Выпуклые идеалы частично псевдоупорядоченных колец

Е. Е. ШИРШОВА

Московский педагогический государственный университет e-mail: shirshova.elena@gmail.com

УДК 512.545

Ключевые слова: частично упорядоченное кольцо, выпуклая подгруппа, направленная группа.

Аннотация

Рассматриваются частично псевдоупорядоченные (K-упорядоченные) кольца. Исследуются свойства множества всех выпуклых направленных идеалов частично псевдоупорядоченных колец. Показано, что в теории частично псевдоупорядоченных колец выпуклые направленные идеалы играют ту же роль, что выпуклые направленные подгруппы в теории частично упорядоченных групп. Найдены необходимые и достаточные условия, при которых выпуклый направленный идеал AO-псевдоупорядоченного кольца является спрямляющим идеалом данного кольца. Доказано, что в AO-псевдоупорядоченном кольце спрямляющие направленные идеалы образуют корневую систему в решётке всех выпуклых направленных идеалов данного кольца. Изучаются свойства регулярных идеалов частично псевдоупорядоченных колец. Получены некоторые результаты, касающиеся свойств выпуклых направленных идеалов псевдорешёточно псевдоупорядоченных колец.

Abstract

E. E. Shirshova, Convex ideals of partially pseudo-ordered rings, Fundamentalnaya i prikladnaya matematika, vol. 24 (2023), no. 3, pp. 181—199.

Characteristics of partially pseudo-ordered (K-ordered) rings are considered. Properties of the set of all convex directed ideals in pseudo-ordered rings are described. It is shown that convex directed ideals play for the theory of partially pseudo-ordered rings the same role as convex directed subgroups for the theory of partially ordered groups. Necessary and sufficient conditions for a convex directed ideal of an AO-pseudo-ordered ring to be a rectifying ideal are obtained. We show that the set of all rectifying directed ideals of an AO-pseudo-ordered ring form the root system for the lattice of all convex directed ideals of that ring. Properties of regular ideals for partially pseudo-ordered rings are investigated. Some results are proved concerning convex directed ideals of pseudo-lattice pseudo-ordered rings.

Фундаментальная и прикладная математика, 2023, том 24, № 3, с. 181—199. © 2023 Национальный Открытый Университет «ИНТУИТ»

1. Введение

Пусть $R=\langle R,+,\cdot \rangle$ — произвольное кольцо (не обязательно ассоциативное). Принято называть R частично упорядоченным кольцом, если $\langle R,+,\leqslant \rangle$ является частично упорядоченной группой, удовлетворяющей условию

из $a \leqslant b$ и 0 < c следуют неравенства

$$ac \leqslant bc$$
 и $ca \leqslant cb$ для всех $a, b, c \in R$. (1)

Следует заметить, что произвольный частичный порядок аддитивной группы кольца не обязан быть частичным кольцевым порядком. (В [1] приведён соответствующий пример для ассоциативного кольца.)

Пусть аддитивная группа $\langle R, +, \leqslant \rangle$ кольца R является частично упорядоченной группой.

Кольцо R называется $\mathit{частично}$ $\mathit{ncesdoynopsdovenhыm}$ $\mathit{кольцом},$ если выполняется условие

из $0 \leqslant a$ следует справедливость неравенств

$$ab\leqslant a$$
 и $ba\leqslant a$ для всех элементов $b\in R.$ (2)

Частично упорядоченная группа называется *направленной*, если любые два элемента имеют в этой группе верхнюю грань.

Если порядок аддитивной группы псевдоупорядоченного кольца является линейным (решёткой, направленным), то кольцо называется линейно (решёточно, направленно) псевдоупорядоченным кольцом.

Понятие частично псевдоупорядоченного (K-упорядоченного) кольца было определено в работе В. Н. Бибаевой и Е. Е. Ширшовой [1]. Некоторые свойства линейно псевдоупорядоченных (K-упорядоченных) колец рассматривались в работе Е. Е Ширшовой [16].

Первоначально эти кольца были названы частично K-упорядоченными по аналогии с названием частично упорядоченных алгебр (см. [5,6]), так как данное упорядочение колец согласуется с определением частично упорядоченной алгебры Ли, принадлежащим В. М. Копытову [3,4].

Алгебра Ли $L=\langle L,+,\{\alpha\mid \alpha\in F\},\cdot\rangle$ над частично упорядоченным полем F называется uacmuuно упорядоченной алгеброй Ли, если $\langle L,+,\leqslant\rangle$ является частично упорядоченной группой, удовлетворяющей одновременно условиям:

из
$$a\leqslant b$$
 следует $\alpha a\leqslant \alpha b$ для всех $a,b\in L$ и $\alpha>0$ из поля F ; если $a\leqslant b$, то $a+ac\leqslant b+bc$ для всех элементов $a,b,c\in L$. (3)

Сравнив условия (2) и (3), можно сделать вывод, что частично упорядоченная алгебра Ли L является частично псевдоупорядоченным кольцом. Следует

отметить, что частично псевдоупорядоченное кольцо R не может содержать единицу. Действительно, если 0 < r и $1 \in R$, то из условия (2) следует неравенство $r(1+1) \leqslant r$, т. е. $r \leqslant 0$. Часто условию (2) удовлетворяют аддитивные группы колец без единицы (колец Π и, йордановых колец, например).

Целью данной работы является исследование свойств выпуклых направленных идеалов в различных классах псевдоупорядоченных колец. Большинство результатов данной статьи указывает на сходство свойств выпуклых направленных идеалов частично псевдоупорядоченных колец со свойствами выпуклых направленных подгрупп частично упорядоченных групп. В статье используются терминология и обозначения, общепринятые в теории частично упорядоченных алгебраических систем (см. [2,4,10]).

Напомним, что частично упорядоченная группа G называется интерполяционной группой, если для любых элементов $a_1,a_2,b_1,b_2\in G$ из неравенств $a_1,a_2\leqslant b_1,b_2$ следует существование элемента $c\in G$, для которого верны неравенства $a_1,a_2\leqslant c\leqslant b_1,b_2$. Класс интерполяционных групп включает классы решёточно упорядоченных групп, линейно упорядоченных групп и групп Рисса.

Определение 1. Частично псевдоупорядоченное кольцо $R = \langle R, +, \cdot, \leqslant \rangle$ называется интерполяционным псевдоупорядоченным кольцом, если аддитивная группа $R = \langle R, +, \leqslant \rangle$ является интерполяционной группой.

Свойства гомоморфизмов интерполяционных псевдоупорядоченных колец исследовались в работе А. В. Михалёва и Е. Е Ширшовой [9].

Подгруппа M частично упорядоченной группы G называется выпуклой, если для $a,b\in M$ и $g\in G$ из неравенств $a\leqslant g\leqslant b$ всегда следует $g\in M$. Идеал I частично псевдоупорядоченного кольца $R=\langle R,+,\cdot,\leqslant \rangle$ называется выпуклым идеалом, если группа $\langle I,+,\leqslant \rangle$ является выпуклой подгруппой группы $\langle R,+,\leqslant \rangle$.

