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Abstract. In this paper, we study the solvability of inhomogeneous boundary value problems
for the three-dimensional Oseen and Navier–Stokes equations in the following formulation: given
function spaces for Dirichlet boundary conditions, initial values, and right-hand side forcing
functions, find function spaces for solutions such that the operator generated by the boundary
value problem for the Oseen equations establishes an isomorphism between the space of solutions
and the spaces of data. Existence and uniqueness results for the solution of the time-dependent,
three-dimensional Navier–Stokes equations are also established. These investigations are based
on a theory of extensions of time-dependent, solenoidal vector fields that is developed in this
paper. The results of this paper are indispensable to the study of optimal control problems with
boundary control for the three-dimensional Navier–Stokes equations.
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1. Introduction

The boundary value problem with a homogeneous Dirichlet boundary condition for
the evolutionary Navier–Stokes equations has evident physical interpretations. For
this reason, that problem was studied intensively and the theory was developed
long ago in the works of Leray [10] and [11], Hopf [8], and Ladyzhenskaya [9],
among others. It became clear in recent years that boundary value problems
with inhomogeneous boundary conditions are also useful in applications such as
the boundary control of incompressible flows. For instance, the formulation and
solution of an optimal drag reduction problem through boundary velocity control
for a body moving in an incompressible viscous fluid flow requires the theory
of inhomogeneous boundary value problems for the Navier–Stokes equations. The
need and the nontriviality of such a theory was clearly manifested in our work [6] on
the two-dimensional optimal drag reduction problem via boundary velocity control.
The purpose of this paper is to develop a theory of inhomogeneous boundary value
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problems for the three-dimensional Navier–Stokes equations.
In order to reduce the investigation of inhomogeneous boundary value problems

to that of homogeneous ones, we must study the problem of traces on Σ = (0, T )×
∂Ω of solenoidal vector fields defined on Q = (0, T ) × Ω, where Ω is a spatial
domain and ∂Ω denotes its boundary. In other words, we need to characterize the
restriction of solenoidal vector fields defined on the space-time cylinder Q onto the
lateral surface Σ and also study the problem of extending boundary vector fields
defined on Σ into solenoidal vector fields defined in Q.

Two settings of trace theorems and related boundary value problems are pos-
sible. The first setting is the one that is used in classical theories for elliptic and
parabolic boundary value problems; see, e.g., [2], [3], [12], [13]. It goes as follows.

Setting 1. Given the space of desired solutions for a boundary value
problem, one identifies the trace on Σ of this space.

This setting, in the case of the three-dimensional, evolutionary Navier–Stokes
equations, was studied in [7]. Note that an immediate application of the results of
[7] to the optimal drag reduction problem is the description of appropriate bound-
ary terms in the cost functional and of a suitable set of admissible boundary
velocity controls.

Suppose now the boundary terms of the cost functional have been chosen.
Then, these terms determine the set of admissible Dirichlet boundary conditions.
This leads to the second setting of trace theorems (and of boundary value prob-
lems).

Setting 2. Given a space G of desired Dirichlet boundary conditions
on Σ, find the space Y of solenoidal vector fields on Q whose trace
space coincides with G. Moreover, Y can be taken as the proper
space of solutions for inhomogeneous boundary value problems for
the Navier–Stokes equations or for their linearized analog, the Oseen
equations.

Note that we call Y the proper space of solutions if the direct product of the
Oseen operator and the restriction operators on Σ and at t = 0 establishes an
isomorphism between Y and the direct product of the space for the forcing term,
the space G, and the space for the initial condition.

In this paper we study inhomogeneous boundary value problems for the three-
dimensional Oseen and Navier–Stokes equations under Setting 2. Note that in
order to derive optimality systems for corresponding optimal boundary control
problems we need to solve a boundary value problem in Setting 2.

We suppose that the space G of Dirichlet boundary values is a subspace of
H1(Σ) whose normal components have zero means over ∂Ω for almost every t ∈
(0, T ), i.e.,

G =
{
u ∈ H1(Σ) :

∫
∂Ω

u · n ds = 0 for a.e. t ∈ (0, T )
}

.

We choose L2(Q) as the space for the forcing term. Then, we construct the space
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Y of solutions as the direct sum of two Hilbert spaces Y1 and Y2: Y = Y1 +Y2.
Recall that a Hilbert space Y is the direct sum of the Hilbert spaces Y1 and Y2

(Y1 ∩Y2 6= φ) if each y ∈ Y can be decomposed into y = y1 + y2 with y1 ∈ Y1

and y2 ∈ Y2 and

‖y‖2Y = inf
y1∈Y1,y2∈Y2,y=y1+y2

(
‖y1‖2Y1

+ ‖y2‖2Y2

)
. (1.1)

In our case, Y2 is the standard space of strong solutions with zero Dirichlet bound-
ary condition and Y1 is a special space of solenoidal vector fields defined on Q
which are extensions of boundary vector fields belonging to G (defined on Σ). The
main part of this paper is devoted to the construction of the extension operator
E : G → Y2. This construction consists of two steps. First, in Section 3, we
construct an extension operator E1 in a way analogous to what we did in [7], al-
though the spaces here are different than those used there. The proofs in Section
3 are not detailed as the readers can refer to [7]. In the second step, we construct
E (with the help of E1) by solving a boundary value problem for the steady-state
Stokes equations.

The results of this paper are also valid if the function space for boundary
conditions is taken as

Gγ =
{
v(t,x) ∈ L2(0, T ;Hγ(∂Ω) :

∂tv(t,x) ∈ L2(0, T ;Hγ−1(∂Ω),
∫

∂Ω

v · n ds = 0 a.e. t ∈ [0, T ]
}

with γ > 1. Moreover, the proofs for the case γ > 1 become considerably easier
than those for the case γ = 1, the latter is precisely the case treated in this paper.
Of utmost interest to us is the case γ = 1 since the function space G = G1 is
a natural choice of Dirichlet controls from a computational point of view for the
afore-mentioned drag minimization problem (in contrast, the space Gγ for γ > 1
involves computationally cumbersome fractional derivatives).

The rest of the paper is organized as follows. In Section 2, we prove theorems
on extending solenoidal vector fields that are defined on an open domain into ones
defined on a larger open domain. In Section 3, we establish results on solenoidal
extensions of boundary data. In Section 4, we first discuss steady-state boundary
value problems which depend on t as a parameter; we then construct the final
extension operator. Finally, in Section 5, we show the existence and uniqueness
of solutions for boundary value problems for the three-dimensional Oseen and
Navier–Stokes equations.

