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Abstract. For 2D Navier–Stokes equations defined in a bounded domain Ω we study stabi-
lization of solution near a given steady-state flow v̂(x) by means of feedback control defined
on a part Γ of boundary ∂Ω. New mathematical formalization of feedback notion is proposed.
With its help for a prescribed number σ > 0 and for an initial condition v0(x) placed in a
small neighbourhood of v̂(x) a control u(t, x′), x′ ∈ Γ, is constructed such that solution v(t, x)
of obtained boundary value problem for 2D Navier–Stokes equations satisfies the inequality:
‖v(t, ·) − v̂‖H1 6 ce−σt for t > 0. To prove this result we firstly obtain analogous result on
stabilization for 2D Oseen equations.
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1. Introduction

In this paper we study so-called stabilization problem for two-dimensional (2D)
Navier–Stokes equations defined in a bounded domain Ω ⊂ R2 which is controlled
by Dirichlet boundary condition for velocity vector field. Let (v̂(x),∇p̂(x)), x ∈ Ω
be a steady-state solution for Navier–Stokes equations

∂tv(t, x)−∆v(t, x)+(v,∇)v +∇p(t, x) = f(x), div v = 0, x ∈ Ω, t > 0, (1.1)

supplied with an initial condition

v(t, x)|t=0 = v0(x) (1.2)

and v̂ 6= v0. We suppose that v̂|∂Ω = 0 and v̂ is an unstable singular point for the
dynamic system generated by equation (1.1) supplied with zero condition v|∂Ω = 0
on the boundary ∂Ω of Ω.

Hence, generally speaking the solution (v(t, x),∇p(t, x)) of (1.1)–(1.2) goes
away (v̂(x),∇p̂(x)) as t →∞. But instead of zero boundary condition we introduce
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the boundary control
v|∂Ω = u. (1.3)

Stabilization problem is as follows: Let

‖v̂ − v0‖H1 < ε where ε > 0 is sufficiently small. (1.4)

Given σ > 0 find u(t, x), t > 0, x ∈ ∂Ω such that the solution (v,∇p) of (1.1)–(1.3)
satisfies the inequality:

‖v(t, ·)− v̂(·)‖H1(Ω) 6 ce−σt as t →∞. (1.5)

Note that existence theorem for solution of problem (1.1)–(1.5) can be derived
easily from the result of local exact controllability for Navier–Stokes equation (see
[5], [7] and references there). But this existence theorem can not be considered as
a complete theoretical foundation for numerical solution of problem (1.1)–(1.5).
The point is that problem (1.1)–(1.5) is ill-posed and therefore unpredictable fluc-
tuations which usually appear during numerical realization, grow with time. As
a result this lead to completely wrong numerical calculations. The way how to
overcome this difficulty is well-known: one has to find and to use feedback control.
In other words control must react on appearing fluctuations and suppress them.

Of course, feedback control was studied in applied sciences. A mathematical
formalization of feedback notion was proposed in the theory of controlled ordinary
differential equations, and this notion was extended to the case of partial differ-
ential equations (PDE). In the case of problem (1.1)–(1.5) this formalization is
reduced to the following definition:

A control u(t, x) from (1.3) is called feedback if there exists a map R transfor-
ming vector fields defined on Ω to vector fields defined on ∂Ω such that for each
t > 0

u(t, ·) = R(v(t, ·)) (1.6)

where v(t, x) is velocity vector field of fluid flow from (1.1)–(1.5).
If we take

Rv(t, ·)) = v(t, ·)|∂Ω −B(v(t, ·), Dα
txv(t, ·))|∂Ω (1.7)

where B is a nonlinear transformation and Dα
tx denote derivatives with respect to

t, x, then (1.3), (1.6), (1.7) imply the equality

B(v(t, ·), Dα
t,xv(t, ·))|∂Ω = 0. (1.8)

Thus, stabilization problem usually is reformulated as follows: find a boundary
condition (1.8) such that the solution v(t, x) of boundary value problem (1.1),
(1.2), (1.8), (1.4) satisfies (1.5). Stabilization problem in this formulation was
studied for a number classes of evolution PDE in many papers. (See, for instance
[15], [12], [3], [1]1.) But for many linear and nonlinear parabolic equations as
well as for Navier–Stokes system satisfactory results for stabilization problem were
not obtained yet. From our point of view the reason of this is that formalization

1Here we do not pretend on completeness of references, of course.
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(1.6) of feedback motion is not adopted good enough for parabolic PDE. In [6]
some other mathematical formalization of feedback notion was proposed and this
formalization was applied to solve stabilization problem for linear and quasilinear
parabolic equations. In this paper we apply this new formalization of feedback
notion to investigate stabilization problem for 2D Navier–Stokes equations. More
precisely we solve stabilization problem (1.1)–(1.5) with help of feedback control,
concentrated on a part of boundary ∂Ω. The idea of proposed methods is explained
in the next section for the case of Stokes equations.

2. Stabilizability of the Stokes system

2.1. Formulation of the problem

In this section we show the idea of method of stabilization with prescribed rate of
decay. We do this for the Stokes equations, defined on a bounded domain Ω ⊂ R2

with C∞-smooth connected boundary ∂Ω:

∂tv(t, x)−∆v +∇p(t, x) = 0, (t, x) ∈ Q, (2.1)
div v(t, x) = 0, (t, x) ∈ Q, (2.2)
v(t, x)|t=0 = v0(x), x ∈ Ω (2.3)

with Dirichlet boundary condition

v(t, x′) = u(t, x′) (t, x′) ∈ Σ (2.4)

where u(t, x′) is a control, defined on the lateral surface Σ = (0,∞) × ∂Ω of
space-time cylinder Q = (0,∞)× Ω.

Here v(t, x) = (v1(t, x), v2(t, x)) is a velocity vector field defined for (t, x) ≡
(t, x1, x2) ∈ Q, ∇p is a pressure gradient and v0(x) is a given solenoidal vector
field: div v0(x) = 0.

Let a magnitude σ > 0 be given. The problem of stabilization from the bound-
ary with prescribed rate σ > 0 of a solution v(t, x) for evolution problem (2.1)–
(2.4) is to construct a boundary control u(t, x′), (t, x′) ∈ Σ such that the solution
(v,∇p) satisfies inequality:

‖y(t, ·)‖L2(Ω) 6 ce−σt (2.5)

where constant c > 0 depends on v0 and σ.
The main condition on control u, that this control satisfies the feedback condi-

tion, will be formulated after presentation the whole construction of stabilization.

2.2. Method of stabilization

We choose L > 0 so large that the following inclusion is true:

Ω ⊂ {x = (x1, x2) ∈ R2 : |xi| < L, i = 1, 2}. (2.6)
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After that we identify the opposite sides of the square from (2.6) and obtain
the torus, which we denote by Π. Then (2.6) implies that

Ω ⊂ Π. (2.7)

We omit for a while condition (2.4) in problem (2.1)–(2.4) and extend this
problem from Ω to Π. As a result we obtain a boundary value problem for the
Stokes system with periodic boundary conditions

∂tw(t, x)−∆w +∇q(t, x) = 0, x ∈ Π, t > 0 (2.8)
div w = 0 (2.9)

w(t, x)|t=0 = w0(x), div w0 = 0. (2.10)

Let
w0(x) =

∑
ξ∈( π

L Z)2

ŵ0(ξ)eix·ξ

be the decomposition of w0(x) on Fourier series, where

ξ = (ξ1, ξ2), ξi =
Π
`

nj , nj ∈ N, j = 1, 2, x · ξ = x1ξ1 + x2ξ2,

ŵ0(ξ) = (2L)−2

∫
Π

w0(x)e−ix·ξdx

is a Fourier coefficient for w0(x). Applying Fourier method we obtain that the
component w(t, x) of solution (w,∇q) for (2.8)–(2.10) is defined by the formula:

w(t, x) =
∑

ξ∈( π
L Z)2

ŵ0(ξ)e−|ξ|
2t+ix·ξ. (2.11)

Solution (2.11) of problem (2.8)–(2.10) satisfies the inequality

‖w(t, ·)‖L2(Π) 6 ce−σt (2.12)

if and only if the following equalities hold:

ŵ0(ξ) = 0 ∀ξ : |ξ| < √
σ. (2.13)

We introduce some functions spaces. Let Θ be an open domain or a torus, then

V k(Θ) = {v(x) = (v1(x), v2(x)) ∈ (Hk(Θ))
2

: div v(x) = 0}, k = 0, 1, 2, . . .
(2.14)

where Hk(Θ) is the Sobolev space of functions which belong to L2(Θ) together
with all derivatives up to the order k; if k = 0 then div w = 0 is understood in the
meaning of distributions theory;

‖v‖2V k(Θ) = ‖v‖2(Hk(Θ))2 =
∑
|α|6k

∫
Θ

|Dαv(x)|2dx (2.15)

where α = (α1, α2), αj are nonnegative integer, |α| = α1 + α2, Dαv =
∂|α|/∂xα1

1 ∂xα2
2 .
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We set

Xσ(Π) =
{

w(x) ∈ V 0(Π) :
∫

Π

v(x)eix·ξdx = 0 if |ξ| < √
σ

}
. (2.16)

As always
‖ · ‖Xσ(Π) = ‖ · ‖V 0(Π) = ‖ · ‖(L2(Π))2 .

Below we prove the following assertion:

Theorem 2.1. For each σ > 0 there exists a continuous extension operator

Ext : V 0(Ω) −→ Xσ(Π) (2.17)

(i.e. Extv(x) ≡ v(x) for x ∈ Ω).

Theorem 2.1 implies immediately the following method of solution for stabi-
lization problem (2.1)–(2.5):

Theorem 2.2. Let v0 ∈ V 0(Ω). For each σ > 0 the solution (v(t, x), u(t, x)) of
stabilization problem (2.1)–(2.5) can be obtained by the formula

(v(t, ·), u(t, ·)) = (γΩw(t, ·), γ∂Ωw(t, ·)) (2.18)

where γΩ and γ∂Ω are restriction operators on Ω and on ∂Ω correspondingly,
w(t, x) is the solution of boundary value problem (2.8)–(2.10) with initial con-
dition w0(x) = Extv0(x). Here Ext is extension operator (2.17) and v0(x) is the
initial condition from (2.3).

Proof. In virtue of (2.17) vector field w0(x) = Extv0(x) satisfies (2.13). Therefore
(2.18), (2.17) imply:

‖v(t, ·)‖L2(Ω) 6 ‖w(t, ·)‖L2(Π) 6 ce−σt. ¤

Definition 2.1. We say that control u from problem (2.1)–(2.5) satisfies feedback
property if the solution (y, u) of this problem is defined by formula (2.18) where
w(t, x) is the solution of a certain artificial boundary value problem.

From the physical point of view control satisfies feedback property if it can
react on unpredictable fluctuations of a system. In Section 2.4 we will show that
control defined by (2.18) can react on such fluctuations. But firstly we will prove
Theorem 2.1.

2.3. Proof of Theorem 2.1. Let v(x) ∈ V 0(Ω). Since Ω is a bounded domain
with smooth boundary and div v = 0, we have v

∣∣
∂Ω

(s)ν(s) ∈ H− 1
2 (∂Ω) (see [17])

and ∫
∂Ω

v(s) · ν(s)ds = 0, (2.19)
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where ν(s) is the vector field of normals to ∂Ω.
Introduce the stream function F (x) by identities

∂x2F = v1, −∂x1F = v2. (2.20)

Recall that

H1
0 (Ω) = {ϕ(x) ∈ H1(Ω) : ϕ|∂Ω = 0},

H−1(Ω) = completion in L2(Ω) by ‖f‖H−1 = sup
ϕ∈H1

0 ,ϕ 6=0

(∫
Ω

fϕdx/‖ϕ‖H1
0

)
.

In virtue of (2.19), (2.20) ∫
∂Ω

∇F |∂Ω(s) · τ(s) ds = 0

where vector τ(s) is tangential to ∂Ω, and therefore we can set

F |∂Ω =

s∫
0

∇F |∂Ω(s)(τ)(s)dζ ∈ H
1
2 (∂Ω) (2.21)

(recall that ∂Ω is connected set). Relations (2.20) imply:

−∆F (x) = rotv ≡ ∂x1v2 − ∂x2v1. (2.22)

Evidently, rotv ∈ H−1(Ω). That is why solution F of (2.22), (2.21) exists and
belongs to H1(Ω).

Extend F (x) from Ω to torus Π by the formula

RF (x) = (1− ϕ(x))R0F (x) + ϕ(x)z(x) (2.23)

where R0 : H1(Ω) → H1(Π) is an extension operator (i.e. R0F (x) ≡ F (x), x ∈ Ω),
ϕ(x) ∈ C∞(Π), ϕ(x) = 0 for x ∈ Ωε ≡ {x ∈ Π : infy∈Ω |x − y| < ε} and ϕ(x) = 1
for x ∈ Π \ Ω2ε. The function z(x) from (2.23) is defined by the formula

z(x) =
∑

ξ∈( π
L Z)2

, |ξ|<√σ

cξe
iξ·x (2.24)

where cξ are coefficients, which are determined from the system of equations∑
ξ∈( π

L Z)2
,|ξ|<√σ

akξcξ = −
∫
Ω

(1− ϕ(x))R0F (x)e−ik·xdx, k ∈
(π

L
Z

)2

, |k| < √
σ.

(2.25)
Here

akξ =
∫
Π

ϕ(x)eix·(ξ−k)dx.
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Note that the matrix A = ‖akξ‖ of system (2.25) is positively defined. Indeed, let

g(x) =
∑

ξ∈( π
L Z)2

,|ξ|<√σ

αξe
ix·ξ.