Пусть R — произвольное кольцо, $\{I_s \mid s \in S\}$ — семейство идеалов кольца R. Объединением

$$\bigvee_{s \in S} I_s$$

идеалов будем считать их сумму

$$\sum_{s \in S} I_s,$$

а пересечением

$$\bigwedge_{s \in S} I_s$$

идеалов будем считать их теоретико-множественное пересечение

$$\bigcap_{s\in S}I_s.$$

Эти понятия нам понадобятся в дальнейшем.

Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — частично псевдоупорядоченное кольцо. Будем обозначать через R^+ множество $\{x \in R \mid 0 \leqslant x\}$ всех положительных элементов кольца R.

Элементы a и b из G^+ называются *ортогональными* в частично упорядоченной группе $G=\langle G,+,\leqslant \rangle$, если $L(a,b)\subseteq L(0)$ [19] (здесь L(x) — множество нижних граней элемента x).

Элементы a и b из G^+ называются *почти ортогональными* или AO-элементами (almost orthogonal elements) в частично упорядоченной группе $G=\langle G,+,\leqslant \rangle$, если из неравенств $x\leqslant a,b$ следуют неравенства $nx\leqslant a,b$ для всех $x\in G$ и целых положительных чисел n [20]. Ортогональные элементы обладают указанным свойством. Но не только они.

Пусть $\mathbb{Z}-$ аддитивная группа целых чисел с естественной упорядоченностью, $H=\mathbb{Z}\times\mathbb{Z}-$ прямое произведение групп, где $(a,b)\in H^+\setminus\{(0,0)\}$, если a>0 и b>0. Пусть $G=\overrightarrow{H\times\mathbb{Z}}-$ лексикографическое произведение направленной группы и линейно упорядоченной группы. Тогда элементы x=((1,1),0) и y=((1,2),0) почти ортогональны в группе G, но не ортогональны, так как, например, $((-1,0),0)\leqslant x,y$, но $((-1,0),0)\parallel((0,0),0)$.

Для почти ортогональных элементов интерполяционных псевдоупорядоченных колец справедливо следующее утверждение.

Теорема 1. Каждой паре почти ортогональных элементов a и b интерполяционного псевдоупорядоченного кольца R соответствует выпуклый направленный идеал $I_{a,b}$ кольца R.

Следствие 14 описывает местоположение идеала $I_{a,b}$, соответствующего некоторой паре почти ортогональных элементов, в решётке идеалов интерполяционного псевдоупорядоченного кольца.

Важную роль играет следующее утверждение.

Теорема 2. Пусть R — интерполяционное псевдоупорядоченное кольцо. Тогда в R существует выпуклый направленный идеал

$$\mathcal{I} = \bigvee_{a,b} I_{a,b}$$

для всех пар почти ортогональных элементов a и b кольца R.

Далее нам понадобится следующее определение.

Определение 2. Выпуклый идеал I частично псевдоупорядоченного кольца R называется спрямляющим, если фактор-кольцо R/I является линейно упорядоченным кольцом.

Некоторые свойства спрямляющих идеалов частично псевдоупорядоченных колец рассматриваются в третьем разделе работы. В случае интерполяционных псевдоупорядоченных колец справедливо следующее утверждение.

Теорема 3. Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — интерполяционное псевдоупорядоченное кольцо, I — спрямляющий направленный идеал кольца R. Тогда $\mathcal{I} \subseteq I$.

Напомним, что частично упорядоченную группу $G = \langle G, +, \leqslant \rangle$ называют AO-группой, если любой элемент $g \in G$ представим в виде g = a - b, где

элементы a и b почти ортогональны в группе G. Класс AO-групп является подклассом направленных групп и включает в себя класс псевдорешёточно упорядоченных групп и, следовательно, классы линейно упорядоченных и решёточно упорядоченных групп (подробнее см., например, [20]).

Определение 3. Частично псевдоупорядоченное кольцо $R = \langle R, +, \cdot, \leqslant \rangle$ называется AO-псевдоупорядоченным кольцом, если группа $\langle R, +, \leqslant \rangle$ является AO-группой.

Вариация понятия первичного радикала кольца в классе AO-псевдоупорядоченных колец исследовалась в работе A. В. Михалёва и Е. Е Ширшовой [7].

В четвёртом разделе работы исследуются спрямляющие идеалы AO-псевдоупорядоченных колец. Справедливы следующие утверждения.

Теорема 4. Пусть $R = \langle R, +, \cdot, \leqslant \rangle - AO$ -псевдоупорядоченное кольцо, I-выпуклый направленный идеал кольца R. Тогда следующие условия эквивалентны:

- 1) I спрямляющий направленный идеал кольца R;
- 2) если a и b почти ортогональны в кольце R, то $a \in I$ или $b \in I$.

Теорема 5 [8]. Пусть $R = \langle R, +, \cdot, \leqslant \rangle - AO$ -псевдоупорядоченное кольцо. Спрямляющие направленные идеалы образуют корневую систему в решётке всех выпуклых направленных идеалов кольца R.

Подмножество M решётки L называется κ системой, если для каждого элемента $a \in M$ множество $U_a = \{x \in L \mid a \leqslant x\}$ линейно упорядоченно и лежит в M.

Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — частично псевдоупорядоченное кольцо.

Определение 4. Выпуклый направленный идеал I частично псевдоупорядоченного кольца R называется регулярным идеалом, если существует элемент $r \in R$, такой что I является максимальным идеалом из всех выпуклых направленных идеалов, не содержащих r. В этом случае I называется значением элемента r.

Пример 1. Рассмотрим кольцо R верхнетреугольных матриц над кольцом $\mathbb Z.$ Пусть

$$(a,b,c) = \begin{pmatrix} 0 & a & c \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix}.$$

Положим $A=(a,b,c)\in R^+$, если или a>0 и b>0, или a=b=0 и $c\geqslant 0$. Тогда R-AO-псевдоупорядоченное кольцо.

Выпуклый направленный идеал $J=\{(0,0,c)\}$ кольца R является значением элемента r=(1,1,0), например.

Выпуклая направленная подгруппа M частично упорядоченной группы G называется значением элемента $g \in G$ (регулярной подгруппой), если M является максимальной среди выпуклых направленный подгрупп группы G, не содержащих элемент g.

П. Конрад в работе [18] показал, что в решёточно упорядоченной группе G множество T всех регулярных подгрупп группы G является множеством простых элементов в решётке L(G) всех выпуклых направленных подгрупп группы G, образует корневую систему и порождает решётку L(G), т. е. всякий элемент из L(G) является пересечением дуального идеала из T.

Свойства регулярных идеалов частично псевдоупорядоченных колец рассматриваются в пятом разделе работы. Там будут доказаны следующие теоремы.

Теорема 6. Пусть R — частично псевдоупорядоченное кольцо. Каждый элемент $0 \neq r \in R$ имеет в R хотя бы одно значение. Если $r \notin J$, где J — выпуклый направленный идеал в R, то существует K — значение элемента r, для которого $J \subseteq K$.

Теорема 7. Пусть R — решёточно псевдоупорядоченное кольцо, J — выпуклый направленный идеал в R. Если J — регулярный идеал кольца R, то J — спрямляющий идеал.

В более широких классах псевдоупорядоченных колец это не так.

