О ниль-элементах и идемпотентах в простых коммутативных унитальных 3-мерных алгебрах

В. И. ГЛИЗБУРГ

Московский городской педагогический университет e-mail: glizburg@mail.ru

ж. м. онербек

Международный университет «Астана», Казахстан e-mail: onerbek.93@mail.ru

С. В. ПЧЕЛИНЦЕВ

 Φ инансовый университет при Правительстве $P\Phi$ e-mail: pchelinzev@mail.ru

УДК 512.554.5

Ключевые слова: простая 3-мерная алгебра, коммутативная алгебра, выделенная алгебра, ниль-элемент, идемпотент, изотоп.

Аннотация

Изучаются простые 3-мерные коммутативные унитальные алгебры, содержащих ниль-элементы индекса 3, в которых отсутствуют ниль-элементы индекса 2. Доказано, что каждая такая алгебра зависит либо от одного, либо от двух параметров. Для каждой из параметрических алгебр найдены их идемпотенты и ниль-элементы при некоторых естественных ограничениях на параметры. Кроме того, изучаются идемпотенты и ниль-элементы в одном изотопе некоторой специальной алгебры.

Abstract

V. I. Glizburg, Zh. M. Onerbek, S. V. Pchelintsev, On nil-elements and idempotents in the simple three-dimensional commutative unital algebras, Fundamentalnaya i prikladnaya matematika, vol. 25 (2025), no. 3, pp. 27—53.

We study simple 3-dimensional commutative unital algebras containing nil-elements of index 3 in which nil-elements of index 2 are absent. It is proved that each such algebra depends on either one or two parameters. For each of the parametric algebras we find their idempotents and nil-elements under some natural restrictions on the parameters. In addition, we study idempotents and nil-elements in one isotope of some special algebra.

1. Введение

Классификация алгебр малой размерности в различных многообразиях является одной из интересных проблем и постоянно привлекает внимание как источник примеров. Не претендуя на сколько-либо широкий охват статей, относящихся к данной проблематике, отметим некоторые из них.

Фундаментальная и прикладная математика, 2025, том 25, № 3, с. 27—53. © 2025 Национальный Открытый Университет «ИНТУИТ» Так, Х. Петерссон [16] дал классификацию двумерных алгебр над любым полем. И. Кайгородов и Ю. Волков [14] изучали с различных точек зрения 2-мерные алгебры над алгебраически замкнутым полем. Хорошо известны результаты о классификации бинарно лиевых алгебр малых размерностей [2,3,12]. К. Сили [17] изучал вырождения 6-мерных нильпотентных алгебр Ли. И. Кайгородов и О. Шашков [13] описали комплексные 3-мерные ниль-алгебры и, как следствие, получили все вырождения в многообразии комплексных 3-мерных ниль-алгебр.

В [7] были классифицированы трёхмерные антидендриформные алгебры. Доказано, что если ассоциативная алгебра имеет ненулевой идемпотентный элемент, то не существует совместимой структуры антидендриформной алгебры, связанной с ассоциативными алгебрами. В [11] была дана характеристика алгебр, порождённых идемпотентами, и указан критерий того, что конечномерная алгебра порождается идемпотентами.

Напомним, что алгебра называется *простой*, если она имеет ненулевое умножение и не содержит собственных идеалов. Классификация простых алгебр является важнейшей задачей структурной теории. Для конечномерных алгебр она решена в различных классах: ассоциативных алгебр, алгебр Ли, альтернативных, йордановых, правоальтернативных алгебр, алгебр Мальцева, бинарно лиевых алгебр и других. Известны также результаты о структуре простых бесконечномерных альтернативных алгебр (Р. Брак, Е. Клейнфелд), правоальтернативных алгебр с единицей (В. Г. Скосырский), йордановых алгебр (Е. И. Зельманов) (см. обзор [4]).

В 1942 г. А. А. Алберт [8] ввёл понятие изотопии. Алгебра называется изотопно простой, если всякий её изотоп является простой алгеброй. Простая алгебра с единицей является изотопно простой. Интерес к изучению изотопно простых алгебр связан с теоремой Брака о композиционном ряде [9]: всякая конечномерная алгебра A обладает изотопом B, в котором существует композиционный ряд

$$B = B_0 \rhd B_1 \rhd B_2 \rhd \ldots \rhd B_k = 0,$$

где $B_{i+1} \lhd B_i$ и фактор-алгебры $B_i/B_{i+1}, \ i=\overline{0,k-1},$ либо изотопно просты, либо 1-мерные алгебры с нулевым умножением.

В той же работе [9] Р. Брак доказал, что над алгебраически замкнутым полем не существует 2-мерных изотопно простых алгебр и всякая 1-мерная изотопно простая алгебра изотопна основному полю. Известно [15], что каждая простая 3-мерная антикоммутативная алгебра изотопна алгебре Ли $\rm sl_2$ бесследных матриц второго порядка.

Положим $x^1=x$ и определим по индукции $x^{n+1}=x^nx$. Элемент x называется ниль-элементом индекса $n,\ x^n=0$ и $x^{n-1}\neq 0$. Ниль-рангом алгебры называется максимальное число линейно независимых ниль-элементов индекса 2.

Можно доказать, что простые 3-мерные коммутативные алгебры ниль-ранга $r \in \{1,2,3\}$ изотопны тогда и только тогда, когда их ранги совпадают. Для

алгебр ниль-ранга 3 результат опубликован в [15]; для алгебр ниль-ранга 1 и 2 статьи готовятся к печати.

В [1,5,6,10] изучались изотопы простых и первичных алгебр в различных многообразиях алгебр, близких к ассоциативным.

В предлагаемой работе изучается класс $\mathcal C$ простых 3-мерных коммутативных унитальных алгебр, содержащих ниль-элементы, в которых, однако, отсутствуют ниль-элементы индекса 2. Если не оговорено противное, термин $\mathcal C$ -алгебра означает, что рассматривается алгебра из класса $\mathcal C$.

В силу ограничений на размерность \mathcal{C} -алгебра содержит ниль-элемент инлекса 3.

Основная гипотеза заключается в следующем: любые две \mathcal{C} -алгебры изотопны. Для решения этой задачи, как, впрочем, и задачи об изоморфизме, необходима информация о ниль-элементах и идемпотентах \mathcal{C} -алгебр. Отметим, кстати, что класс простых 3-мерных коммутативных унитальных алгебр без ниль-элементов не является изотопно циклическим, поскольку алгебра E^* из раздела 2 не является алгеброй с делением.

Данная работа состоит из восьми разделов, включая введение. Основному содержанию работы посвящены разделы 2-7. В разделе 2 доказывается, что \mathcal{C} -алгебра изоморфна одной из алгебр E_{τ} или $G(\lambda,\mu)$:

$$E_{\tau} = \langle 1, e, x \mid e^2 = e, \ xe = \tau x, \ x^2 = e - \tau 1 \rangle, \quad \tau \in F;$$

 $G(\lambda, \mu) = \langle 1, x, y \mid x^2 = y, \ xy = 0, \ y^2 = \lambda 1 + x + \mu y \rangle, \quad \lambda, \mu \in F.$

В разделе 3 доказано, что эти алгебры просты, только если $\tau \neq 0;1$ и $\lambda \neq 0$. Там же приведён пример простой алгебры, содержащей ниль-элементы индекса 2 и 3.

В разделе 4 изучаются ниль-элементы и идемпотенты в простой алгебре E_{τ} . Доказано, что в такой алгебре нет ниль-элементов индекса 2. Если $\tau^2-\tau+1\neq 0$, то любые два ниль-элемента простой алгебры E_{τ} пропорциональны. Доказано также, что простая алгебра E_{τ} содержит шесть нетривиальных идемпотентов, если $\tau\neq 1/2$; алгебра $E_{1/2}$ содержит два нетривиальных идемпотента. Заметим, что $E_{\tau}\in\mathcal{C}$ при любом $\tau\neq 0$; 1.

В разделе 5 аналогичные результаты доказаны для алгебр типа $G(\lambda,\mu)$ в двух частных случаях $\mu=0;1$:

$$G_{\lambda} = \langle 1, x, y \mid x^2 = y, \ xy = 0, \ y^2 = \lambda 1 + x \rangle,$$

 $G'_{\lambda} = \langle 1, x, y \mid x^2 = y, \ xy = 0, \ y^2 = \lambda 1 + x + y \rangle,$

при определённых ограничениях на параметр λ . Там же указан критерий того, что простая алгебра $G(\lambda,\mu)$, обладает ниль-унитальным базисом и не содержит ниль-элементов индекса 2. В частности, доказано, что $G(\lambda,\mu)\in\mathcal{C}$ тогда и только тогда, когда

$$\lambda(64\lambda^3 + 16\lambda^2\mu^2 - 8\lambda\mu + 1) \neq 0.$$

Алгебры G_{λ} и G'_{λ} имеют ровно шесть нетривиальных идемпотентов при некоторых естественных ограничения на параметр λ (см. предложения 5.4 и 5.5).

В разделах 6 и 7 изучаются алгебра $E\cong E_{1/2}$ и один её стандартный изотоп E^* . Доказано, что алгебра E имеет ниль-элемент индекса 3 и нетривиальный идемпотент, но не имеет идемпотентного базиса, а её изотоп E^* имеет идемпотентный базис и не содержит ниль-элементов индекса 3. Заметим, что алгебры E и E^* не имеют ниль-элементов индекса 2.

Таким образом, возможна следующая ситуация: в алгебре имеется ниль-элемент индекса 3, но таких элементов нет в изотопе. Кроме того, у алгебры может быть идемпотентный базис, а в изотопе такого базиса нет. Эти факты указывают на трудности, связанные с изучением \mathcal{C} -алгебр и их изотопов.

Полученные результаты предполагается использовать при классификации \mathcal{C} -алгебр с точностью до изоморфизма и изотопии соответственно.

В конце работы приведён перечень основных вопросов, возникающих при изучении алгебр из указанного класса.

Отметим также, что при проведении вычислений использовалась компьютерная программа Scientific WorkPlace.

