Локально конечный радикал алгебраических алгебр Мальцева

А. Ю. ГОЛУБКОВ

Московский государственный технический университет им. Н. Э. Баумана, Московский центр фундаментальной и прикладной математики e-mail: artgolub@hotmail.com

УДК 512.554.382+512.554.383+512.554.7

Ключевые слова: алгебраическая алгебра Мальцева, PI-алгебра, локально конечный радикал, локально нильпотентный радикал, радикал Кострикина, сильно первичная алгебра, йорданова алгебра алгебры Ли.

Аннотация

В работе приводится ряд достаточных условий, при которых локально конечный радикал алгебраической локально РІ-алгебры Мальцева над полем характеристики нуль совпадает с множеством всех её локально сильно алгебраических элементов.

Abstract

A. Yu. Golubkov, The locally finite radical of algebraic Mal'tsev algebras, Fundamentalnaya i prikladnaya matematika, vol. 25 (2025), no. 3, pp. 55–80.

This paper contains a number of sufficient conditions for which the locally finite radical of an algebraic Mal'tsev locally PI-algebra over a field of characteristic zero coincides with the set of all its locally strongly algebraic elements.

1. Введение

Работа посвящена доказательству следующего варианта теоремы 1 из [12] и теоремы 2.3 из [7] на основе идей [36].

Теорема 1.1. Пусть R — алгебраическая локально PI-алгебра Мальцева над полем \mathbb{F} , $\operatorname{char} \mathbb{F} = 0$, и выполняется по меньшей мере одно из следующих условий:

- 1) \mathbb{F} алгебраически замкнуто;
- 2) \mathbb{F} поле c(k, s)-условием;
- 3) для любых элемента $x \in R$ и конечномерного подпространства $Y \subseteq R$ найдётся $n(x,Y) \geqslant 1$, такое что $\dim_{\mathbb{F}} M(x,yx) \leqslant n(x,Y)$ для всех $y \in Y$, где M(x,yx) подпространство R, порождённое всеми $l^k_{ux}x, \ k \geqslant 0$.

Тогда локально конечный радикал LF(R) алгебры R совпадает с множеством всех её локально сильно алгебраических элементов.

Фундаментальная и прикладная математика, 2025, том 25, № 3, с. 55—80. © 2025 Национальный Открытый Университет «ИНТУИТ» Всюду далее F — произвольное ассоциативное коммутативное кольцо с единицей, все алгебры над кольцом F являются левыми и правыми унитарными F-модулями с идентичным левым и правым действием, все классы алгебр над F содержат нулевую алгебру и изоморфные копии каждой из своих алгебр. Алгебру умножений алгебры R над кольцом F мы будем обозначать через M(R). Напомним, что M(R) — подалгебра алгебры эндоморфизмов $\operatorname{End}_F(R)$ F-модуля R, порождённая всеми операторами левого и правого умножения l_x и r_x на элементы $x \in R$, $l_x \colon y \mapsto xy$ и $r_x \colon y \mapsto yx, \ y \in R$. При этом действие эндоморфизмов $\varphi \in \operatorname{End}_F(R)$ на элементы $x \in R$ мы будем записывать слева: $\varphi x = \varphi(x)$. Операция умножения любой алгебры Ли R будет обозначаться через $[\ ,\]$, оператор $l_x, \ x \in R$, — через ad_x .

Элемент с ассоциативными степенями x алгебры R над кольцом F называется *целым* (*ниль-элементом*), если существует многочлен

$$_{x}f(t) = t^{n} + _{x}f_{n-1}t^{n-1} + \ldots + _{x}f_{1}t \in F[t], \quad n \geqslant 1,$$

для которого $_xf(x)=0$ ($x^n=0$ при некотором $n\geqslant 1$). Эти понятия, теряющие смысл в антикоммутативной ситуации, будут применяться только к элементам альтернативных и линейных йордановых алгебр. Эндоморфизм φ модуля M над кольцом F называется локально конечным (локально нильпотентным), если для каждого $a\in M$ можно выбрать

$$\varphi_{,a}f(t) = t^{n_{\varphi,a}} + \varphi_{,a}f_{n_{\varphi,a}-1}t^{n_{\varphi,a}-1} + \ldots + \varphi_{,a}f_{1}t \in F[t], \quad n_{\varphi,a} \geqslant 1,$$

такой что $_{\varphi,a}f(\varphi)a=0$ ($\varphi^{n_{\varphi,a}}a=0$ при некотором $n_{\varphi,a}\geqslant 1$). Элемент x антикоммутативной алгебры R над кольцом F называется алгебраическим (ниль-элементом), если r_x — локально конечный (локально нильпотентный) эндоморфизм F-модуля R, сильно алгебраическим (энгелевым), если r_x — целый элемент (ниль-элемент) алгебры $\operatorname{End}_F(R)$, локально сильно алгебраическим (локально энгелевым), если для любых конечно порождённых подалгебр A алгебры $R, x \in A$, и B идеала A, порождённого $x, x \in B$, x—сильно алгебраический (энгелев) элемент B, и локально разрешимым, если в тех же обозначениях xy — энгелев элемент B для всех $y \in B$.

Алгебры Мальцева (альтернативные, линейные йордановы алгебры) над кольцом F, состоящие из алгебраических (целых) элементов, называются алгебраическими (целыми, в ряде источников алгебраическими). Алгебры из этих классов, все элементы которых являются ниль-элементами в соответствующем смысле, называются ниль-алгебрами.

Алгебра Ли над полем \mathbb{F} , удовлетворяющая тождеству, определяемому ненулевым элементом свободной алгебры Ли над \mathbb{F} , называется PI-алгеброй. Мы будем называть алгебру Мальцева над полем \mathbb{F} PI-алгеброй, если она удовлетворяет тождеству, которое определяет элемент свободной алгебры Мальцева над \mathbb{F} , имеющий ненулевой образ при действии канонического эпиморфизма данной свободной алгебры на свободную алгебру Ли с тем же множеством свободных порождающих над \mathbb{F} . Алгебры Ли и Мальцева над полями, конечно

порождённые подалгебры которых являются PI-алгебрами, мы будем называть локально PI-алгебрами.

Локальные X-алгебры и локальные системы подалгебр

Пусть $\mathfrak{M}-$ класс алгебр над кольцом F замкнутый относительно взятия идеалов, $\mathfrak{X}-$ его подкласс, $L\mathfrak{X}-$ класс локально \mathfrak{X} -алгебр, состоящий из тех алгебр из \mathfrak{M} , конечно порождённые подалгебры которых из \mathfrak{M} входят в \mathfrak{X} , и $\mathrm{Rad}_{L\mathfrak{X}}-$ отображение, которое ставит в соответствие каждой алгебре $R\in\mathfrak{M}$ сумму $\mathrm{Rad}_{L\mathfrak{X}}(R)$ всех её идеалов из $L\mathfrak{X}$ (локально \mathfrak{X} -идеалов). Класс $L\mathfrak{X}$ замкнут относительно взятия подалгебр из класса \mathfrak{M} , класс \mathfrak{X} входит в $L\mathfrak{X}$, если и только если \mathfrak{X} замкнут относительно взятия конечно порождённых подалгебр из \mathfrak{M} . Следуя [24], мы будем говорить, что $L\mathfrak{X}-$ подкласс Φ иттинга класса \mathfrak{M} , если $L\mathfrak{X}$ содержит все алгебры из \mathfrak{M} , представимые в виде сумм двух своих идеалов из $L\mathfrak{X}$, т. е. $\mathrm{Rad}_{L\mathfrak{X}}(R) \in L\mathfrak{X}$ для всех $R \in \mathfrak{M}$.

Система подалгебр Π алгебры R называется локальной системой, если $R=\bigcup_{P\in\Pi}P$ и для любых $P,P'\in\Pi$ найдётся $P''\in\Pi$, $P\cup P'\subseteq P''$. Приведём ряд сведений о локальных системах, основываясь на идеях из $[2;\ 24,\$ теорема $3.6;\ 28].$

Замечание 1.2. Пусть $\mathfrak{X}-$ подкласс класса алгебр \mathfrak{M} , такой, что $L\mathfrak{X}-$ подкласс Фиттинга $\mathfrak{M},\ R-$ алгебра из \mathfrak{M} и $\Pi-$ локальная система её подалгебр из $\mathfrak{M}.$ Тогда идеал $\mathrm{Rad}_{L\mathfrak{X}}(R)$ совпадает с множеством $E_{L\mathfrak{X}}(R,\Pi)$ всех таких элементов $x\in R$, что $x\in\mathrm{Rad}_{L\mathfrak{X}}(P)$ для любой алгебры $P\in\Pi,\ x\in P.$

Пусть R — алгебра из класса \mathfrak{M} , Π — локальная система её подалгебр из \mathfrak{M} и \mathfrak{X} — подкласс \mathfrak{M} . Мы будем называть Π локальной \mathfrak{X} -системой, если для любых алгебры $P \in \Pi$ и её ненулевого идеала $I \in \mathfrak{X}$ (при его наличии) можно выбрать алгебру $P' \in \Pi$, $P \subset P'$, такую что $I \neq I' \cap P$ для каждого её идеала $I' \in \mathfrak{X}$.

Замечание 1.3. Пусть подкласс $\mathfrak X$ класса алгебр $\mathfrak M$ замкнут относительно взятия подалгебр из $\mathfrak M$ и содержит все алгебры из $\mathfrak M$ с локальными системами подалгебр из $\mathfrak X$. Тогда в алгебре R из класса $\mathfrak M$ нет ненулевых идеалов из класса $\mathfrak X$, если и только если любая локальная система её подалгебр из $\mathfrak M$ является локальной $\mathfrak X$ -системой.

Доказательство. Заметим, что любая алгебра из класса $\mathfrak M$ имеет локальные системы подалгебр из $\mathfrak M$. В частности, такую систему формируют все её идеалы. Если алгебра R обладает локальной $\mathfrak Y$ -системой подалгебр Π для некоторого подкласса $\mathfrak Y$ класса $\mathfrak M$, замкнутого относительно подалгебр из $\mathfrak M$, и I — её идеал из $\mathfrak Y$, то для любых алгебр $P,P'\in\Pi,P\subseteq P',I\cap P$ и $I\cap P'$ — идеалы P и $P',I\cap P,I\cap P'\in\mathfrak Y,I\cap P=(I\cap P')\cap P$ и, как следствие, $I\cap P=I\cap P'=\{0\}$,

$$I = I \cap R = I \cap \bigg(\bigcup_{P \in \Pi} P\bigg) = \bigcup_{P \in \Pi} (I \cap P) = \{0\}.$$

Поэтому в алгебрах из класса \mathfrak{M} с локальными \mathfrak{Y} -системами подалгебр нет ненулевых идеалов из класса \mathfrak{Y} .

Допустим, что алгебра R обладает локальной системой подалгебр Π из класса \mathfrak{M} , которая не является локальной \mathfrak{X} -системой. Тогда существуют такие алгебра $T\in\Pi$ и её ненулевой идеал $J\in\mathfrak{X}$, что каждая алгебра $T'\in\Pi$, $T\subset T'$, содержит идеал $J'\in\mathfrak{X}$, $J=J'\cap T$. Выделим локальную систему подалгебр $\Pi'=\{T'\in\Pi\mid T\subseteq T'\}$ и систему их идеалов $\Pi''=\{S(T')\mid T'\in\Pi'\}$ из класса \mathfrak{X} , где S(T')—пересечение всех идеалов $J'\in\mathfrak{X}$ алгебры $T',\,J=J'\cap T$. Любые алгебры $T_1,T_2\in\Pi'$ входят в некоторую алгебру $T_3\in\Pi'$, идеал $S(T_3)$ которой пересекается с каждой из T_i по её идеалу $J_i=S(T_3)\cap T_i\in\mathfrak{X},\,J=J_i\cap T$, и потому $S(T_i)\subseteq S(T_3),\,i=1,2$. Значит, $S=\bigcup_{T'\in\Pi'}S(T')$ — идеал алгебры R с локальной системой подалгебр R0 из класса R1, R2, R3, не являющимися локальными R4-системами, содержат ненулевые идеалы из класса R5.

Следствие 1.4. Алгебра R из класса \mathfrak{M} не содержит ненулевых локально \mathfrak{X} -идеалов для некоторого его подкласса \mathfrak{X} , если и только если любая локальная система её подалгебр из \mathfrak{M} является локальной $L\mathfrak{X}$ -системой.