В пятом разделе приводится пример регулярного идеала AO-псевдоупорядоченного кольца Ли, который не является спрямляющим идеалом (см. пример 2).

Теорема 8. Пусть R-AO-псевдоупорядоченное кольцо. Каждый выпуклый направленный идеал I кольца R является пересечением регулярных идеалов.

Будем обозначать через L(R) множество всех выпуклых направленных идеалов частично псевдоупорядоченного кольца R.

Определение 5. Скажем, что идеал $I \in L(R)$ *неразложим в пересечение*, если из равенства

$$I = \bigcap_{s \in S} J_s$$

 $(J_s \in L(R)$ для всех $s \in S$) следует существование индекса $n \in S$, для которого $I = J_n$.

Используя определение 5, можно доказать следующую теорему.

Теорема 9. Пусть $R = \langle R, +, \cdot, \leqslant \rangle - AO$ -псевдоупорядоченное кольцо и $I \in L(R)$. Тогда следующие условия равносильны:

- I) I регулярный идеал;
- 2) идеал I неразложим в пересечение.

Напомним, что интерполяционная AO-группа называется $nceedope m\ddot{e}mo$ unopadoue un

Определение 6. Частично псевдоупорядоченное кольцо $R = \langle R, +, \cdot, \leqslant \rangle$ называется псевдорешёточно псевдоупорядоченным кольцом, если группа $\langle R, +, \leqslant \rangle$ является псевдорешёточно упорядоченной группой.

Свойства выпуклых направленных идеалов псевдорешёточно псевдоупорядоченных колец исследуются в шестом разделе работы. Основными результатами этого раздела являются следующие утверждения.

Теорема 10. В каждом псевдорешёточно псевдоупорядоченном кольце R существует выпуклый направленный идеал, фактор-кольцо по которому является решёточно псевдоупорядоченным кольцом.

Теорема 11. Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — псевдорешёточно псевдоупорядоченное кольцо. Идеал $\mathcal I$ совпадает с пересечением всех спрямляющих направленных идеалов кольца R.

2. Почти ортогональность в интерполяционных псевдоупорядоченных кольцах

Напомним некоторые свойства выпуклых направленных идеалов интерполяционных псевдоупорядоченных колец.

Лемма 12. Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — интерполяционное псевдоупорядоченное кольцо, I, J — выпуклые направленные идеалы кольца R. Тогда пересечение идеалов $I \wedge J$ является выпуклым направленным идеалом кольца R.

Доказательство. Обоснование данного утверждения можно найти в [9, лемма 24].

Лемма 13. Пусть R — частично псевдоупорядоченное кольцо, $a \in R$ и 0 < a. Тогда в кольце R существует выпуклый направленный идеал I_a , для которого

$$I_a^+ = \{ r \in \mathbb{R}^+ \mid r \leqslant na$$
 для некоторых целых чисел $n > 0 \}.$

Если J — выпуклый идеал кольца R и $a \in J$, то $I_a \subseteq J$.

Доказательство. Обоснование данного утверждения можно найти в [7, лемма 21].

Используя леммы 12 и 13, можно обосновать следующее утверждение.

Следствие 14. Пусть $R=\langle R,+,\cdot,\leqslant \rangle$ — интерполяционное псевдоупорядоченное кольцо, $a\neq 0$ и $b\neq 0$ почти ортогональны в кольце R. Тогда в R существует выпуклый направленный идеал $I_{a,b}=I_a\wedge I_b$.

Доказательство теоремы 1. Если $a \neq 0$ и $b \neq 0$, то по следствию 14 в кольце R существует выпуклый направленный идеал $I_{a,b}$.

Если
$$a=0$$
 или $b=0$, то положим $I_{a,b}=\{0\}.$

Напомним некоторые свойства элементов интерполяционных групп.

Лемма 15. Пусть G — интерполяционная группа. Тогда для любых целых чисел $m>0,\ n>0$ из справедливости неравенств $a_i\leqslant b_j$ (для всех индексов $i=1,2,\ldots,n,\ j=1,2,\ldots,m$ элементов $a_i,b_j\in G$) следует существование элемента $c\in G$, для которого имеют место соотношения $a_i\leqslant c\leqslant b_j$.

Доказательство. Обоснование данного утверждения можно найти в [14, предложение 1; 15, предложение 1].

Лемма 16. Пусть $G = \langle G, +, \leqslant \rangle$ — интерполяционная группа, элемент $a \in G^+$ удовлетворяет неравенству $a \leqslant b_1 + b_2 + \ldots + b_n$, где $b_i \in G^+$ для всех $i = 1, 2, \ldots, n$. Тогда в группе G существуют элементы $c_i \in G^+$, для которых $a = c_1 + c_2 + \ldots + c_n$ и $c_i \leqslant b_i$ для всех $i = 1, 2, \ldots, n$.

Доказательство. Обоснование данного утверждения можно найти в [14, следствие 2; 15, следствие 2].

Лемма 17. Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — интерполяционное псевдоупорядоченное кольцо, $a \neq 0$ и $b \neq 0$ почти ортогональны в кольце R. Если $r \in I_{a,b}$, то $r \leqslant a,b$.

Доказательство. Если r < 0, то r < a, b.

Пусть $0\leqslant r$. Тогда по следствию 14 и лемме 13 $r\leqslant na,mb$ для некоторых целых чисел $n>0,\ m>0.$

Из леммы 16 следует, что в группе $\langle R, +, \leqslant \rangle$ $r = u_1 + u_2 + \ldots + u_n$ для некоторых элементов $u_i \in R^+$, для которых $u_i \leqslant a$. Так как $u_i \leqslant r$, то $u_i \leqslant mb$ для всех $i = 1, 2, \ldots, n$.

Из неравенств $u_i \leqslant a, mb$ по лемме 15 следует существование элемента $c \in R$ в группе $(R, +, \leqslant)$, удовлетворяющего соотношениям

$$u_i \leqslant c \leqslant a, mb$$

для всех $i=1,2,\ldots,n$. Из леммы 16 следует, что в группе $\langle R,+,\leqslant \rangle$ $c=v_1+v_2+\ldots+v_m$ для некоторых элементов $v_j\in R^+$, для которых $v_j\leqslant b$. Так как $v_i\leqslant c$, то $v_i\leqslant a,b$ для всех $j=1,2,\ldots,m$.

По лемме 15 существует элемент $d \in R$ в группе $\langle R, +, \leqslant \rangle$, удовлетворяющий соотношениям

$$v_i \leqslant d \leqslant a, b.$$

Значит, $c \leqslant md$.

Так как a и b почти ортогональны, то $md\leqslant a,b$, т. е. $c\leqslant a,b$. Так как $r\leqslant nc$, то $r\leqslant a,b$. Если $r\parallel 0$, то $0,r\leqslant na,mb$ для некоторых целых чисел $n>0,\ m>0$.

По лемме 15 существует элемент $t \in R$ в группе $\langle R, +, \leqslant \rangle$, удовлетворяющий соотношениям $0, r \leqslant t \leqslant na, mb$. По доказанному ранее $t \leqslant a, b$, т. е. $r \leqslant a, b$. \square

Напомним свойство частично упорядоченных групп.