2. Theorems on the extension from an open set

In this section, we study the problem of extending solenoidal vector fields on a
bounded domain into ones on a larger domain.
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Throughout this section we assume that Ω ⊂ R3 is a bounded open set with a
C∞ boundary ∂Ω and that ∂Ω consists of J disjoint connected components, i.e.,

∂Ω = ∪J
j=1Γj , Γi ∩ Γj = ∅ ∀ i 6= j , (2.1)

where each Γj is a C∞ connected, compact manifold. Also, let Ψ be a domain
having a C∞ boundary that contains Ω, i.e., Ω ⊂ Ψ. We suppose that if ∂Ω∩∂Ψ 6=
∅, then ∂Ω∩ ∂Ψ = ∪m

i=1Γji
(m < J), where Γji

are the manifolds defined in (2.1).
We will establish results on solenoidal extensions from Ω onto Ψ or from (0, T )×Ω
onto (0, T )×Ψ.

2.1. The extension from a spatial domain

In this subsection, we prove a theorem on the extension of solenoidal vector fields
defined on Ω into solenoidal vector fields defined on Ψ that preserves the smooth-
ness of the original vector fields.

We first introduce some notations and function spaces. The Sobolev space
Hk(Ω) for a natural number k is the space of all functions which possess the finite
norm

‖u‖2Hk(Ω) =
∑
|α|≤k

∫
Ω

|Dαu(x)|2 dx ,

where α = (α1, α2, α3) is a multiindex (αj ≥ 0 and integer), |α| = α1 + α2 + α3,
and Dα = ∂|α|/(∂xα1

1 xα2
2 xα3

3 ). The Sobolev space Hs(Ω) for arbitrary s > 0 is
defined with the help of Hk(Ω) by iterpolation; see [12]. By definition, Hs

0(Ω),
s > 0, is the closure of C∞0 (Ω) in Hs(Ω). The space H−s(Ω), s > 0, is defined as
the dual space of Hs

0(Ω), i.e., H−s(Ω) = (Hs
0(Ω))′ with the norm

‖f‖H−s(Ω) = sup
φ∈Hs

0 (Ω), φ6=0

〈f, φ〉
‖φ‖Hs

0 (Ω)
,

where 〈·, ·〉 denotes the duality between H−s(Ω) and Hs
0(Ω) generated by the scalar

product in L2(Ω); see [12].
Let Ψ ⊂ R3 be a domain having C∞ boundary ∂Ψ such that Ω ⊂ Ψ. If ∂Ω ∩

∂Ψ 6= ∅ (this is the case of the most interest to us), we set ClΨΩ ≡ Ω\(∂Ω ∩ ∂Ψ),
where Ω denotes the closure of Ω in R3. The set ClΨΩ is called the closure of Ω
in Ψ. Further, a set K is called compact in Ψ if K ⊂ Ψ and K ∪ (∂Ω ∩ ∂Ψ) is
compact in R3. If ∂Ω ∩ ∂Ψ = ∅, then ClΨΩ = Ω and K is compact in Ψ if K is a
compact set (in R3) and K ⊂ Ψ.

Let K be compact in Ψ such that ClΨΩ ⊂ K ⊂ Ψ. Assume that ∂Ω ∩ ∂Ψ = ∅
or ∂Ω ∩ ∂Ψ is a closed manifold. An operator L is called an extension operator if
L maps every function u defined on Ω into a function defined on Ψ and satisfies
the property (Lu)(x) = u(x) for every x ∈ Ω. The following results for extension
operators are standard.
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Lemma 2.1. Let m > 0 be an integer. There exists an extension operator Lm

such that for each s ∈ [0,m], the operator

Lm : Hs(Ω) → Hs(Ψ) (2.2)

is bounded and for each u ∈ Hs(Ω), Lmu is supported in K.

Sketch of proof. In the case Ω = R3
+ = {x = (x1, x2, x3) = (x′, x3) ∈ R3 : x3 > 0}

and Ψ = R3, the operator Lm is defined by the well-known Whitney formulas

Lmu(x′, x3) =

{
u(x′, x3) for x3 > 0∑m

k=1 λku(x′,− 1
kx3)φ(x) for x3 < 0 ,

where λ1, . . . , λm are defined by the system of equations
m∑

k=1

(
−1

k

)j

λk = 1, j = 0, 1, . . . , m− 1 ,

and φ(x) ∈ C∞(R3), φ(x) = 1 for x3 > −ε/2, and φ(x) = 0 for x3 < −ε.
This construction can be transformed to the case of domains Ω, Ψ with the help
of partition-of-unity techniques. The boundedness of the operator (2.2) for s =
0, 1, . . . , m is verified in a straightforward way; see [1]. The boundedness of (2.2)
for each s ∈ [0,m] is established by interpolation; see [12]. ¤

We introduce, for s ≥ −1, the space

Vs(Ω) ≡ {v ∈ Hs(Ω) : divv = 0} , (2.3)

where div v is understood in the sense of distributions and, for s ≥ 0, the space

Ṽs(Ω) ≡
{
v ∈ Vs(Ω) :

∫
Γj

v · n ds = 0, j = 1, . . . , J

}
,

where the Γj ’s are the components of ∂Ω (see (2.1)) and n is the outward-pointing
unit normal vector along ∂Ω. Note that the boundary integral

∫
Γj

v · n ds is well
defined even for s ∈ [0, 1/2] and is understood as 〈v · n, 1〉 for such s, where 〈·, ·〉
is the duality pairing between Hs−1/2(Γj) and H1/2−s(Γj); see [16]. We have, by
definition, that ‖ · ‖Vs(Ω) = ‖ · ‖Hs(Ω) and ‖ · ‖Ṽs(Ω) = ‖ · ‖Hs(Ω).