Следствие 1.5. Пусть \mathfrak{X} — подкласс класса алгебр \mathfrak{M} из замечания 1.3, R — алгебра из \mathfrak{M} , не содержащая ненулевых идеалов из \mathfrak{X} , Π — локальная система её подалгебр из \mathfrak{M} и P — алгебра из Π , ненулевые идеалы которой из \mathfrak{X} составляют конечный набор $\{I_1,\ldots,I_n\},\ n\geqslant 1$. Тогда найдётся такая алгебра $P'\in\Pi$, $P\subset P'$, что $I\cap P=\{0\}$ для любого её идеала $I\in\mathfrak{X}$.

Доказательство. Для каждого $i=1,\dots,n$ можно подобрать алгебру $P_i\in\Pi,\ P\subset P_i$, такую что $I_i\neq J\cap P$ для любого её идеала $J\in\mathfrak{X}$ (см. замечание 1.3), и алгебру $P'\in\Pi,\ P_i\subseteq P',\ i=1,\dots,n.$ Тогда каждый идеал $I\in\mathfrak{X}$ алгебры P' пересекается с алгеброй $P_i,\ i=1,\dots,n,$ по её идеалу $I\cap P_i\in\mathfrak{X},\ I\cap P=(I\cap P_i)\cap P\neq I_i$, и значит, $I\cap P=\{0\}.$

В дальнейшем обсуждении будут участвовать четыре класса локально \mathfrak{X} -алгебр, определённых в классе всех алгебр над кольцом F для классов $\mathfrak{X}=\mathfrak{R}$, \mathfrak{S} , $\mathfrak{F},\mathfrak{S}\cap\mathfrak{F}$, где $\mathfrak{R},\mathfrak{S}$ и \mathfrak{F} — классы нильпотентных, разрешимых и конечных (конечно порождённых как F-модули; конечномерных, если F — поле) алгебр над F. В случае если подкласс $\mathfrak{M}\cap L\mathfrak{X}$ замкнутого относительно взятия идеалов и гомоморфных образов класса алгебр \mathfrak{M} над кольцом F является радикальным, \mathfrak{T} . е.

совпадает с классом радикальных алгебр относительно определяемого им нижнего радикала в смысле Куроша—Амицура $\mathcal{T}_{\mathfrak{M}\cap L\mathfrak{X}}$ на \mathfrak{M} , мы будем говорить, что на \mathfrak{M} определён локально \mathfrak{X} -радикал (локально нильпотентный, локально разрешимый, локально конечный, локально конечный и разрешимый радикал) $\mathcal{T}_{\mathfrak{M}\cap L\mathfrak{X}}=LN, LS, LF, LSF, \mathfrak{X}=\mathfrak{R}, \mathfrak{S}, \mathfrak{F}, \mathfrak{S}\cap \mathfrak{F}.$

Отметим, что на классах алгебраических и, более того, РК-алгебраических алгебр Ли и Мальцева над кольцами (с 1/2 в случае алгебр Мальцева) определены радикал LF и равные на них радикалы LS и LSF, на классах ниль-алгебр из этих классов LF, LS и LSF совпадают с определённым на них радикалом LN, на классах альтернативных и линейных йордановых алгебр над кольцами (с 1/2 в случае йордановых алгебр) также определены LF и равные на них LS, LSF и LN, совпадающие на классах ниль-алгебр из данных классов (см. [3,9,10,14,18]).

Поля с (k, s)-условием

Будем говорить, что $\mathbb{F}-$ *поле* c (k,s)-условием, если оно несчётно и для каждого $k\geqslant 1$ найдутся k функций $\varphi_i\colon \mathbb{F}\to \mathbb{F},\ i=1,\dots,k,$ и несчётное подмножество $M_k\subseteq \mathbb{F},$ такие что для любых $s\geqslant 1$ и бесконечного подмножества $M\subseteq M_k$ найдутся $a_1,\dots,a_{m(k,s)}\in M,$ для которых $\det\left(\psi_p(a_q)\right)_{p,q=1}^{m(k,s)}\neq 0,$ где $m(k,s)=\binom{k+s-1}{s}$ и $\{\psi_p\}_{p=1}^{m(k,s)}$ — занумерованные произвольным образом функции $\varphi_{(n_1,\dots,n_k)}=\varphi_1^{n_1}\cdots\varphi_k^{n_k},\ 0\leqslant n_i\leqslant s,\ n_1+\dots+n_k=s.$

Замечание 1.6. Пусть $n\geqslant 1,\ \chi_1,\dots,\chi_n$ — комплексные функции, которые определены и аналитичны в комплексной области D и линейно независимы на D над полем комплексных чисел $\mathbb C$, и $\{y_i\}_{i=1}^\infty$ — бесконечная последовательность точек D, сходящаяся к её внутренней точке y. Тогда $g_k(y_{i_1},\dots,y_{i_k})=\det\left(\chi_p(y_{i_q})\right)_{p,q=1}^k\neq 0,\ k=1,\dots,n$, для некоторых y_{i_1},\dots,y_{i_n} .

Доказательство. Разложение определителя $g_k(z_1,\ldots,z_k),\ z_i\in D,\ k>1,$ по последнему столбцу имеет вид

$$g_k(z_1,\ldots,z_k) = \sum_{m=1}^k (-1)^{m+k} g_{km}(z_1,\ldots,z_{k-1}) \chi_m(z_k),$$

где

$$g_{km}(z_1, \dots, z_{k-1}) = \det \begin{pmatrix} \chi_1(z_1) & \chi_1(z_2) & \dots & \chi_1(z_{k-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{m-1}(z_1) & \chi_{m-1}(z_2) & \dots & \chi_{m-1}(z_{k-1}) \\ \chi_{m+1}(z_1) & \chi_{m+1}(z_2) & \dots & \chi_{m+1}(z_{k-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_k(z_1) & \chi_k(z_2) & \dots & \chi_k(z_{k-1}) \end{pmatrix} \quad (m = 1, \dots, k).$$

По теореме единственности аналитической функции любая не равная тождественно нулю аналитическая в области D функция отлична от нуля на всех элементах $\{y_i\}_{i=1}^\infty$, за исключением, может быть, конечного их числа. В частности, это верно для функций $\{\chi_i\}$. Если $g_{kk}(y_{i_1},\ldots,y_{i_{k-1}})=g_{k-1}(y_{i_1},\ldots,y_{i_{k-1}})\neq 0$ для некоторых $y_{i_1},\ldots,y_{i_{k-1}}$, то ввиду линейной независимости $\{\chi_i\}$ функция $g_k(y_{i_1},\ldots,y_{i_{k-1}},z)$ принимает ненулевые значения на бесконечном множестве $z\in\{y_i\}_{i=1}^\infty$. Используя данное наблюдение, можно последовательно выбрать $y_{i_1},\ldots,y_{i_n},\,g_k(y_{i_1},\ldots,y_{i_k})\neq 0,\,k=1,\ldots,n$.

Замечание 1.7. Любое расширение поля действительных чисел $\mathbb R$ является полем с (k,s)-условием.

Доказательство. Зафиксируем любые $k\geqslant 1$ чисел $r_i\in\mathbb{R},\ r_i>0$, линейно независимых над полем рациональных чисел $\mathbb Q$ и действительные функции $\varphi_i(x)=|x|^{r_i},\ i=1,\dots,k.$ Функции $\varphi_{(n_1,\dots,n_k)}(x)=|x|^{r_1n_1+\dots+r_kn_k},\ 0\leqslant n_i\leqslant s,\ n_1+\dots+n_k=s,$ линейно независимы над полем $\mathbb R$ при всех $s\geqslant 1$. Действительно, если

$$\sum_{\substack{0 \le n_1, \dots, n_k \le s, \\ n_1 + \dots + n_k = s}} c_{(n_1, \dots, n_k)} |x|^{r_1 n_1 + \dots + r_k n_k} = 0 \quad (x \in \mathbb{R})$$

для некоторых $\left\{c_{(n_1,\dots,n_k)}\right\}\subset\mathbb{R},\;\left\{c_{(n_1,\dots,n_k)}\right\}
eq\{0\},\;$ то, выбрав

$$r_1 m_1 + \ldots + r_k m_k = \max_{\substack{0 \le n_1, \ldots, n_k \le s, \\ n_1 + \ldots + n_k = s, \ c_{(n_1, \ldots, n_k)} \ne 0}} r_1 n_1 + \ldots + r_k n_k,$$

мы получим, что $\psi(x)=0$ при всех $0 \neq x \in \mathbb{R}$, где

$$\psi(x) = c_{(m_1, \dots, m_k)} + \sum_{\substack{0 \le n_1, \dots, n_k \le s, \\ n_1 + \dots + n_k = s, \ (n_1, \dots, n_k) \neq (m_1, \dots, m_k)}} c_{(n_1, \dots, n_k)} |x|^{r_1(n_1 - m_1) + \dots + r_k(n_k - m_k)},$$

 $\lim_{x\to\infty}\psi(x) = c_{(m_1,\dots,m_k)} = 0?!$ Сходным образом устанавливается линейная независимость над полем $\mathbb C$ аналитических продолжений $\{\bar{\varphi}_{(n_1,\dots,n_k)}(z) = e^{(r_1n_1+\dots+r_kn_k)\ln(z)}\}$ функций $\{\varphi_{(n_1,\dots,n_k)}\}$ на область $\mathbb C\setminus\mathbb R_-$, где $\mathbb R_-=\{r\in\mathbb R\mid r\leqslant 0\}$ и ln — арифметическая ветвь логарифма Ln , $\bar{\varphi}_{(n_1,\dots,n_k)}(x)=\varphi_{(n_1,\dots,n_k)}(x)$ при всех $x\in\mathbb R\setminus\mathbb R_-$. Выберем любой отрезок $M_k=[a,b]\subset\mathbb R$, 0< a< b. Поскольку каждое бесконечное подмножество M компакта M_k содержит бесконечную последовательность точек $\{y_i\}_{i=1}^\infty$, сходящуюся к некоторой точке $y\in M_k$, $\det(\bar{\psi}_p(y_{i_q}))_{p,q=1}^{m(k,s)}=\det(\psi_p(y_{i_q}))_{p,q=1}^{m(k,s)}\neq 0$ для подходящих $y_{i_1},\dots,y_{i_{m(k,s)}}$, где $\{\psi_p\}_{p=1}^{m(k,s)}$ — функции $\{\varphi_{(n_1,\dots,n_k)}\}$, занумерованные в любом порядке (см. замечание 1.6). Поэтому любое расширение $\mathbb F$ поля $\mathbb R$ — поле с (k,s)-условием (функции $\{\varphi_i\}$ можно доопределить нулём на $\mathbb F\setminus\mathbb R$).

Замечание 1.8. Пусть $k\geqslant 1$ и $\mathbb{F}-$ поле с (k,s)-условием, k-я степень которого \mathbb{F}^k является объединением неубывающей цепи подмножеств $\{K_m\mid m\geqslant 1\}$,

$$K_1 \subseteq K_2 \subseteq \ldots \subseteq K_m \subseteq \ldots \subseteq \mathbb{F}^k = \bigcup_{m \geqslant 1} K_m.$$

Тогда найдётся такое $n=n(k)\geqslant 1$, что при всех $s\geqslant 1$ любое векторное пространство V над полем $\mathbb F$, порождённое векторами $v_{(n_1,\dots,n_k)},\ 0\leqslant n_i\leqslant s,$ $n_1+\dots+n_k=s$, совпадает с подпространством, порождённым векторами

$$v(b_1,\ldots,b_k) = \sum_{\substack{0 \leqslant n_1,\ldots,n_k \leqslant s, \\ n_1+\ldots+n_k=s}} b_1^{n_1} \cdots b_k^{n_k} v_{(n_1,\ldots,n_k)} \quad ((b_1,\ldots,b_k) \in K_n).$$

Доказательство. Выберем функции $\varphi_1,\dots,\varphi_k$ и несчётное подмножество $M_k\subseteq\mathbb{F}$ из определения (k,s)-условия. Множество M_k является объединением неубывающей цепи подмножеств $\{M_{km}\mid m\geqslant 1\},\ M_{km}=\{b\in M_k\mid \left(\varphi_1(b),\dots,\varphi_k(b)\right)\in K_m\},\ m\geqslant 1.$ Поэтому, начиная с некоторого $n\geqslant 1$, все $M_{km},\ m\geqslant n$, являются несчётными и для любого $s\geqslant 1$ можно подобрать $a_1,\dots,a_{m(k,s)}\in M_{kn}$, такие что $\det\left(\psi_p(a_q)\right)_{p,q=1}^{m(k,s)}\neq 0$, где

$$\{\psi_p\}_{p=1}^{m(k,s)} = \{\varphi_{(n_1,\dots,n_k)} = \varphi_1^{n_1} \cdots \varphi_k^{n_k} \mid 0 \leqslant n_i \leqslant s, \ n_1 + \dots + n_k = s\}.$$

Следовательно, любое векторное пространство V над полем $\mathbb F$, порождённое векторами $v_{(n_1,\dots,n_k)},\ 0\leqslant n_i\leqslant s,\ n_1+\dots+n_k=s,$ порождается также их линейными комбинациями

$$v(\varphi_1(a_q),\ldots,\varphi_k(a_q)) = \sum_{\substack{0 \leqslant n_1,\ldots,n_k \leqslant s, \\ n_1+\ldots+n_k=s}} \varphi_{(n_1,\ldots,n_k)}(a_q)v_{(n_1,\ldots,n_k)} \quad (q=1,\ldots,m(k,s)).$$

2. Теорема Прочези для йордановых РІ-алгебр

В этой части работы мы приведём вариант теоремы Прочези из [42] и теоремы 7 из [11] для линейных йордановых РІ-алгебр, применяемый в доказательстве теоремы 1.1.