Лемма 18. Если G — частично упорядоченная группа, то следующие условия равносильны:

- 1) G является направленной группой;
- 2) для элемента e и каждого элемента $a \in G$ существует верхняя грань;
- 3) любой элемент $g \in G$ представим в виде $g = ab^{-1}$, где $a, b \in G^+$.

Доказательство. Обоснование данного утверждения можно найти, например, в [10, ч. I, гл. II, § 1, предложение 1]. □

Из леммы 18 вытекает следующее утверждение.

Лемма 19. Направленное псевдоупорядоченное кольцо R порождается множеством R^+ .

Доказательство. Из пункта 3) леммы 18 следует, что любой элемент $r \in R$ представим в виде r = a - b, где $a, b \in R^+$.

В последнем разделе работы мы используем следующую теорему.

Теорема 20. Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — интерполяционное псевдоупорядоченное кольцо, $a,b \in R^+$. Тогда следующие условия равносильны:

- 1) a и b ортогональны в R;
- 2) a и b почти ортогональны B R, и $I_{a,b} = \{0\}$.

Доказательство. Если a=0 или b=0, то утверждение очевидно. Пусть $a\neq 0$ и $b\neq 0$.

Если выполняется условие 1), то a и b почти ортогональны в R. Пусть $0\leqslant x\in I_{a,b}$. По лемме 17 $x\leqslant a,b$, т. е. $x\in L(a,b)\subseteq L(0)$. Таким образом, $x\leqslant 0$, значит, x=0, поэтому $I_{a,b}{}^+=\{0\}$. В силу леммы 19 $I_{a,b}=\{0\}$. Справедливо условие 2).

Обратно, пусть выполняется условие 2). Рассмотрим $x \in L(a,b)$. Тогда справедливы неравенства $0,x\leqslant a,b$. По лемме 15 в группе $\langle R,+,\leqslant \rangle$ существует элемент $c\in R$, удовлетворяющий соотношениям

$$0, x \leqslant c \leqslant a, b.$$

Из выпуклости идеалов I_a и I_b следует, что $c\in I_a$ и $c\in I_b$. Значит, по следствию 14 $c\in I_{a,b}$, т. е. c=0. Следовательно, $x\leqslant 0$, т. е. $L(a,b)\subseteq L(0)$. Поэтому a и b ортогональны в R.

Лемма 21. Если R — интерполяционное псевдоупорядоченное кольцо, то множество L(R) всех выпуклых направленных идеалов кольца R образует подрешётку в решётке всех идеалов кольца R. Кроме того, L(R) — полная подрешётка сверху.

Доказательство. Обоснование данного утверждения можно найти в [9, теорема 2].

Доказательство теоремы 2. По теореме 1 для каждой пары почти ортогональных элементов a и b в кольце R существует выпуклый направленный идеал $I_{a,b}$. Утверждение теоремы является прямым следствием леммы 21.

3. Свойства спрямляющих идеалов частично псевдоупорядоченных колец

Начнём с известного ранее утверждения.

Лемма 22. Пусть R является частично псевдоупорядоченным кольцом.

- 1. Если M выпуклый идеал кольца R, то фактор-кольцо R/M является частично псевдоупорядоченным кольцом.
- 2. Если M выпуклый направленный идеал кольца R, K выпуклый направленный идеал кольца R/M, то в кольце R существует выпуклый направленный идеал I, для которого $\pi(I) = K$.

Доказательство. Обоснование данного утверждения можно найти в [7, тео-рема 3].

Лемма 23 [8]. Пусть R — частично псевдоупорядоченное кольцо, I — спрямляющий идеал кольца R, J, K — выпуклые направленные идеалы кольца R, $I \subset J$ и $I \subset K$. Тогда $J \subseteq K$ или $K \subseteq J$.

Доказательство. Пусть, от противного, $J \parallel K$. Тогда найдутся элементы $a \in J \setminus K$ и $b \in K \setminus J$. Без потери общности можно считать, что $0 \leqslant a, b$. Действительно, пусть $x \in J \setminus K$. Применяя лемму 19 к направленному идеалу J, заключаем, что x = u - v для некоторых элементов $u, v \in J^+$. Если $u \notin K$, то положим a = u. Если $u \in K$, то $v \notin K$ (иначе $x \in K$). Положим a = v.

По условию леммы $a+I\leqslant b+I$ или $b+I\leqslant a+I$. В первом случае $a\leqslant b+c$ для некоторого элемента $c\in I$. Значит, $a\in K$, так как K является выпуклым идеалом, но это противоречит выбору элемента a. Во втором случае приходим к противоречию с выбором элемента b.

Лемма 24 [8]. Пусть R — частично псевдоупорядоченное кольцо, I — спрямляющий направленный идеал кольца R, a и b почти ортогональны в кольце R. Тогда $a \in I$ или $b \in I$.

Доказательство. Если a=0 или b=0, то утверждение очевидно. Пусть $a \neq 0$ и $b \neq 0$.

Рассмотрим смежные классы a+I и b+I в фактор-кольце R/I. По условию леммы $a+I\leqslant b+I$ или $b+I\leqslant a+I$.

В первом случае $a\leqslant b+c$ для некоторого элемента $c\in I$. Так как I- направленный идеал, то по условию 2) леммы 18 можно считать, что $0\leqslant c$. Тогда $a-c\leqslant a,b$ в кольце R. Из почти ортогональности элементов a и b следует, что $2(a-c)\leqslant a,b$. Таким образом, $2a-2c\leqslant a$, откуда следует, что $a\leqslant 2c$, где $2c\in I$. Так как I- выпуклый идеал, то $a\in I$.

Во втором случае, рассуждая аналогично, получим $b \in I$.

Следствие 25. Пусть R — частично псевдоупорядоченное кольцо, I — спрямляющий направленный идеал кольца R, a и b почти ортогональны в кольце R. Тогда $I_a \subseteq I$ или $I_b \subseteq I$.

Доказательство. Если a=0 или b=0, то утверждение очевидно. Пусть $a\neq 0$ и $b\neq 0$.

Из леммы 24 следует, что $a \in I$ или $b \in I$. Если $a \in I$, то по лемме 13 из выпуклости идеала I следует, что ${I_a}^+ \subset I$. В силу леммы 19 это означает, что ${I_a} \subseteq I$. Во втором случае рассуждения аналогичны.

Доказательство теоремы 3. По следствию 25 и теореме 1 $I_{a,b} \subseteq I$ для любых почти ортогональных элементов a и b в кольце R. Утверждение теоремы следует из определения идеала $\mathcal I$ (см. теорему 2).

4. Свойства идеалов

АО-псевдоупорядоченных колец

Лемма 26. Пусть $R = \langle R, +, \cdot, \leqslant \rangle - AO$ -псевдоупорядоченное кольцо, I- выпуклый идеал кольца R. Если из почти ортогональности элементов a и b в кольце R всегда следует $a \in I$ или $b \in I$, то I- спрямляющий идеал.

Доказательство. Рассмотрим смежный класс x+I в фактор-кольце R/I. По условию леммы x=a-b для некоторых почти ортогональных элементов a и b в кольце R. По условию леммы $a\in I$ или $b\in I$. Если $a\in I$, то x+I=(a-b)+I=-b+I< I. Если $b\in I$, то x+I=(a-b)+I=a+I>I. \square

Доказательство теоремы 4. Для доказательства данного утверждения следует применить леммы 24 и 26.