2. Алгебры с ниль-элементами индекса 3

Всюду ниже, если не оговорено противное, C обозначает простую 3-мерную коммутативную алгебру с единицей 1, в которой нет ниль-элементов индекса 2. Основное поле F предполагается алгебраически замкнутым характеристики, отличной от 2 и 3, и отождествляется с подалгеброй F1 алгебры C. Через F^{\times} обозначается множество ненулевых скаляров из F.

Поскольку алгебра C трёхмерна, то она является κy бической, т. е. для любого $a \in C$ найдутся подходящие скаляры $\beta_i \in F$, такие что

$$a^3 + \beta_1 a^2 + \beta_2 a + \beta_3 = 0.$$

Если алгебра C квадратична, то она йорданова и, значит, изоморфна йордановой алгебре симметрической билинейной невырожденной формы. Если же она не является квадратичной, то она порождается одним элементом и, следовательно, не может быть алгеброй с ассоциативными степенями (иначе она ассоциативна и является полем — расширением степени 3 основного поля F, что невозможно, поскольку оно алгебраически замкнуто).

2.1. Энгелевость ниль-элементов индекса 3

Лемма 1. Пусть C — трёхмерная коммутативная алгебра c единицей, $x \in C$ — ниль-элемент индекса 3 и $y := x^2$. Тогда (1, x, y) — аддитивный базис алгебры C, такой базис называется стандартным. Для любого $\theta \in F^{\times}$ новый набор

$$(1, x', y')$$
, где $x' = \theta x$, $y' = \theta^2 y$,

также является стандартным базисом алгебры C.

Доказательство. Если $1,\,x,\,y$ линейно зависимы, то $1=\alpha x+\beta y$ для подходящих $\alpha,\beta\in F$. Умножая обе части этого равенства на x, получаем $x=\alpha x^2=$ $=\alpha y$ и аналогично $y=x^2=\alpha xy=0$, что невозможно. Тем самым доказано, что (1,x,y) — аддитивный базис.

Если $x' = \theta x$, то x' — ниль-элемент индекса 3 и

$$y' := \theta^2 y = \theta^2 x^2 = (\theta x)^2 = x'^2$$

т. е. (1, x', y') также стандартный базис алгебры C.

Лемма 2. Пусть C — трёхмерная коммутативная алгебра с единицей. Всякий ниль-элемент $x \in C$ индекса 3 является энгелевым того же индекса, τ . е. оператор правого умножения R_x нильпотентен индекса 3.

Доказательство. В силу леммы 1 набор (1,x,y) является стандартным базисом в C. Кроме того,

$$1R_x^3 = x^3 = 0$$
, $xR_x^3 = (xy)R_x^2 = 0$, $yR_x^3 = (xy)R_x^2 = 0$.

Лемма доказана.

2.2. Алгебры вида $G(\lambda, arepsilon, \mu)$

Лемма 3. Алгебра C изоморфна алгебре вида

$$G(\lambda, \varepsilon, \mu) = \langle 1, x, y \mid x^2 = y, xy = 0, y^2 = \lambda 1 + \varepsilon x + \mu y \rangle,$$

где $\varepsilon = 0$: 1.

Доказательство. Пусть $x\in C$ — ниль-элемент индекса $3,\ y:=x^2.$ Тогда в силу леммы 1 набор (1,x,y) образует стандартный базис в C. Пусть $y^2==\lambda_1 1 + \lambda_2 x + \lambda_3 y.$ Если $\lambda_2=0,$ то $y^2=\lambda_1 1 + \lambda_3 y,$ значит, алгебра C имеет вид $G(\lambda_1,0,\lambda_3).$

Если же $y^2=\lambda_1 1+\lambda_2 x+\lambda_3 y$ и $\lambda_2\neq 0$, то положим $x'=\theta x,\ y'=\theta^2 y.$ Тогда (1,x',y') — стандартный базис по лемме 1. Кроме того,

$$y'^2 = \theta^4 y^2 = \theta^4 \lambda_1 1 + \theta^3 \lambda_2 x' + \theta^2 \lambda_3 y'.$$

Выбирая θ так, что $\lambda_2\theta^3=1$, получим изоморфизм алгебры C и алгебры вида $G(\lambda',1,\mu')$. Лемма доказана.

Лемма 4. Алгебра $G(\lambda,0,0),\ \lambda \neq 0$, изоморфна алгебре E, которую назовём выделенной:

$$E := \langle 1, x, y \mid x^2 = y, xy = 0, y^2 = 1 \rangle.$$

Доказательство. Пусть (1,x,y) — стандартный базис для алгебры $G(\lambda,0,0)$. Возьмём $\theta \in F$ так, что $\theta^4 = \lambda$. Тогда $(1,x':=\theta^{-1}x,y':=\theta^{-2}y)$ — стандартный базис по лемме 1 и $y'^2 = \theta^{-4}y^2 = \theta^{-4}\lambda 1 = 1$, т. е. $G(\lambda,0,0) \cong E$.

Если $\tau \in F$, то положим

$$E_{\tau} := \langle 1, e, x \mid e^2 = e, xe = \tau x, x^2 = e - \tau 1 \rangle.$$

Лемма 5. Выделенная алгебра E изоморфна алгебре $E_{1/2}$.

Доказательство. В алгебре E введём элементы $x' = x/\sqrt{2}, \ e = (y+1)/2.$ Тогда

$$e^{2} = \left(\frac{y+1}{2}\right)^{2} = \frac{y^{2} + 2y + 1}{4} = \frac{y+1}{2} = e,$$
$$x'e = \frac{x}{\sqrt{2}} \frac{y+1}{2} = \frac{xy+x}{2\sqrt{2}} = \frac{x}{2\sqrt{2}} = \frac{1}{2}x',$$

значит, x'e=(1/2)x', и $x'^2=\frac{1}{2}x^2=\frac{1}{2}y=e-\frac{1}{2}$. Лемма доказана.

Лемма 6. Алгебра $G(\lambda,0,\mu),\ \lambda\neq 0$, не содержащая ниль-элементов индекса 2, изоморфна алгебре E_{τ} .

Доказательство. Докажем, что для подходящих скаляров $p,\ q$ элемент $e=p+qy,\ q\neq 0,$ является идемпотентом в алгебре $G(\lambda,0,\mu).$ В силу лемм 4 и 5 можно считать, что $\mu\neq 0$ Если $e=e^2,$ то

$$p + qy = e = e^{2} = (p + qy)^{2} = p^{2} + 2pqy + q^{2}y^{2} =$$
$$= p^{2} + 2pqy + q^{2}(\lambda + \lambda_{3}y) = q^{2}\lambda + p^{2} + (q^{2}\mu + 2pq)y.$$

Значит, $p=q^2\lambda+p^2$, $q=q^2\mu+2pq$. Итак, e=p+qy является идемпотентом тогда и только тогда, когда

$$p = q^2 \lambda + p^2$$
, $p = \frac{1}{2} - \frac{1}{2} q\mu$.

Далее,

$$0 = q^2 \lambda + p^2 - p = q^2 \lambda + \left(\frac{1}{2} - \frac{1}{2}q\mu\right)^2 - \left(\frac{1}{2} - \frac{1}{2}q\mu\right) = \frac{1}{4}q^2\mu^2 + q^2\lambda - \frac{1}{4}.$$

Уравнение

$$\frac{1}{4}q^2\mu^2 + q^2\lambda - \frac{1}{4} = 0$$

имеет решение $q=1/(\sqrt{4\lambda+\mu^2})$, если $4\lambda+\mu^2\neq 0$. Если же $4\lambda+\mu^2=0$, то равенство $y^2=\lambda 1+\mu y$ принимает вид

$$0 = y^{2} - \lambda 1 - \mu y = y^{2} + \left(\frac{1}{4}\mu^{2}\right)1 - \mu y = \left(y - \frac{\mu}{2}1\right)^{2},$$

откуда вытекает наличие ниль-элемента $y-(\mu/2)1$ индекса 2, что невозможно по условию.

Итак, элемент e=p1+qy для подходящих скаляров p и $q\neq 0$ является идемпотентом. Тогда x(e-p1)=qxy=0, значит, xe=px. Пусть $\gamma^2=q$. Полагая $x'=\gamma x$, имеем $x'^2=e-p1$, x'e=px'. Следовательно, алгебра $G(\lambda,0,\mu)$ изоморфна алгебре E_p . Лемма доказана.

Сделаем следующее очевидное замечание, которым в дальнейшем будем пользоваться без дополнительных пояснений. Пусть A — алгебра с базисом $(e_i,\ i=1,n);$

$$g = \sum_{i} p_i e_i, \quad g^2 = \sum_{i} q_i e_i.$$

Элемент $\theta g,\ \theta\in F^{\times}$, является идемпотентом в алгебре A тогда и только тогда, когда векторы $\vec{p}=(p_1,\ldots,p_n)$ и $\vec{q}=(q_1,\ldots,q_n)$ пропорциональны (обозначение $\vec{p}\parallel\vec{q})$, т. е.

$$\frac{p_1}{q_1} = \dots = \frac{p_n}{q_n}.$$

Кроме того, если такой скаляр θ существует, то он находится однозначно.

Лемма 7. Алгебра $G(\lambda,\mu):=G(\lambda,1,\mu),\ \lambda\neq 0,$ содержит нетривиальный илемпотент.

Доказательство. Докажем, что при определённых числах p и q имеется нетривиальный идемпотент вида $\pi:=\alpha(1+px+qy)$. Вычислим

$$(1+px+qy)^2 = p^2y + 2px + q^2(\lambda + x + \mu y) + 2qy + 1 =$$

= $(1+q^2\lambda)1 + (2p+q^2)x + (2q+q^2\mu + p^2)y$.

Элемент π является идемпотентом тогда и только тогда, когда справедливы равенства

$$0 = \frac{1}{1+q^2\lambda} - \frac{p}{2p+q^2} = \frac{p+q^2 - \lambda pq^2}{(1+\lambda q^2)(2p+q^2)},$$

$$0 = \frac{1}{1+q^2\lambda} - \frac{q}{2q+q^2\mu+p^2} = \frac{p^2 - \lambda q^3 + \mu q^2 + q}{(1+\lambda q^2)(p^2 + \mu q^2 + 2q)}.$$

Итак, должны быть выполнены равенства

$$p + a^2 - \lambda pa^2 = 0$$
, $p^2 - \lambda a^3 + \mu a^2 + a = 0$.

