a)=a+J$ для каждого $a\in I$.

Пусть $x+J\in (I+J)/J$. Тогда x+J=c+J, где c=u+v для некоторых элементов $u\in I$ и $v\in J$. Значит, x+J=u+J, т. е. f(u)=x+J. Следовательно, f — сюръективный гомоморфизм колец.

Из замечания 1 следует, что $\pi \big((I+J)^+ \big) \subseteq \big((I+J)/J \big)^+$. Так как $f(I)=\pi(I)$, то $f(I^+) \subseteq \big((I+J)/J \big)^+$. Таким образом, f-o-гомоморфизм псевдоупорядоченных колец.

Пусть $y+J\in \left((I+J)/J\right)^+$. Тогда y=c+J для некоторого элемента $c\in (I+J)^+$. По лемме 28 найдутся элементы $a\in I^+$ и $b\in J^+$, для которых c=a+b. Значит, y+J=a+J=f(a). Таким образом, $y+J\in f(I+)$, т. е. $\left((I+J)/J\right)^+\subseteq f(I^+)$.

Из равенства $\left((I+J)/J\right)^+=f(I^+)$ следует, что f — строгий o-гомоморфизм псевдоупорядоченных колец. Кроме того,

$$\ker f = \{ a \in I \mid a + J = J \} = \{ a \in R \mid a \in I \cap J \} = I \cap J.$$

Утверждение 1) теоремы доказано.

Утверждение 2) доказывается аналогично.

Утверждение 3) является следствием утверждения 1) и леммы 14.

Утверждение 4) является следствием утверждения 2) и леммы 14.

5. Главные выпуклые направленные идеалы интерполяционных псевдоупорядоченных колец, доказательство теоремы 5

Лемма 29. Пусть R — частично псевдоупорядоченное кольцо, $a \in R$ и 0 < a. Тогда в кольце R существует выпуклый направленный идеал I_a , для которого

$$I_a^+ = \{ r \in \mathbb{R}^+ \mid r \leqslant na$$
 для некоторых целых чисел $n > 0 \}.$

Eсли J — выпуклый идеал кольца R и $a \in J$, то $I_a \subseteq J$.

Доказательство. Доказательство можно найти в [7, лемма 21].

Лемма 30. Пусть R — частично псевдоупорядоченное кольцо, 0 < a и 0 < b. Тогда $I_{a+b} = I_a + I_b$.

Доказательство. Так как 0 < a+b, то по лемме 29 в кольце R существуют выпуклые направленные идеалы I_a , I_b , I_{a+b} . По теореме 2 существует выпуклый направленный идеал $J=I_a+I_b$. Так как $a\in I_a$ и $b\in I_b$, то $a,b\in J$, т. е. $a+b\in J$. Так как J — выпуклый идеал, то по лемме 29 $I_{a+b}\subseteq J$.

С другой стороны, пусть $c \in J^+$. Из леммы 28 следует существование элементов $u \in I_a{}^+$ и $v \in I_b{}^+$, для которых c = u + v. По лемме 29 найдутся целые числа n > 0 и m > 0, для которых $u \leqslant na$ и $v \leqslant mb$. Так как $na \leqslant n(a+b)$ и $mb \leqslant m(a+b)$, то $u \leqslant n(a+b)$ и $v \leqslant m(a+b)$.

Из леммы 29 следует, что $u,v\in I_{a+b}$, т. е. $c\in I_{a+b}$. Значит, $J^+\subseteq I_{a+b}$. Так как J — направленный идеал кольца, то по условию 3) леммы 27 $J\subseteq I_{a+b}$. \square

Доказательство теоремы 5. Так как 0 < a+b, то по лемме 29 в кольце R существуют выпуклые направленные идеалы I_a , I_b , I_{a+b} . По лемме 24 существует интерполяционное псевдоупорядоченное кольцо $J = I_a + I_b$. По лемме 25 в кольце J существуют выпуклые направленные идеалы I_a , I_b , $I_a \cap I_b$.

Из утверждения 1) теоремы 4 следует существование строгого o-гомоморфизма интерполяционного псевдоупорядоченного кольца I_a на интерполяционное псевдоупорядоченное кольцо $(I_a+I_b)/I_b$. В силу леммы 30 $I_{a+b}=I_a+I_b$. Утверждение 1) теоремы доказано.

Утверждение 2) доказывается аналогично.

Утверждение 3) является следствием утверждения 3) теоремы 4 и леммы 30.

Утверждение 4) является следствием утверждения 4) теоремы 4 и леммы 30.

Исследование выполнено при финансовой поддержке Российского научного фонда, грант № 22-11-00052.

Литература

- [1] Бибаева В. Н, Ширшова Е. Е. О линейно K-упорядоченных кольцах // Фундамент. и прикл. матем. 2011/2012. Т. 17, вып. 4. С. 13—23.
- [2] Биркгоф Г. Теория решеток. М.: Наука, 1984.
- [3] Копытов В. М. Упорядочение алгебр Ли // Алгебра и логика. 1972. Т. 11, вып. 3. С. 295—325.
- [4] Копытов В. М. Решёточно упорядоченные группы. М.: Наука, 1984.
- [5] Кочетова Ю. В., Ширшова Е. Е. О линейно упорядоченных линейных алгебрах // Фундамент. и прикл. матем. 2009. T. 15, вып. 1. C. 53—63.
- [6] Кочетова Ю. В., Ширшова Е. Е. Первичный радикал решёточно \mathcal{K} -упорядоченных алгебр // Фундамент. и прикл. матем. 2013. Т. 18, вып. 1. С. 85—158.
- [7] Михалёв А. В., Ширшова Е. Е. Первичный радикал направленных псевдоупорядоченных колец // Фундамент. и прикл. матем. 2019.- Т. 22, вып. 4.- С. 147-166.
- [8] Фукс Л. Частично упорядоченные алгебраические системы. М.: Мир, 1965.
- [9] Ширшова Е. Е. О свойствах гомоморфизмов групп Рисса // УМН. 1991. Т. 46, N_2 5 (281). С. 157—158.
- [10] Ширшова Е. Е. Об обобщении понятия ортогональности и группах Рисса.// Матем. заметки. 2001. Т. $69, \, \mathbb{N}\!\!_{2} \, 1.$ С. 122-132.
- [11] Ширшова Е. Е. О свойствах интерполяционных групп // Матем. заметки. 2013. Т. 93, № 2. С. 295—304.
- [12] Ширшова Е. Е. О выпуклых подгруппах групп с интерполяционным условием // Фундамент. и прикл. матем. 2011/2012. Т. 17, вып. 7. С. 187—199.
- [13] Ширшова Е. Е. О частично K-упорядоченных кольцах // Фундамент. и прикл. матем. 2016. Т. 21, вып. 1. С. 225—239.
- [14] Ширшова Е. Е. О выпуклых направленных подгруппах псевдорешёточно упорядоченных групп // Фундамент. и прикл. матем. 2019. Т. 22, вып. 4. С. 238—252.
- [15] Shirshova E. E. On groups with the almost orthogonality condition // Commun. Algebra. -2000. Vol. 28, no. 10. P. 4803-4818.

_