Доказательство теоремы 5. Рассмотрим множество L(R) всех выпуклых направленных идеалов кольца R. Обозначим через M множество всех спрямляющих направленных идеалов кольца R. Тогда $M \subset L(R)$.

Пусть $I \in M$ и $U_I = \{J \in L(R) \mid I \subseteq J\}$. В силу леммы 23 множество U_I линейно упорядоченно по включению. Если $K \in U_I$, то $K \in L(R)$, где $I \subseteq K$.

Если a и b почти ортогональны в кольце R, то по теореме 4 $a \in I$ или $b \in I$. Отсюда следует, что $a \in K$ или $b \in K$. Из теоремы 4 следует, что $K \in M$, т. е. $U_I \subset M$.

Напомним известное ранее утверждение.

Лемма 27. Пусть R является AO-псевдоупорядоченным кольцом.

- 1. Если I выпуклый направленный идеал кольца R, то фактор-кольцо R/I является AO-упорядоченным кольцом.
- 2. Канонический гомоморфизм колец $\pi\colon R\to R/I$ является AO-гомоморфизмом колец
- 3. Если J выпуклый направленный идеал кольца R, то $\pi(J)$ выпуклый направленный идеал кольца R/I.

Доказательство. Обоснование данного утверждения можно найти в [7, теорема 4].

Гомоморфизм f AO-псевдоупорядоченного кольца R в AO-псевдоупорядоченное кольцо S называется AO-гомоморфизмом колец, если из почти ортогональности элементов a и b в кольце R следует почти ортогональность их образов f(a) и f(b) в кольце S.

Лемма 28. Пусть G-AO-группа, M-выпуклая направленная нормальная подгруппа группы $G,\ H-$ выпуклая направленная подгруппа группы G. Если имеет место неравенство $M\leqslant K$ в фактор-группе G/M для класса $K\in\pi(H)$, то существует элемент $a\in H^+$, для которого K=a+M.

Доказательство. Обоснование данного утверждения можно найти в [7, лемма [4].

Следствие 29. Пусть R-AO-псевдоупорядоченное кольцо, I, J-выпуклые направленные идеалы кольца R. Если имеет место неравенство $I\leqslant K$ в фактор-кольце R/I для класса $K\in\pi(J)$, то существует элемент $a\in J^+$, для которого K=a+I.

Доказательство. В AO-группе $G=\langle R,+,\leqslant \rangle$ рассмотрим выпуклые направленные подгруппы $M=\langle I,+,\leqslant \rangle$ и $H=\langle J,+,\leqslant \rangle$. По условию следствия смежный класс K в фактор-группе G/M удовлетворяет условию $M\leqslant K$. Остаётся применить лемму 28.

5. Регулярные идеалы частично псевдоупорядоченных колец

Начнём с доказательства существования регулярных идеалов.

Доказательство теоремы 6. Рассмотрим множество $M = \{J_s \mid s \in S\}$ всех выпуклых направленных идеалов кольца R, для которых $r \notin J_s$ для всех $s \in S$. Так как $\{0\} \in M$, то $M \neq \varnothing$. Множество M можно упорядочить по включению.

Если множество $T = \{J_q \mid q \in Q\}$ — некоторая цепь в M, то легко проверить, что множество

$$J = \bigcup_{q \in Q} J_q$$

является выпуклым направленным идеалом кольца R. Если $r \in J$, то существует индекс $q \in Q$, для которого $r \in J_q$, чего быть не может. Следовательно, $r \notin J$. Значит, J является точной верхней гранью в T. Следовательно, по лемме Цорна в M существуют максимальные элементы, каждый элемент из M содержится в некотором максимальном элементе.

Лемма 30. Пусть R — частично псевдоупорядоченное кольцо. Любая выпуклая направленная подгруппа аддитивной группы кольца R является идеалом кольца R.

Доказательство. Обоснование данного утверждения можно найти в [1, теорема 5].

Лемма 31. Пусть R — частично псевдоупорядоченное кольцо, $0 \neq r \in R$, J — выпуклый направленный идеал в R. Тогда следующие условия равносильны:

1) идеал J — значение элемента r в кольце R;

2) подгруппа $H = \langle J, +, \leqslant \rangle$ — значение элемента r в частично упорядоченной группе $\langle R, +, \leqslant \rangle$.

Доказательство. Если выполняется условие 1), то $r \notin H$. Тогда по [11, теорема 1.1] в группе $\langle R,+,\leqslant \rangle$ существует регулярная подгруппа Q, значение элемента r, для которой $H\subseteq Q$. Пусть $H\subset Q$. Так как по лемме 30 Q является идеалом кольца R, то из условия 1) следует, что $r\in Q$, что противоречит выбору подгруппы Q. Значит, подгруппа H является значением элемента r.

Если выполняется условие 2), то $r \notin J$. По теореме 6 существует регулярный идеал K, являющийся значением элемента r в кольце R, для которого $J \subseteq K$. Пусть $J \subset K$. В этом случае $H \subset \langle K, +, \leqslant \rangle$. По условию 2) $r \in \langle K, +, \leqslant \rangle$, т. е. $r \in K$, что противоречит выбору идеала K. Значит, идеал J является значением элемента r.

Доказательство теоремы 7. По лемме 31 подгруппа $\langle J, +, \leqslant \rangle$ является регулярной подгруппой решёточно упорядоченной группы $\langle R, +, \leqslant \rangle$. По [4, гл. III, § 3, теорема 3] каждая регулярная подгруппа решёточно упорядоченной группы является спрямляющей подгруппой.

Рассмотрим пример регулярного идеала в AO-псевдоупорядоченном кольце.

Пример 2. Пусть \mathbb{R} — аддитивная группа действительных чисел с естественной упорядоченностью, $H = \overline{\mathbb{R} \times \mathbb{R}}$ — прямое произведение линейно упорядоченных групп. Тогда H — решёточно упорядоченная группа (см. [10, часть I, гл. II, § 6]).

Рассмотрим лексикографическое произведение $D = \overline{H \times H}$ решёточно упорядоченных групп. В этом случае D не является решёточно упорядоченной группой (см. [10, часть I, гл. II, § 7]).

С другой стороны, D — псевдорешёточно упорядоченная группа (см. [12]), поэтому D-AO-группа (см. [20, лемма (B)]). В этом случае элемент $g=\left((a,b),(c,d)\right)$ считается положительным, если выполняется одно из следующих условий: 0 < a и $0 \leqslant b$; или $0 \leqslant a$ и 0 < b; или a=b=0, а $0 \leqslant c$ и $0 \leqslant d$.

Определим на группе D операцию умножения \circ : если $g_1=\big((a,b),(c,d)\big)$ и $g_2=\big((u,v),(s,t)\big)$, то положим $g_1\circ g_2=\big((0,0),(0,av-ub)\big)$. Тогда $R=(D,+,\circ)$ — кольцо Ли.