Будем подбирать q так, чтобы $\lambda q^2-1\neq 0$. Тогда из первого равенства находим $p=q^2/(\lambda q^2-1)$ и, подставляя это значение во второе равенство, получаем

$$f(q) := -\lambda^3 q^6 + \lambda^2 \mu q^5 + 3\lambda^2 q^4 - 2\lambda \mu q^3 + q^3 - 3\lambda q^2 + \mu q + 1 = 0.$$

Уравнение f(q)=0 разрешимо в силу алгебраической замкнутости поля F. Пусть оно имеет корень q_0 (ясно, что $q_0\neq 0$). Проверим, что $\lambda q_0^2-1\neq 0$. В самом деле, если $\lambda q_0^2=1$, то $0=f(q_0)=q_0^3$, противоречие.

Следовательно, можно подобрать числа α , p, q так, что в алгебре $G(\lambda,\mu)$ найдётся нетривиальный идемпотент вида $\alpha(1+px+qy)$, где $\alpha,p,q\in F$.

Из лемм 3—7 вытекает следующий результат.

Теорема 1. Пусть простая коммутативная 3-мерная алгебра C с единицей содержит ниль-элемент индекса 3 и не содержит ниль-элементов индекса 2. Тогда она обязательно содержит нетривиальный идемпотент.

3. Простота алгебр вида $G(\lambda, \varepsilon, \mu)$

3.1. Пример простой 3-мерной коммутативной алгебры, содержащей ниль-элементы индекса 2 и 3

Напомним, что

$$G(\lambda, 0, \mu) = \langle 1, x, y \mid x^2 = y, xy = 0, y^2 = \lambda 1 + \mu y \rangle.$$

Предложение 3.1. Алгебра $C:=G(\lambda,0,\mu)$ является простой при $\lambda \neq 0$. Алгебра G(-1,0,2) содержит ниль-элементы индекса 2 и 3.

Доказательство. Пусть I — собственный идеал в C, т. е. I отличен от 0 и от всей алгебры C.

- 1. Докажем сначала, что I не может содержать ни одного из базисных векторов 1, x, y. Очевидно, что $1 \notin I$. Если $x \in I$, то $y = x^2 \in I$. Если $y \in I$, то $-\lambda 1 = \mu y y^2 \in I$. Далее сравнение понимается по модулю I.
- 2. Докажем теперь, что I не может содержать вектора вида p1+qx+ry, где ровно два скаляра из трёх, $p,\ q,\ r$, отличны от нуля. Если $1+px\equiv 0$, то $0\equiv (1+px)y=y$, что противоречит пункту 1.

Аналогично рассматривается случай $1+ry\equiv 0$. Имеем $0\equiv (1+ry)x=x$. Пусть $x+ry\equiv 0$. Тогда $0\equiv (x+ry)x=y$.

3. Докажем, что I не может содержать векторов вида u=1+qx+ry с ненулевыми скалярами q, r. Если $u\equiv 0$, то $0\equiv (1+qx+ry)x=x+qy$, что противоречит пункту 2.

Наконец, при $\lambda=-1,\ \mu=2$ имеем, что y-1 и x — ниль-элементы индекса 2 и 3 соответственно. Лемма доказана.

3.2. Простота алгебр $E_{ au}$ и $G(\lambda,\mu)$

Напомним, что

$$E_{\tau} = \langle 1, e, x \mid e^2 = e, \ xe = \tau x, \ x^2 = e - \tau 1 \rangle.$$

Заметим, что алгебра E_0 не является простой, поскольку 1-мерное подпространство $\langle e \rangle$, порождённое e, является идеалом.

Алгебра E_1 также не является простой, поскольку 1-мерное пространство $\langle 1-e \rangle$ является её идеалом:

$$(1-e)e = e - e^2 = 0, \quad (1-e)x = x - ex = 0.$$

Лемма 8. Алгебра $C := E_{\tau}$ является простой, только если $\tau \neq 0; 1.$

Доказательство. Пусть $\tau \neq 0;1$ и I — собственный идеал в C, т. е. I отличен от 0 и от всей алгебры C. Далее сравнение понимается по модулю I.

1. Докажем сначала, что I не может содержать ни одного из базисных векторов 1, e, x. Очевидно, что 1 \notin I. Если $e \equiv 0$, то $\tau x = ex \equiv 0$, $x \equiv 0$.

Если
$$x \equiv 0$$
, то $e - \tau 1 \equiv 0$, $(1 - \tau)e \equiv 0$, $e \equiv 0$.

2. Докажем теперь, что I не может содержать вектора вида p1+qe+rx, где ровно два скаляра из трёх, $p,\ q,\ r$, отличны от нуля. Если $1+qe\equiv 0$, то $0\equiv (1+qe)e=(1+q)e$. Значит, в силу пункта 1 можно считать, что q=-1, тогда $1-e\equiv 0$. После умножения обеих частей сравнения на x, получаем, что $0\equiv (1-e)x=x-\tau x=(1-\tau)x$, откуда следует, что $x\equiv 0$.

Пусть $e+rx\equiv 0$. Тогда $0\equiv (e+rx)e=e+r\tau x$, значит, $r(1-\tau)x==(e+rx)-(e+r\tau x)\equiv 0$, что невозможно в силу пункта 1.

Пусть теперь $1+rx\equiv 0$. Тогда $0\equiv (1+rx)e=e+r\tau x)$. Как только что было доказано, этого быть не может.

3. Докажем, что I не может содержать векторов вида u=1+qe+rx с ненулевыми скалярами $q,\ r.$ Если $u\equiv 0,\ {\rm to}\ 0\equiv (1+qe+rx)e=(1+q)e+r\tau x,$ что противоречит пункту 2. Лемма доказана.

Напомним, что

$$G(\lambda, \mu) = \langle 1, x, y \mid x^2 = y, xy = 0, y^2 = \lambda 1 + x + \mu y \rangle.$$

Лемма 9. Алгебра $C := G(\lambda, \mu), \ \lambda \neq 0$, является простой.

Доказательство. Пусть I — собственный идеал в C, т. е. I отличен от 0 и от всей алгебры C. Далее сравнение понимается по модулю I.

- 1. Докажем сначала, что I не может содержать ни одного из базисных векторов 1, x, y. Очевидно, что $1 \notin I$. Если $x \equiv 0$, то $y = x^2 \equiv 0$. Если $y \equiv 0$, то $\lambda 1 + x \equiv 0$, $\lambda x \equiv \lambda x + y = (\lambda 1 + x)x \equiv 0$, $x \equiv 0$.
- 2. Докажем теперь, что I не может содержать вектора вида p1+qx+ry, где ровно два скаляра из трёх, $p,\ q,\ r$, отличны от нуля. Если $1+qx\equiv 0$, то $0\equiv (1+qx)y=y$, что противоречит пункту 1.

Аналогично рассматривается случай $1 + ry \equiv 0$. Имеем $0 \equiv (1 + ry)x = x$. Пусть $x + ry \equiv 0$. Тогда $0 \equiv (x + ry)x = y$.

3. Докажем, что I не может содержать векторов вида u=1+qx+ry с ненулевыми скалярами q, r. Если $u\equiv 0$, то $0\equiv (1+qx+ry)x=x+qy$, что противоречит пункту 2. Лемма доказана.

4. Ниль-элементы и идемпотенты в алгебре $E_{ au}$

Напомним, что

$$E_{\tau} = \langle 1, e, x \mid e^2 = e, xe = \tau x, x^2 = e - \tau 1 \rangle.$$

4.1. Ниль-элементы индекса 2 в алгебре $E_{ au}$

Лемма 10. Алгебра E_{τ} , $\tau \neq 0$; 1, не содержит ниль-элементов индекса 2.

Доказательство. Сначала будем искать ниль-элемент индекса 2 в виде t:=1+pe+qx, где $p,q\in F^{\times}$. Поскольку $t^2=0$, то

$$0 = t^2 = (1 + pe + qx)^2 = 1 + p^2e^2 + q^2x^2 + 2pe + 2qx + 2pqex =$$

$$= 1 + p^2e + q^2(e - \tau 1) + 2pe + 2qx + 2pq\tau x = (1 - q^2\tau)1 + (p^2 + q^2 + 2p)e + (2q + 2pq\tau)x.$$

Следовательно, набор скаляров (p,q) является решением системы

$$1 = q^2 \tau$$
, $p^2 + q^2 + 2p = 0$, $2q + 2pq\tau = 0$.

Поскольку $q\neq 0$, то $1=q^2\tau,\ p^2+q^2+2p=0,\ 1+p\tau=0,\ \tau=q^{-2},\ \tau=-p^{-1},$ откуда следует, что $p=-q^2$ и

$$0 = p^{2} + q^{2} + 2p = q^{4} + q^{2} - 2q^{2} = q^{4} - q^{2} = q^{2}(q^{2} - 1).$$

Значит, $q^2 = 1$ и $\tau = 1$, что невозможно.

Легко проверить, что при $p,q\in F^{\times}$ элементы e,x,1+pe,1+qx,e+qx не являются ниль-элементами индекса 2. Например, для элемента e+qx имеем

$$0 = (e+qx)^2 = e^2 + q^2x^2 + 2qex = e + q^2(e-\tau 1) + 2q\tau x = (-q^2\tau)1 + (1+q^2)e + 2q\tau x.$$

Тогда коэффициенты при $1,\ e,\ x$ равны $0,\ что$ невозможно. Для остальных элементов проверка ещё проще. \square

4.2. Ниль-элементы индекса 3 в алгебре $E_{ au}$

Определение 1. Базис $(1, x_1, x_2)$ алгебры назовём *ниль-унитальным*, если x_1, x_2 являются ниль-элементами индекса 3.