Then ∑
ξk

aξkαξαk =
∫
Π

ϕ(x)|g(x)|2dx > 0,

if vector {αξ, ξ ∈ (
π
LZ

)2
, |ξ| <

√
σ} 6= 0. Hence system (2.25) has a unique

solution {cξ} and therefore extension (2.23) is well defined.
Relations (2.23)–(2.25) imply that∫

Π

RF (x)e−ik·xdx = 0 ∀k : |k| < √
σ. (2.26)

We denote extension operator for v0(x), x ∈ Ω as follows:

Extv0(x) =

{
v0(x), x ∈ Ω
rotRF, x ∈ Π \ Ω

(2.27)

where, recall, rotRF = (∂x2RF,−∂x1RF ). Since RF ∈ H1(Π), rotRF ∈ (L2(Ω))2

and, evidently, div rotRF = 0. Hence rotRF ∈ V 0(Π) and in virtue of definition
(2.23)–(2.25), (2.27) of extension operator we get:

‖Extv0(x)‖V 0(Π) 6 c‖v0‖V 0(Ω). (2.28)

Using (2.26) we have after integration by parts∫
Π

rotRF (x)e−ik·xdx =

ik2

∫
Π

RF (x)e−ik·xdx,−ik1

∫
Π

RF (x)e−ik·xdx

 = 0,

|k| < √
σ.

(2.29)
By (2.29) Extv0 ∈ Xσ(Π) and by (2.28) operator (2.17) is bounded. ¤

2.3. Feedback property

We show that method of stabilization proposed below can react on unpredictable
fluctuations of a system. The point is that if the solution v(t, x) of problem (2.1)–
(2.4) satisfies inequality (2.5) and if at time moment t̃0 the system (2.1)–(2.3) is
subjected by certain fluctuation, then v(t, x) at t = t̃0 is pushed out Xσ and that
is why it will not tend to zero with prescribed rate. Therefore we check when

‖v(t, ·)− γΩw(t, ·)‖L2(Ω) > ce−σt/2 (2.30)
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(here w(t, x) is the solution of (2.8)–(2.10) with w0(x) = Extv0(x)) and at this
moment, say t1, we regard v(t1, x) as initial condition and for t > t0 we construct
the solution (v, u) of (2.1)–(2.4) by formula (2.18) where w(t, x) is the solution of
(2.8), (2.9) with initial condition

w|t=t1 = Extv(t1, ·). (2.31)

This construction can be written briefly as impulse control for (2.8), concentrated
in the artificial part Π \ Ω of domain:

∂tw(t, x)−∆w +∇q(t, x) = δ(t− t1)(Extv(t1, x)− w̃(t1, x)) (2.32)

where w̃(t1, x) = v(t1, x), for x ∈ Ω and w̃(t, x) = w(t, x) for x ∈ Π\Ω. After next
unpredictable pushing out Xσ(Π) of the solution v(t, x) we do the same. Thus all
this process can be written by formula:

∂tw(t, x)−∆w +∇q(t, x) =
∞∑

i=1

δ(t− ti)(Extv(ti, x)− w̃(ti, x)) (2.33)

where ti are moments when (2.30) became true.

Remark 2.1. Note that above we indicate only some possibility to organize reac-
tion of control on unpredictable fluctuations. To realize this possibility the special
investigations should be made. They will be made in some other place. Note that
a certain previous result to this respect is obtained in [6].

3. Oseen equations

3.1. Formulation of the problem

Let Ω ⊂ R2 be a bounded connected domain with C∞-boundary ∂Ω, Q = R+×Ω.
In space-time cylinder Q we consider the Oseen equations

∂tv(t, x)−∆v + (a(x),∇)v + (v,∇)a +∇p(t, x) = 0 (3.1)
div v(t, x) = 0 (3.2)

with initial condition
v(t, x)|t=0 = v0(x) (3.3).

Here (t, x) = (t, x1, x2) ∈ Q, v(t, x) = (v1, v2), is a velocity vector field, ∇p =
(∂x1 , ∂x2) is pressure gradient, initial velocity v0(x) = (v01(x), v02(x)) satisfies
condition div v0 = 0, a(x) = (a1(x), a2(x)) is a solenoidal vector field (div a = 0).

We suppose that the boundary ∂Ω of Ω is decomposed on two parts:

∂Ω = Γ ∪ Γ0, Γ 6= ∅ (3.4)

where Γ,Γ0 are open sets (in topology of ∂Ω). Here the line above means the
closure of a set. The case Γ0 = ∅ is also possible. We define Σ = R+ × Γ,Σ0 =
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R+ × Γ0, and we set the following boundary conditions:

v|Σ0 = 0, v|Σ = u (3.5)

where u is a control, concentrated on Σ.
Let a magnitude σ > 0 be given. The problem of stabilization with the decay

rate σ of a solution to problem (3.1)–(3.3), (3.5) is to construct a control u on Σ
such that the solution v(t, x) of boundary value problem (3.1)–(3.3), (3.5) satisfies
the inequality

‖v(t, x)‖L2(Ω) 6 ce−σt (3.6)

where c > 0 depends on v0, σ and Γ0. Moreover, we require that this control u
satisfies the feedback property in the meaning analogous to (2.18).

Let us give the exact formulation of this feedback property. Let ω ⊂ R2 be a
bounded domain such that

Ω ∩ ω = ∅, Ω ∩ ω = Γ. (3.7)

We set
G = Int(Ω ∪ ω) (3.8)

(the denotation IntA means, as always, the interior of the set A). We suppose
that ∂G is a curve belonging to the smoothness class Cα and in all points except
the set Γ \ Γ ≡ ∂Γ it possesses the C∞ smoothness. The exact conditions on
magnitude α will be imposed below in an appropriate place.

We extend problem (3.1)–(3.3) from Ω to G. Let us assume that the given
vector field a(x) from (3.1) actually is defined on G. Moreover, we suppose that

a(x) ∈ V 2(G) ∩ (
H1

0 (G)
)2

. (3.9)

That is why the extension of (3.1)–(3.3) from Ω to G can be written as follows:

∂tw(t, x)−∆w + (a(x),∇)w + (w,∇)a +∇p(t, x) = 0 (3.10)

div w(t, x) = 0 (3.11)

w(t, x)|t=0 = w0(x). (3.12)

Besides, we impose on w the zero Dirichlet boundary condition

w|S = 0, (3.13)

where S = R+ × ∂G. Note that, actually, w0 from (3.12) will be some special
extension of v0(x) from (3.3).

For vector fields defined on G we introduce the operator γΩ of restriction on Ω
and the operator γΓ of restriction on Γ:

γΩ : V k(G) −→ V k(Ω), k > 0; γΓ : V k(G) −→ V k−1/2(Γ), k > 1/2. (3.14)

Evidently, operators (3.14) are bounded.
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Definition 3.1. A control u(t, x) in (3.1)–(3.3), (3.5) is called the feedback if for
each t > 0 the following relations are true:

v(t, ·) = γΩw(t, ·), u(t, ·) = γΓw(t, ·) (3.15)

where (v(t, ·), u(t, ·)) is the solution of stabilization problem (3.1)–(3.3), (3.5) and
w(t, ·) is the solution of boundary value problem (3.10)–(3.13).

Below we prove that for given σ > 0, v0 the problem (3.1)–(3.3), (3.5) can be
stabilized with help of feedback control in the meaning of Definition 3.1.

3.2. Preliminaries

Let G be domain (3.8) and

V 0
0 (G) = {v(x) ∈ V 0(G) : v · ν|∂Ω = 0} (3.16)

where V 0(G) is space (2.14) with Θ = G, ν(x) is the vector field of outer normals
to ∂G; for v ∈ V 0(G) the function v · ν|∂Ω is well-defined in the Sobolev space
H−1/2(∂G) (see [17]). Denote by

π : (L2(G))2 −→ V 0
0 (G) (3.17)

the operator of orthogonal projection. We consider the Oseen steady-state opera-
tor

Av ≡ −π∆v + π[(a(x),∇)v + (v,∇)a] : V 0
0 (G) −→ V 0

0 (G) (3.18)

where a(x) is vector field (3.9). This operator is closed and its domain is defined
as follows:

D(A) = V 2(G) ∩ (H1
0 (G))2 (3.19)

and it is dense in V 0
0 (G).

Assuming that spaces in (3.17), (3.19) are complex we denote by ρ(A) the
resolvent set of operator A, i.e. the set of λ ∈ C such that the resolvent operator

R(λ,A) ≡ (λI −A)−1 : V 0
0 (G) −→ V 0

0 (G) (3.20)

is defined and continuous. Here I is identity operator.
Recall that a closed operator B : X → X (X is a Banach space) is called a

sectorial if there exist a magnitude ϕ ∈ (0, π/2),M > 1, a ∈ R such that

Sa,ϕ = {λ ∈ C : ϕ 6 |arg(λ− a)| 6 π, λ 6= a} ⊂ ρ(A) (3.21)

and
‖(λI −A)−1‖ 6 M/|λ− a|, ∀λ ∈ Sa,ϕ. (3.22)

Denote by Σ(A) ≡ C1 \ ρ(A) the spectrum of operator A.

Lemma 3.1. Oseen operator (3.18) with a(x) satisfying (3.9) is a sectorial opera-
tor. For λ ∈ ρ(A) resolvent (3.20) is a compact operator. That is why the spectrum
Σ(A) consists of a discrete set of points.
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The proof of this lemma can be obtained by well-known methods: compactness
of resolvent and estimate (3.22) can be established by analogous estimates to that
were obtained below, in Lemma’s 4.7 proof. All other assertions of the Lemma
follows from results of [10] and [20].

Let λ0 ∈ Σ(A). We decompose the resolvent R(λ,A) in a neighbourhood of λ0

in a Laurent series:

R(λ,A) =
∞∑

k=−m

(λ− λ0)kRk, Rk = (2πi)−1

∫
|λ−λ0|=ε

(λ− λ0)−k−1R(λ,A)dλ.

(3.23)

Lemma 3.2. ([20, Ch YII Sect.8]).
a) All operators Rk from (3.23) commutate among themselves and with A;
b) R−1 is a projector, i.e. R2

−1 = R−1.
c) The following formulas hold:

R−(k+1) + (λ0I −A)R−k = 0 for k > 1 (3.24)

R−1 + (λ0I −A)R0 = E. (3.25)

Lemma 3.3.
a) The magnitude m from decomposition (3.23) is finite;
b) The images of each operator Rk with k < 0 from (3.23) are finite dimen-

sional: dim ImRk < ∞ for k < 0.
Moreover

ImR−1 = ker(λ0E −A)m, R−k−1 = (λ0E −A)kR−1, k = 1, 2, . . . , m− 1.
(3.26)

This lemma is derived in [6] from well-known results of [4], [20].
Let us consider the adjoint operator A∗ to Oseen operator (3.18):

A∗w ≡ −π∆w − π[(a(x),∇)w − (∇a)∗w] : V 0
0 (G) −→ V 0

0 (G) (3.27)

where

(∇a)∗w = ((∂1a,w), (∂2a,w)), (∂ia,w) =
2∑

j=1

∂iajwj . (3.28)

Evidently, A∗ is a closed operator with domain coinciding to D(A)

D(A∗) = D(A) = V 2(G) ∩ (H1
0 (G))2.

Moreover

ρ(A∗) = ρ(A) and R(λ,A)∗ = R(λ̄, A∗) ∀ λ ∈ ρ(A). (3.29)

Below we always assume that

vector field a(x) from (3.9), (3.18), (3.27) is real valued. (3.30)
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That is why we have
ρ(A) = ρ(A) = ρ(A∗) = ρ(A∗). (3.31)

Since B and B∗ are compact operators simultaneously, (3.29), (3.31) imply that
A∗ is a sectorial operator with a compact resolvent and Σ(A) = Σ(A) = Σ(A∗) =
Σ(A∗). Hence if λ0 ∈ Σ(A) then λ0 ∈ Σ(A∗). Decomposition R(λ,A∗) in Laurent
series around λ0 yields:

R(λ,A∗) =
∞∑

k=−m

(λ− λ̄0)kR∗k, (3.32)

where, evidently poles orders in (3.32) and in (3.23) coincides and R∗k from (3.32)
are adjoint operators to the corresponding operators Rk from (3.23). Therefore
by Lemma 3.2 (R∗−1)

2 = R∗−1,

R∗−(k+1) + (λ̄0I −A∗)R∗−k = 0 for k > 1 (3.33)

R∗−1 + (λ̄0I −A∗)R∗0 = I. (3.34)

Moreover, Lemma 3.3 implies that dim ImR∗k = dim ImRk, k < 0 and

ImR∗−1 = ker(λ̄0E −A∗)m, R∗−k−1 = (λ̄0E −A∗)kR∗−1, k = 1, 2, . . . , m− 1.
(3.35)

3.3. Structure of Rk, R∗k with k < 0

Recall some definitions. If ker(λ0I − A) 6= 0 then λ0 ∈ C1 is called eigenvalue of
A, and a vector e 6= 0 which belongs to ker(λ0E−A) is called eigenvector. Vector
ek is called associated vector of order k to an eigenvector e if ek can be obtained
after solving the chain of equations:

(λ0I −A)e = 0, e + (λ0I −A)e1 = 0, . . . , ek−1 + (λ0I −A)ek = 0. (3.36)

We say that e, e1, e2, . . . form a chain of associated vectors. If the maximal order
of vectors, associated to e equals m then the number m + 1 is called multiplicity
of the eigenvector e.