We recall some solvability results for the following boundary value problem:

curl v = u and divv = 0 in Ω , v · n
∣∣
∂Ω

= 0 . (2.4)

Lemma 2.2. Let s ≥ 0. Then, for each u ∈ Ṽs(Ω), there exists a solution
v ∈ Vs+1(Ω) for (2.4). ¤

This result is well known. Its proof in the case of integer s can be found in,
e.g., [16]. The case of noninteger s can be handled with the help of interpolation
theorems; see [7, 12].
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Note that ker(curl ), i.e., the kernel of the operator

curl : {v ∈ Vs+1(Ω) : v · n
∣∣
∂Ω

= 0} → Ṽs(Ω),

is a finite-dimensional space of C∞-vector fields depending on the topological
structure of Ω. Its complete characterization can be found in, e.g., [16]. Among
all solutions of (2.4), we choose the solution ṽ which is orthogonal to ker(curl )
in L2(Ω). Evidently, this solution is determined uniquely and, by the Banach
theorem, it satisfies the estimate

‖ṽ‖Vs+1(Ω) ≤ C‖u‖Ṽs(Ω) , (2.5)

where C does not depend on u. In the sequel, when we speak of the solution of
(2.4), it will be understood to be this solution ṽ. We denote ṽ = curl−1u.

We are now in a position to prove the extension result.

Theorem 2.3. Suppose that Ω and Ψ are two domains in R3, Ω is bounded,
∂Ω ∩ ∂Ψ = ∅ or ∂Ω ∩ ∂Ψ is a closed manifold, and K is compact in Ψ such that
ClΨΩ ⊂ K ⊂ Ψ. Let m be a nonnegative integer. Then there exists an extension
operator Lm such that for each s ∈ [0,m], the operator

Lm : Ṽs(Ω) → Vs(Ψ)

is bounded and for each u ∈ Ṽs(Ω), Lmu is supported in K.

Proof. Given u ∈ Ṽs(Ω), let ṽ = curl−1u ∈ Vs+1(Ω) be the solution of (2.4)
satisfying (2.5). Since ṽ ∈ Hs+1(Ω), we can apply Lemma 2.1. Let Lm+1 :
Hs+1(Ω) → Hs+1(Ψ) be the operator determined by that lemma. Then, the
operator Lm ≡ curl ◦ Lm ◦ curl−1 gives the desired extension. ¤

2.2. The extension from a space-time domain

We introduce the following spaces of solenoidal vector fields defined on Q =
(0, T )× Ω:

V1,s(Q) = L2(0, T ;Vs+1(Ω)) ∩H1(0, T ;Vs(Ω)) (2.6)

and
Ṽ1,s(Q) = L2(0, T ; Ṽs+1(Ω)) ∩H1(0, T ; Ṽs(Ω)) .

Theorem 2.4. Assume Ω, K, and Ψ satisfy the conditions of Theorem 2.3 and
set Θ = (0, T ) × Ψ. Let m ≥ 0 be an integer. Then there exists an extension
operator Lm+1 such that for each s ∈ [0,m] the operator

Lm+1 : Ṽ1,s(Q) → V1,s(Θ) (2.7)

is bounded and for each u ∈ Ṽ1,s(Q), Lm+1u is supported in [0, T ]×K.
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Proof. The desired results follow directly from Theorem 2.3 by applying the op-
erator Lm+1 in that theorem to u(t, ·) ∈ Ṽs+1(Ω) and to ∂tu(t, ·) ∈ Ṽs(Ω) for
almost every t ∈ (0, T ). ¤

3. Theorems on the extension from a boundary

To establish the theory of inhomogeneous boundary value problems for the Stokes,
Oseen, or Navier–Stokes equations, the main problem is to determine the proper
extension of vector fields from the lateral boundary into solenoidal vector fields
defined on the space-time cylinder. This section will address this problem.

3.1. Extension results for scalar functions

First, we consider the case of nonsolenoidal vector fields, which obviously is reduced
to the case of scalar functions.

Let (t,x) = (t, x1, . . . , xd) ∈ Rd+1. We define the function space H1,s(Rd+1)
(s ≥ 0) as

H1,s(Rd+1) = {u(t,x) ∈ L2(R;Hs+1(Rd)) : ∂tu(t,x) ∈ L2(R;Hs(Rd))}
with the norm

‖u‖2H1,s(Rd+1) =
∫

Rd+1

[
(1 + |ξ|2)s+1 + (1 + |τ |2)(1 + |ξ|2)s

]
|û(τ, ξ)|2 dτdξ ,

where τ ∈ R, ξ ∈ Rd, and

û(τ, ξ) =
∫

Rd+1
e−i(tτ+x·ξ)u(t,x) dxdt

is the Fourier transform of u(t,x). The space H1,s(Rd) of functions v(t,x′) =
v(t, x1, . . . , xd−1) is defined analogously.

The following lemma answers the question of extending functions defined on
the hyperplane {(t,x) = (t,x′, xd) ∈ Rd+1 : xd = 0} into functions defined on
Rd+1.

Lemma 3.1. There exists a continuous linear operator

L : H1,1(Rd)×H1,0(Rd) → H1,3/2(Rd+1) (3.1)

such that for each w0(t,x′) ∈ H1,1(Rd) and w1(t,x′) ∈ H1,0(Rd), the function
L(w0, w1)(t,x) satisfies the conditions

a) L(w0, w1)(t,x)
∣∣
xd=0

= w0(t,x′),
∂

∂xd
L(w0, w1)(t,x)

∣∣
xd=0

= w1(t,x′),

∂2

∂x2
d

L(w0, w1)(t,x)
∣∣
xd=0

= 0;
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b) suppL(w0, w1) ⊂ {(t,x) ∈ Rd+1 : |xd| ≤ ε}, where ε > 0 is a given (small)
number.

Proof. We use the well-known approach; see, e.g., [12] and also [7]. Denote

a(ξ′) = 1 + |ξ′|2 and b(τ) = 1 + |τ |2 .

Let φk(r) ∈ C∞(R) with suppφk ⊂ [−ε, ε] and φk(r) = rk/k! for |r| ≤ ε/2,
k = 0, 1. For u(t,x) ∈ H1,3/2(Rd+1), we denote by

ũ(τ, ξ′, xd) = (F̃ u)(τ, ξ′, xd) = ũ(τ, ξ1, · · · , ξd−1, xd)

the Fourier transform of u(t,x) with respect to the variables (t,x′). We define the
extension operator L by the formula

L(w0, w1) = β0w0 + β1w1 , (3.2)

where the operators βk are defined by

(βkwk)(t,x′, xd) = F̃−1
[
φk(a1/2(ξ′)xd) ŵk(τ, ξ′) a−k/2(ξ′)

]
, k = 0, 1; (3.3)

here F̃−1 denotes the inverse Fourier-transform in the variables (τ, ξ′) for functions
η(τ, ξ′, xd) defined on Rd+1 and ŵk(τ, ξ′) denotes the Fourier transform of wk(t,x′),
k = 0, 1. Using the definition of φk we may easily verify that

(β0w0)
∣∣
xd=0

= F̃−1
[
ŵ0

]
= w0,

∂(β0w0)
∂xd

∣∣∣
xd=0

= 0,
∂2(β0w0)

∂x2
d

∣∣∣
xd=0

= 0,

(β1w1)
∣∣
xd=0

= 0,
∂(β1w1)

∂xd

∣∣∣
xd=0

= F̃−1
[
ŵ1

]
= w1,

∂2(β1w1)
∂x2

d

∣∣∣
xd=0

= 0 .