Алгебры, в которых произведение любых двух ненулевых идеалов не равно нулю (нет ненулевых идеалов с нулевыми квадратами), называются *первичными* (полупервичными). Идеалы алгебр, фактор-алгебры по которым первичны, называются первичными идеалами. Будем говорить, что алгебра имеет максимальный первичный спектр, если все её ненулевые собственные первичные идеалы являются максимальными идеалами. Радикал в смысле Куроша—Амицура T называется специальным, если T-полупростые алгебры из класса его определения являются подпрямыми произведениями первичных T-полупростых алгебр. В частности, радикалы LN, LF и LSF являются специальными на всех замкнутых относительно взятия конечно порождённых подалгебр классах, на которых они определены (см. [4, теорема 3.4; 10, теорема 7]).

Конструкции центроида Мартиндейла (расширенного центроида) и центрального замыкания полупервичной алгебры, используемые ниже, подробно описаны в [19, 31, 33, 34, 46]. Напомним, что центроид Мартиндейла $\mathrm{CM}(R)$ ненулевой первичной алгебры R над кольцом F является полем, её центральное замыкание P(R) — первичной алгеброй над полем $\mathrm{CM}(R)$. Алгебра R является F-подалгеброй алгебры P(R), элементы которой порождают P(R) как

 $\mathrm{CM}(R)$ -пространство, $P(R) = \mathrm{CM}(R)R$, и

$$CM(R) = End_{M(R)'}(P(R)) = End_{M(P(R))'}(P(R)) = Z(M(P(R))'),$$

где M(R)' и M(P(R))' — алгебры умножений R и P(R) с добавленными к ним при необходимости тождественными изоморфизмами Id_R и $\mathrm{Id}_{P(R)}$ и Z(M(P(R))') — центр M(P(R))'. При этом $F \operatorname{Id}_{P(R)} \subseteq \operatorname{CM}(R)$, $F \operatorname{Id}_{P(R)} \cong$ \cong $F/\operatorname{Ann}_F R$, где $\operatorname{Ann}_F R$ — аннулятор F-модуля R, $\operatorname{Ann}_F R = \{f \in R \mid g \in R\}$ $fR = \{0\}$. Если R — простая алгебра, то P(R) = R и $CM(R) = End_{M(R)'}(R)$. Кроме того, если C-F-подалгебра с единицей поля $\mathrm{CM}(R),\ CR-C$ -подалгебра алгебры P(R), порождённая элементами алгебры R, то поля $\mathrm{CM}(CR)$ и $\mathrm{CM}(R)$ изоморфны над C, алгебры P(CR) и P(R) изоморфны над $\mathrm{CM}(R)$ (действие элементов CM(R) на P(CR) определяется как действие их образов в $\mathrm{CM}(CR)$ при действии C-изоморфизма $\mathrm{CM}(R)$ и $\mathrm{CM}(CR)$, изоморфизм P(R) и P(CR) продолжает тождественный изоморфизм CR). В случае если алгебра R имеет ненулевой центр Z(R), мы можем отождествить Z(R)с F-подалгеброй $\{l_z=r_z\mid z\in Z(R)\}$ поля $\mathrm{CM}(R)$, центральное кольцо частных $Q=RS^{-1}-$ с Z(Q)-подалгеброй Z(Q)R алгебры P(R), где $S=Z(R)\setminus\{0\}$, $Z(Q)=Z(R)S^{-1}$ — поле частных Z(R) в $\mathrm{CM}(R)$, и, следовательно, $\mathrm{CM}(R)\cong$ $\cong \mathrm{CM}(Q), P(R) \cong P(Q)$ и $\mathrm{CM}(R) \cong Z(P(R))$. При этом если алгебра Q проста, $P(R) \cong Q$, $CM(R) \cong Z(Q)$.

Замечание 2.1. Пусть первичная алгебра R над полем $\mathbb F$ не является локально нильпотентной и её центральное замыкание P(R) локально конечномерно над центроидом Мартиндейла $\mathrm{CM}(R)$. Тогда алгебра P(R) локально конечномерна над полем $\mathbb F$, если и только если поле $\mathrm{CM}(R)$ алгебраично над $\mathbb F$.

Доказательство. Алгебра P(R) над полем $\mathrm{CM}(R)$ содержит конечномерную ненильпотентную подалгебру A. Алгебра A имеет конечномерную ненильпотентную алгебру умножений M(A), и, как следствие, найдётся ненильпотентный оператор $\varphi \in M(A)$ (см. [1, теорема 3; 44, следствие 1.6.26, теорема 1.6.36]). Если алгебра P(R) локально конечномерна над полем \mathbb{F} , то в алгебре A имеется конечномерная φ -инвариантная \mathbb{F} -подалгебра B, содержащая $\mathrm{CM}(R)$ -базис A, φ аннулируется на A характеристическим многочленом его ограничения на B и его собственные значения, среди которых есть ненулевые, входят в алгебраическое замыкание $\overline{\mathbb{F}}$ поля \mathbb{F} в алгебраическом замыкании $\overline{\mathrm{CM}(R)}$ поля $\mathrm{CM}(R)$. Так как последнее верно для всех операторов $\alpha \varphi \in M(A)$, $\alpha \in \mathrm{CM}(R)$, $\mathrm{CM}(R) \subseteq \overline{\mathbb{F}}$. С другой стороны, если $\mathrm{CM}(R) \subseteq \overline{\mathbb{F}}$, по лемме 3.4 из [6] алгебра P(R) локально конечномерна над полем \mathbb{F} .

Ввиду [9, предложение 1] мы сразу получаем следствие.

Следствие 2.2. Пусть центральное замыкание P(R) первичной алгебры R над полем $\mathbb F$ является простой локально конечномерной алгеброй над центроидом $\mathrm{CM}(R)$. Тогда алгебра P(R) локально конечномерна над полем $\mathbb F$, если и только если поле $\mathrm{CM}(R)$ алгебраично над $\mathbb F$.

Пусть $\mathfrak{M}-$ замкнутый относительно взятия идеалов и гомоморфных образов класс алгебр над кольцом F, на котором определён и специален локально конечный радикал LF, $\mathfrak{M}'-$ его подкласс, состоящий из всех алгебр $R\in\mathfrak{M}$, таких что каждая фактор-алгебра R/P, $R\neq P\in \operatorname{Spec}_{LF}(R)$, имеет ненулевой центр и локально конечномерное над его полем частных центральное кольцо частных Q_P , где $\operatorname{Spec}_{LF}(R)-$ множество всех первичных идеалов R, фактор-алгебры по которым LF-полупросты, и

$$\mathfrak{N} = \{ R \in \mathfrak{M}' \mid \dim_{Z(Q_P)} Q_P = n_P < \infty, \ R \neq P \in \operatorname{Spec}_{LF}(R) \},$$

$$\mathfrak{N}' = \{ R \in \mathfrak{N} \mid 1/n_P \in F/\operatorname{Ann}_F R/P, \ R \neq P \in \operatorname{Spec}_{LF}(R) \},$$

$$\mathfrak{N}'' = \{ R \in \mathfrak{N}' \mid 1/n_P! \in F/\operatorname{Ann}_F R/P, \ R \neq P \in \operatorname{Spec}_{LF}(R) \}.$$

Поскольку любую алгебру R над кольцом F можно рассматривать как алгебру над его фактор-кольцом $F/\operatorname{Ann}_F R$, из леммы 3.4 из [6] сразу следует замечание 2.3.

Замечание 2.3. Целые алгебры из класса \mathfrak{M}' над кольцом F с максимальным первичным спектром локально конечны.

Замечание 2.4. Если z — элемент центра Z(R) алгебры R из класса \mathfrak{N}' над кольцом F, такой что оператор умножения $l_z = r_z$ является суммой целых элементов алгебры умножений M(R), то z является целым элементом.

Доказательство. Допустим, что элемент z не является целым и, значит, 0 не входит в подполугруппу

$$V(z) = \{ z^n + f_{n-1}z^{n-1} + \ldots + f_1z \mid f_i \in F, \ n \geqslant 1 \}$$

мультипликативной полугруппы центра Z(R) алгебры R. Используя лемму Цорна, выберем максимальный идеал P среди всех идеалов алгебры R, не содержащих элементов полугруппы V(z). Образ полугруппы V(z) в фактор-алгебре R/P совпадает с подполугруппой V(z+P) мультипликативной полугруппы её центра Z(R/P). Ввиду того, что каждый ненулевой идеал алгебры R/P имеет непустое пересечение с полугруппой $V(z+P),\ 0 \notin V(z+P)$ и $V(z'+P)\subseteq V(z+P),\ z'\in V(z),\ R/P$ первична и LF-полупроста. Алгебру умножений M(R/P) алгебры R/P можно отождествить с изоморфной ей F-подалгеброй алгебры умножений $M(Q_P)$ её центрального кольца частных Q_P , состоящей из продолжений элементов M(R/P) до элементов $M(Q_P)$ по $Z(Q_P)$ -линейности. Так как канонический эпиморфизм алгебры R на алгебру R/P индуцирует эпиморфизм их алгебр умножений $M(R) \to M(R/P)$, при котором $t_x \mapsto t_{x+P}, \ x \in R, \ t_x \in \{l_x, r_x\}$, оператор l_{z+P} является суммой целых элементов M(R/P), и потому его след $\operatorname{tr} l_{z+P} = n_P(z+P) \in Z(Q_P)$, где $n_P = \dim_{Z(Q_P)} Q_P$, и элемент z + P являются целыми над кольцом F, $0 \in V(z+P)$?!

Следствие 2.5. Если R — такая алгебра из класса \mathfrak{N}' над кольцом F с максимальным первичным спектром, что для любого $x \in R$ оператор умножения l_x или (и) r_x является суммой целых элементов алгебры умножений M(R), то R локально конечна.

Из теоремы Гамильтона—Кэли и формул Ньютона несложно вывести замечание 2.6.

Замечание 2.6. Пусть V — векторное пространство над полем \mathbb{F} , $n=\dim_{\mathbb{F}}V<\infty$, $\operatorname{char}\mathbb{F}>n$, если $\operatorname{char}\mathbb{F}>0$, A — линейный оператор на V, такой что его степени $A^i,\ i=1,\ldots,n$, являются суммами линейных операторов на V, целых над некоторой подобластью $F\subseteq\mathbb{F},\ 1/n!\in F$. Тогда оператор A является целым над областью F.

Используя замечание 2.6 в конце доказательства замечания 2.4, можно сделать следующее замечание.

Замечание 2.7. Если x — элемент с ассоциативными степенями алгебры R из класса \mathfrak{N}'' над кольцом F, такой что все степени оператора умножения l_x или (и) r_x являются суммами целых элементов алгебры умножений M(R), то x — целый элемент.

Замечание 2.8. Если R — такая алгебра из класса $\mathfrak N$ над кольцом F с максимальным первичным спектром, что все элементы алгебры умножений M(R) являются суммами её целых элементов, то R локально конечна.