Definition 3.2. The set of eigenvectors and associated vectors

e(k), e
(k)
1 , . . . , e(k)

mk
(k = 1, 2, . . . , N) (3.37)

corresponding to an eigenvalue λ0 is called canonical system which corresponds to
the eigenvalue λ0 if set (3.37) satisfies the properties:

i) Vectors e(k), k = 1, 2, . . . , N form a basis in the space of eigenvectors cor-
responding to the eigenvalue λ0.

ii) e(1) is an eigenvector with maximal possible multiplicity.
iii) e(k) is an eigenvector which can not be expressed by a linear combination

of e(1), . . . , e(k−1) and multiplicity of e(k) achieves a possible maximum.
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iv) Vectors (3.37) with fixed k form a maximal chain of associated elements.
Evidently, numbers m1,m2, . . . , mN do not depend on a choice of canonical
system.

The number N(λ0) = m1 + 1 + m2 + 1 + · · ·+ mN + 1 is called multiplicity of
the eigenvalue λ0.

Besides canonical system (3.37) which corresponds to an eigenvalue λ0 of op-
erator A we consider a canonical system

ε(k), ε
(k)
1 , . . . , ε(k)

mk
(k = 1, 2, . . . , N) (3.38)

that corresponds to the eigenvalue λ0 of the adjoint operator A∗. Definition of
canonical system (3.38) is absolutely analogous to Definition 3.2 of canonical sys-
tem (3.37). Particularly the set (3.38) with fixed k satisfies the relations which
are analogous to (3.36):

(λ̄0I −A∗)ε(k) = 0, ε(k) + (λ̄0I −A∗)ε(k)
1 = 0, . . . , ε

(k)
mk−1 + (λ̄0I −A∗)ε(k)

mk
= 0.
(3.39)

The assertion which we formulate below is very close to well-known assertion from
[10], although their formulations are differ. That is why we give also a proof. Let
H be a Hilbert space with a scalar product 〈·, ·〉. For u, v∗ ∈ H denote by uv∗ the
operator Bx = 〈x, v∗〉u. Then v∗u is adjoint operator B∗g = 〈u, g〉v∗.

Theorem 3.1. Let A : H → H be a sectorial operator with a compact resolvent
and the operator A∗ : H → H is adjoint to A. Suppose that λ0 ∈ Σ(A), λ0 ∈ Σ(A∗)
and therefore λ0, λ0 are the poles of R(λ,A), R(λ,A∗) correspondingly which have
the equal multiplicity m. Then

i) λ0 is an eigenvalue of A and λ0 is an eigenvalue of A∗ and both of them
have eigenvectors of maximal multiplicity m.

ii) Let set (3.38) be an arbitrary canonical system of A∗ corresponding to the
eigenvalue λ0. Then (3.38) defines by a unique way a canonical system
(3.37) of A corresponding to λ0 such that the main part of Laurent series
(3.23) has the form

∑
k

{
e(k)ε(k)

(λ− λ0)mk+1
+

e(k)ε
(k)
1 + e

(k)
1 ε(k)

(λ− λ0)mk
+ . . . .+

+
e(k)ε

(k)
mk + e

(k)
1 ε

(k)
mk−1 + . . . .. + e

(k)
mkε(k)

(λ− λ0)

}
. (3.40)

Proof. As was mentioned, in virtue of (3.29) operators R∗k from (3.32) are ad-
joint to corresponding operators Rk from (3.23), and by Lemma 3.3 dim ImRk =
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dim ImR∗k < ∞ if k < 0. That is why

Rk =
L∑

j=1

fjg
∗
j if and only if R∗k =

L∑
j=1

g∗j fj (3.41)

where fj ∈ H, g∗j ∈ H, j = 1, . . . , L are certain vectors. The formula (3.40) for the
main part of Laurent series (3.23) will be proved simultaneously with the following
formula for the main part of (3.32):∑

k

{
ε(k)e(k)

(λ− λ0)mk+1
+

ε
(k)
1 e(k) + ε(k)e

(k)
1

((λ− λ0)mk
+ . . . .+

+
ε
(k)
(mk)e

(k) + ε
(k)
(mk−1)e

(k)
1 + . . . .. + ε(k)e

(k)
(mk)

((λ− λ0)

 . (3.42)

Let e, e1, . . . , eh be a chain of associated vectors for A corresponding to eigen-
value λ0. Then for each λ from a neighbourhood of λ0 the equality holds:

e

(λ− λ0)h+1
+

e1

(λ− λ0)h
+ · · ·+ eh

(λ− λ0)
= R(λ,A)eh. (3.43)

To prove (3.43) one can apply to both parts of (3.43) operator (λI − A) = ((λ −
λ0)I + λ0I − A) and use (3.36). Hence multiplicity m of pole (3.23) is not less
than maximal possible multiplicity of a eigenvector corresponding to λ0. If m is
the multiplicity of pole (3.23) then R−(m+1) = 0 and by (3.33) with k = m we
have ImRm ⊂ Ker(λ0I −A). Therefore the multiplicity m of pole (3.23) equals to
maximal possible multiplicity of eigenvectors for A corresponding λ0. Analogously,
if ε, ε1, . . . , εh be a chain of associated vectors for A∗ then

ε

(λ− λ0)h+1
+

ε1

(λ− λ0)h
+ · · ·+ εh

(λ− λ0)
= R(λ,A∗)εh (3.44)

and the multiplicity m of pole (3.32) is equal to maximal possible multiplicity of
eigenvectors for A∗ corresponding λ0.

Let ε(k), k = 1, . . . , j1 be a given maximal set of linear independent eigenvectors
of maximal multiplicity m for A∗. Then by (3.44) with εh = ε

(k)
m−1 for each x ∈ H

R∗−mx =
j1∑

k=1

< e(k), x > ε(k) (3.45)

where, evidently, vectors e(k) are defined by ε(k) by unique way. Relations (3.41)
implies that

R−my =
j1∑

k=1

< y, ε(k) > e(k) (3.46)

and in virtue of (3.43) e(k), k = 1, . . . , j1 are eigenvectors for A of maximal possible
multiplicity m. Since dim ImR−m = dim ImR∗−m, e(k) are linear independent and
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there is no any other linear independent to e(k), k = 1, . . . , j1 eigenvectors for A of
multiplicity m.

By (3.43) with eh =
∑j1

k=1 < y, ε(k) > e
(k)
m−1 we see that the main part of (3.23)

contains
j1∑

k=1

(
< y, ε(k) > e(k)

(λ− λ0)m
+

< y, ε(k) > e
(k)
1

(λ− λ0)m−1
+ · · ·+ < y, ε(k) > e

(k)
m−1

(λ− λ0)

)
where e

(k)
j are vectors associated to eigenvectors e(k). Analogously by (3.44) with

εh =
∑j1

k=1 < e(k), x > ε
(k)
m−1 the main part of (3.32) contains:

j1∑
k=1

(
< e(k), x > ε(k)

(λ− λ0)m
+

< e(k), x > ε
(k)
1

(λ− λ0)m−1
+ · · ·+ < e(k), x > ε

(k)
m−1

(λ− λ0)

)
.

These two expressions and relation (3.41) imply that the main parts of poles (3.23)
and (3.32) contain correspondingly:

A →
j1∑

k=1

(
e(k)ε(k)

(λ− λ0)m
+

e
(k)
1 ε(k) + e(k)ε

(k)
1

(λ− λ0)m−1
+ · · ·+ e

(k)
m−1ε

(k) + e(k)ε
(k)
m−1

(λ− λ0)

)
(3.47)

A∗ →
j1∑

k=1

(
ε(k)e(k)

(λ− λ0)m
+

ε
(k)
1 e(k) + ε(k)e

(k)
1

(λ− λ0)m−1
+ · · ·+ ε

(k)
m−1e

(k) + ε(k)e
(k)
m−1

(λ− λ0)

)
.

(3.48)
Now we continue this process: we supplement the sum in (3.47) using (3.43)

with eh =
∑j1

k=1 < y, ε
(k)
l > e

(k)
m−1−l, h = m − 1 − l for l = 1, 2, . . . , m − 1. After

that we add terms in (3.48) using new (added) sum in (3.47) and relation (3.41).
As a result we obtain that the main part of (3.23) contains terms

j1∑
k=1

{
e(k)ε(k)

(λ− λ0)m
+

e
(k)
1 ε(k) + e(k)ε

(k)
1

(λ− λ0)m−1
+

e
(k)
2 ε(k) + e

(k)
1 ε

(k)
1 + e(k)ε

(k)
2

(λ− λ0)m−2
+ . . . .

+
e
(k)
m−1ε

(k) + e
(k)
m−2ε

(k)
1 + · · ·+ e(k)ε

(k)
m−1

(λ− λ0)

}
and the main part of (3.32) contains terms

A1 =
j1∑

k=1

(
ε(k)e(k)

(λ− λ0)m
+

ε
(k)
1 e(k) + ε(k)e

(k)
1

(λ− λ0)m−1
+ · · ·+ . . .

+
ε
(k)
m−1e

(k) + ε
(k)
m−2e

(k)
1 + · · ·+ ε

(k)
1 e

(k)
m−2 + ε(k)e

(k)
m−1

(λ− λ0)

)
. (3.49)

It is well-known that canonical system (3.38) for A∗ corresponding to eigenvalue
λ̄0 is a set of linear independent vectors.2 That is why in virtue of (3.44) sum (3.49)

2Amplification of this result is proved in [6] and in Lemma 3.7 below.
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does not contain all main part of (3.32) but contains the operator R∗−m/(λ−λ0)m.
Therefore

−1∑
k=−m

R∗k
(λ− λ0)−k

−A1 (3.50)

is a pole which order is less than m. Applying to (3.50) arguments we used
above: we take the eigenvalues ε(k), k = j1 + 1, . . . , jr for A∗ from (3.38) which
multiplicity is maximal possible after excluding ε(k) with k = 1, 2, . . . , j1. For
ε(k), k = j1 + 1, . . . , j2 we repeat arguments written from (3.45) to (3.49). As a
result we obtain a sum of terms A2 (analogous to (3.49)) such that the order of
pole

−1∑
k=−m

R∗k
(λ− λ0)−k

−A1 −A2

will be less than the order of pole (3.50). Repeating this process several times we
complete the proof of Theorem 2.1. ¤

Corollary 3.1. Let A be a sectorial operator with compact resolvent R(λ,A) de-
composed at λ0 ∈ Σ(A) in Laurent series (3.23). Let (3.38) be a canonical system
of A∗ corresponding to the eigenvalue λ0, which we denote by E(λ0). Then

R−kx = 0, ∀k = 1, 2, . . . , m (3.51)

if and only if

〈x, ε
(k)
j 〉 = 0 ∀ε(k)

j ∈ E(λ0). (3.52)

This assertion follows immediately from representation (3.40) for the main part
of Laurent series (3.23) for R(λ,A).

3.4. Holomorphic semigroups

We consider boundary value problem (3.10)–(3.13) for Oseen equations written in
the form

dw(t, ·)
dt

+ Aw(t, ·) = 0, w|t=0 = w0 (3.53)

where A is operator (3.18). In virtue of Lemma 3.1. Oseen operator is sectorial
with compact resolvent. It is known ([8, Sect. 1.3]) that the following assertion
holds.

Theorem 3.2. For each w0 ∈ V 0
0 (G) the solution w(t, ·) of problem (3.53) is

defined by w(t, ·) = e−Atw0 where e−At is the holomorphic semigroup that is de-
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termined by the formula

e−At = (2πi)−1

∫
γ

(λI + A)−1eλtdλ, (3.54)

where γ is a contour belonging to ρ(A) such that argλ = ±θ for λ ∈ γ, |λ| > N
for certain θ ∈ (π/2, π) and for sufficiently large N . Moreover, γ surrounds Σ(A)
from the right.

Such contour γ exists, of course, because we can choose γ belonging to set
−Sa,ϕ from definition of sectorial operator (see (3.21)).

Let −σ be a negative number satisfying

Σ(−A) ∩ {λ ∈ C : Reλ = −σ} = ∅. (3.55)

The case when there are certain points of Σ(−A) placed righter the line {Reλ =
−σ} will be interesting for us.

Using contour γ described below (3.54) we define the continuous contour γσ

that is placed in {λ ∈ C : Reλ 6 −σ} and constructed from an interval of the line
{Reλ = −σ} and from two branches of contour γ that transform to {argλ = θ}
and {argλ = −θ}, θ ∈ (π/2, π) for sufficiently large |λ|.

Evidently, integral in (3.54) can be transformed as follows:

e−At = (2πi)−1

∫
γσ

(λI + A)−1eλtdλ +
∑

j

(2πi)−1

∫
|λ+λj |=ε

(λI + A)−1eλtdλ, (3.56)

where summation is made over points −λj ∈ Σ(−A) placed righter the line {Reλ =
−σ}, and ε > 0 is small enough.

To calculate terms in the sum from (3.56) we decompose the resolvent R(λ,−A)
at λ = −λj :

R(λ,−A) =
∞∑

k=−m(−λj)

(λ + λj)kRk(−λj). (3.57)

Residue of R(λ,−A)eλt at λ = −λj is calculated by the formula

ReseλtR(λ,−A) = e−λjt

m(−λj)∑
n=1

tn−1

(n− 1)!
R−n(−λj).

Hence (3.56) can be rewritten as follows:

e−At = (2πi)−1

∫
γσ

(λE + A)−1eλtdλ +
∑

Reλj<σ

e−λjt

m(−λj)∑
n=1

tn−1

(n− 1)!
R−n(−λj).