These equalities and (3.2) imply assertions a) and b). Taking the Fourier transform
on (3.3) we obtain:

β̂kwk(τ, ξ) =
ŵk(τ, ξ′)

a(1+k)/2(ξ′)
φ̂k(ξda

−1/2(ξ′))

so that

‖βkwk‖2H1,3/2(Rd+1)

=
∫

Rd+1

[
(a(ξ′) + ξ2

d)
5
2 + b(τ)(a(ξ′) + ξ2

d)
3
2

] |ŵk|2
a1+k(ξ′)

φ̂k(ξda
− 1

2 (ξ′)) dτdξ

=
∫

Rd+1

[
(a(ξ′) + a(ξ′)y2)5/2 + b(τ)(a(ξ′) + a(ξ′)y2)3/2

]
· |ŵk|2
ak+1/2(ξ′)

φ̂k(y) dτdξ′dy

≤ C

∫
Rd

[a2−k(ξ′) + b(τ)a1−k(ξ′)] |ŵk|2 dτdξ′ = ‖wk‖2H1,1−k(Rd), k = 0, 1.
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These inequalities imply that the operator L defined in (3.2) is bounded from
H1,1(Rd)×H1,0(Rd) to H1,3/2(Rd+1). ¤

The operator in (3.1) satisfying conditions a) and b) is called an extension
operator.

Having established the extension result for functions defined on the half space
with an unbounded boundary, we now consider similar results for functions defined
on domains with a compact boundary. Let Ω be a bounded domain with a C∞

boundary or be the exterior of such a domain. Recall that we denote Q = (0, T )×Ω
and Σ = (0, T )× ∂Ω. For s ≥ 0, define the spaces

H1,s(Q) = {y(t,x) ∈ L2(0, T ;Hs+1(Ω) : ∂ty ∈ L2(0, T ;Hs(Ω)}

and

H1,s(Σ) = {y(t,x) ∈ L2(0, T ;Hs+1(∂Ω) : ∂ty ∈ L2(0, T ;Hs(∂Ω)}.

Theorem 3.2. For every ε > 0, there exist continuous linear operators

Ek : H1,1−k(Σ) → H1,3/2(Q), k = 0, 1

such that the restriction operators written below are well defined for Ekw, k = 0, 1,
and

E0w
∣∣
Σ

= w, ∂n(E0w)
∣∣
Σ

= 0, ∂nn(E0w)
∣∣
Σ

= 0,

E1w
∣∣
Σ

= 0, ∂n(E1w)
∣∣
Σ

= w, ∂nn(E1w)
∣∣
Σ

= 0 ,

where ∂n and ∂nn are the first and second-order normal derivatives, respectively.
Moreover, Ekw, k = 0, 1, have support in an ε-neighborhood of Σ.

Proof. Using a partition of unity and a rectification of Σ, one can easily derive the
results of this theorem from Lemma 3.1. ¤

3.2. An equation for differential forms

For now (until Theorem 3.6), we only consider spatial (i.e., time-independent)
vector fields. In order to extend a vector field defined on ∂Ω into a solenoidal
vector field on Ω, we use special local coordinates in a neighborhood of ∂Ω . We
suppose now that the domain Ω ⊂ R3.

Let Γi be a connected component of ∂Ω. For notational convenience, we dis-
pense with the subscript i for Γi, i.e., we use Γ in place of Γi. We consider the
bounded domain

Θ(= Θi,δ) ≡ {x ∈ Ω : dist(x,Γ) < δ} ,

where δ > 0 is a sufficiently small number.
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We will need the following well-known lemma, a complete proof of which can
be found in, e.g., [7].

Lemma 3.3. Define

y3(x) = dist(x,Γ), x ∈ Θ . (3.4)

Then, there exists a finite covering {Uj} of Θ such that in each Uj there exists
a local coordinate system (y1(x), y2(x), y3(x)), with y3 defined by (3.4), which is
oriented as (x1, x2, x3) and satisfies

∇yj(x) · ∇yk(x) = δjk, j, k = 1, 2, 3 , (3.5)

where δjk is the Kronecker symbol. ¤

Using (3.5), one can calculate, in the local coordinates (y1, y2, y3), the metric
tensor gkl(y) generated by the Euclidean metric of the enveloping space R3. The
calculation yields

gkl(y) = δkl . (3.6)

As is well known (see [4, Ch.4, §29.3] and [14, Ch.VI, §4]), relation (3.6) implies
that the formulas for the div and curl operators in local coordinates (y1, y2, y3)
have the usual form:

div v =
3∑

j=1

∂vj

∂yj
and curl v = (∂2v3 − ∂3v2, ∂3v1 − ∂1v3, ∂1v2 − ∂2v1) .

The plan for proving the extension theorem is as follows. First, for a given
vector field u on Γ, we solve the system of equations

curlw
∣∣
Γ

= u (3.7)

for each component Γ of ∂Ω and obtain the boundary value w
∣∣
Γ

and hence w
∣∣
∂Ω

.
Then, we extend w

∣∣
∂Ω

into a w in Ω with the help of standard extension theorems
such as Theorem 3.2. The desired extension v for the boundary data u is obtained
by setting v = curlw. This plan is carried out below.

Let

u =
3∑

i=1

ui
∂

∂yi
= (uτ , un) (3.8)

be a given vector field defined on Γ where uτ = u1
∂

∂y1
+ u2

∂
∂y2

is the tangential
component of u and un = u3

∂
∂y3

is the normal component of u. Applying to
(3.8) the operation of lowering the indices (see [4, p. 170]) and then applying the
operation ∗ (see [4, p. 175]) and using (3.6), we can express the vector field (3.8)
in the exterior differential form:

û = u1dy2 ∧ dy3 + u2dy3 ∧ dy1 + u3dy1 ∧ dy2 . (3.9)



Vol. 4 (2002) Inhomogeneous Boundary Value Problems 55

By the operations of lowering indices we may express w in (3.7) as a differential
form ŵ on Θ which in local coordinates (y1, y2, y3) takes the form

ŵ = w1(y1, y2, y3)dy1 + w2(y1, y2, y3)dy2 + w3(y1, y2, y3)dy3.