Теорема 2. Если $\tau^2-\tau+1\neq 0$, то любые два ниль-элемента простой алгебры E_{τ} пропорциональны. Если $\tau^2-\tau+1=0$, то в простой алгебры E_{τ} существует ниль-унитальный базис.

Доказательство. В силу лемм 10 и 2 достаточно понять, что если $R_t^3=0$, то элементы t и x пропорциональны. Заметим, что оператор R_t в алгебре нильпотентен тогда и только тогда, когда его характеристический многочлен имеет вид X^3 . Итак, допустим, что для элемента t вида

(1)
$$t = 1 + pe + qx$$
, (2) $t = e + qx$, (3) $t = 1 + pe$, (4) $t = 1 + qx$

характеристический многочлен оператора R_t равен X^3 . Рассмотрим последовательно указанные случаи.

(1) Вычислим оператор R_t для t = 1 + pe + qx:

$$1(1 + pe + qx) = 1 + pe + qx, \quad e(1 + pe + qx) = (1 + p)e + q\tau x,$$
$$x(1 + pe + qx) = x + p\tau x + q(e - \tau) = -q\tau + qe + (1 + p\tau)x,$$

значит,

$$R_t = \begin{pmatrix} 1 & p & q \\ 0 & 1+p & q\tau \\ -q\tau & q & 1+p\tau \end{pmatrix}$$

и его характеристический многочлен имеет вид $X^3 + (-p - p \tau - 3)X^2 + \dots$. Тогда

$$p = -\frac{3}{\tau + 1}, \quad R_t = \begin{pmatrix} 1 & -3/(\tau + 1) & q \\ 0 & (\tau - 2)/(\tau + 1) & q\tau \\ -q\tau & q & -(2\tau - 1)/(\tau + 1) \end{pmatrix}$$

и характеристический многочлен оператора R_t равен

$$X^{3} - \frac{3(\tau^{2} - \tau + 1)}{(\tau + 1)^{2}}X + \frac{-3q^{2}\tau^{3} + 3q^{2}\tau + 2\tau^{2} - 5\tau + 2}{(\tau + 1)^{2}}.$$

Поскольку коэффициент при X равен 0, то $\tau^2=\tau-1$ и числитель свободного члена имеет вил

$$-3q^{2}\tau^{3} + 3q^{2}\tau + 2\tau^{2} - 5\tau + 2 =$$

$$= -3q^{2}\tau(\tau - 1) + 3q^{2}\tau + 2(\tau - 1) - 5\tau + 2 = -3\tau(q^{2}\tau - 2q^{2} + 1).$$

Учитывая, что свободный член характеристического многочлена должен быть равен 0, получаем, что $q^2\tau-2q^2+1=0,$ $q^2(2-\tau)=1,$ или $q^2=1/(2-\tau)=1.$ Значит, если $\tau^2=\tau-1,$ то можно найти пары $(p,\pm q),$ которые приводят к непропорциональным ниль-элементам индекса 3 вида 1+pe+qx.

(2) Пусть t = e + qx. Тогда

$$1(e + qx) = e + qx, \quad e(e + qx) = e + q\tau x,$$

$$x(e + qx) = qx^{2} + ex = q(e - \tau) + x = -q\tau + qe + \tau x,$$

$$R_{t} = \begin{pmatrix} 0 & 1 & q \\ 0 & 1 & q\tau \\ -q\tau & q & \tau \end{pmatrix}$$

и характеристический многочлен оператора R_t равен $X^3-(\tau+1)X^2+\tau X+\dots$, противоречие, ибо $\tau\neq 0$.

(3) Пусть t = 1 + pe. Тогда

$$1(1+pe) = 1+pe$$
, $e(1+pe) = (1+p)e$, $x(1+pe) = x+p\tau x = (p\tau+1)x$,
$$R_t = \begin{pmatrix} 1 & p & 0\\ 0 & 1+p & 0\\ 0 & 0 & p\tau+1 \end{pmatrix}$$

и характеристический многочлен R_t имеет вид $X^3+(-p-p\tau-3)X^2+\dots$ Значит, $p=-3/(\tau+1)$, и тогда при этом значении p

$$R_t = \begin{pmatrix} 1 & -3/(\tau+1) & 0\\ 0 & (\tau-2)/(\tau+1) & 0\\ 0 & 0 & -(2\tau-1)/(\tau+1) \end{pmatrix}$$

и характеристический многочлен оператора R_t равен

$$X^{3} - \frac{3(\tau^{2} - \tau + 1)}{(\tau + 1)^{2}}X + \frac{(\tau - 2)(2\tau - 1)}{(\tau + 1)^{2}} \neq X^{3},$$

поскольку если коэффициент при X равен 0, то τ иррационально и свободный член характеристического многочлена отличен от 0.

(4) Пусть
$$t=1+qx$$
. Тогда
$$1(1+qx)=1+qx, \quad e(1+qx)=e+q\tau\tau x, \\ x(1+qx)=q(e-\tau 1)+x=-q\tau 1+qe+x, \\ R_t=\begin{pmatrix} 1 & 0 & q \\ 0 & 1 & q\tau \\ -q\tau & q & 1 \end{pmatrix}$$

и характеристический многочлен оператора R_t имеет вид $(X-1)^3$ — противоречие. $\hfill\Box$

4.3. Идемпотенты в алгебре E_{τ}

Теорема 3. В простой алгебре E_{τ} при $\tau \neq 1/2$ имеются ровно шесть нетривиальных идемпотентов.

Доказательство. Всюду в этом доказательстве $p,q\in F^{\times}$. Найдём сначала идемпотенты, пропорциональные элементу 1+pe+qx. Имеем

$$(1 + pe + qx)^{2} = 1 + p^{2}e^{2} + q^{2}x^{2} + 2pe + 2qx + 2pqex =$$

$$= 1 + p^{2}e + q^{2}e - q^{2}\tau + 2pe + 2qx + 2pq\tau x =$$

$$= (1 - q^{2}\tau) + (p^{2} + q^{2} + 2p)e + 2q(1 + p\tau)x.$$

Значит, существование ненулевого идемпотентна вида $\theta(1+pe+qx)$ эквивалентно тому, что пара (p,q) является решением системы

$$\begin{cases} 0 = \frac{1 - q^2 \tau}{1} - \frac{p^2 + q^2 + 2p}{p} = \frac{p^2 + pq^2 \tau + p + q^2}{p}, \\ 0 = \frac{1 - q^2 \tau}{1} - \frac{2q(1 + p\tau)}{q} = -q^2 \tau - 2p\tau - 1. \end{cases}$$

Числитель первого уравнения перепишем в виде $(p^2 + p) + (p\tau + 1)q^2$.

Покажем, что $p au + 1 \neq 0$. В противном случае p au + 1 = 0 и из равенства $(p^2 + p) + (p au + 1)q^2 = 0$ следует, что p = -1, значит, au = 1, что невозможно, поскольку алгебра $E_ au$ простая.

Итак, $p\tau + 1 \neq 0$, и тогда из первого уравнения находим q^2 :

$$q^2 = -\frac{p^2 + p}{p\tau + 1}.$$

Подставляя это значение q^2 во второе уравнение системы, получаем

$$-q^{2}\tau - 2p\tau - 1 = \frac{p^{2} + p}{p\tau + 1}\tau - 2p\tau - 1 = -\frac{2p^{2}\tau^{2} - p^{2}\tau + 2p\tau + 1}{p\tau + 1}.$$

Следовательно, $q^2=-(p^2+p)/(p\tau+1)$ и p является корнем квадратного уравнения $(2\tau^2-\tau)p^2+(2\tau)p+1=0$. Его дискриминант равен $(2\tau)^2-4(2\tau^2-\tau)=4\tau(1-\tau)\neq 0$, значит, существуют два значения p и для каждого из них

можно найти два значения q, т. е. имеются ровно четыре идемпотента вида $\theta(1+pe+qx)$.

Докажем, что имеется один идемпотент, пропорциональный элементу 1 + pe:

$$(1+pe)^2 = 1 + p^2e + 2pe = 1 + (p^2 + 2p)e.$$

Тогда аналогично предыдущему

$$0 = \frac{1}{1} - \frac{p^2 + 2p}{n} = -p - 1,$$

откуда получаем ещё один идемпотент 1-e.

Легко убедиться, что не существует нетривиальных идемпотентов, пропорциональных элементам вида 1+qx и e+qx.

Наконец, замечая, что e — единственный идемпотент из множества $F^{\times}e$, а множество $F^{\times}x$ не содержит идемпотентов, получаем все шесть нетривиальных идемпотентов.

Позже в разделе 6 мы докажем, что алгебра $E_{1/2}$ имеет ровно два нетривиальных идемпотента.

5. Ниль-элементы и идемпотенты в $G(\lambda,\mu)$

Напомним, что

$$G(\lambda, \mu) = \langle 1, x, y \mid x^2 = y, xy = 0, y^2 = \lambda 1 + x + \mu y \rangle.$$

Выделим два частных случая алгебр указанного вида:

$$G_{\lambda} := G(\lambda, 0) = \langle 1, x, y \mid x^2 = y, \ xy = 0, \ y^2 = \lambda 1 + x \rangle,$$

$$G'_{\lambda} := G(\lambda, 1) = \langle 1, x, y \mid x^2 = y, \ xy = 0, \ y^2 = \lambda 1 + x + y \rangle.$$

Докажем, что существует простая коммутативная 3-мерная алгебра C с базисом (1,u,v), где $u,\ v$ — ниль-элементы индекса 3; такой базис называется ниль-унитальным.