Доказательство. Покажем, что в случае если ненулевая алгебра R первична, она не является LF-полупростой. Действительно, иначе можно выбрать нецелый элемент $z \in Z(R)$ и перейти к первичной LF-полупростой алгебре R/P, все ненулевые идеалы которой содержат элементы полугрупны V(z+P) (см. доказательство замечания 2.4). Поскольку кольцо частных $Q=(R/P)V(z+P)^{-1}$ простое, его центр Z(Q) — поле. Поэтому Z(Q) — поле частных $Z(Q_P)$ кольца Z(R/P), Q — центральное кольцо частных Q_P алгебры R/P. По теореме плотности конечномерная центральная простая алгебра Q_P над полем $Z(Q_P)$ имеет простую примитивную алгебру умножений $M(Q_P)$, $M(Q_P)\cong \mathrm{End}_{Z(Q_P)}(Q_P)$ ($Z(Q_P)\cong \mathrm{CM}(Q_P)$). Так как алгебра M(R/P), можно выбрать оператор $\psi\in M(R/P)$ с $\mathrm{tr}\ \psi\neq 0$, и значит, $\mathrm{tr}\ l_{z+P}\psi=(z+P)\,\mathrm{tr}\ \psi\neq 0$. Остаётся заметить, что все элементы алгебры M(R/P) являются суммами её целых элементов, их следы и вместе с ними элемент z+P являются целыми над кольцом F?!

Пусть теперь $\mathfrak{K}-$ замкнутый относительно взятия идеалов и гомоморфных образов класс алгебр над кольцом F, на котором определён и специален локально нильпотентный радикал LN, $\mathfrak{K}'-$ его подкласс, состоящий из всех алгебр $R\in\mathfrak{K}$, таких что каждая фактор-алгебра R/P, $R\neq P\in \operatorname{Spec}_{LN}(R)$, имеет ненулевой центр и локально конечномерное над его полем частных центральное кольцо частных Q_P , где $\operatorname{Spec}_{LN}(R)-$ множество всех первичных идеалов R, фактор-алгебры по которым LN-полупросты, и

$$\mathfrak{L} = \{ R \in \mathfrak{K}' \mid \dim_{Z(Q_P)} Q_P = n_P < \infty, \ R \neq P \in \operatorname{Spec}_{LN}(R) \},$$

$$\mathfrak{L}' = \{ R \in \mathfrak{L} \mid 1/n_P \in Z(Q_P), \ R \neq P \in \operatorname{Spec}_{LN}(R) \}.$$

В дальнейшем в этой части работы мы будем называть основное кольцо F алгеброй, если F — алгебра над полем характеристики нуль.

Замечание 2.9. Если R — алгебра из класса \mathfrak{L}' над кольцом F (\mathfrak{K}' над алгеброй F), такая что для любого $x \in R$ оператор умножения l_x или (и) r_x является суммой локально нильпотентных (как эндоморфизмы F-модуля R) элементов алгебры умножений M(R), то R локально нильпотентна.

Доказательство. Если R/P — ненулевая первичная LN-полупростая фактор-алгебра алгебры R, то локально нильпотентные элементы алгебры умножений $M(Q_P)$ центрального кольца частных Q_P алгебры R/P являются ниль-элементами и для любого $x \in Q_P$ оператор умножения l_x или (и) r_x имеет нулевой след, но $\operatorname{tr} l_z = \operatorname{tr} r_z = n_P z \neq 0$ при всех $0 \neq z \in Z(Q_P)$?! Поэтому $\operatorname{Spec}_{LN}(R) = \{R\}, \ R = LN(R)$.

В случае алгебры R из класса \mathfrak{K}' над алгеброй F в этом рассуждении следует взять любой элемент $0 \neq z \in Z(Q_P)$, выразить оператор $l_z = r_z$ через сумму $l_z = \psi_1 + \ldots + \psi_k$ локально нильпотентных элементов $\psi_i \in M(Q_P)$, подобрать конечномерную подалгебру A алгебры Q_P , инвариантную относительно действия всех $\{\psi_i\}$, и вывести противоречие $0 \neq \operatorname{tr} l_z|_A = nz = 0, \ n = \dim_{Z(Q_P)} A$, из нильпотентности ограничений $\{\psi_i\}$ на A.

Замечание 2.10. Если R — алгебра из класса $\mathfrak L$ над кольцом F, такая что все элементы алгебры умножений M(R) являются суммами её локально нильпотентных элементов, то R локально нильпотентна.

Доказательство. Если алгебра R первична, LN-полупроста и не равна нулю, то мы можем выбрать элемент $0 \neq z \in Z(R)$, заменить полугруппу V(z) в доказательстве замечания 2.8 на полугруппу $\langle z \rangle = \{z^i \mid i \geqslant 1\}$ и перейти к первичной LN-полупростой фактор-алгебре R/P с простым центральным кольцом частных $Q_P = (R/P)\langle z + P \rangle^{-1}$. При этом по условию все элементы алгебры умножений $M(Q_P)$ имеют нулевые следы, что невозможно, $M(Q_P) \cong \operatorname{End}_{Z(Q_P)}(Q_P)$.

Замечание 2.11. Ассоциативная алгебра R над кольцом F, все элементы которой являются суммами её целых элементов (ниль-элементов), имеет алгебру умножений M(R) с тем же свойством.

Доказательство. Алгебру умножений M(R) алгебры R составляют конечные суммы операторов t_z и $l_x r_y$, $x,y,z \in R$, $t_z \in \{l_z,r_z\}$. Для любых элементов $x,y \in R$ операторы умножения l_x , r_y порождают коммутативную подалгебру $\langle l_x,r_y\rangle$ алгебры M(R), которая является конечной (нильпотентной), если и только если x,y являются целыми (ниль-элементами) (см. также [9, лемма 7; 10, лемма 1]).

Замечание 2.12. Пусть R — моноассоциативная алгебра с единицей 1 и инволюцией * над полем \mathbb{F} , char $\mathbb{F} \neq 2$, такая что $t(x) = x + x^*, \ n(x) = xx^* \in \mathbb{F} \cdot 1$ для всех $x \in R$, F — подобласть \mathbb{F} . Если элементы $z, z^2 \in R$ являются суммами целых над областью F элементов (ниль-элементов) R, то z является целым

над F (ниль-элементом). Если элемент $z \in \mathbb{F} \cdot 1$ является суммой целых над F элементов (ниль-элементов) R, то z является целым над F (z=0).

Доказательство. Так как $x^2-t(x)x+n(x)=0,$ $t(x^2)=t(x)^2-2n(x)$ для всех $x\in R$, элемент $x\in R$ является целым над областью F (ниль-элементом), если и только если элементы $t(x),t(x^2)\in \mathbb{F}\cdot 1$ являются целыми над F ($t(x)=t(x^2)=x^2=0$). Если элемент $y\in R$ является суммой $y=y_1+\ldots+y_n$ целых над F элементов (ниль-элементов) $y_i\in R,$ $n\geqslant 1$, то элемент $t(y)=t(y_1)+\ldots+t(y_n)$ является целым над F (t(y)=0). При этом t(y)=2y, если $y\in \mathbb{F}\cdot 1$.

Заметим, что в матричной алгебре Кэли—Диксона $\mathcal{O}(F)$ над любым кольцом $F, 2F = \{0\}$, единица представима в виде суммы ниль-элементов,

$$\begin{pmatrix} 1 & (0,0,0) \\ (0,0,0) & 1 \end{pmatrix} = \\ = \begin{pmatrix} 1 & (1,0,0) \\ (1,1,0) & 1 \end{pmatrix} + \begin{pmatrix} 0 & (1,1,0) \\ (1,1,0) & 0 \end{pmatrix} + \begin{pmatrix} 0 & (0,1,0) \\ (0,0,0) & 0 \end{pmatrix}.$$

Поэтому в замечании 2.12 условие $\operatorname{char} \mathbb{F} \neq 2$ является существенным.

Йорданову алгебру ассоциативной алгебры R над кольцом F с 1/2, полученную из R заменой операции умножения на операцию \cdot , $x \cdot y = 1/2(xy+yx)$, $x,y \in R$, мы будем обозначать через $R^{(+)}$. Йорданова алгебра J над кольцом F называется c подходящей ассоциативной алгебры R над F. Если образ алгебры J при этом вложении порождает алгебру R, R называется a ассоциативной обёртывающей J.

Элемент свободной ассоциативной алгебры без единицы над кольцом F называется co6cmвenhыm, если коэффициенты его несократимой записи порождают F как идеал. Элемент свободной альтернативной (йордановой) алгебры без единицы над кольцом F (с 1/2) называется co6cmвenhыm, если его образ при действии канонического эпиморфизма данной свободной алгебры на свободную ассоциативную алгебру с тем же множеством свободных порождающих над F (её йорданову подалгебру, порождённую свободными порождающими) является собственным элементом (свободной ассоциативной алгебры). Ассоциативные, альтернативные и линейные йордановы алгебры над кольцом F (с 1/2 в случае йордановых алгебр), удовлетворяющие тождествам, определяемым собственным элементам соответствующей свободной алгебры над F, называются PI-алгебраmu (см. [6], введение[6]).

Так как класс альтернативных PI-алгебр над кольцом F удовлетворяет условиям, наложенным на классы $\mathfrak N$ и $\mathfrak L$ (см. [9, теорема 11; 16; 43]), замечания 2.8, 2.10-2.12 (для колец Кэли—Диксона) и следствие 2.2 позволяют записать теорему 1 из [42] и следствие из [41] в следующем виде.

Следствие 2.13. Ассоциативные (альтернативные) PI-алгебры над кольцами с максимальным первичным спектром (и 1/2), все элементы которых являются суммами их целых элементов, локально конечны. Ассоциативные (альтер-

нативные) PI-алгебры над кольцами (с 1/2), все элементы которых являются суммами их ниль-элементов, локально нильпотентны.

При помощи теоремы 1 из [20] данный вывод обобщается на правоальтернативные алгебры над кольцами с 1/2 с заменой локальной конечности (нильпотентности) на локальную правую конечность (нильпотентность) (локальную конечность (нильпотентность) правоальтернативных алгебр как линейных йордановых алгебр).

Пусть R — альтернативная PI-алгебра над кольцом F, $R \neq LF(R)$, $\operatorname{Spec}'_{LF}(R)$ — множество всех идеалов $P \in \operatorname{Spec}_{LF}(R)$, таких что фактор-алгебра R/P ассоциативна,

$$n' = \begin{cases} 0, & \text{если } \mathrm{Spec}'_{LF}(R) = \{R\}, \\ \sqrt{\max_{R \neq P \in \mathrm{Spec}'_{LF}(R)} n_P} & \text{иначе,} \end{cases}$$

$$n'' = \begin{cases} 0, & \text{если } \mathrm{Spec}_{LF}(R) = \mathrm{Spec}'_{LF}(R), \\ 2 & \text{иначе,} \end{cases}$$

$$n_{LF}(R) = \max\{n', n''\}.$$

Сходным образом, если $R \neq LN(R)$, определим параметр $n_{LN}(R)$.

Следствие 2.14. Если $1/n! \in F$, $n = n_{LF}(R)$ $(n = n_{LN}(R))$, x — элемент алгебры R, такой что его степени x^i , $i = 1, \ldots, n$, являются суммами целых элементов (ниль-элементов) R, то x является целым элементом (ниль-элементом).

Доказательство. В противном случае $0 \notin V(x)$ ($0 \notin \langle x \rangle$) и существует первичная LF-полупростая (LN-полупростая) фактор-алгебра R/P, $0 \notin V(x+P)$ ($0 \notin \langle x+P \rangle$) (см. доказательства замечаний 2.4 и 2.10). Алгебра R/P либо ассоциативна и вкладывается над кольцом F в алгебру $\mathrm{M}_{n_P}(\overline{Z(Q_P)})$ матриц размера $n_P \times n_P$ над алгебраическим замыканием $\overline{Z(Q_P)}$ поля $Z(Q_P)$, либо является кольцом Кэли—Диксона. Поэтому по замечаниям 2.6 (2.7) и 2.12 элемент z+P является целым (ниль-элементом)?!

Класс йордановых РІ-алгебр над кольцом F с 1/2 удовлетворяет условиям, наложенным на классы \mathfrak{M}' и \mathfrak{K}' (см. [11, теорема 3; 13, теорема 5]; локальная конечномерность йордановых алгебр симметрических билинейных форм на векторных пространствах над полями следует из [9, следствие 1]), классы конечно порождённых йордановых РІ-алгебр и специальных йордановых алгебр с ассоциативными обёртывающими РІ-алгебрами над алгеброй F удовлетворяют условиям, наложенным на классы \mathfrak{N}'' и \mathfrak{L}' (см. [16; 19, теорема 4.1; 43]). Отметим также, что операторы умножения на целые (ниль-элементы) линейных йордановых алгебр являются целыми (ниль-элементами) (см. [7, замечание 2.11]).