(3.58)
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Lemma 3.4. The following estimate is true:

‖(2πi)−1

∫
γσ

(λE + A)−1eλtdλ‖V 0
0 (G) 6 ce−σt as t > 0 (3.59)

where c > 0 does not depend on t.

Proof. Definition of γσ and (3.21) imply that for sufficiently large R

γσ ∩ {λ ∈ C : |λ| > R} ⊂ S−a,ϕ.

This inclusion, relation γσ ⊂ ρ(−A) and (3.22) where A is changed on −A and
Sa,ϕ is changed on −Sa,ϕ lead to the inequality

‖(λE + A)−1‖ 6 M1/(1 + |λ|) for λ ∈ γσ. (3.60)

Besides, in virtue of definition of γσ

|e(λ+σ)t| 6 cecos θ|λ|t/2 as λ ∈ γσ and |λ| → ∞ (3.61)

where cos θ < 0 since θ ∈ (π
2 , π). By (3.60), (3.61)

‖(2πi)−1

∫
γσ

(λE + A)−1eλtdλ‖ 6 e−σt

∫
γσ

M1ce
cos θλt/2

1 + |λ| |dλ| 6 M2e
−σt for t > 1.

(3.62)
As known, the norm of left-hand-side of (3.58) is bounded uniformly with respect
to t ∈ [0, 1]. Besides, the norm of the sum from right-hand-side of (3.58) is also
bounded uniformly to t ∈ [0, 1]. Hence

‖(2πi)−1

∫
γσ

(λE + A)−1eλtdλ‖ 6 M2e
−σt for t ∈ [0, 1]. (3.63)

Now (3.59) follows from (3.62), (3.63). ¤

Denote by

ε(k)(−λ̄j), ε
(k)
1 (−λ̄j), . . . , ε(k)

mk
(−λ̄j), k = 1, . . . , N(−λj) (3.64)

a certain canonical system of eigenvectors and associated vectors of operator −A∗

corresponding eigenvalue −λ̄j .

Theorem 3.3. Suppose that A is operator (3.18) and σ > 0 satisfies (3.55). Then
for each w0 ∈ V 0

0 (G) that satisfies

〈w0, ε
(k)
l (−λ̄j) >= 0, l = 0, 1, . . . , mk, k = 1, 2, . . . , N(−λj), Re(λj) < σ

(3.65)
(here by definition ε

(k)
0 (−λj) = ε(k)(−λj)) the following inequality holds:

‖eAtw0‖V 0
0 (G) 6 ce−σt‖w0‖V 0

0 (G) for t > 0. (3.66)
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Proof. By Corollary 3.1 if w0 satisfies (3.65) then Rn(−λj)w0 = 0 for every oper-
ators R−n(−λj) from (3.58). Therefore (3.58), (3.59) imply (3.66). ¤

3.5. On linear independence of ε(k)(x)

We set some strengthening of well-known result on linear independence of eigenvec-
tors and associated vectors for operator (3.27), (3.28) conjugate to Oseen operator
(3.18).

Lemma 3.5. Let ε(k)(x) k = 1, . . . , N be complete linear independent system
of eigenvectors to an eigenvalue λ̄0. Then for an arbitrary subdomain ω < G
functions ε(k)(x), x ∈ ω, k = 1, . . . , N are linear independent.

Proof. Let

f(x) =
N∑

k=1

ckε(k)(x) = 0, x ∈ ω. (3.67)

Evidently, equality (λ0E − A∗)f(x) = 0 holds for x ∈ G and therefore by (3.27)
and definition of operator π

−∆f(x)− (a(x),∇)f(x) + (∇a(x))∗f(x) = ∇p(x), x ∈ G (3.68)

with some function p(x) ∈ H1(G). Applying operator rot∗g(x) ≡ ∂1g2 − ∂2g1 to
(3.68) we get

−∆rot∗f(x)− (a(x),∇)rot∗f(x) = 0, x ∈ G. (3.69)

(This formula can be verified by straightforward calculations). By (3.67) we have

rot∗f(x) = 0, x ∈ ω. (3.70)

Relations (3.69), (3.70) imply (see [9]) that

rot∗f(x) = 0, x ∈ G,

and this, as well-known (see, for example, [5, p. 204]) leads that f(x) ≡ const. By
the definition (3.67) and by relation ε(k)|∂G = 0 we get f(x) ≡ 0, x ∈ G. Hence
in (3.67) ck = 0, k = 1, . . . , N . ¤

Theorem 3.4. Let (3.64) be a certain canonical system of eigenvectors and asso-
ciated vectors for −A∗ corresponding eigenvalue −λ̄j. Then for each σ satisfying
(3.55) and for arbitrary subdomain ω ⊂ G the set of canonical systems (3.64) for
all eigenvalues −λ̄j satisfying

Reλj < σ (3.71)

are linear independent.
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Proof. In proof of this assertion specific character of operator A∗ is used to prove
Lemma 3.5 only. The last part of prove is general and has been made in [6]. ¤

Impose on canonical systems (3.64) the following condition

ε(k)(−λj) = ε(k)(−λj); ε
(k)
l (−λj) = ε

(k)
l (−λj). (3.72)

Indeed, since by (3.30) vector field a(x) is real valued, if we act the operation
of complex conjugation to functions (3.64), we evidently get canonical system of
eigenvectors and associated vectors for A∗ corresponding to eigenvalue −λj . That
is why condition (3.72) can be realized easily.

In virtue of (3.72) canonical system corresponding to real −λj consists of real

valued vector fields. If Imλj 6= 0, instead of vector fields ε(k)(−λj), ε
(k)
l (−λj),

l = 0, 1, . . . , we consider real valued vector fields

Reε(k)
l (−λj), Imε

(k)
l (−λj), l = 1, . . . , k = 1, 2 . . . . (3.73)

(As above ε
(k)
0 (−λ̄j) = ε(k)(−λ̄j) by definition). We renumber all functions (3.73)

with Reλj < σ (including fields with Imλj = 0) as follows:

ε1(x), . . . , εK(x). (3.74)

Lemma 3.6. For an arbitrary subdomain ω ⊂ G vector fields (3.74) restricted on
ω are linear independent over the field R of real numbers.

Lemma 3.6 follows easily from Theorem 3.4. (see [6])
Note that Theorem 3.3 implies immediately the following assertion.

Corollary 3.2. Assume that A is operator (3.18) and σ > 0 satisfies (3.55). Then
for each w0 ∈ V 0

0 (G) satisfying∫
G

(w0(x), εj(x))∂x = 0, j = 1, . . . , K (3.75)

with εj from (3.74), inequality (3.66) is true.

4. Stabilization of the Oseen equation

4.1. Theorem on extension

The key step in stabilization method that we propose is construction of special
extension for vector fields from Ω to G (see (3.8)). First of all we make more
precise the conditions imposed on Ω and G. Recall that

G = Int(Ω̄ ∪ ω̄) (4.1)
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where Ω and ω are open subsets of R2, Ω ∩ ω = ∅ and ∂Ω is a closed curve of
C∞-class and

∂Ω = Γ ∪ Γ0 ∪ ∂Γ, ∂G ∩ ∂Ω = Γ0 ∪ ∂Γ (4.2)

where Γ,Γ0 are open subsets of ∂Ω, Γ 6= ∅, and ∂Γ is a finite number of points, or
∂Γ = ∅.

We suppose that

∂Ω =
N⋃

j=1

∂Ωj (4.3)

where ∂Ωj are connected components of ∂Ω. We assume that the following con-
ditions are true:

Condition 4.1. For each j = 1, . . . , N the set ∂Ωj ∩ Γ0 is connected or it is
empty.

Condition 4.1. implies that for each j the set ∂Ωj ∩ Γ also is connected or
empty.

We impose the following smoothness condition on ∂Ω and ∂G:

Condition 4.2. Let ∂Ω ∈ C∞, ∂G \ ∂Γ ∈ C∞ and for each point P ∈ ∂Γ there
exist local coordinates (x, y) such that P is origin; P = (0, 0), {(x, 0), x ∈ (0, ε)} ⊂
Γ, {(x, 0), x ∈ (−ε, 0)} ⊂ Γ0 and in a neighbourhood of P ∂G can be represented
as follows:

∂G ⊃ {(x, y) = (x, xα), x ∈ (0, ε)}∪{(x, y) = (x, 0), x ∈ (−ε, 0)}, α > 1. (4.4)

Here ε > 0 is a small magnitude.

Remind that Ω is a given domain where the Oseen system which should be sta-
bilized is determined. The domain ω we choose ourselves. That is why Condition
4.2 is not restrictive.

We introduce the following spaces

V 1
0 (G) = {u(x) = (u1(x), u2(x)) ∈ V 1(G) : u|∂G = 0}

V 1(Ω,Γ0) = {u(x) = (u1(x), u2(x)) ∈ V 1(Ω) :

u|Γ0 = 0, ∃ v ∈ V 1
0 (G) that u(x) = γΩv(x)} (4.5)

where V 1(G) is defined in (2.14), γΩ is the operator of restriction on Ω for functions
from V 1

0 (G). The space V 1(Ω,Γ0) is supplied with the following norm:

‖u‖V 1(Ω,Γ0) = inf
L
‖Lu‖V 1

0 (G)

where infimum is taken over all bounded extension operators L : V 1(Ω,Γ0) →
V 1

0 (G).



280 A. V. Fursikov JMFM

Definition (4.5) is convenient to prove the extension result but it is not con-
structive. Below, in Subsection 4.2 we give simple condition on vector field which
guarantees its belonging to V 1(Ω,Γ0).

We will use the following subspaces of Sobolov space H2(G) of scalar functions:

Ĥ2(G) = {F ∈ H2(G) :
∫
G

F (x) dx = 0}, (4.6)

Ĥ2
∇(G) = {F (x) ∈ Ĥ2(G) : ∇F |∂G = 0} (4.7)

where, recall, ∇F = (∂x1F, ∂x2F ).
Remind that for a scalar function F (x), x ∈ G ⊂ R2

rotF (x) = (∂2F (x),−∂1F (x)). (4.8)

Lemma 4.1. The operator

rot : Ĥ2
∇(G) → V 1

0 (G) (4.9)

is an isomorphism.

Proof. It is known (see [5, p. 204]) that the operator

rot : Ĥ2(G) → V 1(G)

is isomorphism. If ν = (ν1, ν2) is the vector field of normals to ∂G, then τ =
(τ1, τ2) = (ν2,−ν1) is the field of vectors, tangent to G along ∂G. Let v ∈ V 1

0 (G)
and F = rot−1v ∈ Ĥ2(G). Then

∂nF |∂G = (rotF, τ)|∂G = (v, τ)|∂G = 0,

∂τF |∂G = −(rotF, ν)|∂G = −(v, ν)|∂G = 0.
(4.10)

Therefore ∇F |∂G = 0 and F ∈ Ĥ2
0 (G). If F ∈ Ĥ2

0 (G) and v = rotF then in virtue
of (4.10) and condition ∇F |∂G = (∂nF, ∂τF )|∂G = 0 we get that v ∈ V 1

0 (G). ¤

For v ∈ V 1(G) denote by rot∗v the operator formally conjective to (4.8). It is
easy to see that

rot∗v(x) = ∂1v2(x)− ∂2v1(x) where v(x) = (v1(x), v2(x)). (4.11)

Lemma 4.2. Let ω1 be a subdomain of G such that Int(∂ω1 ∩ ∂G) 6= ∅. Suppose
that

f(x) ≡
K∑

j=1

cjrot∗εj(x) = 0, x ∈ ω1 (4.12)

where cj are constants and εj(x) are vector fields (3.74). Then cj = 0, j =
1, . . . , K.
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Proof. Denote scalar functions

θj(x) = rot−1εj(x). (4.13)

This definition is correct in virtue of Lemma 4.1 since εj(x) ∈ V 1
0 (G). Let

g(x) =
N∑

j=1

cjθj(x). (4.14)

Since by (4.8), (4.11) −∆ = rot∗ ◦ rot we get by (4.12), (4.13), (4.14) that

∆g(x) ≡ f(x) = 0, x ∈ ω. (4.15)

By (4.13), Lemma 4.1 and (4.14) ∇g|∂G = 0 and therefore

∇g|∂G∩∂ω1 = 0. (4.16)

Since Int(∂G ∩ ∂ω1) 6= ∅, by uniqueness of a solution for Cauchy problem for
Laplace operator (see [9]) relations (4.15), (4.16) imply that

g(x) ≡ const, x ∈ ω1,

and therefore applying to (4.14) operator rot we get in virtue of (4.13) that

N∑
j=1

cjεj(x) ≡ 0, x ∈ ω1.

This inequality and Lemma 3.6 imply that c1 = · · · = cN = 0. ¤

We prove now the extension theorem. In the space of real valued vector fields
V 1

0 (G) we introduce the subspace

X1
K(G) = {v(x) ∈ V 1

0 (G) :
∫
G

v(x) · εj(x) dx = 0, j = 1, . . . , K} (4.17)

where εj(x) are functions (3.76).

Theorem 4.1. There exists a linear bounded extension operator

E1
K : V 1(Ω,Γ0) → X1

K(G) (4.18)

(i.e. EK(v)(x) ≡ v(x) for x ∈ Ω).