5.1. Ниль-элементы индекса 2 в алгебре $G(\lambda, \mu)$

Предложение 5.1. Алгебра $G(\lambda,\mu)$, $\lambda \neq 0$, не содержит ниль-элементов индекса 2 тогда и только тогда, когда

$$64\lambda^3 + 16\lambda^2\mu^2 - 8\lambda\mu + 1 \neq 0. \tag{5.1}$$

Доказательство. 1. Выясним, при каких условиях алгебра $G(\lambda, \mu)$, $\lambda \neq 0$, имеет ниль-элемент индекса 2, пропорциональный элементу t = 1 + px + qy:

$$\begin{split} t^2 &= (1+px+qy)^2 = p^2y + 2px + q^2(\lambda 1 + x + \mu y) + 2qy + 1 = \\ &= (1+q^2\lambda)1 + (q^2+2p)x + (p^2+2q+q^2\mu)y. \end{split}$$

Значит, $t^2 = 0$ тогда и только тогда, когда

$$1 + q^2 \lambda = 0$$
, $q^2 + 2p = 0$, $p^2 + 2q + q^2 \mu = 0$.

Отсюда вытекает, что $q^2=-1/\lambda,\; p=-(1/2)q^2=1/(2\lambda).$ Мы получаем, что числа λ , μ удовлетворяют равенству

$$64\lambda^3 + 16\lambda^2\mu^2 - 8\lambda\mu + 1 = 0.$$

Легко проверить, что других ниль-элементов индекса 2 алгебра $G(\lambda,\mu)$ не содержит. Для полноты изложения приведём необходимые вычисления.

- 2. $(1+px)^2 = p^2y + 2px + 1 \neq 0$.
- 3. $(1+qy)^2=q^2(\lambda+x+\mu y)+2qy+1=(1+q^2\lambda)+q^2x+q(q\mu+2)y\neq 0.$ 4. $(x+qy)^2=q^2(\lambda+x+\mu y)+y=q^2\lambda+q^2x+(1+q^2\mu)y\neq 0.$

Предложение доказано.

Следствие 1.

- 1. Алгебра G_{λ} не содержит ниль-элементов индекса 2 тогда и только тогда, когда $64\lambda^3 + 1 \neq 0$.
- 2.~ Алгебра G_{λ}' не содержит ниль-элементов индекса 2~ тогда и только тогда, когда $64\lambda^3 + 16\lambda^2 - 8\lambda + 1 \neq 0$.

Доказательство. Соотношение (5.1) при $\mu = 0$ принимает вид $64\lambda^3 + 1 = 0$, а при $\mu = 1$ соотношение (5.1) имеет вид $64\lambda^3 + 16\lambda^2 - 8\lambda + 1 \neq 0$.

5.2. Ниль-элементы индекса 3 в алгебре $G(\lambda, \mu)$

Предложение 5.2. Алгебра $G(\lambda,\mu), \ \lambda\mu \neq 0, \$ обладает ниль-унитальным базисом и не содержит ниль-элементов индекса 2 тогда и только тогда, когда выполнена система соотношений

$$\begin{cases} 27\lambda^3 + 18\lambda^2\mu^2 + 3\lambda\mu^4 - \mu^3 = 0, \\ 64\lambda^3 + 16\lambda^2\mu^2 - 8\lambda\mu + 1 \neq 0. \end{cases}$$
 (5.2)

Доказательство. В силу предложения 5.1 в алгебре $G(\lambda, \mu)$, $\lambda \neq 0$, нет ниль-элементов индекса 2 тогда и только тогда, когда выполнено соотношение (5.1). Для поиска всех ниль-элементов индекса 3 согласно лемме 2 достаточно понять, для каких элементов t вида

(1)
$$t = 1 + px + qy$$
, (2) $t = x + qy$, (3) $t = 1 + px$, (4) $t = 1 + qy$

при условии $pq \neq 0$ характеристический многочлен оператора R_t равен X^3 . Итак, допустим, что для элемента t характеристический многочлен оператора R_t равен X^3 .

(1) Вычислим оператор R_t для t = 1 + pe + qx:

$$1(1 + px + qy) = +1 + px + qy, \quad 1(1 + px + qy) = +1 + px + qy,$$
$$y(1 + px + qy) = y + q(\lambda + x + \mu y) = q\lambda + qx + (1 + q\mu)y,$$

значит,

$$R_t = \begin{pmatrix} 1 & p & q \\ 0 & 1 & p \\ q\lambda & q & (1+q\mu) \end{pmatrix}$$

и характеристический многочлен оператора R_t имеет вид $X^3+(-q\mu-3)X^2+\dots$. Тогда $q=-3/\mu$,

$$R_t = \begin{pmatrix} 1 & p & -3/\mu \\ 0 & 1 & p \\ -3\lambda/\mu & -3/\mu & -2 \end{pmatrix}$$

и характеристический многочлен оператора R_t равен

$$X^{3} + \left(\frac{3p}{\mu} - \frac{9\lambda}{\mu^{2}} - 3\right)X + \left(\frac{18\lambda}{\mu^{2}} - \frac{3p}{\mu} - \frac{3\lambda}{\mu}\left(\frac{3}{\mu} - p^{2}\right) + 2\right).$$

Тогда $p=(\mu^2+3\lambda)/\mu$ и выполнено равенство

$$\left(\frac{18\lambda}{\mu^2} - \frac{3p}{\mu} - \frac{3\lambda}{\mu} \left(\frac{3}{\mu} - p^2\right) + 2\right) = 0.$$
 (5.3)

Подставляя в (5.3) значение $p = (\mu^2 + 3\lambda)/\mu$, получаем равенство

$$27\lambda^3 + 18\lambda^2\mu^2 + 3\lambda\mu^4 - \mu^3 = 0.$$

При выполнении указанного равенства, связывающего параметры λ и μ , в алгебре имеются ниль-элементы индекса 3 вида x и x':=1+px+qy, значит, алгебра имеет ниль-унитальный базис (1,x,x').

Покажем, что в алгебре $G(\lambda,\mu)$, $\lambda\mu\neq 0$, при условии, что выполнено соотношение (5.1), нет нильпотентных элементов вида (2)—(4), где $pq\neq 0$.

(2) Пусть t = x + qy. Тогда

$$1(x + qy) = x + qy, \quad x(x + qy) = y,$$

$$y(x + qy) = q(\lambda + x + \mu y) = q\lambda + qx + q\mu y,$$

$$R_t = \begin{pmatrix} 0 & 1 & q \\ 0 & 0 & 1q \\ q\lambda & q & q\mu \end{pmatrix}$$

и характеристический многочлен оператора R_t равен

$$X^3 - q\mu X^2 + (-q^2\lambda - q)X - q\lambda \neq X^3$$
,

поскольку свободный член ненулевой.

(3) Пусть t = 1 + px. Тогда

$$1(1+px) = 1 + px, \quad x(1+px) = +x + py, \quad (1+px) = y,$$

$$R_t = \begin{pmatrix} 1 & p & 0 \\ 0 & 1 & p \\ 0 & 0 & 1 \end{pmatrix}$$

и характеристический многочлен R_t равен $(X-1)^3 \neq X^3$.

(4) Пусть t = 1 + qy. Тогда

$$1(1+qy) = 1 + qy, \quad x(1+qy) = x,$$

$$y(1+qy) = q(\lambda + x + \mu y) + y = q\lambda + qx + (1+q\mu)y,$$

$$R_t = \begin{pmatrix} 1 & 0 & q \\ 0 & 1 & q \\ q\lambda & q & (1+q\mu) \end{pmatrix}$$

и характеристический многочлен R_t имеет вид $X^3+(-q\mu-3)X^2+\dots$ Значит, $q=-3/\mu,$

$$R_t = \begin{pmatrix} 1 & 0 & -3/\mu \\ 0 & 1 & -3/\mu \\ -3\lambda/\mu & -3/\mu & -2 \end{pmatrix}$$

и характеристический многочлен R_t имеет вид $X^3+(-9\lambda/\mu^2-3)X+(9\lambda/\mu^2+2)\neq X^3$, поскольку $(-9\lambda/\mu^2-3)+(9\lambda/\mu^2+2)=-1$. Предложение доказано.

Следствие 1 и анализ приведённого доказательства предложения 5.2 показывают, что верно следующее утверждение.

Предложение 5.3. Алгебра G_{λ} не содержит непропорциональных ниль-элементов тогда и только тогда, когда $\lambda(64\lambda^3+1)\neq 0$.

Из предложения 5.2 немедленно вытекает следствие 2.

Следствие 2. В алгебре $G(\lambda,\mu)$, $\lambda\mu\neq 0$, всякие два ниль-элемента пропорциональны тогда и только тогда, когда выполнены ограничения

$$\begin{cases} \eta_1(\lambda,\mu) := 27\lambda^3 + 18\lambda^2\mu^2 + 3\lambda\mu^4 - \mu^3 \neq 0, \\ \eta_2(\lambda,\mu) := 64\lambda^3 + 16\lambda^2\mu^2 - 8\lambda\mu + 1 \neq 0. \end{cases}$$
 (5.4)

Полагая $\mu = 1$ в следствии 2, получаем следствие 3.

Следствие 3. В алгебре G'_{λ} всякие два ниль-элемента пропорциональны тогда и только тогда, когда выполнены соотношения

$$\begin{cases} 27\lambda^3 + 18\lambda^2 + 3\lambda - 1 \neq 0, \\ 64\lambda^3 + 16\lambda^2 - 8\lambda + 1 \neq 0. \end{cases}$$
 (5.5)

Из предложения 5.2 следует, что существует бесконечное множество простых алгебр нулевого ниль-ранга, обладающих ниль-унитальным базисом.

Эти результаты являются основанием для следующего определения.

Определение 2. Алгебра из класса \mathcal{C} называется *ниль-линейной*, если в ней любые два ниль-элемента индекса 3 пропорциональны.

Из теоремы 2, следствий 1 и 3 и предложения 5.3 вытекают следующие примеры ниль-линейных алгебр:

1)
$$E_{\tau}$$
, где $\tau^2 - \tau + 1 \neq 0$,

- 2) G_{λ} , где $\lambda(64\lambda^{3}+1)\neq 0$,
- 3) G'_{λ} , где λ удовлетворяет системе (5.5).

5.3. Идемпотенты в алгебрах G_{λ} и G_{λ}'

Предложение 5.4. Если алгебра G_{λ} ниль-линейна, то она имеет шесть нетривиальных идемпотентов; кроме того, она имеет идемпотентный базис.