Пусть \mathcal{O} — алгебра Кэли—Диксона над полем \mathbb{F} , $\operatorname{char} \mathbb{F} \neq 2$, с канонической инволюцией $x \mapsto \bar{x}, \ x \in \mathcal{O}$, и $\operatorname{H}_3(\mathcal{O})$ — йорданова алгебра эрмитовых матриц

размера 3×3 с коэффициентами из $\mathcal O$ и операцией умножения $X\cdot Y=(1/2)(XY+YX),\ X,Y\in \mathrm H_3(\mathcal O),$ где XY- обычное произведение матриц X и Y. Для удобства отождествим поле $\mathbb F$ с центром $\mathbb F\cdot 1$ алгебры $\mathcal O$, где 1- единица $\mathcal O$. Каждый элемент $X\in \mathrm H_3(\mathcal O)$ представим в виде

$$X = (\alpha, \beta, \gamma \mid a, b, c) = \begin{pmatrix} \alpha & c & \overline{b} \\ \overline{c} & \beta & a \\ b & \overline{a} & \gamma \end{pmatrix} \quad (\alpha, \beta, \gamma \in \mathbb{F}, \ a, b, c \in \mathcal{O})$$

и аннулируется многочленом $\chi_X(t)=t^3-\operatorname{tr}(X)t^2+\operatorname{q}(X)t-\operatorname{d}(X)\in\mathbb{F}[t]$, где

$$tr(X) = \alpha + \beta + \gamma, \quad q(X) = \alpha\beta + \alpha\gamma + \beta\gamma - n(a) - n(b) - n(c),$$
$$d(X) = \alpha\beta\gamma - an(a) - bn(b) - cn(c) + t((ab)c),$$

 $t(x)=x+\bar{x},\ n(x)=x\bar{x}\in\mathbb{F},\ x\in\mathcal{O}$ (см. [45]). Линейная йорданова алгебра J над полем \mathbb{F} называется алгеброй Алберта, если её скалярное расширение $\mathbb{F}'J=\mathbb{F}'\otimes_{\mathbb{F}}J$ изоморфно алгебре $H_3(\mathcal{O})$ для некоторых расширения \mathbb{F}' поля \mathbb{F} и алгебры Кэли—Диксона \mathcal{O} над \mathbb{F}' (алгебру \mathcal{O} можно считать расщепляемой, т. е. изоморфной матричной алгебре $\mathcal{O}(\mathbb{F}')$). Любая алгебра Алберта проста, исключительна (неспециальна) и имеет размерность 27 над своим центром, и наоборот, все простые исключительные йордановы алгебры над полями являются алгебрами Алберта (см. [13, теоремы 2, 4]). Большой объём сведений об алгебрах Алберта и кубических йордановых алгебрах можно найти в [40].

Замечание 2.15. Если элемент X алгебры $\mathrm{H}_3(\mathcal{O})$ является суммой её целых элементов над некоторым подполем \Bbbk поля \mathbb{F} , то его след $\mathrm{tr}(X)$ алгебраичен над \Bbbk .

Доказательство. Достаточно рассмотреть случай, когда элемент $X==(\alpha,\beta,\gamma\mid a,b,c)$ является целым над полем \Bbbk . Минимальный многочлен $\mu_X(t)\in\mathbb{F}[t]$ элемента X имеет алгебраичные над полем \Bbbk коэффициенты, $\deg\mu_X\leqslant 3$. Так как $\mu_X=\chi_X$ при $\deg\mu_X=3$ и $\mu_X(t)=t-\alpha,\ X==(\alpha,\alpha,\alpha\mid 0,0,0)$ при $\deg\mu_X=1$, мы можем считать, что $\deg\mu_X=2$, $\mu_X(t)=t^2+\theta t+\delta$. Тогда

$$(\alpha+\beta+\theta)c+\bar{b}\bar{a}=(\alpha+\gamma+\theta)\bar{b}+ca=(\beta+\gamma+\theta)a+\bar{c}\bar{b}=0,$$

$$\alpha^2+\theta\alpha+n(b)+n(c)=\beta^2+\theta\beta+n(a)+n(c)=\gamma^2+\theta\gamma+n(a)+n(b)=-\delta$$
 и, как следствие,

$$a(n(b) - (\beta + \alpha + \theta)(\beta + \gamma + \theta)) = a(n(c) - (\gamma + \alpha + \theta)(\gamma + \beta + \theta)) = 0,$$

$$b(n(a) - (\alpha + \beta + \theta)(\alpha + \gamma + \theta)) = b(n(c) - (\gamma + \alpha + \theta)(\gamma + \beta + \theta)) = 0,$$

$$c(n(a) - (\alpha + \beta + \theta)(\alpha + \gamma + \theta)) = c(n(b) - (\beta + \alpha + \theta)(\beta + \gamma + \theta)) = 0.$$

Если по меньшей мере два элемента набора $\{a,b,c\}$ отличны от нуля,

$$n(a) = (\alpha + \beta + \theta)(\alpha + \gamma + \theta), \quad n(b) = (\alpha + \beta + \theta)(\beta + \gamma + \theta),$$

$$n(c) = (\alpha + \gamma + \theta)(\beta + \gamma + \theta),$$

$$(t(X) + \theta)^2 + \alpha\theta = (t(X) + \theta)^2 + \beta\theta = (t(X) + \theta)^2 + \gamma\theta = -\delta.$$

При $\theta=0$ это сразу гарантирует алгебраичность $\operatorname{tr}(X)$ над полем \Bbbk , при $\theta\neq 0$ отсюда следуют равенства $\alpha=\beta=\gamma,\ 9\alpha^2+7\alpha\theta+\theta^2+\delta=0$ и вместе с ними алгебраичность α и $\operatorname{tr}(X)=3\alpha$ над \Bbbk (при любом значении $\operatorname{char} \mathbb F$). Если в набор $\{a,b,c\}$ входит один ненулевой элемент, например a, то $\theta=-\beta-\gamma,\ \alpha^2+\theta\alpha+\delta=0,\ \alpha$ и $\operatorname{tr}(X)=\alpha-\theta$ алгебраичны над полем \Bbbk . Если $a=b=c=0,\ \xi^2+\theta\xi+\delta=0,\ \xi=\alpha,\beta,\gamma,$ и потому $\alpha,\ \beta,\ \gamma$ и $\operatorname{tr}(X)=\alpha+\beta+\gamma$ алгебраичны над \Bbbk .

Отметим также, что элемент $X\in \mathrm{H}_3(\mathcal{O})$ является ниль-элементом, если и только если $\mathrm{tr}(X)=\mathrm{q}(X)=\mathrm{d}(X)=0$ (см. доказательство замечания 2.15 для $X\neq X^2=0$).

Теорема 2.16. Йордановы PI-алгебры над кольцами с максимальным первичным спектром и 1/2, все элементы которых являются суммами их целых элементов, локально конечны. Йордановы PI-алгебры над кольцами с 1/2, все элементы которых являются суммами их ниль-элементов, локально нильпотентны.

Доказательство. Допустим, что существует ненулевая первичная LF-полупростая йорданова PI-алгебра J над кольцом F с максимальным первичным спектром и 1/2, все элементы которой являются суммами её целых элементов. Тогда она невырожденна, её центральное кольцо частных Q является центральной простой алгеброй над полем Z(Q) и изоморфно одной из следующих алгебр:

- (1) $\mathbb{R}^{(+)}$, где \mathbb{R} простая ассоциативная PI-алгебра над $\mathbb{Z}(\mathbb{Q})$;
- (2) $\mathrm{Sym}(R,*)=\{r+r^*\mid r\in R\}$ подалгебра *-симметрических элементов алгебры $R^{(+)},$ где R— простая ассоциативная PI-алгебра над Z(Q) с инволюцией *;
- (3) алгебра Алберта;
- (4) J(V,f) йорданова алгебра невырожденной билинейной симметрической формы f на векторном пространстве V над Z(Q), $\dim_{Z(Q)}V>1$

(см. [13, теоремы 4, 5] с учётом [25, 26]). Указанная здесь алгебра R центральна, проста и конечномерна над своим центром Z(R), причём $Z(Q)=Z(R^{(+)})=Z(R)$ в случае (1) и $Z(Q)=Z(\operatorname{Sym}(R,*))=Z(R)\cap\operatorname{Sym}(R,*)$, $\dim_{Z(Q)}Z(R)\leqslant 2$ в случае (2) (см. [31, теоремы 3.16, 3.19; 32, теоремы 3.5, 3.7]). Перейдём к скалярному расширению $\overline{Z(Q)}R$ алгебры R над алгебраическим замыканием $\overline{Z(Q)}$ поля Z(Q) с продолженной на него инволюцией * в случае (2). Если n— наименьшая степень нетривиального тождества с коэффициентами из поля Z(R), которому удовлетворяет алгебра R, то n=2m, $m\geqslant 1$, алгебра $\overline{Z(Q)}R$ над полем $\overline{Z(Q)}$ изоморфна в случаях (1) и (2) для инволюции * первого типа (Z(Q)=Z(R)) алгебре матриц $\mathrm{M}_m(\overline{Z(Q)})$, где $X^*=YX^tY^{-1},\ X\in\mathrm{M}_m(\overline{Z(Q)}),\ X\mapsto X^t$ — матричное транспонирование, Y— фиксированная обратимая матрица, $Y\in\mathrm{GL}_m(\overline{Z(Q)})$, в случае (2) для инволюции * второго типа $(\dim_{Z(Q)}Z(R)=2)$ — алгебре $\mathrm{M}_m(\overline{Z(Q)})$ в случае (2) для инволюции * второго типа $(\dim_{Z(Q)}Z(R)=2)$ — алгебре $\mathrm{M}_m(\overline{Z(Q)})$ в случае (2) для

где $X^* = (\overline{x_{ij}})^t$, $X = (x_{ij}) \in \mathrm{M}_m(\overline{Z(Q)} \oplus \overline{Z(Q)})$, $\overline{x} = (x_2, x_1)$, $x = (x_1, x_2) \in \overline{Z(Q)} \oplus \overline{Z(Q)} \oplus \overline{Z(Q)}$ (см. [9, с. 60; 38, с. 208, 209; 39, предложения 2.19, 2.20]). Алгебру J можно отождествить с $F/\mathrm{Ann}_F J$ -подалгеброй алгебры $\overline{Z(Q)}R^{(+)}$ в случае (1) и $\mathrm{Sym}(\overline{Z(Q)}R,*)$ в случае (2), которая порождает её как $\overline{Z(Q)}$ -пространство. Поэтому найдётся элемент $x \in J$, след которого $\mathrm{tr}\,x$ как матрицы из $\mathrm{M}_m(\overline{Z(Q)})$ или $\mathrm{M}_m(\overline{Z(Q)} \oplus \overline{Z(Q)}) \cong \mathrm{M}_m(\overline{Z(Q)}) \oplus \mathrm{M}_m(\overline{Z(Q)})$ не равен нулю. Поскольку по условию следы всех элементов алгебры J алгебраичны над полем $F/\mathrm{Ann}_F J$ и $\mathrm{tr}\,zx = z\,\mathrm{tr}\,x \neq 0$ для всех $0 \neq z \in Z(J)$, область Z(J) алгебраична над $F/\mathrm{Ann}_F J$, Z(J) = Z(Q), J = Q = LF(J) (см. [7, лемма 3.4])?!

В случае (3) можно выбрать поле \mathbb{F} , $Z(Q)\subseteq \mathbb{F}$, такое что $\mathbb{F}Q\cong \mathrm{H}_3(\mathcal{O})$ для некоторой алгебры Кэли—Диксона \mathcal{O} над \mathbb{F} , и отождествить алгебру J с $F/\operatorname{Ann}_F J$ -подалгеброй алгебры $\mathbb{F}Q$, которая порождает её как \mathbb{F} -пространство. Последнее позволяет выбрать элемент J, который как матрица из $\mathrm{H}_3(\mathcal{O})$ имеет ненулевой след, вывести по аналогии с предыдущим рассуждением алгебраичность над полем $F/\operatorname{Ann}_F J$ области Z(J) (см. замечание 2.15) и вновь прийти к противоречию J=Q=LF(J)?!

В случае (4) алгебру J можно вложить в алгебру $\mathrm{J}(V,f)$, которая является прямой суммой пространств $Z(Q)=Z(Q)\cdot 1$ с базисом 1 и V с операцией умножения

$$(z \cdot 1 + v) \cdot (z' \cdot 1 + v') = (zz' + f(v, v')) \cdot 1 + (z'v + zv') \quad (z, z' \in Z(Q), \ v, v' \in V).$$

Алгебра $\mathrm{J}(V,f)$ обладает автоморфизмом второго порядка

$$x = z \cdot 1 + v \mapsto \bar{x} = z \cdot 1 - v, \quad z \in Z(Q), \quad v \in V,$$

причём

$$t(x) = x + \bar{x} = 2z \cdot 1, \quad n(x) = x\bar{x} = (z^2 - f(v, v)) \cdot 1.$$

Поэтому по замечанию 2.12 алгебра J является целой над полем $F/\operatorname{Ann}_F J$, J=Q=LF(J)?!