Proof. By definition (4.5) of V 1(Ω,Γ0) there exists a linear continuous extension
operator

L : V 1(Ω,Γ0) → V 1
0 (G). (4.19)

Set
Ωε = {x ∈ R2 : dist(x,Ω) < ε}
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where dist(x,Ω) is the distance from x to Ω. Let ψ0(x) ∈ C∞(Ḡ), 0 6 ψ0(x) 6 1,

ψ0(x) =

{
1, x ∈ G ∩ Ωε/2,

0, x ∈ G \ Ωε,
ψ1(x) = 1− ψ0(x) ∈ C∞(Ḡ). (4.20)

We look for extension operator E1
K in a form

E1
Kv(x) = rot(ψ0rot−1Lv)(x) + rot

[
ψ1(x)

K∑
j=1

cjrot∗εj(x)
]
, (4.21)

where cj are constants which we have to determine. Evidently, E1
Kv(x) = v(x)

if x ∈ Ω for any cj . To define constants cj we note that by (4.17) inclusion
EKv ∈ XK(G) are fulfilled if∫

G

εk(x)rot
[
ψ1(x)

K∑
j=1

cjrot∗εj(x)
]

dx = −
∫
G

εk(x)rot(ψ0rot−1Lv)(x) dx (4.22)

where k = 1, . . . , K.
Let

akj =
∫

εk(x) · rot[ψ1(x)rot∗εj(x)] dx =
∫

(rot∗εk(x))ψ1(x)rot∗εj(x) dx. (4.23)

Then the matrix A = ‖akj‖ is positively defined. Indeed, let α = (α1, · · · , αK),
f(x) =

∑K
j=1 αjrot∗εj(x). Then

(Aα,α) =
K∑

k,j=1

αkαj

∫
ψ1(rot∗εk(x))rot∗εj(x) dx =

∫
G

ψ1(x)|f(x)|2dx > 0.

Moreover, if for some α (Aα,α) =
∫

ψ1(x)|f(x)|2dx = 0 then f(x) = 0 for x ∈
ω1 = G \ Ωε and by Lemma 4.2 α1 = · · · = αK = 0. That is why detA 6= ∅.

Equations (4.22) can be rewritten as follows:

Ac = g

where c = (c1, . . . , cK) and g is the vector with components defined by right
size of (4.22). Thus c = A−1g and definition of operator (4.21) is completed.
Boundedness of operator (4.18) follows immediately from its definition (4.21). ¤

4.2. On the space V 1(Ω,Γ0)

In this subsection we show that each vector field v(x) ∈ V 1(Ω) satisfying v|Γ0 = 0
belongs to V 1(Ω,Γ0) if v(x) is smooth enough in a neighbourhood of ∂Γ0. This
result is not used directly for solution of the stabilization problem given below in
Subsection 4.4.
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We introduce the spaces:

V 1
Γ0

= {u(x) = (u1, u2) ∈ V 1(Ω) : v|Γ0 = 0} (4.24)

Ĥ2(Ω,Γ0) = {F (x) ∈ Ĥ2(Ω) : ∇F |Γ0 = 0} (4.25)

where Ĥ2(Ω) is defined analogously to (4.6).

Lemma 4.3. Operator

rot : Ĥ2(Ω,Γ0) → V 1
Γ0

(Ω) (4.26)

is an isomorphism.

The proof of this lemma is completely analogous to the proof of Lemma 4.1.
We want to find out what vector field from V 1

Γ0
(Ω) can be extended to a vector

field belonging to V 1
0 (G). Firstly we consider the simplest case when

∀j ∂Ωj ⊂ Γ or ∂Ωj ∩ Γ = ∅. (4.27)

Proposition 4.1. If condition (4.27) is true then there exists an extension opera-
tor

L : V 1
Γ0

(Ω) → V 1
0 (G) (4.28)

and therefore V 1
Γ0

(Ω) = V 1(Ω,Γ0).

Proof. Let v ∈ V 1
Γ0

(Ω), F = rot−1v ∈ Ĥ2(Ω,Γ0) where rot−1 is constructed in
Lemma 4.3. Since by (4.27) Γ is closed manifold we can extend F through Γ by
means of usual Witney extension theorem and this operator we denote by L0.
Then operator (4.28) can be defined as follows:

L = rot ◦ ψ0 ◦ L0 ◦ rot−1 (4.29)

where ψ0 is the operator of multiplication on function (4.20). Operator (4.29),
evidently, is bounded in spaces (4.28) ¤

Condition (4.27) actually means that ∂Γ = ∅. Now we consider the case when
∂Γ 6= ∅. In this case we also look for an extension operator in the form (4.29)
where, however, L0 is not usual Witney extension operator. Below we construct
new operator L0.

Lemma 4.4. Let domains Ω and G satisfy (4.1), (4.2), (4.3) and Conditions 4.1,
4.2 with α > 2. Suppose that F (x) ∈ Ĥ2(Ω,Γ0) satisfies the condition

F (x) ∈ Hk(Ω ∩ O(∂Γ)) with k >
3α + 1

2
(4.30)

where O(∂Γ) is a neighbourhood of ∂Γ and α is magnitude from (4.4). Then F (x)
can be extended up to a function L0F (x) ∈ H2

∇(G) where

H2
∇(G) = {f(x) ∈ H2(G) : ∇f |∂G = 0}. (4.31)
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Proof. Step 1. If F ∈ Ĥ2(Ω,Γ0) then by (4.25) and Condition 4.1 F |Γ0∩∂Ωj
= cj =

const. Define f by the equality

F = f + cj .

We extend the constant cj through Γ ∩ ∂Ωj by just the same constant cj . That
is why to extend F through Γ ∩ ∂Ωj we have to extend f(x). The problem is to
extend f(x) to a neighbourhood of the point P ∈ ∂Ωj ∩ ∂Γ because outside this
neighbourhood we can use Witney extension method.

By Condition 4.2 we can suppose that f(x, y) ∈ Hk(Q−) with Q− = {(x, y) ∈
R2 : y 6 0, x2 + y2 < 1} 3

f(x, 0) = ∂yf(x, 0) = 0 for x ∈ (−1, 0). (4.32)

We must extend f on Q = {(x, y) ∈ R2 : x2+y2 < 1, y 6 γ(x) where γ(x) = xα

for x > 0, γ(x) = 0 for x 6 0} such that extended function L0f ∈ H2(Q) and
L0f |(x,γ(x)) = ∇L0f |(x,γ(x)) = 0.

Step 2. We define

ϕ(λ) =

{
1− 2β−1λβ , λ ∈ (0, 1/2),
2β−1(1− λ)β , λ ∈ (1/2, 1),

β > 2. (4.33)

It is clear that ϕ(λ) ∈ H2(0, 1)

ϕ(1) = ϕ′(1) = ϕ′(0) = 0, ϕ(0) = 1 (4.34)

and
|ϕ(λ)| 6 c |ϕ′(λ)| 6 cλβ−1, |ϕ′′(λ)| 6 cλβ−2. (4.35)

We determine the extension operator L0 as follows:

L0f(x, y) =

{
f(x, y), y < 0,

g(x, y)ϕ(y/xα), y > 0, x > 0,
(4.36)

where g(x, y) = 4f(x,−y
2 )− 3f(x,−y).

In virtue of (4.34) L0f and ∇L0f satisfy desired zero boundary condition on
{(x, γ(x)}. Moreover the function

h(x, y) =

{
f(x, y), y < 0,

g(x, y), y > 0, x > 0

belongs to H2(Q). Therefore we have to prove only that

g(x, y)ϕ(y/xα) ∈ H2(Q \Q−). (4.37)

3In Condition 4.2 we have x2 + y2 < ε instead of x2 + y2 < 1. By multiplication f on a cut
function equal 1 for x2 + y2 < ε/2 and equal 0 outside x2 + y2 6 ε we can reduce the deal to the
case x2 + y2 < 1.
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Step 3. We prove that the following estimates for function g defined below
(4.36) are true:

|g(x, y)| 6 c(xk−1−ε + xk−2−εy + y2), (x, y) ∈ Q \Q−, ∀ε > 0 (4.38)
|∂xg(x, y)| 6 c(xk−2−ε + xk−3−εy + y2), |∂yg(x, y)| 6 c(xk−2−ε + y), (4.39)

(x, y) ∈ Q \Q−, ∀ε > 0.

Indeed, (4.32) implies that

g(x, 0) = ∂yg(x, 0) = 0 for x ∈ (−1, 0). (4.40)

By Sobolev embedding theorem and by (4.30)

g(x, y) ∈ Hk(Q \Q−) ⊂ Ck−1−ε(Q \Q−). (4.41)

In virtue of Lagrange theorem, (4.40), (4.41) (4.30) we have for (x, y) ∈ Q \Q−:

|g(x, y)| 6 |g(x, 0)|+ |g(x, y)− g(x, 0)| 6 cxk−1−ε + c|∂yg(x, θy)|y 6
6 cxk−1−ε + cy(|∂yg(x, 0)|+ |∂yg(x, θy)− ∂yg(x, 0)|) 6

6 c(xk−1−ε + xk−2−εy + y2).

This proves (4.38). Inequalities (4.39) are proved analogously.
Step 4. We prove (4.37). We have

1∫
0

dx

xα∫
0

|∂yy(g(x, y)ϕ(y/x2))|2dy 6

6 c

1∫
0

dx

xα∫
0

|g∂yyϕ|2 + |(∂yg)∂yϕ|2 + |∂yygϕ|2.) dx

(4.42)

Since ∂yyg ∈ L2 and |ϕ| 6 c we have to estimate only the first and second terms
from right side. Taking into account (4.35), (4.38), (4.39) we get

1∫
0

dx

xα∫
0

|g∂yyϕ|2 + |(∂yg)∂yϕ|2 dy 6

6 c

1∫
0

dx

xα∫
0

[
(x2(k−1−ε) + x2(k−2−ε)y2 + y4)y2(β−2)x−2α(β−2)−4α+

+(x2(k−2−ε) + y2)y2(β−1)x−2α(β−1)−2α
]
dy 6

6 c

1∫
0

(
x2(k−1−ε)−2αβ+α(2β−3)+

+x2(k−2−ε)−2αβ+α(2β−1) + x−2αβ+α(2β+1)
)
dx =

(4.43)



286 A. V. Fursikov JMFM

= c

1∫
0

(x2(k−1−ε)−3α + x2(k−2−ε)−α + xα) dx.

The right side of (4.43) is finite because of (4.30). The terms ∂xy(gϕ), ∂xx(gϕ),
∂x(gϕ), ∂y(gϕ) can be estimated analogously. ¤

Now we can prove the final result:

Theorem 4.2. Let domains Ω and G satisfy (4.1), (4.2), Conditions 4.1, 4.2 and
∂Γ 6= ∅. Suppose that v(x) ∈ V 1

Γ0
(Ω) satisfies the condition

v(x) ∈ (
Hm(Ω ∩ O(∂Γ))

)2 with m >
3α− 1

2
, α > 2, (4.44)

where O(∂Γ) is a neighbourhood of ∂Γ and α is a magnitude from (4.4). Then
v(x) ∈ V 1(Ω,Γ0), i.e. it can be extended up to a vector field Lv ∈ V 1

0 (G).

Proof. Let v(x) satisfy conditions of the Theorem. By Lemma 4.3 the func-
tion F (x) = rot−1v(x) belongs to Ĥ2(Ω,Γ0) and by (4.44) F (x) satisfies (4.30)
with k = m + 1. Then by Lemma 4.4 F (x) can be extended up to a function
L0F (x) ∈ H2

∇(G). Evidently, the vector field Lv(x) ≡ rot(ψ0(x)L0F (x)) ≡
rot(ψ0(x)L0rot−1v(x)) belongs to V 1

0 (G). ¤

4.3. Extension Theorem for V 0

Extension operator constructed in Subsections 4.1, 4.2 is the main in our theory
because it can be used for Navier–Stokes equations. Nevertheless there are some
reasons to construct analogous extension operator for more wide function spaces
of V 0-type. This construction is analogous but easier than that was written above.
That is why we expound it briefly.

Set

V 0(Ω,Γ0) = {u(x) ∈ V 0(Ω) : u · ν|Γ0 = 0, ∃v ∈ V 0
0 (G) that u(x) = γΩv(x)}

(4.45)
where γΩ is the operator of restriction on Ω. Besides,

‖u‖V 0(Ω,Γ0) = inf
γΩv=u

‖v‖V 0
0 (G).

Denote

Ĥ1
τ (G) = {F (x) ∈ H1(G) : ∂τF |∂G = 0,

∫
G

F (x)dx = 0}, (4.46)

∂τ is the derivative along the vector field τ tangent to ∂G.
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Lemma 4.5. The operator

rot : Ĥ1
τ (G) → V 0

0 (G)

defined in (4.8) is an isomorphism. (V 0
0 (G) is defined in (3.16)).

This lemma is proved as Lemma 4.1.
Analogously to (4.17) we define

X0
K(G) = {v(x) ∈ V 0

0 (G) :
∫
G

v(x) · εj(x) dx = 0, k = 1, . . . , K}, (4.47)

where εj(x) are functions (3.74).