Если $0 < g_1$, то $g_1 \circ g_2 \leqslant g_1$ и $g_2 \circ g_1 \leqslant g_1$ для всех $g_2 \in A$. Поэтому R-AO-псевдоупорядоченное кольцо Ли, не являющееся решёточно псевдоупорядоченным кольцом.

Выпуклый направленный идеал $C = \{((0,0),(c,0))\}$ является регулярным, но не является спрямляющим. Действительно, пусть u = ((1,0),(0,0)) и v = ((0,1),(0,0)). Тогда $u+C \parallel v+C$.

Для доказательства теоремы 8 нам понадобится следующее утверждение.

Лемма 32. Пусть $R = \langle R, +, \cdot, \leqslant \rangle - AO$ -псевдоупорядоченное кольцо, $\{I_s \mid s \in S\}$ — семейство выпуклых направленных идеалов кольца R. Если

$$I = \bigwedge_{s \in S} I_s,$$

то I — выпуклый направленный идеал кольца R.

Доказательство. Обоснование данного утверждения можно найти в [9, тео-рема 22].

Доказательство теоремы 8. Из теоремы 6 для элемента $r \in R \setminus I$ следует существование значения J^r , для которого $I \subseteq J^r$. Рассмотрим множество $\{J^r \mid r \in R \setminus I\}$ всех регулярных идеалов, для которых $I \subseteq J^r$. По лемме 32 существует выпуклый направленный идеал

$$K = \bigwedge_{r \in R \setminus I} J^r.$$

Очевидно, $I \subseteq K$.

Допустим, что существует элемент $x \in K \setminus I$. Тогда $x \in R \setminus I$, и найдётся регулярный идеал J^x , значение элемента x, для которого $I \subseteq J^x$. Так как $x \notin J^x$, то $x \notin K$, что противоречит выбору элемента x. Значит, I = K.

Доказательство теоремы 9. Пусть I — регулярный идеал и

$$I = \bigcap_{s \in S} J_s,$$

где $J_s \in L(R)$ для всех $s \in S$. Существует элемент $r \in R$, для которого идеал I является значением в кольце R. Если $I \subset J_s$ для всех $s \in S$, то $r \in J_s$ для всех $s \in S$. Значит, $r \in I$, что противоречит выбору элемента r. Таким образом, существует индекс $n \in S$, для которого $I = J_n$. Следовательно, идеал I неразложим в пересечение.

Пусть далее I удовлетворяет условию 2). По теореме 8

$$I = \bigwedge_{s \in S} J_s = \bigcap_{s \in S} J_s,$$

где идеалы J_s являются регулярными для всех $s \in S$. По условию 2) существует индекс $n \in S$, для которого $I = J_n$. Значит, I — регулярный идеал.

6. Псевдорешёточно псевдоупорядоченные кольца

Лемма 33. Пусть R — решёточно псевдоупорядоченное кольцо, $a,b \in R^+$. Тогда следующие условия равносильны:

- 1) a и b ортогональны в кольце R;
- 2) a и b почти ортогональны в кольце R.

Доказательство. Очевидно, что условие 1) влечёт условие 2).

Пусть a и b почти ортогональны в кольце R и $c=a \wedge b$. Тогда $0 \leqslant c$. Из верных неравенств $c \leqslant a, b$ по условию 2) следует справедливость неравенств

 $2c\leqslant a,b$. По определению пересечения $2c\leqslant c$, т. е. $c\leqslant 0$. Следовательно, $a\wedge b=0$. Условие 2) влечёт условие 1).

Лемма 34. Пусть R — интерполяционное псевдоупорядоченное кольцо, I — выпуклый направленный идеал кольца R. Тогда фактор-кольцо R/I является интерполяционным псевдоупорядоченным кольцом.

Доказательство. Обоснование данного утверждения можно найти в [9, следствие 10].

Теорема 35. Пусть $R = \langle R, +, \cdot, \leqslant \rangle$ — псевдорешёточно псевдоупорядоченное кольцо, J — выпуклый направленный идеал кольца R, элементы $a \neq 0$ и $b \neq 0$ почти ортогональны в кольце R. Тогда $I_{a+J,\,b+J} = \pi(I_{a,b})$ в фактор-кольце R/J.

Доказательство. Так как по определению 6 R является интерполяционным псевдоупорядоченным кольцом, то по лемме 34 фактор-кольцо R/I является интерполяционным псевдоупорядоченным кольцом. Так как по определению 6 R является AO-псевдоупорядоченным кольцом, то из леммы 27 следует, что смежные классы a+J и b+J почти ортогональны в кольце R/J. По теореме 1 в кольце R/J существует выпуклый направленный идеал $I_{a+J,\,b+J}$. По лемме 22 найдётся выпуклый направленный идеал K кольца K0, где

$$K = \{ r \in R \mid r + J \in I_{a+J, b+J} \}.$$

По лемме 27 существует выпуклый направленный идеал $\pi(I_{a,b})$ в кольце R/J, где

$$\pi(I_{a,b}) = \{X \in R/J \mid X = x + J \text{ для некоторого элемента } x \in I_{a,b}\}.$$

Рассмотрим смежный класс $X \in \pi(I_{a,b})$, для которого $J \leqslant X$ в кольце R/J. По следствию 29 найдётся элемент $x \in I_{a,b}{}^+$, для которого X = x+J. Так как по лемме 17 $x \leqslant a,b$, то $x+J \leqslant a+J$, b+J в кольце R/J. Так как $I_{a+J,b+J}-$ выпуклый идеал, то $x+J \in I_{a+J,b+J}$. Значит, $\pi(I_{a,b})^+ \subset I_{a+J,b+J}$. По лемме 19 $\pi(I_{a,b}) \subseteq I_{a+J,b+J}$.

Рассмотрим смежный класс $Y \in I_{a+J,\,b+J}$, где $J \leqslant Y$. По лемме 17 $Y \leqslant a+J,\,b+J$. Для элемента $y \in Y$ найдутся элементы $u,v \in J$, для которых $y+u \leqslant a$ и $y+v \leqslant b$. Так как J — направленный идеал, то найдётся $w \in J$, для которого $w \leqslant u,v$. Тогда $y+w \leqslant a,b$. Так как R является интерполяционным псевдоупорядоченным кольцом, то существует элемент $c \in R$, для которого $y+w,0 \leqslant c \leqslant a,b$. Так как $I_{a,b}$ — выпуклый идеал, то $c \in I_{a,b}$. Значит, $c+J \in \pi(I_{a,b})$. Так как $\pi(I_{a,b})$ — выпуклый идеал и $J \leqslant y+J \leqslant c+J$, то $Y=y+J \in \pi(I_{a,b})$. Таким образом, $I_{a+J,\,b+J}^{} = \pi(I_{a,b})$. По лемме 19 $I_{a+J,\,b+J} \subseteq \pi(I_{a,b})$. Следовательно, $I_{a+J,\,b+J} = \pi(I_{a,b})$.

Лемма 36. Пусть $R=\langle R,+,\cdot,\leqslant \rangle$ — псевдорешёточно псевдоупорядоченное кольцо. Если каждый элемент r кольца R представим в виде r=a-b, где элементы a и b ортогональны в кольце R, то R— решёточно псевдоупорядоченное кольцо.