Доказательство. Пусть (1,x,y)- стандартный базис алгебры G_{λ} . Допустим, что $g:=p+qx+ry,\; p,q,r\in F,-$ ненулевой идемпотент в алгебре

$$G_{\lambda} = \langle 1, x, y \mid x^2 = y, \ xy = 0, \ y^2 = \lambda 1 + x \rangle.$$

Поскольку

$$(p+qx+ry)^2 = p^2 + q^2y + r^2(\lambda 1 + x) + 2pqx + 2pry =$$

$$= (p^2 + r^2\lambda) + (r^2 + 2pq)x + (q^2 + 2pr)y,$$

то набор (p, q, r) является решением системы

$$\begin{cases} r^2\lambda + p^2 - p = 0, \\ r^2 + (2p - 1)q = 0, \\ q^2 + (2p - 1)r = 0. \end{cases}$$
 (5.6)

- 1. Пусть p=0. Тогда из первого уравнения системы (5.6) получаем r=0, но тогда из второго уравнения следует q=0. Значит, в этом случае нет нетривиальных идемпотентов.
- 2. Пусть $p \neq 0$. Тогда $qr \neq 0$, иначе получается тривиальный идемпотент. Из второго и третьего уравнений находим p:

$$p = \frac{q - r^2}{2q}, \quad p = \frac{r - q^2}{2r}.$$

 $q^3-r^3=0$. Значит, система (5.6) равносильна системе

$$\begin{cases} r^2\lambda + p^2 - p = 0, \\ p = \frac{q - r^2}{2q}, \\ r = \omega q, \\ \omega^3 = 1. \end{cases}$$

$$(5.7)$$

Подставляя в первое уравнение значения $p=(q-r^2)/(2q)$ и $r=\omega q$ и умножая полученное равенство на 4, имеем $q^2\omega^4+4\lambda q^2\omega^2-1=0$, значит,

$$\begin{cases}
\omega(1+4\lambda\omega)q^2 = 1, \\
p = \frac{1}{2}(1-q\omega^2), \\
r = \omega q, \\
\omega^3 = 1.
\end{cases}$$
(5.8)

Эта система имеет шесть решений, поскольку $\lambda \neq -(\omega/2)^2$; если $\lambda \neq -(\omega/2)^2$, то $64\lambda^3+1=0$, что противоречит предложению 5.3. Предложение доказано. \square

Предложение 5.5. Если алгебра G'_{λ} ниль-линейна, то она имеет шесть нетривиальных идемпотентов; кроме того, она имеет идемпотентный базис.

Доказательство. Пусть (1,x,y)- стандартный базис алгебры G'_{λ} . Допустим, что $g:=p+qx+ry,\; p,q,r\in F,-$ ненулевой идемпотент в алгебре

$$G'_{\lambda} = \langle 1, x, y \mid x^2 = y, \ xy = 0, \ y^2 = \lambda 1 + x + y \rangle.$$

Поскольку

$$(p+qx+ry)^2 = p^2 + q^2y + r^2(\lambda 1 + x + y) + 2pqx + 2pry =$$

= $(p^2 + r^2\lambda) + (r^2 + 2pq)x + (q^2 + r^2 + 2pr)y$,

то набор (p, q, r) является решением системы

$$\begin{cases} r^2\lambda + p^2 - p = 0, \\ r^2 + (2p - 1)q = 0, \\ q^2 + r^2 + (2p - 1)r = 0. \end{cases}$$
 (5.9)

- 1. Пусть p=0. Тогда из первого уравнения системы (5.9) получаем r=0, но тогда из второго уравнения следует q=0. Значит, в этом случае нет нетривиальных идемпотентов.
- 2. Пусть $p \neq 0$. Тогда $qr \neq 0$, иначе получается тривиальный идемпотент. Из второго и третьего уравнений находим p:

$$p = \frac{q - r^2}{2q}, \quad p = \frac{-r + r^2 + q^2}{2r},$$

тогда

$$0 = \frac{q - r^2}{2q} - \frac{-r + r^2 + q^2}{2r} = \frac{q^3 + qr^2 - r^3}{2qr}.$$

Значит, система (5.6) равносильна системе

$$\begin{cases} r^{2}\lambda + p^{2} - p = 0, \\ p = \frac{q - r^{2}}{2q}, \\ r = \tau q, \\ \tau^{3} - \tau^{2} - 1 = 0. \end{cases}$$
 (5.10)

Следовательно,

$$\begin{cases} r^{2}\lambda + p^{2} - p = 0, \\ p = \frac{1 - \tau^{2}q}{2}, \\ r = \tau q, \\ \tau^{3} - \tau^{2} - 1 = 0. \end{cases}$$
 (5.11)

Подставляя в первое уравнение значения $p=(1-\tau^2q)/2$ и $r=\tau q$ и умножая полученное равенство на 4, имеем $q^2\tau^4+4\lambda q^2\tau^2-1=0$, значит,

$$\begin{cases} \tau^{2}(\tau^{2} + 4\lambda)q^{2} = 1, \\ p = \frac{1 - \tau^{2}q}{2}, \\ r = \tau q, \\ \tau^{3} - \tau^{2} - 1 = 0. \end{cases}$$
 (5.12)

Заметим, что $\tau^2+4\lambda\neq 0$. В самом деле, если $\tau^2+4\lambda=0$, то $\lambda=-(\tau/2)^2$ и значение многочлена $64\lambda^3+16\lambda^2-8\lambda+1$ в точке $\lambda=-(\tau/2)^2$ равно 0:

$$-t^{6} + t^{4} + 2t^{2} + 1 = -(t^{2} + 1)^{2} + t(t^{2} + 1) + 2t^{2} + 1 = t(-t^{3} + t^{2} + 1) = 0.$$

Значит, система (5.12) имеет шесть решений. Предложение доказано.

5.4. Идемпотенты в алгебрах $G(\lambda, \mu)$

Предложение 5.6. Если алгебра $G(\lambda, \mu)$ ниль-линейна, то она имеет:

- а) четыре нетривиальных идемпотента, если $4\mu^3 + 27 = 0$;
- б) шесть нетривиальных идемпотентов, если $4\mu^3 + 27 \neq 0$;

кроме того, она в любом случае имеет идемпотентный базис.

Доказательство. Пусть (1,x,y) — стандартный базис алгебры $C:=G(\lambda,\mu)$. Допустим, что $g:=p+qx+ry,\ p,q,r\in F$, — ненулевой идемпотент в алгебре

$$C = \langle 1, x, y \mid x^2 = y, xy = 0, y^2 = \lambda 1 + x + \mu y \rangle.$$

Поскольку

$$(p+qx+ry)^2 = p^2 + q^2y + r^2(\lambda 1 + x + \mu y) + 2pqx + 2pry =$$

= $(p^2 + r^2\lambda)1 + (r^2 + 2pq)x + (r^2\mu + q^2 + 2pr)y$,

то набор (p, q, r) является решением системы

$$\begin{cases} r^2\lambda + p^2 - p = 0, \\ r^2 + (2p - 1)q = 0, \\ r^2\mu + q^2 + (2p - 1)r = 0. \end{cases}$$
 (5.13)

- 1. Если p=0, то из первого уравнения системы (5.13) получаем r=0, но тогда из третьего уравнения следует q=0. Значит, в этом случае нет тривиальных идемпотентов.
- 2. Пусть $p \neq 0$. Тогда $qr \neq 0$, иначе, как легко видеть, g тривиальный идемпотент. Из второго и третьего уравнений находим p:

$$p = \frac{q - r^2}{2q}, \quad p = -\frac{r^2\mu - r + q^2}{2r},$$

И

$$0 = \frac{q-r^2}{2q} + \frac{r^2\mu - r + q^2}{2r} = \frac{q^3 + \mu q r^2 - r^3}{2qr}.$$

Значит, система (5.13) равносильна системе

$$\begin{cases} r^2\lambda + p^2 - p = 0, \\ p = \frac{q - r^2}{2q}, \\ q^3 + \mu q r^2 - r^3 = 0. \end{cases}$$
 (5.14)

Подставляя q=tr во второе и третье уравнения, имеем

$$\begin{cases} r^{2}\lambda + p^{2} - p = 0, \\ p = \frac{t - r}{2t}, \\ t^{3} + \mu t - 1 = 0, \\ q = tr. \end{cases}$$
 (5.15)

Подставляя в первое уравнение p=(t-r)/(2t) и умножая полученное равенство на $4t^2$, получаем

$$\begin{cases} r^{2}(4t^{2}\lambda + 1) - t^{2} = 0, \\ p = \frac{1}{2}\left(1 - \frac{r}{t}\right), \\ t^{3} + \mu t - 1 = 0, \\ q = tr. \end{cases}$$
 (5.16)

Положим $\lambda=\theta^2$. Докажем, что $4t^2\lambda+1\neq 0$. Допустим, от противного, что $4t^2\lambda+1=0$. Тогда $t=i/(2\theta)$. Подставляя это значение в третье уравнение, имеем

$$0 = t^3 + \mu t - 1 = -\frac{8\theta^3 - 4i\mu\theta^2 + i}{8\theta^3},$$

значит, $8\theta^3 - 4i\mu\theta^2 + i$ и $\mu = (1-8i\theta^3)/(4\theta^2)$. Прямая проверка показывает, что пара

$$\left(\lambda = \theta^2, \, \mu = \frac{1 - 8i\theta^3}{4\theta^2}\right)$$

является корнем многочлена из системы (5.5):

$$\eta_2(\lambda, \mu) = 64\lambda^3 + 16\lambda^2\mu^2 - 8\lambda\mu + 1.$$

Тем самым получено противоречие с условием ниль-линейности алгебры.

Многочлен $t^3 + \mu t - 1$ не имеет кратных корней (взаимно прост со своей производной) тогда и только тогда, когда $4\mu^3 + 27 \neq 0$.