Theorem 4.3. There exists a linear bounded extension operator

E0
K : V 0(Ω,Γ0) → X0

K(G). (4.48)

The proof is analogous to Theorem’s 4.1 proof.
At last let us give a condition on vector field v ∈ V 0

Γ0
= {v ∈ V 0(Ω): v · ν|Γ0 =

0}, which guarantees that v belongs to space (4.45) when ∂Γ 6= ∅.
We do it firstly for functions

F (x) ∈ Ĥ1(Ω,Γ0) ≡ {F (x) ∈ H1(Ω) : ∂τF |Γ0 = 0,

∫
G

F (x)dx = 0}. (4.49)

Lemma 4.6. Let domains Ω and G satisfy (4.1), (4.2), (4.3) and Conditions 4.1,
4.2. Suppose that F (x) satisfies (4.49) and satisfies the following condition:

F (x) ∈ H1+β(Ω ∩ O(∂Γ)) (4.50)

and parameter α from (4.4) satisfies 1 < α < 1 + β, 0 < β < 1.
Then F (x) can be extended to a function L0F (x) ∈ H1

τ (G) where

H1
τ (G) = {f(x) ∈ H1(G) : ∂τf |∂G = 0}

and ∂τ is derivative along vector field τ tangential to ∂G.

Draft of proof. By (4.49) any F ∈ Ĥ1(Ω,Γ0) equals constant cj on ∂Ωj ∩ Γ0 for
each connected component ∂Ωj of ∂Ω, f(x, y) ≡ F − cj ∈ H1+β(Q−), f(x, 0) = 0
for x ∈ (−1, 0) and we must extend f(x, y) on Q, where the sets Q− and Q are
defined near (4.32).

We set ϕ(λ) = 1−λ for λ ∈ (0, 1) and define the extension operator as follows:

L0f(x, y) =

{
f(x, y), y < 0,

f(x,−y)ϕ(y/xα), y > 0, x ∈ (0, 1).

As well as in Lemma 4.4 all proof is reduced to establishing of the inclusions

∂x

(
f(x,−y)ϕ(y/xα)

) ∈ L2(Q\Q−), ∂y

(
f(x,−y)ϕ(y/xα)

) ∈ L2(Q\Q−). (4.51)
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To do it we take into account that by Sobolev embedding theorem H1+β(Q−) ⊂
Cβ1(Q−) and therefore the inequality is true:

|f(x, y)| 6 c(xβ1 + yβ1) ∀ (x, y) ∈ Q \Q−, where 1 < β1 < β.

Now using this inequality and do estimates analogous to (4.42), (4.43) we prove
(4.51). ¤

The following assertion succeeds from Lemma 4.6 as Theorem 4.2 was derived
from Lemma 4.4.

Theorem 4.4. Let Ω and G satisfy (4.1), (4.2), Conditions 4.1, 4.2, and ∂Γ 6= ∅.
Suppose that v(x) ∈ V 0

Γ0
(Ω), v(x) ∈ H1+β(Ω ∩ O(∂Γ)) where 0 < β < 1, and

parameter α from (4.4) satisfies inequalities 1 < α < 1+β. Then v(x) ∈ V 0(Ω,Γ).

4.4. Results on stabilization

We prove now the main theorem of this section on stabilizability by feedback
boundary control of 2D Oseen equations.

Theorem 4.5. Let domains Ω and G satisfy (4.1), (4.2), and Conditions 4.1,
4.2. Then for each initial condition v0(x) ∈ V 0(Ω,Γ0) and each σ > 0 there exists
a feedback control u defined on the part Σ of boundary (0,∞) × ∂Ω such that the
solution v(t, x) of boundary value problem (3.1)–(3.3), (3.5) satisfies the inequality:

‖v(t, ·)‖(L2(Ω))2 6 ce−σt as t →∞. (4.52)

Proof. Let A be operator (3.18) and the magnitude σ > 0 satisfies condition (3.55).
In the case if it is not so we get satisfying (3.55) by small increasing of σ. We act on
initial condition v0 ∈ V 0(Ω,Γ0) by the operator E0

K from (4.48). Then by Theo-
rem 4.3 w0 = E0

Kv0 satisfies including w0 ∈ X0
K(G). By definition (4.47) of X0

K(G)
and definition (3.74) of vector fields ε1(x), . . . , εK(x) one yields that w0 and σ sat-
isfy all conditions of Theorem 3.3. In virtue of this theorem inequality (3.66) is
true. We define desired solution (v, u) of stabilization problem (3.1)–(3.3), (3.5)
by formula (3.15), where w(t, ·) = e−Atw0 is the solution of problem (3.10)–(3.13)
which can be rewritten in the equivalent form (3.53). Then (3.66) and evident
inequality

‖v(t, ·)‖L2(Ω) 6 ‖w(t, ·)‖V 0
0 (G)

imply (4.52). ¤

Theorem 4.6. Let domains Ω and G satisfy (4.1), (4.2), and Conditions 4.1,
4.2 with α > 2. Then for each initial condition v0(x) ∈ V 1(Ω,Γ0) and for each
σ > 0 there exists a feedback control u defined on Σ such that the solution v(t, x)
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of (3.1)–(3.3), (3.5) satisfies the inequality

‖v(t, ·)‖(H1(Ω))2 6 ce−σt as t →∞. (4.53)

Proof. As in Theorem 4.5 we can assume that σ satisfies conditions (3.55). We
act on initial condition v0 ∈ V 1(Ω,Γ0) by the operator E1

K from (4.18) and by
Theorem 4.1 we obtain that w0 = E1

Kv0 ∈ X1
K(G). Since X1

K(G) ⊂ V 1
0 (G) ⊂

V 0
0 (G), the solution w(t, x) of problem (3.1)–(3.3), (3.5) can be written in the

form w(t, ·) = e−Atw0 where A is operator (3.18). We want to prove that

‖w(t, ·)‖V 1
0 (G) 6 ce−σt for t > 0. (4.54)

Since by well-known results on smoothness of solutions for Oseen equations in-
equality (4.54) is true for t ∈ [0, 1], it sufficient to prove (4.54) for t > 1. In virtue
of representation (3.58) for e−At, inclusion w0 ∈ X1

K(G) and Corollary 3.1 we have

w(t, ·) = e−Atw0 =
∫
γσ

(λI + A)−1w0e
λt dλ (4.55)

where the contour γσ is define lower formula (3.55).
To estimate (4.55) we use the following assertion which will be proved after

finishing of Theorem’s 4.6 proof.

Lemma 4.7. Let A be operator (3.18) and σ > 0 satisfies (3.55). Then

‖(λI + A)−1w‖V 1
0 (G) 6 c‖w‖V 0

0 (G), (4.56)

where constant c > 0 does not depend on w ∈ V 0
0 (G) and λ ∈ γσ and the contour

γσ is defined lower (3.55).

End of proof of Theorem 4.5. We estimate integral in (4.55) using arguments
of proof of the Lemma 3.4, but applying estimate (4.56) instead of (3.60). As a
result we get:

‖w(t, ·)‖V 1
0 (G) 6 ce−σt‖w0‖V 0

0 (G), t > 1.

Hence we established (4.54). Now we define (v(t,·), u(t, ·)) = (γΩw(t,·), γΓw(t,·))
and derive (4.53) from (4.54) and evident inequality ‖v(t,·)‖H1(Ω) 6c‖w(t,·)‖V 1

0 (Γ).
¤

Proof of Lemma 4.7. In virtue if Lemma 3.1, definition of contour γσ, and condi-
tion (3.55), operator (λI + A)−1 is well-defined on V 0

0 (G) if λ ∈ γσ.4

We denote v = (λI + A)−1w. When to prove (4.56) we have to establish the
bound

‖(A + λI)v‖V 0
0 (G) > c1‖v‖V 1

0 (G). (4.57)

4Well-definiteness of (λI + A)−1 on V 0
0 (G) for λ ∈ γσ , |λ| À 1 can be obtained easily also

by estimates analogous to that we get below in the proof of this Lemma.
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If λ ∈ γσ and |λ| À 1 then by definition of γσ (see lower (3.55))

λ = −µ(1 + iν) where µ À 1 and |ν| < 1 (ν ∈ R is fixed). (4.58)

We consider firstly the Stokes operator

A0 = −π∆ : V 0
0 (G) −→ V 0

0 (G) (4.59)

As well-known (see [17], [19]), the closure of map (4.59) is self-adjoint positive
operator which possesses a compact inverse operator. By Hilbert–Shmidt theorem
the spectrum Σ(A0) consists of a countable set of positive numbers 0 < λ1 6
λ2 6 · · · 6 λk → ∞, as k → ∞, and corresponding eigenfunctions {ej} form an
orthogonal basis in V 0

0 (G) and in V 1
0 (G) (see [5]), and for v =

∑∞
j=1 vjej we have:

‖v‖2V 0
0 (G) =

∞∑
j=1

|vj |2, ‖v‖2V 1
0 (G) =

∞∑
j=1

λj |vj |2. (4.60)

In virtue of (4.58), (4.60) we get that for λ ∈ γσ, |λ| À 1

‖(λI+A0)v‖2V 0
0 (G) =

∞∑
j=1

|−µ(1+iν)+λj |2|vj |2 =
∞∑

j=1

[(λj−µ)2+ν2µ2]|vj |2. (4.61)

Since for function f(x) = ((x− µ)2 + ν2µ2)/x

inf
x∈R+

f(x) = f(µ
√

1 + ν2) = 2(
√

1 + ν2 − 1)µ

we get from (4.61) that

‖(λI + A0)v‖2V 0
0 (G) > 2(

√
1 + ν2 − 1)µ

∞∑
j=1

λj |vj |2 = c0µ‖v‖2V 1
0 (G) (4.62)

Consider now operator A from (3.18) which can be written in the form

Av = A0v + π[(a(x),∇)v + (v,∇)a)] (4.63)

Since by (3.9) and in virtue of Sobolev embedding theorem

a(x) ∈ C(G), ∇a(x) ∈ L4(G),

we get the following estimate:

‖[(a,∇)v + (v,∇)a)]‖V 0
0 (G) 6

6 ‖a‖C(G)‖v‖V 1
0 (G) + ‖∇a‖L4(G)‖v‖L4(G) 6 c1‖v‖V 1

0 (G).
(4.64)

Taking into account (4.62), (4.63), (4.64) we obtain

‖(λI + A)v‖V 0
0 (G) >

> ‖(λI + A0)v‖V 0
0 (G) − ‖[(a,∇)v + (v,∇)a)]‖V 0

0 (G) > (c0µ− c1)‖v‖V 1
0 (G).

This estimate and (4.58) imply (4.57) and therefore imply (4.56) for λ ∈ γσ, |λ| À
1. For other λ ∈ γσ estimate (4.56) is true because γσ ⊂ ρ(−A). ¤
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5. Stabilization of 2D Navier–Stokes equations

5.1. Formulation of the stabilization problem

As in Subsections 3.1, 4.1 we suppose that Ω ⊂ R2 is a bounded connected domain
with C∞-boundary ∂Ω, and ∂Ω = Γ̄ ∪ Γ̄0, Γ 6= ∅ where Γ,Γ0 are open sets
satisfying Condition 4.1. Recall denotations of the space-times sets: Q = R+×Ω,
Σ0 = R+ × Γ0, Σ = R+ × Γ. In Q we consider the Navier–Stokes equations

∂tv(t, x)−∆v(t, x) + (v,∇)v +∇p(t, x) = f(x), (t, x) ∈ Q (5.1)

div v = 0 (5.2)

(v = (v1, v2)) with initial condition

v(t, x)|t=0 = v0(x), x ∈ Ω (5.3)

and boundary conditions
v|Σ0 = 0, v|Σ = u, (5.4)

where u = (u1, u2) is a control defined on Σ.
We suppose also that a steady-state solution (v̂(x),∇p̂(x)) of Navier–Stokes

system with the same right-hand side f(x) as in (5.1) is given:

∆v̂(x) + (v̂,∇)v̂ +∇p̂ = f(x), div v̂(x) = 0, x ∈ Ω (5.5)

v̂|Γ0 = 0. (5.6)

Let σ > 0 be given. The problem of stabilization with the rate σ reduced to
look for a solution of problem (5.1)–(5.4) which satisfies the inequality

‖v(t, ·)− v̂‖(H1(Ω))2 6 ce−σt as t →∞. (5.7)

The important additional condition is that u is a feedback control. Definition
of feedback notion is analogous to Definition 3.1. Nevertheless we give now exact
formulation of feedback property.

We extend Ω to a domain G through Γ (see (4.1), (4.2)) such that Condition 4.2
holds. After that we extend problem (5.1)–(5.4) to analogous problem defined on
Θ = R+ ×G:

∂tw(t, x)−∆w + (w,∇)w +∇q(t, x) = g(x), div w(t, x) = 0 (5.8)

w(t, x)|t=0 = w0(x) (5.9)

with additional condition
w|S = 0 (5.10)

where S = R+ × ∂G. Moreover we assume that solution (v̂,∇p̂) of (5.5), (5.6) is
extended on G to a pair (a(x),∇q̂(x)), x ∈ G such that

−∆a(x) + (a,∇)a +∇q̂(x) = g(x), div a(x) = 0, x ∈ G (5.11)

a|∂G = 0 (5.12)
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where right side g(x) is the same as in (5.8). (We show below how to construct
such extension.)

Definition 5.1. A control u(t, x) in stabilization problem (5.1)–(5.4) is called
feedback if the solution (v(t, x), u(t, x)) of (5.1)–(5.4) is defined by the equality:

(v(t, x), u(t, x)) = (γΩw(t, ·), γΓw(t, ·)) (5.13)

where w(t, x) satisfies to (5.8)–(5.10), and γΩ, γΓ are operators of restriction of a
function defined on G to Ω and to Γ respectively.