We introduce the following differential form w̌ on Γ which depends on y3 as a
parameter:

w̌ = w1(y1, y2, y3)dy1 + w2(y1, y2, y3)dy2.

Now we rewrite (3.7) as the equation dŵ = û for differential forms, which in local
coordinates (y1, y2, y3) can be written as follows:

(∂y1w2 − ∂y2w1)dy1 ∧ dy2 = u3dy1 ∧ dy2 at y3 = 0 , (3.10)

(∂y2w3 − ∂y3w2)dy2 ∧ dy3 = u1dy2 ∧ dy3 at y3 = 0 , (3.11)

and
(∂y1w3 − ∂y3w1)dy1 ∧ dy3 = −u2dy1 ∧ dy3 at y3 = 0 . (3.12)

To find the restrictions wi

∣∣
y3=0

(i = 1, 2, 3) from (3.10)–(3.12), we set

w3

∣∣
y3=0

= 0 . (3.13)

Then, (3.11)–(3.13) imply

−∂y3w2 = u1 and ∂y3w1 = u2 at y3 = 0 . (3.14)

To find the traces for w1 and w2 at y3 = 0 we have to solve (3.10) defined on the
manifold Γ. This equation can be rewritten in the invariant form

dω = ũ , (3.15)

where ω = ω1dy1 + ω2dy2 is an unknown differential form of the first order which
in local coordinates can be rewritten as

ω = ω1dy1 + ω2dy2 = w̌
∣∣
y3=0

and the differential form ũ of the second order has the following expression in local
coordinates:

ũ = u3dy1 ∧ dy2 .

Let Λi(Γ), i = 0, 1, 2, denote the space of differential forms on Γ of order i. The
operator d : Λ1(Γ) → Λ2(Γ) in (3.15) is the usual operator of taking differentials
(see [15]). Below, we will make use of the conjugation operators ∗ (see [15]):

∗ : Λ1(Γ) → Λ1(Γ) ,

∗ : Λ2(Γ) → Λ0(Γ) ,

and
∗ : Λ0(Γ) → Λ2(Γ)

which in local coordinates can be expressed as

∗ω = −ω2dy1 + ω1dy2 for ω = ω1dy1 + ω2dy2 ∈ Λ1(Γ) ,
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∗f = fdy1 ∧ dy2 for f ∈ Λ0(Γ)

and
∗(fdy1 ∧ dy2) = f for fdy1 ∧ dy2 ∈ Λ2(Γ) .

Note that (3.14) can be rewritten in the following invariant form:

∗(∂y3w̌)
∣∣
y3=0

= û, where û = u1dy1 + u2dy2. (3.16)

We supplement (3.15) with the following equation:

d(∗ω) = 0 . (3.17)

Recall that the Laplace operator ∆ on f ∈ Λ0(Γ) is defined by the formula

∆f = − ∗ d ∗ df ∀ f ∈ Λ0(Γ).

We define L2(Λi), i = 0, 1, 2, to be the set of ω ∈ Λi(Γ) with the finite norm

‖ω‖2L2(Λi) =
∫

Γ

ω ∧ ∗ω .

(The scalar product in L2(Λi) is defined by (ω1,ω2) =
∫
Γ

ω1∧∗ω2.) We introduce
the following subspaces of L2(Λ1):

F = F (Γ) = the closure of {df : f ∈ C1(Γ)} in L2(Λ1) ,

F ∗ = F ∗(Γ) = the closure of {∗df : f ∈ C1(Γ)} in L2(Λ1) ,

and

G = G(Γ) = {ω ∈ L2(Λ1) : ω = df where f ∈ Λ0(Γ) and ∆f = 0} .

The spaces F , F ∗ and G are mutually orthogonal and

L2(Λ1) = F ⊕ F ∗ ⊕G . (3.18)

We now study the solvability of the system formed by (3.15) and (3.17).

Lemma 3.4.
a) There exists a solution ω ∈ G ⊕ F ∗ of (3.15) and (3.17) if and only if the

right-hand side ũ ∈ L2(Λ2) satisfies the condition∫
Γ

ũ = 0 . (3.19)

b) Any solution ω of (3.15) and (3.17) admits the representation

ω = g + ∗dr ,

where g is an arbitrary element of G and r ∈ L2(Λ0) is the unique solution of the
equation

∆r = − ∗ ũ (3.20)
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in the class r ∈ L2(Λ0) satisfying ∫
Γ

∗r = 0 . (3.21)

We give here only a sketch of the proof. For a complete proof, see [7].

Sketch of proof. Let

D(d) = {ω ∈ L2(Λ1) : dω ∈ L2(Λ2)}.
Integration by parts yields that each ũ ∈ dD(d) satisfies (3.19).

Let ũ ∈ dD(d) be given. Then, by definition there exists a ω ∈ L2(Λ1) satis-
fying (3.15). By (3.18), ω = g + ∗dr + dr1, where g ∈ G, ∗dr ∈ F ∗, and dr1 ∈ F .
Substituting this decomposition into (3.15) and taking into account of the facts
that ddr1 = 0 and dg = 0 (as g = df), we have

d ∗ dr = ũ . (3.22)

By the definition of ∆, (3.22) yields (3.20).
Multiplying the corresponding sides of (3.22) and (3.20), we see that in any

parametric circle Ui,∫
Ui

|∆r|2dy1 ∧ dy2 =
∫

Ui

|ũ3|2dy1 ∧ dy2 .

This equality implies the closedness of the set dD(d) in L2(Λ2), which in turn
leads to the solvability of (3.15) for each ũ satisfying (3.19).

If ω1 = g + ∗dr + dr1, where g ∈ G, ∗dr ∈ F ∗, and dr1 ∈ F , is a solution of
(3.15), then ω = g + ∗dr will also be a solution of (3.15), as ddr1 = 0. If g ∈ G,
then g = df , where ∆f = − ∗ d ∗ df = 0. Thus, d ∗ g = d ∗ df = 0 so that the
differential form ω = g + ∗dr satisfies (3.17).