В любом случае многочлен $t^3+\mu t-1$ имеет два различных корня $t_1,\ t_2,$ поскольку вторая производная многочлена $t^3+\mu t-1$ равна 6t. Для корня t_1 находятся значения параметров (p,q,r) и получаются два идемпотента:

$$g_1 = \frac{1}{2} \left(1 - \frac{r_1}{t_1} \right) + t_1 r_1 x + r_1 y, \quad g_1' = \frac{1}{2} \left(1 + \frac{r_1}{t_1} \right) - t_1 r_1 x - r_1 y,$$

где r_1 — фиксированный многочлен $\xi(r):=r^2(4t_1^2\lambda+1)-t_1^2=0$. Заметим, что $g_1+g_1'=1$. Наконец, набор идемпотентов $(1,g_1,g_2)$ образует базис, поскольку

$$\begin{vmatrix} 1 & 0 & 0 \\ p_1 & t_1 r_1 & r_1 \\ p_2 c & t_2 r_2 & r_2 \end{vmatrix} = r_1 r_2 (t_1 - t_2) \neq 0.$$

${f 6.}$ Алгебра ${f \it E}$ и её свойства

Определение 3. Аддитивный базис (1,e,g) трёхмерной алгебры назовём *идемпотентным*, если e,g являются (нетривиальными) идемпотентами.

Теорема 4. Выделенная алгебра *E* является простой, имеет ровно два нетривиальных идемпотента. В частности, в ней нет идемпотентного базиса.

Доказательство. Простота алгебры E вытекает из леммы 8.

Найдём все нетривиальные идемпотенты алгебры E.

1. Пусть $p,q\in F^{\times}$. Условие пропорциональности

$$(1 + px + qy) \parallel (1 + px + qy)^2 = (1 + q^2) + 2px + (2q + p^2)y$$

эквивалентно системе

$$\begin{cases} 0 = \frac{1+q^2}{1} - \frac{2p}{p} = q^2 - 1, \\ 0 = \frac{2p}{p} - \frac{2q+p^2}{q} = -\frac{p^2}{q}, \end{cases}$$

откуда p = 0, противоречие.

2. Пусть $e := x + qy, \ q \neq 0$. Допустим, что

$$(x+qy) \parallel (x+qy)^2 = q^2 + y,$$

таких идемпотентов нет.

3. Пусть $e := 1 + px, p \neq 0$. Допустим, что

$$(1+px) \parallel (1+px)^2 = 1 + 2px + p^2y,$$

таких идемпотентов нет.

4. Пусть $e := 1 + qy, \ q \neq 0$. Допустим, что

$$(1+qy) \parallel (1+qy)^2 = 1+q^2+2qy,$$

тогда получаем следующие два идемпотента: (1+y)/2 и (1-y)/2. Тем самым доказано, что алгебра E не имеет идемпотентного базиса. $\hfill\Box$

7. Алгебра E^st и её свойства

7.1. Изотопы Алберта

В 1942 г. Алберт [8] ввёл понятие изотопа. Напомним, что линейные алгебры (A,\cdot) и (B,\circ) над основным полем F называются изотопными, если существует тройка $\Lambda=(\varphi,\psi,\xi)$ линейных изоморфизмов $A\to B$, удовлетворяющих условию $x^\varphi\circ y^\psi=(x\cdot y)^\xi$ для любых $x,y\in A$.

При этом тройка изоморфизмов Λ называется изомопией. Обычным образом определяется композиция изотопий $\Lambda=(\varphi,\psi,\xi)\colon A\to A'$ и $\Lambda'=(\varphi',\psi',\xi')\colon A'\to A''$, а именно $\Lambda\Lambda'=(\varphi\varphi',\psi\psi',\xi\xi')\colon A\to A''$; композиция изотопий является изотопией. Отношение изотопии является отношением эквивалентности, причём более широким, чем отношение изоморфизма.

Пусть $f,g\colon A\to A$ — обратимые линейные операторы на алгебре (A,\cdot) . Определим алгебру $A^*=A^{(f,g)}$ на том же линейном пространстве A относительно нового умножения $x*y=x^fy^g$ для любых $x,y\in A$. Алгебра A^* называется главным изотолом алгебры A.

Если $\Lambda=(\varphi,\psi,\xi)\colon A\to B$ — изотопия алгебр, то главный изотоп $B^*=B^{(\xi^{-1}\varphi,\xi^{-1}\psi)}$ алгебры B изоморфен алгебре A. В самом деле, отображение $\xi\colon A\to B^*$ является изоморфизмом, поскольку для любых $x,y\in A$ верно

$$x^{\xi} * y^{\xi} = (x^{\xi})^{\xi^{-1}\varphi} \circ (y^{\xi})^{\xi^{-1}\varphi} = x^{\varphi} \circ y^{\psi} = (x \cdot y)^{\xi}.$$

Итак, две алгебры изотопны тогда и только тогда, когда одна из них изоморфна главному изотопу другой. В частности, если алгебры A и B унитальны и изотопны, то главный изотоп B^* также унитален.

Определение 4. Элемент a алгебры A называется R-обратимым, если оператор $R_a\colon x\mapsto xa$ правого умножения на элемент a обратим (невырожден). Заметим, что обратный оператор R_a^{-1} , вообще говоря, не является оператором правого умножения.

Теорема Алберта. Если изотоп $A^* = A^{(\varphi,\psi)}$ унитален, то существуют элементы $g,h\in A$, такие что $\varphi R_q, \psi L_h = 1_A$.

Следующая лемма очевидна.

Лемма 11. Пусть C-алгебра и $C^*=C^{(\sigma\varphi,\varphi)}$, $\sigma\in F^{\times}$, — её стандартный изотоп. Тогда ниль-ранги этих алгебр совпадают.

К сожалению, для ниль-элементов индекса 3 аналога этой леммы нет; при переходе к изотопу могут появляться или пропадать ниль-элементы индекса 3.

7.2. Один изотоп E^* выделенной алгебры E

Рассмотрим в алгебре $E=\langle 1,x,y\mid x^2=y,\ xy=0,\ y^2=1\rangle$ элемент c=1+2y и вычислим в стандартном базисе (1,x,y) матрицу оператора R_c :

$$1c = 1 + 2y$$
, $xc = x(1 + 2y) = x + 2xy = x$, $yc = y(1 + 2y) = 2 + y$.

Итак,

$$R_c = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad \det(R_c) = -3.$$

Положим

$$\varphi := R_c^{-1} = \begin{pmatrix} -1/3 & 0 & 2/3 \\ 0 & 1 & 0 \\ 2/3 & 0 & -1/3 \end{pmatrix}.$$

Вычислим образы базисных элементов при отображении φ :

$$1^{\varphi} = (1,0,0) \begin{pmatrix} -1/3 & 0 & 2/3 \\ 0 & 1 & 0 \\ 2/3 & 0 & -1/3 \end{pmatrix} = \frac{1}{3}(-1,0,2) = \frac{1}{3}(-1+2y),$$

$$x^{\varphi} = (0,1,0) \begin{pmatrix} -1/3 & 0 & 2/3 \\ 0 & 1 & 0 \\ 2/3 & 0 & -1/3 \end{pmatrix} = (0,1,0) = x,$$

$$y^{\varphi} = (0,0,1) \begin{pmatrix} -1/3 & 0 & 2/3 \\ 0 & 1 & 0 \\ 2/3 & 0 & -1/3 \end{pmatrix} = \frac{1}{3}(2,0,-1) = \frac{1}{3}(2-y).$$

Рассмотрим стандартный изотоп $E^*=E^{(\varphi,\varphi)}$ относительно произведения $u*v==u^\varphi v^\varphi$. Единицей в нём является элемент

$$e := c^2 = (1+2y)^2 = 4y^2 + 4y + 1 = 5 + 4y, \quad 1 = \frac{1}{5}(e-4y).$$

Вычислим произведения элементов x и y в изотопе:

$$\begin{split} x*x &= x^{\varphi}x^{\varphi} = x^2 = y, \quad x*y = x^{\varphi}y^{\varphi} = x\left(\frac{2}{3} - \frac{1}{3}\,y\right) = \frac{2}{3}\,x, \\ y*y &= y^{\varphi}y^{\varphi} = \left(\frac{2}{3} - \frac{1}{3}\,y\right)^2 = \frac{5}{9} - \frac{4}{9}\,y = \frac{5}{9}\,(e - 4y) - \frac{4}{9}\,y = \frac{1}{9}\,e - \frac{8}{9}\,y. \end{split}$$

После переобозначения a:=x, b:=y получаем, что изотоп E^* изоморфен алгебре, для которой сохраним введённые обозначения

$$E^* = \left\langle 1, a, b \mid a^2 = b, \ ab = \frac{2}{3}a, \ b^2 = \frac{1}{9} - \frac{8}{9}b \right\rangle.$$

7.3. Наличие идемпотентного базиса в алгебре E^{*}

Лемма 12. Aлrебра E^* имеет идемпотентный базис.

Доказательство. Докажем, что существуют нетривиальные идемпотенты вида $\theta(1+pa+qb)$:

$$(1+pa+qb)^2 = a^2p^2 + 2abpq + 2ap + b^2q^2 + 2bq + 1 =$$

$$= bp^2 + \frac{4}{3}apq + 2ap + \left(\frac{1}{9} - \frac{8}{9}b\right)q^2 + 2bq + 1 =$$

$$= \left(1 + \frac{1}{9}q^2\right) + \left(2p + \frac{4}{3}pq\right)a + \left(p^2 - \frac{8}{9}q^2 + 2q\right)b.$$

Наличие идемпотента указанного вида равносильно разрешимости системы

$$\begin{cases}
0 = \frac{1 + (1/9)q^2}{1} - \frac{2p + (4/3)pq}{p} = \frac{1}{9}q^2 - \frac{4}{3}q - 1, \\
0 = \frac{1 + (1/9)q^2}{1} - \frac{p^2 - (8/9)q^2 + 2q}{q} = -\frac{1}{9q}(9p^2 - q^3 - 8q^2 + 9q),
\end{cases} (7.1)$$

Поскольку многочлены $(1/9)q^2 - (4/3)q - 1$ и $-q^3 - 8q^2 + 9q$ взаимно просты, то система (7.1) имеет решение (p,q) с ненулевыми компонентами.