5.2. Invariant manifolds

Let g(x) from (5.8) satisfy the condition:

g(x) ∈ (L2(G))2. (5.14)

Then as well-known (see, for instance [18]) equations (5.8) are equivalent to the
following equation with respect to one unknown function w(t, x):

∂tw(t, x)− π∆w + π(w,∇)w = πg(x) (5.15)

where π is orthoprojector (3.17) on V 0
0 (G) (see (3.16)). We assume in addition

that solution w of (5.15) (as well as solution w of (5.8)) belongs to the space

V 1,2(ΘT ) ≡ {w(t, x) ∈ L2(0, T ;V 2(G) ∩ (H1
0 (G))2) : ∂tw ∈ L2(0, T ;V 0

0 (G)}
(5.16)

for each T > 0, where ΘT = (0, T ) ×G. It is proved (see [13], [17]) that for each
T > 0, g(x) ∈ (L0

2(G))2, w0(x) ∈ V 1
0 (G) there exists unique solution w(t, x) ∈

V 1,2(QT ) of problem (5.15), (5.9). Solution w(t, x) of (5.15), (5.9) taken at time
moment t we denote as S(t, w0)(x):

w(t, x) = S(t, w0)(x). (5.17)

Since embedding V 1,2(QT ) ⊂ C(0, T ;V 1
0 (G)) is continuous, the family of op-

erators S(t, w0) is continuous semigroup on the space V 1
0 (G) : S(t + τ, w0) =

S(t, S(τ, w0)).
Note that we can rewrite (5.11) in the form analogous to (5.15):

−π∆a(x) + π(a,∇)a = πg, a(x) ∈ V 1
0 (G) ∩ V 2(G). (5.18)

Since a(x) is steady-state solution of (5.15), S(t, a) = a for each t > 0. We can
decompose semigroup S(t, w0) in a neighbourhood of a in the form

S(t, w0 + a) = a + Ltw0 + B(t, w0) (5.19)

where Ltw0 = S′w(t, a)w0 is derivative of S(t, w0) with respect to w0 at point a,
and B(t, w0) is nonlinear operator with respect to w0. Differentiability of S(t, w0)
is proved, for instance in [2, Ch. 7. Sect. 5]. Therefore

B(t, 0) = 0, B′
w(t, 0) = 0. (5.20)
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Moreover in [2, Ch. 7. Sect. 5] is proved that B(t, w) belongs to class C1+α

with α = 1/2 with respect to w. This means that for each w0 ∈ V 1
0 (G)

‖B′
w(t, w0)‖Cα ≡ sup

06‖u−w0‖V 1
0 (G)61

‖B′
w(t, u)−B′

w(t, w0)‖V 1
0 (G)

‖u− w0‖α
V 1

0 (G)

< ∞

and left side is a continuous function with respect to w.
We study now semigroup Ltw0 = S′w(t, a)w0 of linear operators. First of all

note that w(t, x) = Ltw0 is the solution of problem (3.10)–(3.12) in which the
coefficient a is the solution of (5.18). Therefore

Ltw0 = e−Atw0 (5.21)

where A is operator (3.18). We remind (see [2])

Definition 5.2. Semigroup of linear bounded operators St : X → X (X is a
Hilbert space) is called almost stable if

i) St are bounded in X for 0 6 t 6 T by a constant depending on T .
ii) 〈Stu, ϕ〉 is continuous with respect to t ∀u ∈ X, ∀ϕ ∈ Φ∗ where Φ∗ is a

dense set in X∗.
iii) For each t0 > 0 and for each r0 ∈ (0, 1) there exists not more than finite set

σ+ = (ζ1, . . . , ζN ) of points belonging to spectrum of operator St0 which
are placed outside the disk |ζ| 6 r0.

iv) Invariant subspace of operator St0 corresponding to σ+ is finite dimen-
sional.

Below we suppose that r0 ∈ (0, 1) satisfies the property:

{ζ ∈ C : |ζ| = r0} ∩ Σ(e−At0) = ∅ (5.22)

where, recall, Σ(e−At) is the spectrum of operator (5.21).
It is clear that ζj ∈ Σ(e−At0) if and only if ζj = e−λjt0 and −λj ∈ Σ(−A).

That is why condition (5.22) is equivalent to condition (3.55) where σ = − ln r0/t0.
Besides, if |ζj | > r0 then −Reλj > −σ.

The following assertion holds:

Theorem 5.1. Family of operators e−At : V 1
0 (G) → V 1

0 (G) where A is operator
(3.18) is well defined for each t > 0 and it is almost stable semigroup (see Definition
5.2 where St = e−At, X = V 1

0 (G)). Let

σ+ = {ζ1, . . . , ζK : ζj ∈ Σ(e−At0), |ζj | > r0, j = 1, . . . , K} (5.23)

where r0 ∈ (0, 1) and satisfies (5.22). Let X+ ⊂ V 1
0 (G) be the invariant subspace

for e−At0 corresponding to σ+, Π+ : V 1
0 (G) → X+ be the projector on X+ (i.e.,

Π+V 1
0 (G) = X+, Π2

+ = Π) and X− = (I−Π+)V 1
0 (G) be complementary invariant

subspace. Let L+
t0 = e−At0 |X+ : X+ → X+, L−t0 = e−At0 |X− : X− → X−. Then
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operator L+
t0 has inverse operator (L+

t0)
−1. For some t0 there exist constants r̂,

ε+, ε− ∈ (0, 1) such that

‖L−t0‖ 6 r̂(1− ε−), ‖(L+
t0)

−1‖ 6 r̂−1(1− ε+). (5.24)

Proof. Well posedness of operator e−At and the point i) of Definition 5.2 is proved,
for instance, in [13], [17]. Denote in the point ii) of Definition 5.2 by 〈, 〉 the duality
between V 1

0 (G) and V −1(G) = (V 1
0 (G))∗. Then ii) also follows from [13], [17].

Semigroup e−At : V 1
0 (G) → V 1

0 (G) is restriction of semigroup e−At : V 0
0 (G) →

V 0
0 (G). Hence formula (3.54) is true for e−At : V 1

0 (G) → V 1
0 (G):

e−Atw0 = (2πi)−1

∫
γ

(λI + A)−1w0e
λtdλ, w0 ∈ V 1

0 (G), (5.25)

where γ ⊂ C1 is the contour described lower (3.54). In Section 3 was established
that for each −σ < 0 there exists not more than finite number of −λj ∈ Σ(−A)
for which Re(−λjt0) > −σt0. Hence, for r0 = e−σt0 the number of ζj = e−λjt0 ∈
Σ(e−At0) such that |ζj | > r0 is finite. This established iii) of Definition 5.2.

In correspondence with general definition ([4], [20]) operator Π+ defined in
formulation of Theorem 5.1 can be calculated as follows:

Π+ = (2πi)−1

∫
Γ

(ζI + e−At0)−1dζ (5.26)

where Γ = {z ∈ C1 : |ζ| = r0} ∪ {ζ ∈ C1 : |ζ| = R} and R > 0 is so large
that outside of the disk {|ζ| 6 R} there is no eigenvalues of operator e−At0 ; going
around external circle is counterclockwise and circuit internal circle is clockwise.
In [6, Lemma 5.3] is shown that

Π+ =
∑

Reλj<σ

R−1(−λj) (5.27)

where R−1(−λj) is the operator-coefficient Rk(−λj) with k = −1 in Laurent
decomposition of the resolvent R(λ,−A) around eigenvalue −λj . Since
dim ImR−1(−λj) < ∞ (see Lemma 3.3 above), and number of λj with Re(−λj) >
−σ is finite, we proved point iv) of Definition 5.2.

Operators Π+ and e−At0 commutate. (see Lemma 3.2) Therefore operator
L+

t0 = e−At0 |X+ with X+ = Π+V 1
0 (G) is defined by the formula

L+
t0 = Π+e−At0 = (2πi)−1

∫
Γ

(ζI − e−At0)−1ζ dζ. (5.28)

As we showed in [6, Lemma 5.3] this formula can be transformed as follows:

L+
t0 =

∑
Reλj<σ

e−λjt0

m(−λj)∑
n=1

tn−1
0 R−n(−λj)

(n− 1)!
. (5.29)
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Comparing (5.26), (5.29) and (3.58) and taking into account (3.26) we see that
operator L−t0 = e−At0 |X− where X− = (I −Π+)V 1

0 (G) is defined by the formula

L− = (2πi)−1

∫
γσ

(λI + A)−1eλt0dλ (5.30)

where γσ is the counter described lower formula (3.55). Integral (5.30) was esti-
mated in Theorem 4.6 (see (4.53)). As a result we have:

‖L−‖ 6 ce−(σ+δ)t0 (5.31)

where ‖ · ‖ is the norm of operator acting in V 1
0 (G).

In [6, Lemma 5.3] we showed that the inverse operator (L+
t0)

−1 exists and is
defined by the formula

(L+
t0)

−1 =
∑

Reλj<(σ+δ0)

e+λjt0

m(−λj)∑
n=1

tn−1
0

(n− 1)!
R−n(−λj).

It follows from this formula that

‖(L+
t0)

−1‖ 6 c1e
+(σ−δ)t0 (5.32)

where c1 does not depend on t0 and δ > 0 is a sufficiently small magnitude.
In virtue of (5.31), (5.32) inequalities (5.24) are true for enough large t0 if

r̂ = e−(σ− δ
2 )t0 and ε+, ε− ∈ (0, 1). ¤

Generally speaking, eigenvalues of operators A and e−At are complex-valued.
That is why all spaces in Theorem 5.1 are complex. But to apply obtained results
to (nonlinear) Navier–Stokes equations we need to have analogous results for the
real spaces of the same type. Actually for this we have to define the projector
of (5.27) in real spaces.

The form (3.40) of the main part for Laurent series (3.23) implies that

R−1(−λj)v =
∑
(k)

(
e
(k)
0 (−λj)〈v, ε(k)

mk
(−λ̄j)〉+ e

(k)
1 (−λj)〈v, ε

(k)
mk−1(−λ̄j)〉+

+ · · ·+ e(k)
mk

(−λj)〈v, ε
(k)
0 (−λ̄j)〉

) (5.33)

where 〈·, ·〉 is scalar product in complex space (L2(G)), {ε(k)
l (−λ̄j)} is canonical

system (3.64) of operator −A∗ corresponding to eigenvalue −λ̄j and {e(k)
l (−λj)}

is canonical system of −A corresponding to eigenvalue −λj , which is constructed
by {ε(k)

l (−λ̄j)} in Theorem 3.1. We suppose also that {ε(k)
l (−λ̄j)} satisfy (3.72).

Then {e(k)
l (−λj)} satisfy analogous property that follows from the proof of Theo-

rem 3.1.
We define restriction of operator (5.33) on the real space V 1

0 (G) with help of
vector fields (3.73) and

Ree(k)
l (−λj , x), Ime

(k)
l (−λj , x). (5.34)
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Lemma 5.1. Restriction of operator (5.33) on the real space V 1
0 (G) can be written

in the form

(Π+)(x) =
K∑

j=1

ej(x)
∫
G

v(x)εj(x) dx (5.35)

where {ej} is the set of functions (5.34) which is renumbered and is renormalized by
suitable away and {εj} is renumbered and is renormalized set of functions (3.74).

The proof of this simple lemma one can find in [6, Lemma 6.2].
The following assertion holds.

Lemma 5.2. For an arbitrary subdomain ω ⊂ G vector fields {ej(x), j = 1, . . . , K}
from (5.35) restricted on ω are linear independent over R.

Since there is evident symmetry between operators A and A∗ and therefore
between {ej(x)} and fields (3.74), Lemma 5.2 is proved similarly to Lemma 3.6.

Using (5.35) we can easily restrict spaces X+ and X− as well as operators L+
t0 ,

L−t0 defined in formulation of Theorem 5.1 on the real subspaces of V 1
0 (G). We

denote this new real spaces and operators also by X+, X−, L+
t0 , L−t0 . This will not

lead to misunderstanding because below we do not use their complex analogs.
In a neighbourhood of steady-state solution a of (5.18) we establish existence of

a manifold M− which is invariant with respect to semigroup S(t, w) (i.e., S(t, w) ∈
M− ∀w ∈ M−). This manifold can be represented as the graph:

M− = {u ∈ V 1
0 (G) : u = a + u− + g(u−), u ∈ X− ∩ O} (5.36)

where O is a neighbourhood of origin in V 1
0 (G), g : X− ∩O → X+ is an operator-

function of class C3/2 and

g(0) = 0, g′(0) = 0. (5.37)

Note that condition (5.37) means that manifold (5.36) is tangent to X− at
point a.

The following theorem is true.

Theorem 5.2. Let a satisfy (5.18), σ > 0 satisfy (3.55), O = Oε = {v ∈ V 1
0 (G) :

‖v‖V 1
0 (G) < ε} and ε is sufficiently small. Then there exists unique operator-

function g : X− ∩ O → X+ of class C3/2 satisfying (5.37) such that the mani-
fold M− defined in (5.36) is invariant with respect to semigroup S(t, w0) connected
with (5.15).5 There exists a constant c > 0 such that

‖S(t, w0)− a‖V 1
0 (G) 6 c‖w0 − a‖V 1

0 (G)e
−σt as t > 0 (5.38)

for each w0 ∈ M−.

5I.e. S(t, w0) is the resolving semigroup of equation (5.15) (see (5.17)).
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This theorem follows form results of [2, Ch. 5, Sect. 2; Ch. 7, Sect. 5] and from
Theorem 5.1.

5.3. Extension operator

Here we construct extension operator for Navier–Stokes equations. This operator
is analog of extension operators (4.18), (4.48) constructed for Oseen equations.