The uniqueness of the solution for (3.20) in the class of functions satisfying
(3.21) can be proved by integration by parts. ¤

Below, we solve the system (3.15) and (3.17) on ∂Ω = ∪J
j=1Γj assuming con-

dition (3.19) holds for each component Γ = Γj . Evidently, the solution of this
system defined on ∂Ω is reduced to its solution on each component Γ of ∂Ω.

Recall that the definition of the Sobolev spaces Hs(∂Ω) = Hs(Λ0) =
ΠJ

j=1H
s(Γj) of functions defined on ∂Ω = ∪J

j=1Γj can be found in [12]. The
Sobolev space Hs(Λ2) is the set of exterior forms u ∈ Λ2(∂Ω) = ΠJ

j=1Λ
2(Γj)

such that ∗u ∈ Hs(Λ0). The Sobolev space Hs(Λ1) is the set of exterior forms
u ∈ Λ1(∂Ω) = ΠJ

j=1Λ
1(Γj) which, in each parametric circle Ui of Γj , j = 1, . . . , J ,

have the form u = q1(y)dy1 + q2(y)dy2, where the coefficients qk(y), k = 1, 2,
belong to Sobolev space Hs(Ui).

Lemma 3.5. Let s ≥ 0 and assume that ũ ∈ Hs(Λ2) satisfies the condition
(3.19) for each component Γj of ∂Ω. Then, there exists a unique solution ω ∈
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Hs+1(Λ1) ∩ F ∗ = ΠJ
j=1

(
Hs+1(Λ1(Γj)) ∩ F ∗(Γj)

)
for (3.15) and (3.17) satisfying

the estimate
‖ω‖Hs+1(Λ1) ≤ C‖ũ‖Hs(Λ2) . (3.23)

Proof. As is well known, for ũ ∈ Hs(Λ2) satisfying (3.19), there exists a unique
solution r ∈ Hs+2(Λ0) of (3.20)–(3.21); also, the following estimate holds:

‖r‖Hs+2(Λ0) ≤ C‖ũ‖Hs(Λ2) . (3.24)

Set ω = ∗dr. Then, as in the proof of Lemma 3.4, one can establish that the
exterior form ω ∈ Hs+1(Λ1) and satisfies (3.15) and (3.17). Inequality (3.23)
follows from (3.24). ¤

Analogous to the space H1,s(Σ) defined in Section 3.1, we define

H1,s(Λi(Σ)) = {v(t,x) ∈ L2(0, T ;Hs+1(Λi(∂Ω)) :

∂tv(t,x) ∈ L2(0, T ;Hs(Λi(∂Ω))}, i = 0, 1, 2 .
(3.25)

We may now state the main result of this subsection which is evidently a conse-
quence of Lemma 3.5.

Theorem 3.6. Let s ≥ 0 and assume that ũ ∈ H1,s(Λ2(Σ)) satisfies (3.19) for
each component Γ of ∂Ω for almost every t ∈ [0, T ]. Then, there exists a unique
differential form ω ∈ H1,s+1(Λ1(Σ)) which belongs to F ∗ for almost every t ∈
[0, T ] and satisfies (3.15) and (3.17) for almost every t ∈ [0, T ]. Furthermore, the
following estimate holds:

‖ω‖H1,s+1(Λ1(Σ)) ≤ C‖ũ‖H1,s(Λ2(Σ)) . (3.26)

Proof. By Lemma 3.4, (3.15) and (3.17) with ũ(t, ·) being the right-hand side of
(3.15), admit a unique solution ω(t) ∈ F ∗ for almost every t ∈ (0, T ). Using the
results of Lemma 3.5, one can easily verify that all statements of this theorem hold
for the solution ω. ¤

3.3. The extension result for solenoidal vector fields

Denote by Tτ (∂Ω) (respectively Tτ (Σ)) the space of tangent vector fields on ∂Ω
(respectively on Σ). Similarly, denote by Tn(∂Ω) (respectively Tn(Σ)) the space
of normal vector fields on ∂Ω (respectively on Σ). Let T (∂Ω) = Tτ (∂Ω) + Tn(∂Ω)
and T (Σ) = Tτ (Σ) + Tn(Σ). Recall that the Sobolev space Hs(T (∂Ω)) is the
set of functions u ∈ T (∂Ω) which in each parametric circle Uj have the form
q1(y) ∂

∂y1
+ q2(y) ∂

∂y2
+ q3(y) ∂

∂y3
, where qi(y) ∈ Hs(Ui), i = 1, 2, 3. The Sobolev

spaces Hs(Tτ (∂Ω)) and Hs(Tn(∂Ω)) are defined analogously.
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Remark 3.7. u ∈ Tn(∂Ω) can be decomposed as follows: u = unn and un ∈
Λ0(∂Ω). Thus, the space Hs(Tn(∂Ω)) for u and the space Hs(Λ0(∂Ω)) = Hs(∂Ω)
for un are isomorphic. ¤

As in (3.25), we set

H1,s(T (Σ)) = {v(t,x) ∈ L2(0, T ;Hs+1(T (∂Ω)) : ∂tv ∈ L2(0, T ;Hs(T (∂Ω))} .

The spaces H1,s(Tn(Σ)) and H1,s(Tτ (Σ)) are defined analogously. Also, we have
H1,s(T (Σ)) = H1,s(Tn(Σ))+H1,s(Tτ (Σ)). In other words, for each u∈H1,s(T (Σ)),
we have

u = uτ + unn where uτ ∈ H1,s(Tτ (Σ)) and un ∈ H1,s(Σ) . (3.27)

Define

H̃1,s(T (Σ)) =
{
u ∈ H1,s(T (Σ)) :∫

Γj

un(t,x)ds = 0 for j = 1, . . . , J and for almost every t ∈ (0, T )
}

,

(3.28)

where un is the normal component of u as in the decomposition (3.27).
The following assertion is true.

Theorem 3.8. Suppose that Ω ⊂ R3, that ∂Ω is of class C∞ and is a compact
set, and that ε > 0 is given. Then, there exists a continuous extension operator

Ec : H̃1,0(T (Σ)) → V1,1/2(Q) , (3.29)

i.e., the operator Ec is such that for every u ∈ H̃1,0(T (Σ)) the restrictions Ecu|Σ
and ∂n(Ecu)|Σ are well defined and Ecu

∣∣
Σ

= u and ∂n(Ecu)
∣∣
Σ
∈ L2(Σ). More-

over, for each u ∈ H̃1,0(T (Σ)), the vector field Ecu is supported in the ε-neighbor-
hood of Σ:

supp (Ecu) ⊂ {(t,x) ∈ Q : dist((t,x); Σ) < ε} ,

where dist((t,x); Σ) is the Euclidean distance between the point (t,x) and the set Σ.