Доказательство. Рассмотрим группу $G=\langle R,+,\leqslant \rangle$ и $g\in G$. По условию леммы g=a-b, где элементы a и b ортогональны в кольце R. Так как $0,g\leqslant a$, то по условию 2) леммы 18 G— направленная группа.

Пусть далее $x,y\in G^+$. По условию леммы x-y=a-b, где элементы a и b ортогональны в кольце R. Для элемента c=x-a=y-b справедливы неравенства $c\leqslant x,y$. Из неравенств $u\leqslant x,y$ для элемента $u\in G$ следуют неравенства

$$u - c = (u - x) + a = (u - y) + b \le a, b.$$

Значит, $u-c\in L(a,b)\subseteq L(0)$, т. е. $u\leqslant c$. Таким образом, c — точная нижняя грань элементов x и y. Кроме того, $-c=a-x=b-y\leqslant a,b$, значит, $-c\in L(0)$, т. е. $c\in G^+$.

Рассмотрим элемент $v=a+b+c\in G^+$. Справедливы неравенства $v=x+b=y+a\geqslant x,y$. Пусть $x,y\leqslant t$. Тогда

$$v - t = (x - t) + b = (y - t) + a \le a, b.$$

Значит, $v-t\in L(0)$, т. е. $v\leqslant t$. Таким образом, v- точная верхняя грань элементов x и y в G^+ . Следовательно, множество G^+- решётка.

По [4, гл. 2, § 1, предложение 1] группа G — решёточно упорядоченная группа. Следовательно, R — решёточно псевдоупорядоченное кольцо.

Лемма 37. Пусть R — псевдорешёточно псевдоупорядоченное кольцо, элементы $a \neq 0$ и $b \neq 0$ почти ортогональны в кольце R, x = a + c и y = b + c для элемента $c \in R$. Если элементы x и y почти ортогональны в кольце R, то $c \in I_{a,b}$.

Доказательство. По условию леммы x-y=(a+c)-(b+c)=a-b. Справедливы неравенства $c=x-a=y-b\leqslant x,y$. По условию леммы $2c=2x-2a\leqslant x$ и $2y-2b\leqslant y$. Отсюда следует, что $x\leqslant 2a$ и $y\leqslant 2b$ По лемме 13 заключаем, что $x\in I_a$ и $y\in I_b$ Поэтому $c\in I_a$ и $c\in I_b$. По следствию $c\in I_a$ и $c\in I_a$.

Лемма 38. Пусть R — псевдорешёточно псевдоупорядоченное кольцо, J — выпуклый направленный идеал кольца R. Тогда следующие условия равносильны:

- 1) R/J решёточно псевдоупорядоченное кольцо;
- 2) если элементы a и b почти ортогональны в кольце R, то $I_{a,b} \subseteq J$.

Доказательство. Пусть имеет место условие 1) и элементы a и b почти ортогональны в кольце R. Если a=0 или b=0, то утверждение очевидно. Пусть $a\neq 0$ и $b\neq 0$. Так как по определению 6 R является AO-псевдоупорядоченным кольцом, то из леммы 27 следует, что смежные классы a+J и b+J почти ортогональны в кольце R/J. Из леммы 33 по условию 1) следует, что смежные классы a+J и b+J ортогональны в кольце R/J. Так как по определению 6 R является интерполяционным псевдоупорядоченным кольцом, то отсюда по теореме 20 заключаем, что $I_{a+J,\,b+J}=\{J\}$. По теореме 35 $I_{a+J,\,b+J}=\pi(I_{a,b})$. Поэтому $\pi(I_{a,b})=\{J\}$. Таким образом, если $r\in I_{a,b}$, то $r\in J$.

Пусть имеет место условие 2). Так как по определению 6 R является интерполяционным псевдоупорядоченным кольцом, то по лемме 34 фактор-кольцо R/J является интерполяционным псевдоупорядоченным кольцом. Так как по определению 6 R является AO-псевдоупорядоченным кольцом, то по лемме 27 фактор-кольцо R/J является AO-псевдоупорядоченным кольцом. Значит, R/J — псевдорешёточно псевдоупорядоченное кольцо.

Пусть смежные классы X и Y почти ортогональны в кольце R/J. Так как $J\leqslant X,Y$, то существуют элементы $x,y\in R^+$, для которых X=x+J и Y=y+J. Тогда x-y=a-b, где элементы a и b почти ортогональны в кольце R. Пусть c=x-a=y-b, тогда x=a+c и y=b+c. Значит, X=(a+J)+(c+J) и Y=(b+J)+(c+J). Из леммы 27 следует, что смежные классы a+J и b+J почти ортогональны в кольце R/J. В силу леммы 37 $c+J\in I_{a+J,\,b+J}$. По теореме 35 $I_{a+J,\,b+J}=\pi(I_{a,b})$. По условию леммы c+J=J. Значит, X=a+J и Y=b+J. Поэтому $I_{X,Y}=\pi(I_{a,b})=\{J\}$ в кольце R/J. Из теоремы 20 следует, что классы X и Y ортогональны в кольце R/J. В силу леммы 36 кольцо R/J является решёточно псевдоупорядоченным кольцом.

Следствие 39. Пусть R — псевдорешёточно псевдоупорядоченное кольцо, J — выпуклый направленный идеал кольца R. Тогда следующие условия равносильны:

- 1) R/J решёточно псевдоупорядоченное кольцо;
- 2) идеал $\mathcal{I} \subseteq J$.

Доказательство. Справедливость утверждения следует из леммы 38 и определения идеала \mathcal{I} (см. теорему 2).

Лемма 40. Пусть R — псевдорешёточно псевдоупорядоченное кольцо. Тогда следующие условия равносильны:

- 1) R решёточно псевдоупорядоченное кольцо;
- 2) $\mathcal{I} = \{0\}.$

Доказательство. Пусть R — решёточно псевдоупорядоченное кольцо, где элементы a и b почти ортогональны в кольце R. По лемме 33 элементы a и b ортогональны в кольце R. Так как по определению 6 R является интерполяционным псевдоупорядоченным кольцом, то в силу теоремы 20 $I_{a,b}=\{0\}$. Из теоремы 2 следует верность условия 2).

Пусть выполняется условие 2). Так как по определению 6 R является AO-псевдоупорядоченным кольцом, то каждый элемент r кольца R представим в виде r=a-b, где элементы a и b почти ортогональны. По теореме 20 элементы a и b ортогональны. Остаётся применить лемму 36.

Доказательство теоремы 10. Если $\,R-\,$ решёточно псевдоупорядоченное кольцо, то утверждение очевидно.

Пусть R не является решёточно псевдоупорядоченным кольцом. Тогда по лемме 40 выпуклый направленный идеал $\mathcal{I} \neq \{0\}$. По следствию 39 фактор-кольцо R/\mathcal{I} является решёточно псевдоупорядоченным кольцом.

Пример 3. Рассмотрим псевдорешёточное псевдоупорядоченное кольцо R из примера 2. Перечислим его нетривиальные выпуклые направленные идеалы:

$$C = \{ ((0,0),(c,0)) \}, \quad D = \{ ((0,0),(0,d)) \}, \quad J = \{ ((0,0),(c,d)) \},$$

$$A = \{ ((a,0),(c,d)) \}, \quad B = \{ ((0,b),(c,d)) \}.$$

B этом случае $\mathcal{I} = J$.