Recall that the domain Ω and its extension G satisfy (4.1), (4.2) and Conditions
4.1, 4.2. Besides

V 1(Ω,Γ0) = {u(x) ∈ V 1(Ω) : u|Γ0 = 0, ∃v ∈ V 1
0 (G) that u(x) = γΩv(x)}. (5.39)

This space is equipped with the norm

‖u‖V 1(Ω,Γ0) = inf
Eu
‖Eu‖V 1

0 (G) (5.40)

where infimum is taken over all bounded extension operators

E : V 1(Ω,Γ0) → V 1
0 (G).

Let us prove the theorem on extension.

Theorem 5.3. Let a(x) be a steady-state solution of (5.18), v̂(x) = γΩa, and M−
is the invariant manifold constructed in neighbourhood a + O of a in V 1

0 (G) in
Theorem 5.2. Let Bε1 = {v0 ∈ V 1(Ω,Γ0) : ‖v0 − v̂‖V 1(Ω,Γ0) < ε1}. Then for
sufficiently small ε1 one can construct a continuous operator

Ext : v̂ + Bε1 → M−, (5.41)

which is operator of extension for vector fields from Ω to G:

(Extv)(x) ≡ v(x), x ∈ Ω. (5.42)

Proof. By definition of V 1(Ω,Γ0) there exists a bounded linear extension operator

R : V 1(Ω,Γ0) → V 1
0 (G).

Let ϕ(x) ∈ C∞(Ḡ), ϕ(x) ≡ 1 for x ∈ Ω and ϕ(x) ≡ 0 outside a neighbourhood
of Ω. Similarly to (4.21) we introduce the following operator of extension:

Qv(x) =

{
v(x), x ∈ Ω,

rot(ϕrot−1Rv)(x) + w(x), x ∈ ω,
(5.43)

where w(x) is a vector field concentrated in ω which is constructed by v(x). We
describe its construction below. At last we define the desired operator Ext by the
formula

Extv = Π−Qz + g(Π−Qz) + a, with z = v − a, (5.44)
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where Π− = I − Π+, Π+ is operator (5.35) of projection on X+ = Π+V 1
0 (G),

X− = Π−V 1
0 (G), and g : X− → X+ is the operator constructed in Theorem 5.2.

By definition (5.36) of M− we have Extv ∈ M−. Hence we have to provide that
the equality

(Extv)(x) ≡ v(x), x ∈ Ω (5.45)

is true, which shows that Ext is an extension operator. By (5.35) {ej(x)} generates
X+ and therefore the map g(u) can be written in the form

g(u) =
N∑

j=1

ejgj(u).

That is why taking into account (5.35) we can rewrite (5.44) in the form

Extv = a(x) + Qz(x)−
K∑

j=1

ej(x)
∫
Q

Qz(y)εj(y) dy +
K∑

j=1

ej(x)gj(Π−Qz), (5.46)

(z = v − a).
In virtue of Lemma 5.2 {ej(x), x ∈ Ω} are linear independent and therefore

(5.45), (5.46) imply∫
G

Qz(x)εj(x) dx = gj(Π−Qz), j = 1, . . . , K. (5.47)

Let ψ(x) ∈ C∞(Ḡ), ψ(x) = 1 outside small neighbourhood of Ω and ψ(x) = 0,
x ∈ Ω. Similarly to (4.21) we look for the vector field w(x) from (5.43) in the form

w(x) = rot
[
ψ(x)

K∑
k=1

ckrot∗εk(x)
]
. (5.48)

To find coefficients (c1, . . . , cK) ≡ ~c we substitute (5.48) into (5.47) taking into
account (5.43), (5.35). As a result we get

~z + A~c = ~g
(
Γz + (~c, rot[ψrot∗~ε])− (~e, ~z + A~c)

)
, (5.49)

where Γz = rot(ϕrot−1Rz), ~z = (z1, . . . , zK), A = ‖ajk‖ and

zj =
∫
G

rot(ϕrot−1Rz(x))εj(x) dx, ajk =
∫
G

rot[ψ(x)rot∗εk(x)]εj(x) dx,

~g(u) = (g1(u), . . . , gK(u)),

~ε = (ε1(x), . . . , εK(x)), ~e = (e1(x), . . . , eK(x)), (~c,~e) =
K∑

j=1

cjej .

We prove as in Theorem 4.1 that matrix A = ‖ajk‖ is positive defined and therefore
it is invertible.



Vol. 3 (2001) Navier–Stokes Feedback Stabilizability 299

Applying to both parts of (5.49) the matrix A−1 we get the equality

~c = Gz(~c) (5.50)

where the map Gz : RK → RK is defined by the relation

Gz(~c) = A−1~g(Γz − (~e, ~z) + (~c, rot[ψrot∗~ε])− (~e,A~c))−A−1z. (5.51)

In virtue of Theorem 5.2 the map A−1~g : RK → RK belongs to the class C1+1/2

and A−1~g(0) = 0, A−1~g′(0) = 0. Therefore for sufficiently small ‖~c1‖RK , ‖~c2‖RK ,
‖z‖V 1

0 (G) we derive from (5.51) that

‖Gz(~c1)−Gz(~c2)‖ 6 sup
β∈[0,1]

‖A−1~g′(Γz − (~e, ~z)+

+ (β~c1 + (1− β)~c2, rot[ψrot∗~ε])− (~e,A[β~c1 + (1− β~c2)]))‖ · ‖~c1 − ~c2‖ 6
6 γ(z,~c1,~c2)‖~c1 − ~c2‖, where γ(z, c1, c2) 6 γ1(‖z‖1/2

V 1
0 (G)

+ ‖c1‖1/2

RK + ‖c2‖1/2

RK ),

and γ1 > 0 is a constant. Therefore the map Gz is a contraction one. Hence
by contraction mapping principle ([11]) equation (5.50) has a unique solution ~c =
(c1, . . . , cK) if ‖z‖V 1

0 (G) is sufficiently small. For these ‖z‖V 1
0 (G) the operator Ext

defined in (5.44), (5.43), (5.48) is the desired extension operator. ¤

5.4. Theorem on stabilization

First of all we make more precise conditions connected with solution (v̂,∇p̂) of
steady-state problem (5.5), (5.6). We set

V 2(Ω,Γ0) = {v(x) ∈ V 2(Ω) : v|Γ0 = 0, ∃w ∈ V 2(G) ∩ V 1
0 (G), v(x) = γΩw}

(5.52)
where γΩ is the operator of restriction on Ω.

Proposition 5.1. Let f ∈ (L2(Ω))2 and a pair (v̂(x),∇p̂(x)) belong to V 2(Ω,Γ)×
(L2(Ω))2 and satisfies equations (5.5), (5.6). Then there are extension g(x) ∈
(L2(G))2 of f(x) from Ω to G and an extension (a(x),∇q(x)) ∈ (V 2(G)∩V 1

0 (G))×
L2(G) of (v̂(x),∇p̂(x)) from Ω to G such that the pair (a(x),∇q(x)) is a solution
of (5.11), (5.12).

Proof. By definition of the space V 2(Ω,Γ0) there exists an extension a(x) ∈
V 2(G) ∩ V 1

0 (G) of v̂(x) from Ω to G. Since ∇p ∈ L2(Ω), one can choose p(x) ∈
H1(Ω) and after that extend p(x) from Ω to G up to a function q(x) ∈ H1(G).
We substitute (a(x),∇q) to the left side of the first equation in (5.11) and denote
the obtained right side as g(x). Evidently g(x) ∈ L2(G). Moreover γΩg(x) = f(x)
because γΩ(a(x),∇q(x)) = (v̂(x),∇p(x)), and (5.5) is true. ¤

Remark 5.1. Condition v̂ ∈ V 2(Ω,Γ0) which we impose on a given steady-state
solution is not constructive. But using arguments expounded in Subsection 4.2 one
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can prove that vector field v̂(x) belongs to V 2(Ω,Γ0) if it satisfies the following
condition: v̂(x) ∈ V 2(Ω), v̂|Γ0 = 0 and v̂(x) is sufficiently smooth in a neighbour-
hood of ∂Γ. Moreover we suppose that assumptions (4.1), (4.2), Conditions 4.1,
4.2 are fulfilled and in Condition 4.2 restriction α > 3 holds.

We now are in position to prove the main result of this paper.

Theorem 5.4. Let Ω ⊂ R2 be a bounded domain with C∞-boundary ∂Ω and ∂Ω =
Γ0 ∪ Γ1 ∪ ∂Γ, where Γ,Γ0 are open curves, Γ 6= ∅, ∂Γ is a finite number of points
or ∂Γ = ∅. Suppose that a domain G ⊂ R2 is chosen such that assumptions (4.1),
(4.2) and Conditions 4.1, 4.2 with α > 3 are fulfilled. Let f(x) ∈ (L2(Ω))2 and
(∇v̂(x),∇p̂(x)) ∈ V 2(Ω,Γ0)× (L2(Ω))2 satisfy (5.5), (5.6). Then for an arbitrary
σ > 0 there exists sufficiently small ε1 > 0 such that for each v0 ∈ V 1(Ω,Γ0)
satisfying

‖v̂ − v0‖V 1
0 (Ω) < ε1 (5.53)

there exists a feedback boundary control u(t, x) ∈ Σ ≡ R+ × Γ which stabilized
Navier–Stokes boundary value problem (5.1)–(5.4) with the rate (5.7), i.e. the so-
lution v of (5.1)–(5.4) satisfies (5.7).

Proof. Using Proposition 5.1 we extend v̂(x) to a(x) ∈ V 1(G), and f(x) to
g(x) ∈ (L2(G))2. As a result we get boundary value problem (5.8)–(5.10) (with
certain w0) and steady-state solution (a(x),∇q(x)) of this problem. We can sup-
pose that σ > 0 satisfies (3.55): otherwise we increase σ a little bit and get (3.55).
In virtue of Theorem 5.2 in a neighbourhood of a there exists a manifold M− which
is invariant with respect of semigroup S(t, w0) connected with equation (5.15) and
such that for each w0 ∈ M− inequality (5.38) holds. Let ε1 be so small that it
satisfies condition of Theorem 5.3. Then we apply extension operator Ext con-
structed in Theorem 5.3 to initial condition v0 of problem (5.1)–(5.3) and take
w0 = Extv0 as initial condition for problem (5.8)–(5.10) or for equation (5.15)(that
is equivalent). Then since w0 ∈ M−, S(t, w0) ∈ M− for each t > 0, and esti-
mate (5.38) holds. We define solution (v, u) of stabilization problem (5.1)–(5.4)
by formula (5.13) where w(t, x) = S(t, w0) is the solution of (5.15), (5.9). Then
(5.7) follows from (5.13), (5.38) ¤

References

[1] A. Balogh and M. Krstic, Burgers’ equation with Nonlinear boundary Feedback: H1

Stability, Well-posedness and Simulation, Math. Probl. in Engineering 6 (2000), 189–200.

[2] A. V. Babin and M. I. Vishik, Attractors of evolution equations, North-Holland, Amster-
dam, London, New York, Tokio, 1992.

[3] Coron J.-M., On null asymptotic stabilization of the two-dimensional incompressible Euler
equations in a simply connected domains, SIAM J. Control Optim. 37 no. 6 (1999), 1874–
1896 (electronic).



Vol. 3 (2001) Navier–Stokes Feedback Stabilizability 301

[4] N. Dunford and J. T. Schwartz, Linear Operatos. Part 1. General Theory, Interscience
Publishers, New York, London, 1958.

[5] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Trans-
lations of Math. Monographs 187 Amer. Math. Soc., Providence, Rhode Island, 2000.

[6] A. V. Fursikov, Stabilizability of quazilinear parabolic equation by feedback boundary
control, Matem. Sbornik 192 no. 4 (2001), 115–160 (in Russian).

[7] A. V. Fursikov and O. Yu. Emanuilov, Exact controllability of Navier–Stokes and
Boussinesq equations, Russian Math. surveys 54 (3) (1999), 565–618.

[8] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathem.
840, Springer-Verlag, 1981.

[9] L. Hormander, Linear Partial Differential Operators, Die Grundlehren der Mathematis-
chen Wissenschaften 116, Springer-Verlag, 1963.

[10] M. V. Keldysh, On completeness of eigenfunctions for certain classes of not self-adjoint
linear operators, Russian Math Surveys 26 (4) (1971), 15–41 (in Russian).

[11] A. N. Kolmogorov and S. V. Fomin, Introductory real analysis, N.Y. Dover Publications,
1975.

[12] V. Komornik, Rapid boundary stabilization of linear distributed systems, SIAM J. Control
Optim. 35 (1997), 1591–1613.

[13] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon
and Breach, New York, 1963.

[14] J. Lagnese, Boundary stabilization of thin plates, SIAM, Philadelphia, 1989.
[15] J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems,

SIAM Rev. 30 (1988), 1–68.
[16] V. A. Solonnikov, A priori Estimates for Second-Order Parabolic Equations, Transl.

Amer. Math. Soc. Ser. 2 65 (1967), 51–131.
[17] R. Temam, Navier–Stokes equations, North-Holland, Amsterdam, 1979.
[18] M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechnics,

Kluwer Academic Publishers, Dordrecht, Boston, London, 1988.
[19] I. I. Vorovich and V. I. Yudovich, Steady Flow in a viscous Incompressible Fluid, Mat.

Sbornik 53 no. 4 (1961), 393–428 (in Russian).
[20] K. Yosida, Functional Analysis, Springer-Verlag, 1965.

A. V. Fursikov
Department of Mechanics and Mathematics
Moscow State University
119899 Moscow
Russia
e-mail: fursikov@dial01.msu.ru

(accepted: November 24, 2000)

To access this journal online:
http://www.birkhauser.ch