Proof. Let u = uτ + unn ∈ H̃1,0(T (Σ)) be the trace data, which in the local
coordinates (y1, y2, y3) introduced in Lemma 3.3 can be written in the form (3.8).
We reduce the vector field (3.8) to the differential form (3.9) and consider the
system of equations (3.10)–(3.12). This system can be reduced to the system
(3.10), (3.13), and (3.14) supplemented by the equations

(∂y3w3)
∣∣
y3=0

= 0, (∂2
y3y3

wi)
∣∣
y3=0

= 0 i = 1, 2 . (3.30)

The system (3.10) can be rewritten in the invariant form (3.15) and (3.17) with
ũ ∈ H1,0(Λ2(Σ)); the system (3.14) can be rewritten as (3.16); and (3.30) can be
rewritten as

(∂2
y3y3

w̌)
∣∣
∂Ω

= 0 .
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Theorem 3.6 asserts that there exists a unique solution ω ∈ H1,1(Λ1(Σ)) of (3.15)
and (3.17) satisfying (3.26). The existence of a solution ∂y3w̌

∣∣
∂Ω

∈ H1,0(Λ2(Σ))
of (3.16) is evident.

Now we extend the obtained data from Σ into Q. We explain how to do this
in a set (0, T )×Uj ⊂ Σ on which the local coordinates constructed in Lemma 3.3
are used. So we have

w̌
∣∣
y3=0

= w1

∣∣
y3=0

dy1 + w2

∣∣
y3=0

dy2 = ω = ω1dy1 + ω2dy2, w3

∣∣
y3=0

= 0;

ωi ∈ H1,1((0, T )× Uj) i = 1, 2;

(∂y3w̌)
∣∣
y3=0

= û = u1dy1 + u2dy2, (∂y3w3)
∣∣
y3=0

= 0;

ui ∈ H1,0((0, T )× Uj) i = 1, 2;

(∂2
y3y3

w̌)
∣∣
y3=0

= (∂2
y3y3

w1)
∣∣
y3=0

dy1 + (∂2
y3y3

w2)
∣∣
y3=0

dy2 ≡ 0,

and
(∂2

y3y3
w3)

∣∣
y3=0

= 0.

Using these data for w1

∣∣
y3=0

, w2

∣∣
y3=0

, and for their y3-derivatives and applying
Theorem 3.2 on the extension of scalar functions, we can extend wi, i = 1, 2, from
(0, T ) × Uj into functions wi ∈ H1,3/2((0, T ) × Uj × {y3 : 0 ≤ y3 ≤ ε}), i = 1, 2.
We set w3 = 0 for (t, y1, y2, y3) ∈ (0, T ) × Uj × (0, ε). As a result, we obtain an
extension of the exterior form ω and û from (0, T )× Uj into an exterior form

E(ω, û) = w1dy1 + w2dy2 + w3dy3 ∈ H1,3/2((0, T )× Uj × {y3 : 0 ≤ y3 ≤ ε}) .

By Theorem 3.2, the form ω equals zero for y3 > ε and close to ε. The extension
of the differential form ω and û from Σ to Q can be achieved in the standard way
using the partition of unity; see [7] for details. We denote this global extension by
E(ω, û) ∈ H1,3/2(Λ1(Q)). It is evident now that the form dE(ω, û) which can be
decomposed in global coordinates (t, x1, x2, x3) as dE(ω, û) =

∑3
j=1(dE(ω, û))jdxj

with (dE(ω, û))j ∈ H1,1/2(Q) gives us the desired extension of the differential form
(3.9). Passage from the form dE(ω, û) to the vector field v = Ecu completes the
proof. ¤

Remark 3.9. The proof of Theorem 3.8 gives the possibility for extending vector
fields from Σ = (0, T )× ∂Ω to (0, T )× R3, i.e., not only inside Q but outside the
lateral surface of Q as well. More precisely, there exists a continuous extension
operator Ec : H̃1,0(T (Σ)) → V1,1/2((0, T )×R3) such that Ecu|Σ = u, ∂nEcu|Σ ∈
L2(Σ), and Ecu is supported in a two-sided ε-neighborhood of Σ. ¤

Analogous to (3.28), we set

Ĥ1,s(T (Σ)) =
{
u ∈ H1,s(T (Σ)) :

∫
∂Ω

un(t,x) ds = 0 for almost all t ∈ (0, T )
}

.

(3.31)
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We now construct the extension in the case of the unconnected boundary (2.1)
when the boundary data u = uτ + unn satisfies the condition∫

∂Ω

un(t,x) ds = 0 a.e. t ∈ (0, T ) . (3.32)

However, the extension in this case no longer will be localized near ∂Ω (although
it will have compact support if Ω is the exterior of bounded domains).

Theorem 3.10. Let Ω ⊂ R3 be a bounded domain or be the exterior of a bounded
domain and assume ∂Ω is of class C∞. Then, there exists a continuous extension
operator

E : Ĥ1,0(T (Σ)) → V1,1/2(Q) . (3.33)

In the case where Ω is the exterior of a bounded domain, the extension Eu for each
u ∈ Ĥ1,0(T (Σ)) has compact support belonging to the set {x ∈ R3 : |x| < N + 1}
for N that satisfies the condition

∂Ω ⊂ {x ∈ R3 : |x| < N} . (3.34)

Proof. Let Ω have the structure (2.1). Denote

αj(t) =
1
|Γj |

∫
Γj

un(t,x) ds , j = 1, . . . , J ,

where |Γj | is the Lebesque measure of the manifold Γj . We look for a desired
extension Eu in the form

Eu = v +∇r , (3.35)

where r is the solution of the Neumann problem{
∆r(t,x) = 0 in Ω ,

∂nr(t,x)
∣∣
Γj

= αj(t)
(3.36)

for almost every t ∈ (0, T ). Since u satisfies (3.32), we have
∑J

j=1 αj(t) ≡ 0 so that
the solution r(t,x) of (3.36) exists and ∇r ∈ Ṽ1,1/2(Q). By (3.35), the boundary
condition of the desired vector field v is

v
∣∣
Σ

= u− (∇r)
∣∣
Σ

.