Легко проверить, что элемент (9/10)(1+b) также является идемпотентом:

$$\left(\frac{9}{10}(1+b)\right)^2 - \frac{9}{10}(1+b) = \frac{81}{100}b^2 + \frac{18}{25}b - \frac{9}{100} = \frac{81}{100}\left(\frac{1}{9} - \frac{8}{9}b\right) + \frac{18}{25}b - \frac{9}{100} = 0.$$
 Лемма доказана.

7.4. Отсутствие ниль-элементов в алгебре E^*

Лемма 13. Алгебра E^* не содержит ниль-элементов.

Доказательство. Заметим, что в алгебре E^* нет ниль-элементов индекса 2. Это немедленно вытекает из лемм 5 и 11.

Допустим, что алгебра E^* содержит ниль-элемент. Тогда его индекс ниль-потентности равен 3 и этот элемент имеет вид $\gamma t,\ \gamma \neq 0$, и для элемента t возможны следующие шесть случаев $(pq \neq 0)$:

$$(1) \ t=a, \quad (2) \ t=b, \quad (3) \ t=1+pa,$$

$$(4) \ t=1+qb, \quad (5) \ t=a+qb, \quad (6) \ t=1+pa+qb.$$

Рассмотрим последовательно эти случаи. В первых двух случаях имеем:

(1)
$$1R_a^3 = a^2 a = ba = \frac{2}{3} a \neq 0,$$

(2) $1R_b^3 = b^2 b = \left(\frac{1}{9} - \frac{8}{9}b\right)b = \frac{1}{9}b - \frac{8}{9}\left(\frac{1}{9} - \frac{8}{9}b\right) = \frac{73}{81}b - \frac{8}{81} \neq 0.$

Считая $p, q \neq 0$, вычислим характеристический многочлен оператора R_t для каждого из случаев (3)—(6).

(3)
$$a(1+pa) = a+pb$$
, $b(1+pa) = b+abp = \frac{2}{3}pa+b$.

В этом случае оператор R_t задаётся матрицей

$$R_t = \begin{pmatrix} 1 & p & 0 \\ 0 & 1 & p \\ 0 & \frac{2}{3}p & 1 \end{pmatrix},$$

а его характеристический многочлен имеет вид $X^3-3X^2+\dots$ Мы получили противоречие, поскольку характеристический многочлен нильпотентного оператора, действующего в 3-мерном пространстве, равен X^3 .

(4)
$$1(1+qb) = 1+qb$$
, $a(1+qb) = \frac{1}{3}a+qa = \frac{1}{3}(2q+3)a$,
 $b(1+qb) = qb^2 + b = \frac{2}{3}pa + b = q\left(\frac{1}{9} - \frac{8}{9}b\right) = \frac{1}{9}q + \left(1 - \frac{8}{9}q\right)b$.

Оператор R_t задаётся матрицей

$$R_t = \begin{pmatrix} 1 & 0 & q \\ 0 & (2/3)q + 1 & 0 \\ (1/9)q & 0 & 1 - (8/9)q \end{pmatrix},$$

а его характеристический многочлен равен

$$X^{3} + (2q - 3)X^{2} - \left(\frac{17}{9}q^{2} - 4q + 3\right)X + \left(\frac{2}{27}q^{3} + \frac{17}{9}q^{2} + 2q - 1\right).$$

Поскольку его характеристический многочлен равен X^3 , то q=2/3. Но тогда оператор и его характеристический многочлен имеют вид

$$R_t = \begin{pmatrix} 1 & 0 & 2/3 \\ 0 & 2 & 0 \\ 5/6 & 0 & -3 \end{pmatrix}, \quad X^3 - \frac{33}{4}X + \frac{17}{2},$$

противоречие.

(5)
$$1(a+qb) = a+qb$$
, $a(a+qb) = \frac{2}{3}qa+b$,
 $b(a+qb) = qb^2 + ab = q\left(\frac{1}{9} - \frac{8}{9}\right)b + \frac{2}{3}a = \frac{1}{9}q + \frac{2}{3}a - \frac{8}{9}qb$.

Оператор R_t задаётся матрицей

$$R_t = \begin{pmatrix} 0 & 1 & q \\ 0 & (2/3)q & 1 \\ (1/9)q & 2/3 & -(8/3)q \end{pmatrix},$$

его характеристический многочлен равен

$$X^{3} + 2qX^{2} + \left(-\frac{17}{9}q^{2} - \frac{2}{3}\right)X + \frac{1}{27}q(2q^{2} - 3).$$

Тогда q=0 и характеристический многочлен принимает вид $X^3-(2/3)X-$ противоречие.

(6)
$$1(1+pa+qb) = 1+pa+qb$$
,
 $a(1+pa+qb) = a+pb+\frac{2}{3}qa = \left(1+\frac{2}{3}q\right)a+pb$,
 $b(1+pa+qb) = b+qb^2+abp = b+\left(\frac{1}{9}-\frac{8}{9}\right)q+\frac{2}{3}ap =$

$$=\frac{1}{9}q+\frac{2}{3}pa+\left(1-\frac{8}{9}q\right)b$$
.

Оператор R_t задаётся матрицей

$$R_t = \begin{pmatrix} 1 & p & q \\ 0 & 1 + (2/3)q & p \\ (1/9)q & (2/3)p & 1 - (8/9)q \end{pmatrix},$$

его характеристический многочлен имеет вид $X^3+ig((2/9)q-3ig)X^2+\dots$ Тогда q=27/2 и характеристический многочлен равен

$$X^3 - \left(\frac{2}{3}p^2 + \frac{525}{4}\right)X + \frac{625}{2} - \frac{5}{6}p^2,$$

значит, он отличен от X^3 .

Из лемм 12, 13 и теоремы 4 вытекает следующая теорема.

Теорема 5. Существует стандартный изотоп E^* алгебры E, обладающий свойствами:

- 1) изотоп E^* имеет идемпотентный базис,
- 2) в изотопе E^* отсутствуют ниль-элементы.

Заметим, что в самой алгебре E существуют ниль-элементы, но нет идемпотентного базиса.

8. Открытые вопросы

Перечислим основные вопросы, возникающие при изучении простых алгебр, не содержащих ниль-элементов индекса 2.

- 1. Верно ли, что каждый унитальный коммутативный изотоп алгебры вида E является стандартным.
- 2. Классифицировать алгебры E_{τ} , $E_{\tau'}$, $G(\lambda,\mu)$ и $G(\lambda',\mu')$ с точностью до изоморфизма (изотопии). Заметим, что алгебры E_{τ} и $E_{1-\tau}$ изоморфны; достаточно в алгебре E_{τ} рассмотреть элементы $x'=ix,\ e'=1-e$ и их попарные произведения.

- 3. Найти условия, при которых каждая из простых алгебр E_{τ} и $G(\lambda,\mu)$ обладает идемпотентным базисом.
- 4. Найти все ниль-элементы и идемпотенты стандартных изотопов алгебр $E_{ au}$ и $G(\lambda,\mu)$.
- 5. Пусть C простая коммутативная унитальная 3-мерная алгебра. Верно ли, что если в ней нет ниль-элементов, то она имеет нетривиальный идемпотент (идемпотентный базис).

Литература

- [1] Борисова Л. Р., Глизбург В. И., Пчелинцев С. В. Односторонние изотопы конечномерных алгебр // Фундамент. и прикл. матем. -2021.-T. 23, вып. 4.-C. 3-16.
- [2] Кузьмин Е. Н. Алгебры Мальцева размерности пять над полем характеристики нуль // Алгебра и логика. 1970. Т. 9, № 6. С. 691—700.
- [3] Кузьмин Е. Н. О бинарно лиевых алгебрах малых размерностей // Алгебра и логи-ка. 1998. Т. 37, \mathbb{N}_2 3. С. 320—328.
- [4] Кузьмин Е. Н., Шестаков И. П. Неассоциативные структуры // Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления. 1990. Т. 57. С. 179—266.
- [5] Пчелинцев С. В. Изотопы альтернативных алгебр характеристики, отличной от 3 // Изв. РАН. Сер. матем. 2020. Т. 84, № 5. С. 197—210.
- [6] Пчелинцев С. В. Центральные изотопы (-1,1)-алгебр // Сиб. матем. журн. 2021.- Т. 62, № 4.- С. 830-844.
- [7] Abdurasulov K., Adashev J., Normatov Z., Solijonova Sh. Classification of threedimensional anti-dendriform algebras. — arXiv:2404.00981[math.RA].
- [8] Albert A. A. Non-associative algebras. I. Fundamental concepts and isotopy // Ann. Math. (2). -1942. Vol. 43, no. 4. P. 685-707.
- [9] Bruck R. H. Some results in the theory of linear non-associative algebras // Trans. Amer. Math. Soc. -1944.- Vol. 56.- P. 141-199.
- [10] Glizburg V. I., Pchelintsev S. V. Isotopes of simple algebras of arbitrary dimension // Asian-Eur. J. Math. -2020.-2050108.
- [11] Wei Hu, Zhankui Xiao. A characterization of algebras generated by idempotents // J. Pure Appl. Algebra. 2021. Vol. 225, no. 9. P. 106693
- [12] Jacobson N. Lie Algebras. New York: Dover, 1979.
- [13] Kaygorodov I., Shashkov O. Degenerations of nilalgebras // Commun. Math. Res. -2025. Vol. 41, no. 1. P. 9-24.
- [14] Kaygorodov I., Volkov Y. The variety of two-dimensional algebras over an algebraically closed field // Can. J. Math. -2019. Vol. 71, no. 4. -P. 819-842.
- [15] Krylov A. A., Pchelintsev S. V. The isotopically simple algebras with a nil-basis // Commun. Algebra. -2020. Vol. 48, no. 4. P. 1697-1712.
- [16] Petersson H. The classification of two-dimensional nonassociative algebras // Results Math. -2000.- Vol. 37, no. 1-2. P. 120-154.
- [17] Seeley C. Degenerations of 6-dimensional nilpotent Lie algebras over $\mathbb C$ // Commun. Algebra. 1990. Vol. 18. P. 3493-3505.