Заменив в проделанном рассуждении J на ненулевую первичную LN-полупростую йорданову PI-алгебру над кольцом с 1/2, все элементы которой являются суммами её ниль-элементов, мы получим, что J не содержит элементов с ненулевым следом в случаях (1)—(3) и является ниль-алгеброй в случае (4) (более того, J нильпотентна в случаях (1)—(3) и локально нильпотентна в случае (4) (см. [22, теоремы [3])?!

Из доказательств замечаний 2.4 и 2.9 (вторая часть) можно также вывести следствие.

Следствие 2.17. Если элемент z центра Z(J) йордановой PI-алгебры J над алгеброй F является суммой целых элементов J, то z является целым элементом.

Отметим, что первое утверждение теоремы 2.16 для йордановых PI-алгебр над алгеброй F с максимальным первичным спектром напрямую следует из следствия 2.17.

3. Доказательство теоремы 1.1

Абсолютными делителями нуля алгебр Мальцева называются их элементы, операторы умножения на которые имеют нулевые квадраты. Алгебры Мальцева, не содержащие ненулевых абсолютных делителей нуля, называются невырожденными. В алгебрах Ли используется другое условие невырожденности, которое совпадает с данным для алгебр Ли без 2-кручения. Первичные невырожденные алгебры Мальцева называются сильно первичными. Наименьший из идеалов алгебры Мальцева, фактор-алгебры по которым невырожденны, называется её радикалом Кострикина.

Понятие йордановой алгебры алгебры Ли из [35] мы приведём в форме из [7]. Пусть L- алгебра Ли без 6-кручения над кольцом $F,\ a-$ йорданов (3-энгелев) элемент L, т. е. $\mathrm{ad}_a^3=0$, и $L^{(a)}-$ алгебра, полученная из L заменой операции умножения на операцию \cdot_a , $x\cdot_a y=\left[[a,x],y\right],\ x,y\in L$. Тогда $\mathrm{Ker}\ \mathrm{ad}_a^2=\left\{x\in L\ \middle|\ [a,[a,x]]=0\right\}-$ идеал алгебры $L^{(a)}$ и $L_a=L^{(a)}/\mathrm{Ker}\ \mathrm{ad}_a^2-$ йорданова алгебра, которая называется йордановой алгеброй алгебры Ли L по элементу a (см. [7, замечание 1.1, теорема 1.2; 35, теорема 2.4]; под отсутствием в алгебре k-кручения, $k\geqslant 1$, понимается его отсутствие в её аддитивной группе).

Доказательство теоремы 1.1 базируется на следующих вариантах предложения 5.1 (см. также его доказательство) и леммы 6.1 из [36].

Предложение 3.1. Ненулевая сильно первичная PI-алгебра Ли L над алгебраически замкнутым полем \mathbb{F} , $\operatorname{char} \mathbb{F} = 0$, проста и конечномерна, если и только если L содержит ненулевые йордановы элементы и все её йордановы алгебры по ним являются целыми.

Лемма 3.2. Пусть L — алгебра Ли над бесконечным полем \mathbb{F} , char $\mathbb{F} \neq 2,3$, \mathbb{F}' — бесконечное подполе \mathbb{F} , L' — алгебраическая \mathbb{F}' -подалгебра L, которая порождает L, и выполняется по меньшей мере одно из следующих условий:

- 1) \mathbb{F}' поле c(k, s)-условием;
- 2) L'-PІ-алгебра с условием 3) теоремы 1.1.

Тогда йорданова алгебра L_a алгебры L по любому её йорданову элементу a является целой.

Доказательство. Целостность образа $\bar{x} = x + \operatorname{Ker} \operatorname{ad}_a^2$ элемента $x \in L$ в алгебре L_a равносильна конечномерности пространства

$$M(x, [a, x]) = \mathbb{F} \langle \operatorname{ad}_{[a, x]}^k x \mid k \geqslant 0 \rangle,$$

поскольку

$$\overline{M(x, [a, x])} = \mathbb{F} \langle \overline{\operatorname{ad}_{[a, x]}^k x} = \overline{x}^{k+1} \mid k \geqslant 0 \rangle.$$

Зафиксировав выражение $a=\alpha_1a_1+\ldots+\alpha_ka_k,\ \alpha_i\in\mathbb{F},\ a_i\in L',\ k\geqslant 1,\ u\ x\in L',$ мы можем записать для всех $s\geqslant 1,\ \beta_i\in\mathbb{F}$

$$\operatorname{ad}_{[\beta_{1}a_{1}+...+\beta_{k}a_{k},x]}^{s} x = \sum_{\substack{0 \leqslant n_{1},...,n_{k} \leqslant s, \\ n_{1}+...+n_{k}=s}} \beta_{1}^{n_{1}} \cdots \beta_{k}^{n_{k}} v_{(n_{1},...,n_{k})},$$
$$v_{(n_{1},...,n_{k})} = \sum_{\sigma \in \mathfrak{S}_{s}} \operatorname{ad}_{[a_{i_{\sigma(1)}},x]} \cdots \operatorname{ad}_{[a_{i_{\sigma(s)}},x]} x,$$

где $1\leqslant i_1\leqslant i_2\leqslant\ldots\leqslant i_s\leqslant k,\; n_i=|\{l\;|\;i_l=i\}|,\;\mathfrak{S}_s$ — симметрическая группа степени s. Для каждого $s\geqslant 1$ выберем множество $T_s\subset\mathbb{F}',\;|T_s|\leqslant s+1,\;$ такое что

$$v_{(n_1,\dots,n_k)}\in W_s={}_{\mathbb{F}'}\langle \operatorname{ad}^s_{[\gamma_1a_1+\dots+\gamma_ka_k,x]}x\mid \gamma_i\in T_s\rangle\quad (0\leqslant n_i\leqslant s,\ n_1+\dots+n_k=s)$$
и, как следствие,

$$W_s = \mathbb{F}' \langle \operatorname{ad}_{[v,x]}^s x \mid v \in V = \mathbb{F}' a_1 + \ldots + \mathbb{F}' a_k \rangle,$$
$$\dim_{\mathbb{F}'} W_s \leqslant l(s,k) = \min\{m(k,s), |T_s|^k\}.$$

Положим $M(y,z)'={}_{\mathbb{F}'}\langle\operatorname{ad}_z^ky\mid k\geqslant 0\rangle,\ y,z\in L'.$ Заметим, что $\dim_{\mathbb{F}'}M(y,z)'<\infty$ ввиду алгебраичности алгебры L' и $\dim_{\mathbb{F}'}M(y,z)'\leqslant m$ для некоторого $m\geqslant 1$, если и только если $M(y,z)'=\mathbb{F}'y+\mathbb{F}'\operatorname{ad}_zy+\ldots+\mathbb{F}'\operatorname{ad}_z^{m-1}y$. Поэтому

$$\mathbb{F}^{\prime k} = \bigcup_{m \geqslant 1} A_m,$$

где

$$A_m = \{(\theta_1, \dots, \theta_k) \in \mathbb{F}'^k \mid \dim_{\mathbb{F}'} M(x, [\theta_1 a_1 + \dots + \theta_k a_k, x])' \leqslant m\},\$$

и существует $n\geqslant 1$, такое, что $W_s={}_{\mathbb{F}'}\langle {\rm ad}^s_{[\theta_1a_1+\ldots+\theta_ka_k,x]}\,x\mid (\theta_1,\ldots,\theta_k)\in A_n\}$ при любом $s\geqslant 1$. Для условия 1) последнее следует из замечания 1.8, для условия 2) можно взять $n=n(x,V)'=\max\{\dim_{\mathbb{F}'}M(x,[v,x])'\mid v\in V\}$. Таким образом,

$$W = \mathbb{F}' x + \sum_{s \geqslant 1} W_s = \sum_{v \in V} M(x, [v, x])' =$$

$$= \sum_{(\theta_1, \dots, \theta_k) \in A_n} M(x, [\theta_1 a_1 + \dots + \theta_k a_k, x])' = \mathbb{F}' x + W_1 + \dots + W_{n-1},$$

 $M(x, [a, x]) \subseteq \mathbb{F}W$,

$$\dim_{\mathbb{F}} M(x, [a, x]) \leqslant \dim_{\mathbb{F}} \mathbb{F} W \leqslant \dim_{\mathbb{F}'} W \leqslant 1 + l(1, k) + \ldots + l(n - 1, k).$$

При выполнении условия 2) алгебра L удовлетворяет всем однородным тождествам PI-алгебры L', и потому L и L_a являются PI-алгебрами (см. [6, замечание 2.2; 9, теорема 6; 36, предложение 4.2]). Так как по доказанному элементы алгебры L_a являются суммами её целых элементов ($\mathbb F$ -линейными комбинациями образов в L_a элементов алгебры L'), PI-алгебра L_a локально конечномерна (см. теорему 2.16).

Остаётся показать, что при выполнении условия 1) $\dim_{\mathbb{F}} M(x,[a,x])<\infty$ для всех $x\in L$. Зафиксируем выражение $x=\psi_1x_1+\ldots+\psi_qx_q,\,\psi_j\in\mathbb{F},\,x_j\in L',\,q\geqslant 1$, и запишем для любых $t\geqslant 1,\,\varphi_j\in\mathbb{F}$

$$\operatorname{ad}_{[a,\varphi_{1}x_{1}+\ldots+\varphi_{q}x_{q}]}^{t}(\varphi_{1}x_{1}+\ldots+\varphi_{q}x_{q}) = \sum_{\substack{0 \leqslant m_{1},\ldots,m_{q} \leqslant t+1,\\m_{1}+\ldots+m_{q}=t+1}} \varphi_{1}^{m_{1}}\cdots\varphi_{q}^{m_{q}}w_{(m_{1},\ldots,m_{q})},$$

$$w_{(m_1,...,m_q)} = \sum_{\sigma \in \mathfrak{S}_{t+1}} \operatorname{ad}_{[a,x_{j_{\sigma(1)}}]} \cdots \operatorname{ad}_{[a,x_{j_{\sigma(t)}}]} x_{j_{\sigma(t+1)}},$$

где $1\leqslant j_1\leqslant j_2\leqslant\ldots\leqslant j_{t+1}\leqslant l,\ m_j=|\{l\mid j_l=j\}|.$ Для любого $t\geqslant 1$ выберём множество $H_t\subset\mathbb{F}',\ |H_t|\leqslant t+1,$ такое что при всех $0\leqslant m_j\leqslant t+1,$ $m_1+\ldots+m_q=t+1$

$$w_{(m_1,\ldots,m_q)} \in V_t = \mathbb{F}' \langle \operatorname{ad}_{[a,\tau_1+x_1+\ldots+\tau_q x_q]}^t (\tau_1 x_1 + \ldots + \tau_q x_q) \mid \tau_j \in H_t \rangle,$$

и следовательно,

$$V_t = \mathbb{F}' \langle \operatorname{ad}_{[a,v]}^t v \mid v \in V_0 = \mathbb{F}' x_1 + \ldots + \mathbb{F}' x_q \rangle,$$

$$\operatorname{dim}_{\mathbb{F}'} V_t \leqslant g(t,q) = \min\{m(q,t+1), |H_t|^q\}.$$

Поскольку по доказанному $\dim_{\mathbb{F}} M(y, [a, y]) < \infty$ для всех $y \in L'$,

$$\mathbb{F}'^q = \bigcup_{p \geqslant 1} B_p,$$

ΓД

$$B_p = \{(\nu_1, \dots, \nu_q) \in \mathbb{F'}^q \mid \dim_{\mathbb{F}} M(\nu_1 x_1 + \dots + \nu_q x_q, [a, \nu_1 x_1 + \dots + \nu_q x_q]) \leqslant p\},$$
и найдётся $\hat{n} \geqslant 1$, такое что

$$V_t = \mathbb{F}'\langle \operatorname{ad}_{[a,\nu_1x_1+\ldots+\nu_qx_q]}^t(\nu_1x_1+\ldots+\nu_qx_q) \mid (\nu_1,\ldots,\nu_q) \in B_{\hat{n}}\rangle$$

при любом $t \geqslant 1$ (см. замечание 1.8). Поэтому

$$\begin{split} \hat{V} &= \sum_{t \geqslant 0} \mathbb{F} V_t = \sum_{v \in V_0} M(v, [a, v]) = \sum_{u \in \mathbb{F} V_0} M(u, [u, a]) = \\ &= \sum_{(\nu_1, \dots, \nu_q) \in B_{\hat{n}}} M(\nu_1 x_1 + \dots + \nu_q x_q, [a, \nu_1 x_1 + \dots + \nu_q x_q]) = \sum_{t=0}^{\hat{n}-1} \mathbb{F} V_t, \end{split}$$

$$\operatorname{H} \dim_{\mathbb{F}} M(x,[a,x]) \leqslant \dim_{\mathbb{F}} \hat{V} \leqslant q + g(1,q) + \ldots + g(\hat{n}-1,q).$$

Условие 2) леммы 3.2 выполняется, в частности, если L' — алгебраическая алгебра Ли ограниченной степени (см. [6, замечание 1.5]).