Лемма 41. Пусть R — псевдорешёточно псевдоупорядоченное кольцо, I — выпуклый направленный идеал кольца R. Если K — спрямляющий направленный идеал кольца R/I, то существует спрямляющий направленный идеал J в кольце R, для которого $\pi(J)=K$.

Доказательство. Так как по условию леммы R-AO-псевдоупорядоченное кольцо, то в силу леммы 27 фактор-кольцо R/I является AO-псевдоупорядоченным кольцом. По лемме 22 существует выпуклый направленный идеал J кольца R, для которого $\pi(J)=K$.

Пусть a и b почти ортогональны в кольце R. По лемме 27 смежные классы a+I и b+I почти ортогональны в кольце R/I. Так как K — спрямляющий направленный идеал, то по теореме 4 $a+I \in K$ или $b+I \in K$. Значит, $a \in J$ или $b \in J$. В силу теоремы 4 J — спрямляющий направленный идеал кольца R. \square

Доказательство теоремы 11. Рассмотрим множество $\{H_s \mid s \in S\}$ всех спрямляющих направленных идеалов в кольце R. Так как по условию леммы R-AO-псевдоупорядоченное кольцо, то по лемме 33 существует выпуклый направленный идеал

$$K = \bigwedge_{s \in S} H_s.$$

Если элементы a и b почти ортогональны в кольце R, то по теореме 4 $a \in H_s$ или $b \in H_s$ для всех $s \in S$. По следствию 14 $I_{a,b} \subseteq H_s$ для всех $s \in S$. В силу теоремы 2 $\mathcal{I} \subseteq H_s$ для всех $s \in S$. Поэтому $\mathcal{I} \subseteq K$.

Допустим, что $\mathcal{I} \neq K$. Существует элемент $r \in K \setminus \mathcal{I}$. По теореме 2 идеал \mathcal{I} является выпуклым и направленным в кольце R. Так как по определению 6 R является интерполяционным псевдоупорядоченным кольцом, то по лемме 34 фактор-кольцо R/\mathcal{I} является интерполяционным псевдоупорядоченным кольцом. Так как по определению 6 R является AO-псевдоупорядоченным кольцом, то по лемме 27 фактор-кольцо R/\mathcal{I} является AO-псевдоупорядоченным кольцом. Значит, R/\mathcal{I} — псевдорешёточно псевдоупорядоченное кольцо.

Смежный класс $r+\mathcal{I}$ не равен \mathcal{I} в кольце R/\mathcal{I} . По теореме 6 в кольце R/\mathcal{I} существует регулярный идеал Q, являющийся значением класса $r+\mathcal{I}$. По следствию 39 кольцо R/\mathcal{I} является решёточно псевдоупорядоченным кольцом. По теореме 7 идеал Q— спрямляющий направленный идеал кольца R/\mathcal{I} . По лемме 41 существует спрямляющий направленный идеал J в кольце R, для которого $\pi(J)=Q$. Поэтому $K\subseteq J$.

Если $r \in J$, то $r + \mathcal{I} \in Q$, что противоречит выбору идеала Q. Если $r \notin J$, то $r \notin K$, что противоречит выбору элемента r. Следовательно, $\mathcal{I} = K$.

Литература

- [1] Бибаева В. Н., Ширшова Е. Е. О линейно K-упорядоченных кольцах // Фундамент. и прикл. матем. 2011/2012. Т. 17, вып. 4. С. 13—23.
- [2] Биркгоф Г. Теория решёток. М.: Наука, 1984.
- [3] Копытов В. М. Упорядочение алгебр Ли // Алгебра и логика. 1972. Т. 11, \mathbb{N} 3. С. 295—325.
- [4] Копытов В. М. Решёточно упорядоченные группы. М.: Наука, 1984.
- [5] Кочетова Ю. В., Ширшова Е. Е. О линейно упорядоченных линейных алгебрах // Фундамент. и прикл. матем. 2009. T. 15, вып. 1. C. 53—63.
- [6] Кочетова Ю. В., Ширшова Е. Е. Первичный радикал решёточно \mathcal{K} -упорядоченных алгебр // Фундамент. и прикл. матем. 2013. Т. 18, вып. 1. С. 85—158.
- [7] Михалёв А. В., Ширшова Е. Е. Первичный радикал направленных псевдоупорядоченных колец // Фундамент. и прикл. матем. 2019.- Т. 22, вып. 4.- С. 147-166.
- [8] Михалёв А. В., Ширшова Е. Е. Спрямляющие направленные идеалы частично псевдоупорядоченных колец // Алгебра, теория чисел и дискретная геометрия: современные проблемы, приложения и проблемы истории. Материалы XVII Международной конференции, посвящённой 100-летию со дня рождения профессора Н. И. Фельдмана и 90-летию профессоров А. И. Виноградова, А. В. Малышева и Б. Ф. Скубенко. Тула, 23—28 сентября 2019 года. Тула, 2019. С. 18—20.
- [9] Михалёв А. В., Ширшова Е. Е. Интерполяционно псевдоупорядоченные кольца // Фундамент. и прикл. матем. 2022.- Т. 22, вып. 4.- С. 147-166.
- [10] Фукс Л. Частично упорядоченные алгебраические системы. М.: Мир, 1965.
- [11] Ширшова Е. Е. О псевдо структурно упорядоченных группах // Группы и модули. Теория игр.: Сб. тр. МОПИ им. Н. К. Крупской. М., 1973. С. 10-18.
- [12] Ширшова Е. Е. Лексикографические расширения и *pl*-группы // Фундамент. и прикл. матем. — 1995. — Т. 1, вып. 4. — С. 1133—1138.
- [13] Ширшова Е. Е. Об обобщении понятия ортогональности и группах Рисса // Мат. заметки. 2001. Т. 69, N 1. С. 122—132.
- [14] Ширшова Е. Е. О свойствах интерполяционных групп // Мат. заметки. 2013. Т. 93, № 2. С. 295—304.
- [15] Ширшова Е. Е. О выпуклых подгруппах групп с интерполяционным условием // Фундамент. и прикл. матем. -2011/2012.-T. 17, вып. 7. -C. 187–199.
- [16] Ширшова Е. Е. О частично K-упорядоченных кольцах // Фундамент. и прикл. матем. 2016. Т. 21, вып. 1. С. 225—239.
- [17] Ширшова Е. Е. О выпуклых направленных подгруппах псевдорешёточно упорядоченных групп // Фундамент. и прикл. матем. 2019. Т. 22, вып. 4. С. 238—252.
- [18] Conrad P. The lattice of all convex l-subgroups of lattice-ordered group // Czechosl. Math. J. -1965. Vol. 15. P. 101-123.
- [19] Fuchs L. Riesz groups // Ann. Math. Scu. Norm. Sup. Pisa. 1965. Vol. 19. Ser. III. P. 1—34.
- [20] Shirshova E. E. On groups with the almost orthogonality condition // Commun. Algebra. 2000. Vol. 28, no. 10. P. 4803–4818.