Нам также понадобится ряд сведений об инвариантности сумм локально конечных идеалов алгебр относительно действия их дифференцирований, полученных на основе выводов [37] (см. также [24, гл. 6, п. 3]).

Пусть R — алгебра над алгеброй F над нётеровым кольцом K, F((t)) и R((t)) — алгебры рядов Лорана от одной переменной t с коэффициентами из

F и R (алгебры над F и F((t))), $\hat{F}((t))$ — подалгебра F((t)), состоящая из рядов с коэффициентами из конечно порождённых подалгебр F (объединение подалгебр H((t)), где H — конечно порождённая подалгебра F), R((t))' — $\hat{F}((t))$ -подалгебра R((t)), состоящая из рядов с коэффициентами из конечно порождённых подмодулей R над конечно порождёнными подалгебрами $F(\hat{F}((t))$ -подалгебра, порождённая R). Поскольку конечно порождённые модули над нётеровыми кольцами нётеровы и по теореме Гильберта о базисе конечно порождённые подалгебры алгебры F, содержащие её единицу F, являются нётеровыми кольцами, каждый элемент алгебры F0 у является F1 у помбинацией некоторой конечной системы своих коэффициентов.

Если B — подмодуль (подалгебра, идеал) алгебры R, то B((t)) и B((t))' — подмодули (подалгебры, идеалы) алгебр R((t)) и R((t))', причём $B((t))'=R((t))'\cap B((t))$. Если A — подмодуль (подалгебра, идеал) R((t))' или R((t)) как $\hat{F}((t))$ -алгебры, A_0 — дополненное нулём множество всех первых ненулевых коэффициентов рядов из A, то A_0 — подмодуль (подалгебра, идеал) R. В случае если $A_0((t))'\subseteq A$, $A\subseteq A_0((t))$, так как иначе, выбрав $a=\sum_{i\geqslant s}a_it^i\in A\setminus A_0((t))$,

коэффициентов рядов из
$$A$$
, то A_0 — подмодуль (подалгебра, идеал) R . В случае если $A_0((t))'\subseteq A$, $A\subseteq A_0((t))$, так как иначе, выбрав $a=\sum\limits_{i\geqslant s}a_it^i\in A\setminus A_0((t))$, $s\in\mathbb{Z}$, и $t>s$, $a_t\notin A_0$, $a_i\in A_0$ при всех $i< t$, мы получим, что $a-\sum\limits_{s\leqslant i< t}a_it^i=\sum\limits_{i\geqslant t}a_it^i\in A$, $a_t\in A_0$?!

Замечание 3.3. Если A — локально конечная подалгебра алгебры R((t))', то A_0 — локально конечная подалгебра алгебры R. Если B — локально конечная подалгебра R, то B((t))' — локально конечная подалгебра R((t))'.

Доказательство. Любая конечно порождённая подалгебра $A' = \langle a_1, \dots, a_n \rangle$ алгебры A порождается как $\hat{F}((t))$ -модуль некоторым конечным набором элементов $\{b_1, \dots, b_m\}$. Зафиксируем выражения

$$a_i = \sum_{p=1}^m h_i^p b_p, \quad [b_j, b_k] = \sum_{p=1}^m g_{jk}^p b_p, \quad b_j = \sum_{q=1}^{q_j} f_j^q c_{jq} \quad (i = 1, \dots, n, \ j, k = 1, \dots, m)$$

для подходящих $h_i^p, g_{jk}^p, f_j^q \in \hat{F}((t)), \ q_j \geqslant 1, \ c_{jl} \in R$ и конечно порождённую подалгебру H алгебры F, содержащую её единицу 1 и все коэффициенты рядов $\{h_i^p, g_{jk}^p, f_j^q\}$. Тогда $A'' \subseteq B = \sum\limits_{j,q} H((t))c_{jq}$ и $A_0'' \subseteq B_0 = \sum\limits_{j,q} Hc_{jq}$, где A'' - H((t))-подалгебра алгебры A', порождённая элементами a_1, \ldots, a_n . Из нётеровости кольца H и конечно порождённого H-модуля B_0 следует конечность H-алгебры A_0'' и всех её подалгебр. Поэтому первые ненулевые коэффициенты рядов a_1, \ldots, a_n порождают конечные подалгебры алгебры R над алгебрами H и F.

Второе утверждение сразу следует из локальной конечности конечных алгебр (см. [9, лемма 7; 10, лемма 1]).

Следствие 3.4. Если алгебры R и R((t))' содержат наибольшие локально конечные идеалы I и I', то $I((t))' = I' = R((t))' \cap I((t))$.

При этом $I = \operatorname{Rad}_{L\mathfrak{F}}(R)$ и $I' = \operatorname{Rad}_{L\mathfrak{F}_t}(R((t))')$, где \mathfrak{F}_t — класс конечных алгебр над алгеброй $\hat{F}((t))$. Далее, K — поле, $\operatorname{char} K = 0$, F — алгебра над K.

Замечание 3.5. Идеал I из следствия 3.4 инвариантен относительно действия всех локально конечных (как эндоморфизмы F-модуля R) дифференцирований алгебры R.

Доказательство. Каждому дифференцированию D алгебры R отвечает автоморфизм $\exp(tD)$ алгебры R((t)),

$$\exp(tD) \sum_{i \geqslant n} r_i t^i = \sum_{k \geqslant n} \left(\sum_{i=n}^k \frac{D^{k-i} r_i}{(k-i)!} \right) t^k \quad \left(\sum_{i \geqslant n} r_i t^i \in R((t)) \right).$$

Если D локально конечно, то для любого $x\in R$ можно подобрать такой многочлен $_{D,x}f(t)=t^{n_{D,x}}+_{D,x}f_{n_{D,x}-1}t^{n_{D,x}-1}+\dots_{D,x}f_{1}t\in F[t],$ что $_{D,x}f(D)x=0$, и, следовательно, $\exp(tD)x\in G((t))x+G((t))Dx+\dots+G((t))D^{n_{D,x}-1}x$, где G — подалгебра алгебры F, порождённая коэффициентами $_{D,x}f$. Поэтому в данном случае ограничение $\exp(tD)$ на алгебру R((t))' является её автоморфизмом $(\exp(tD)^{-1}=\exp(-tD))$. Кроме того, ввиду следствия 3.4 и инвариантности идеала I' относительно действия всех автоморфизмов алгебры R',

$$\exp(tD)x - x = \sum_{i \ge 1} \frac{D^i x}{i!} \in I' = I((t))', \quad Dx \in I'_0 = I \quad (x \in I).$$

Аналогичным образом можно доказать инвариантность относительно действия всех локально конечных дифференцирований алгебры R над алгеброй F её наибольшего локально нильпотентного идеала или наибольшего локально конечного и разрешимого идеала при наличии последнего в алгебрах R и R((t))'.

Радикал в смысле Куроша—Амицура $\mathcal T$ называется идеально наследственным, если $\mathcal T(I)=I\cap \mathcal T(R)$ для любых алгебры R из класса его определения и её идеала I. Идеально наследственные специальные радикалы называются кручениями.

Следствие 3.6. На классе алгебраических алгебр Ли над алгеброй F радикалы LF и LS являются кручениями. Кроме того, $\mathrm{Rad}_{L\mathfrak{R}}(I) = I \cap \mathrm{Rad}_{L\mathfrak{R}}(L)$ для любых алгебры L из этого класса и её идеала I.

В общем случае наибольшие локально нильпотентные, локально конечные и локально конечные и разрешимые идеалы алгебры Ли не инвариантны относительно действия всех её дифференцирований (см. [17]).

Доказательство теоремы 1.1. Покажем, что любой элемент x алгебры Мальцева R, который является сильно алгебраическим элементом всех содержащих его конечно порождённых подалгебр R, входит в локально конечный радикал LF(R). Для этого нам достаточно установить включение x в локально конечный радикал каждой из таких подалгебр алгебры R (см. замечание 1.2 для класса алгебраических алгебр Мальцева над полем $\mathbb F$ в качестве основного класса, подкласса конечномерных алгебр Мальцева над $\mathbb F$ и локальной системы

всех конечно порождённых подалгебр R). Допустим, что $x \in A \setminus LF(A)$ для некоторой конечно порождённой подалгебры A алгебры R и значит, существует идеал $P \in \operatorname{Spec}_{LF}(A)$, $x \notin P$. Первичная LF-полупростая алгебраическая PI-алгебра B=A/P является алгеброй Ли (см. [7, лемма 2.2]). Обозначим через B скалярное расширение алгебры B над алгебраическим замыканием $\mathbb F$ поля \mathbb{F} . Используя лемму Цорна, выберем максимальный идеал M среди всех идеалов алгебры \bar{B} , имеющих нулевое пересечение с её \mathbb{F} -подалгеброй B, и отождествим B с её образом в фактор-алгебре $D = \bar{B}/M$. Алгебра B порождает алгебру D и имеет ненулевые пересечения со всеми ненулевыми идеалами D. Ввиду сильной первичности алгебры B, совпадения радикалов Кострикина алгебр Ли с их радикалами Кострикина как колец, наследственности на подалгебры и идеальной наследственности радикала Кострикина на классах алгебр Ли над полями характеристики нуль и выполнения на алгебре D всех тождеств B, D — сильно первичная РІ-алгебра (см. [5, замечание 1.1; 8; 9, теоремы 3, 6; 12, предложение 2 и его следствие 1]). Кроме того, D содержит ненулевой сильно алгебраический элемент x + P и вместе с ним ненулевые йордановы элементы (см. [36, следствие 2.3]). По замечанию 2.1 из [6] и лемме 3.2 все йордановы алгебры D по её йордановым элементам являются целыми. Следовательно, согласно предложения 3.1 и лемме 3.4 из [6] D проста, конечномерна над полем $\bar{\mathbb{F}}$ и локально конечномерна над полем \mathbb{F} , $B = LF(B) = \{0\}$?!

Если теперь $x\in A\setminus P$ для некоторых локально сильно алгебраического элемента x алгебры R, её конечно порождённой подалгебры A и идеала $P\in \operatorname{Spec}_{LF}(A)$, то по доказанному ранее и следствию 3.6 B=A/P-LF-полупростая алгебраическая PI-алгебра Ли и $0\neq x+P\in LF(I)=I\cap LF(B)=\{0\}$, где I— идеал B, порождённый элементом x+P?! Поэтому локально конечный радикал LF(R) алгебры R содержит все её локально сильно алгебраические элементы. Вместе с тем, по определению элементы LF(R) являются локально сильно алгебраическими элементами R.

Мы будем называть алгебру *идеально алгебраической*, если конечно порождённые идеалы её конечно порождённых подалгебр являются конечно порождёнными алгебрами (см. [3]). Локально конечные алгебры являются идеально алгебраическими, обратное в общем случае не верно (см. [10, леммы 1, 2; 23]).

Следствие 3.7. Если алгебра Мальцева R в условиях теоремы 1.1 является идеально алгебраической, то локально конечный радикал LF(R) совпадает с множеством всех элементов R, которые являются сильно алгебраическими элементами всех содержащих их конечно порождённых подалгебр R.

Доказательство. Достаточно заметить, что каждый элемент $x \in LF(R)$ порождает конечномерный идеал I любой конечно порождённой подалгебры A алгебры $R, x \in A$, и ограничение $r_x|_I$ оператора r_x на I аннулируется его характеристическим многочленом $\chi_{r_x|_I}(t) \in \mathbb{F}[t]$.

Если R — первичная нелиева алгебра Mальцева без 2-кручения над кольцом F, то на скалярном расширении $\overline{P(R)}$ её центрального замыкания P(R)

над алгебраическим замыканием $\overline{\mathrm{CM}(R)}$ центроида $\mathrm{CM}(R)$ определена невырожденная симметрическая билинейная форма $(\ ,\)$, такая что

$$(xy)y = (y,y)x - (x,y)y, (xy,xy) = (x,y)^2 - (x,x)(y,y) (x,y \in \overline{P(R)})$$

(см. [7, наблюдения перед следствием 1.6; 15, предложение 3.9, лемма 3.10; 21]). Как следствие, $r_x^3=(x,x)r_x$, энгелевость x равносильна (x,x)=0. Поэтому xy энгелев для всех $y\in R$, если и только если $(x,y)=0,\ y\in \overline{P(R)}$, т. е. x=0.

Следствие 3.8. Локально разрешимый радикал LS(R) алгебры Мальцева R в условиях теоремы 1.1 совпадает с множеством всех её локально разрешимых элементов.

Доказательство. По аналогии с доказательством теоремы 1.1 включение в радикал LS(R) = LSF(R) локально разрешимых элементов алгебры Мальцева R можно вывести из включения $x \in LS(A)$ для любых её конечно порождённой подалгебры A и элемента $x \in A$, такого что xy — энгелев элемент A для всех $y \in A$. Предположим, что $x \notin LS(A)$ для некоторых таких подалгебры A и элемента x. Тогда мы можем перейти к первичной LS-полупростой алгебраческой PI-алгебре Ли B = A/P, $x \notin P$, и отождествить её с \mathbb{F} -подалгеброй конечномерной простой алгебры Ли $D = \bar{B}/M$ над алгебраческим замыканием $\bar{\mathbb{F}}$ поля \mathbb{F} (см. доказательство теоремы 1.1 с учётом наличия в D ненулевых энгелевых элементов [x+P,b], $0 \neq b \in B$, и наблюдения перед следствием 3.8). Алгебра B порождает алгебру D, $\mathrm{ad}_{[x+P,b]}^n = 0$ для всех $b \in B$, $n = \dim_{\bar{\mathbb{F}}} D$, и потому

$$\sum_{\sigma \in \mathfrak{S}_n} \operatorname{ad}_{[x+P,b_{\sigma(1)}]} \cdots \operatorname{ad}_{[x+P,b_{\sigma(n)}]} = 0 \quad (b_i \in B).$$

Значит, $\operatorname{ad}_{[x+P,d]}^n=0$ для всех $d\in D$, и по [27, теорема 3.7] $x\in P$?! Остаётся заметить, что по [15, следствие 2.8] радикал LS(R) входит в множество локально разрешимых элементов алгебры R.

Следствие 3.9. Локально нильпотентный радикал LN(R) локально PI ниль-алгебры Мальцева R над полем \mathbb{F} , $\operatorname{char} \mathbb{F} = 0$, совпадает c множеством всех её локально энгелевых элементов.

Доказательство. Достаточно заменить в доказательстве теоремы 1.1 радикал LF на радикал LN и заметить, что первичные LN-полупростые ниль-PI-алгебры Мальцева над полем $\mathbb F$ не содержат ненулевых энгелевых элементов (см. [6, следствие 2.12; 7, доказательство следствия 1.15 и замечание 2.5; 8]).

С учётом выводов [21] и [8] мы получаем также следствие 3.10.

Следствие 3.10. Если ненулевые сильно первичные фактор-алгебры алгебры Мальцева R в условиях теоремы 1.1 содержат ненулевые локально сильно алгебраические (локально разрешимые) элементы, то R локально конечномерна (и локально разрешима).

Следствие 3.11. Если ненулевые сильно первичные фактор-алгебры локально PI ниль-алгебры Мальцева R над полем \mathbb{F} , $\operatorname{char} \mathbb{F} = 0$, содержат ненулевые локально энгелевы элементы, то R локально нильпотентна.

В заключение отметим, что помимо предложения 3.1 из доказательства предложения 5.1 из [36] можно вывести следующее утверждение.

Предложение 3.12. Если сильно первичная алгебра \mathcal{I} и L над алгебраически замкнутым полем \mathbb{F} , $\operatorname{char} \mathbb{F} = 0$, имеет ненулевые йордановы элементы и все её йордановы алгебры по ним являются целыми PI-алгебрами, то L содержит ненулевые экстремальные элементы и её идеал I, порождённый всеми такими элементами, является локально конечномерной простой алгеброй \mathcal{I} и.

Указанный здесь идеал I или конечномерен и совпадает с алгеброй Ли L (последнее равносильно тому, что L — PI-алгебра), или является бесконечномерной диагональной алгеброй Ли и, следовательно, имеет алгебраическое присоединённое представление (см. [30, теорема 1.1; 29, следствие 3.9]).

Следствие 3.13. PK-алгебраические алгебры Ли над алгебраически замкнутым полем \mathbb{F} , $\operatorname{char} \mathbb{F} = 0$, ненулевые сильно первичные фактор-алгебры которых (при их наличии) удовлетворяют условию предложения 3.12, локально конечномерны.

Следствие 3.13 переносится на алгебры Мальцева заменой йордановых элементов в предложении3.12 на сильно йордановы дифференцирования (см. [7, лемма 2.1]).

Исследование выполнено за счёт гранта МЦФПМ в МГУ им. М. В. Ломоносова «Структурная теория и комбинаторно-логические методы в теории алгебраических систем».

Литература

- [1] Андрунакиевич В. А., Рябухин В. М. Радикалы алгебр и структурная теория. М.: Наука, 1979.
- [2] Бахтурин Ю. А., Штраде X. Локально конечномерные простые алгебры Ли // Мат. сб. -1994.- T. 185, № 2. C. 3-32.
- [3] Голубков А. Ю. Локальная конечность алгебр // Фундамент. и прикл. матем. 2014.-T. 19, вып. 6.-C. 25—75.
- [4] Голубков А. Ю. Конструкции специальных радикалов алгебр // Фундамент. и прикл. матем. 2015. Т. 20, вып. 1. С. 57-133.
- [5] Голубков А. Ю. Радикал Кострикина и подобные ему радикалы алгебр Ли // Фундамент. и прикл. матем. 2016. Т. 21, вып. 2. С. 157—180.
- [6] Голубков А. Ю. Алгебраические алгебры Ли ограниченной степени // Фундамент. и прикл. матем. 2019. Т. 22, вып. 5. С. 209—242.
- [7] Голубков А. Ю. Йорданова алгебра алгебры Мальцева // Фундамент. и прикл. матем. 2020. Т. 23. вып. 3. С. 49-74.

- [8] Гришков А. Н. О локальной нильпотентности идеала алгебры Ли, порождённого элементами 2-го порядка // Сиб. матем. журн. 1982. Т. 23, № 1. С. 181—182.
- [9] Жевлаков К. А., Слинько А. М., Шестаков И. П., Ширшов А. И. Кольца, близкие к ассоциативным. М.: Наука, 1978.
- [10] Жевлаков К. А., Шестаков И. П. О локальной конечности в смысле Ширшова // Алгебра и логика. 1973. Т. 12, \mathbb{N} 1. С. 43—73.
- [11] Зельманов Е. И. Абсолютные делители нуля и алгебраические йордановы алгебры // Сиб. матем. журн. 1980. Т. 23, № 6. С. 100—116.
- [12] Зельманов Е. И. Алгебры Ли с алгебраическим присоединённым представлением // Матем. сб. 1983. Т. 121 (163), № 4 (8). С. 545—561.
- [13] Зельманов Е. И. Первичные йордановы алгебры. II // Сиб. матем. журн. 1983. Т. 24, № 1. С. 89—104.
- [14] Кузьмин Е. Н. Алгебраические множества в алгебрах Мальцева // Алгебра и логика. — 1968. — Т. 7, № 2. — С. 42—47.
- [15] Кузьмин Е. Н. Структура и представления конечномерных алгебр Мальцева // Тр. Ин-та мат. СО АН СССР. Исследования по теории колец и алгебр. — 1989. — Т. 16. — С. 75—101.
- [16] Марков В. Т. О размерности некоммутативных аффинных алгебр // Изв. АН СССР. Сер. матем. — 1973. — Т. 37. — С. 284—288.
- [17] Парфёнов В. А. О слабо разрешимом радикале алгебр Ли // Сиб. матем. журн. 1971. Т. 12, № 1. С. 171—176.
- [18] Плоткин Б. И. Об алгебраических множествах элементов в группах и алгебрах Ли // УМН. 1958. Т. 13, № 6 (84). С. 133—138.
- [19] Размыслов Ю. П. Тождества алгебр и их представлений. М.: Наука, 1989.
- [20] Скосырский В. Г. Правоальтернативные алгебры // Алгебра и логика. 1984. Т. 23, № 2. — С. 185—192.
- [21] Филиппов В. Т. Первичные алгебры Мальцева // Мат. заметки. 1982. Т. 31, $\ \, \mathbb{N} _{2} \ 5.$ С. 669-678.
- [22] Шестаков И. П. Конечномерные алгебры с ниль-базисом // Алгебра и логика. 1971. Т. 10, № 1. С. 87—99.
- [23] Amayo R. K. A construction for algebras satisfying the maximal condition for subalgebras // Compositio Math. 1975. Vol. 31, no. 1. P. 31-46.
- [24] Amayo R. K., Stewart I. N. Infinite dimensional Lie algebras. Leyden: Noordhoof, 1974.
- [25] Amitsur S. A. Rings with involutions // Israel J. Math. 1968. Vol. 6, no. 2. P. 99—106.
- [26] Amitsur S. A. Identities in rings with involutions // Israel J. Math. 1969. Vol. 7, no. 1. — P. 63—68.
- [27] Bandman T., Borovoi M., Grunewald F., Kunyavskii B., Plotkin E. Engel-like characterization of radicals in finite dimensional Lie algebras and finite groups // Manuscripta Math. 2006. Vol. 119, no. 4. P. 465–481.
- [28] Bakhturin Yu. A. Simple Lie algebras satisfying a nontrivial identity // Serdika. 1976. — Vol. 2, no. 3. — P. 241—246.

- [29] Baranov A. A. Simple diagonal locally finite Lie algebras // Proc. London Math. Soc. 1998. Vol. 77, no. 2. P. 362—386.
- [30] Baranov A. A., Rowley J. Inner ideals of simple locally finite Lie algebras // J. Algebra. 2013. Vol. 379. P. 11–30.
- [31] Baxter W. E., Martindale W. S., 3rd. Central closure of semiprime non-associative rings // Commun. Algebra. 1979. Vol. 7, no. 11. P. 1103—1132.
- [32] Baxter W. E., Martindale W. S., 3rd. Jordan homomorphisms of semiprime rings // J. Algebra. $-1979.-Vol.\ 56.-P.\ 457-471.$
- [33] Beidar K. I., Martindale W. S., 3rd, Mikhalev A. V. Rings with Generalized Identities. New York: Marcel Dekker, 1996.
- [34] Erickson T. S., Martindale W. S., 3rd, Osborn J. M. Prime non-associative algebras // Pacific J. Math. -1975. Vol. 60, no. 1. P. 49-63.
- [35] Fernández López A., García E., Gómez Lozano M. The Jordan algebras of a Lie algebra // J. Algebra. — 2007. — Vol. 308. — P. 164—177.
- [36] Fernández López A., Golubkov A. Yu. Lie algebras with an algebraic adjoint representation revisited // Manuscripta Math. 2013. Vol. 140, no. 3-4. P. 363—376.
- [37] Hartley B. Locally nilpotent ideals of a Lie algebra // Proc. Cambridge Phil. Soc. 1967. Vol. 63, pt. 2. P. 257—272.
- [38] Jacobson N. Structure and representations of Jordan algebras. Providence, 1968.
- [39] Knus M.-A., Merkurjev A., Rost M., Tignol J.-P. The Book of Involutions. Providence: Amer. Math. Soc., 1998. (AMS Colloq. Publ.; Vol. 44).
- [40] Petersson H. P. A survey on Albert algebras // Transformation Groups. 2019. Vol. 24. — P. 219—278.
- [41] Posner E. C. Prime rings satisfying a polynomial identity // Proc. Amer. Math. Soc. 1960. Vol. 11, no. 2. P. 180-183.
- [42] Procesi C. The Burnside problem // J. Algebra. 1966. Vol. 4. P. 421—425.
- [43] Rowen L. H. Some results on the center of ring with polynomial identity // Bull. Amer. Math. Soc. -1973.- No. 1.- P. 219-223.
- [44] Rowen L. H. Polynomial Identities in Ring Theory. London: Academic Press, 1980. (Pure Appl. Math.; Vol. 84).
- [45] Wilson R. A. Albert algebras and construction of the finite simple groups $F_4(q)$, $E_6(q)$ and $^2E_6(q)$ and their generic covers. —arXiv:1310.5886.
- [46] Wisbauer R. Modules and Algebras: Bimodule Structure and Group Actions on Algebras. CRC Press, 1996. (Pitman Monogr. Surv. Pure Appl. Math.; Vol. 81).