Then, evidently,
1
|Γj |

∫
Γj

vn(t,x) ds = 0 , j = 1, . . . , J .

Hence, the construction of v from v
∣∣
Σ

is reduced to Theorem 3.8. This finishes
the proof in the case of bounded Ω.

When Ω is the exterior of a bounded domain, we apply Theorem 2.4. To
this end, we apply the extension theorem just proved to the bounded domain
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ΩN+1/2 ≡ {x ∈ Ω : |x| < N + 1/2} with N satisfying (3.34), where we set the
extended data equal to zero on the additional component ΓJ+1 = {|x| = N +1/2}
of ∂ΩN+1/2 = ∪J+1

j=1 Γj . After that, we consider the extended vector field Eu as
defined in (3.35), which we now denote by Êu, and restrict it to (0, T )× Ω̃N ≡ Q̃,
where Ω̃N = {x ∈ R3 : N < |x| < N + 1

2}. By virtue of (3.32) and the relation
div (Êu) = 0, we deduce∫

|x|=N

(Êu)n ds = 0 and
∫
|x|=N+1/2

(Êu)n ds = 0 .

Hence, Êu ∈ Ṽ1,1/2(Q̃). Taking Ω = Ω̃N , Q = Q̃, Ψ = {x ∈ R3 : |x| > N},
K = Ψ∩{x ∈ R3 : N < |x| ≤ N +1}, and Θ = (0, T )×Ψ, and applying Theorem
2.4 to Êu

∣∣
Q̃

, we obtain LÊu
∣∣
Q̃

. We may define the final extension Eu as follows:

Eu =

{
Êu(t,x), (t,x) ∈ (0, T )× (Ω ∩ {x ∈ R3 : |x| < N + 1

2})

LÊu(t,x), (t,x) ∈ (0, T )× {x ∈ R3 : |x| ≥ N + 1
2} .

This completes the proof in the case when ∂Ω is the exterior of an unbounded
domain. ¤

Remark 3.11. If all conditions of Theorem 3.10 are fulfilled, then there exists a
continuous extension operator

E : Ĥs(T (∂Ω)) → Vs+1/2(Ω) (3.37)

where Ĥs(T (∂Ω)) = {u ∈ Hs(T (∂Ω)) : u satisfies (3.32)}. The proof of this
assertion is entirely analogous to that of Theorem 3.10.

4. Final extension results

In this and the next section, Ω is the exterior of a bounded domain having C∞

boundary. We restrict ourselves to this case simply because this case is of the most
interest in applications. The case of a bounded domain can be treated similarly
and more easily.

4.1. The linear steady-state problem

The extension results obtained in the previous section are not enough for estab-
lishing a proper theory of inhomogeneous boundary value problems for the Oseen
and Navier–Stokes equations. We need to strengthen those extension results. To
this end we set

ΩN+k = Ω ∩ {x ∈ R3 : |x| < N + k} and QN+k = (0, T )× ΩN+k
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for each k > 0 and for a fixed N > 0 satisfying (3.34) and consider the following
steady-state problem depending on the parameter t ∈ (0, T ):

−∆v(t,x) +∇p(t,x) = 0, div v(t,x) = 0, in ΩN+2 , (4.1)

v(t, ·)
∣∣
∂Ω

= b(t, ·); and v(t,x)|{x∈R3 : |x|=N+2} = 0 . (4.2)

Here, | · | denotes the Euclidean norm in R3, b(t, ·) ∈ H1(Σ) = H1,0(T (Σ)) is the
boundary data with its normal component bn(t,x′) satisfying∫

∂Ω

bn(t,x′) ds = 0 a.e. t ∈ (0, T ) , (4.3)

i.e., we suppose that b ∈ Ĥ1(Σ) = Ĥ1,0(T (Σ)); see (3.31).
We recall some definitions from [12]. Let G be a bounded domain in Rd with

C∞-boundary ∂G. Let ρ(x) ∈ C∞(G), ρ(x) > 0 for x ∈ G, and ρ(x) = dist(x, ∂G)
in a sufficiently small neighborhood of ∂G. As in [12, Ch.1, §11.5], we set

H
1/2
00 (G) = {u : u ∈ H1/2(G), ρ−1/2u ∈ L2(G)}

with the norm
‖u‖2

H
1/2
00 (G)

= ‖u‖2H1/2(G) + ‖ρ−1/2u‖2L2(G) .

In [12, Ch.1, Thm.11.7] it is proved that

H
1/2
00 (G) = [H1

0 (G), L2(G)]1/2 ,

where the right-hand side denotes the intermediate space between H1
0 (G) and

L2(G) of order 1/2; see the definition in [12, Ch.1, §2.1]. As usual, by (H1/2
00 (G))′

we denote the completion of L2(G) in the norm

‖u‖
(H

1/2
00 (G))′ = inf

φ∈H
1/2
00 (G), φ6=0

〈u, φ〉
‖φ‖

H
1/2
00 (G)

,

where 〈·, ·〉 denotes the duality generated by the scalar product in L2(G). By the
duality theorem (see [12, Ch.1, Thm.6.2]),

(H1/2
00 (G))′ = [L2(G),H−1(G)]1/2 .

Therefore, since the operators −∆ : H2(G) → H0(G) and −∆ : H1(G) → H−1(G)
are continuous, we obtain, using the interpolation theorem (see [12, Ch.1, §5.1]),
that the Laplace operator −∆ : H3/2(G) → (H1/2

00 (G))′ is continuous.
We now prove the following assertion regarding the existence of a solution to

(4.1)–(4.2).

Theorem 4.1. Let b(t,x′) ∈ H1(Σ) be given and assume that (4.3) holds. Then,
there exists a unique solution (v̂, p̂) of (4.1)–(4.2) satisfying1

v̂ ∈ V1,1/2(QN+2) and ∇p̂ ∈ L2(0, T ; (H1/2
00 (ΩN+2))′) .

1 For the definition of V1,1/2(Q), see (2.6).
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Moreover, there exists a C > 0 such that

‖v̂‖V1,1/2(QN+2) + ‖∇p̂‖
L2(0,T ;(H

1/2
00 (ΩN+2))′)

≤ C‖b‖H1(Σ) . (4.4)

Proof. Let E be the extension operator constructed in Theorem 3.10. We look for
the solution v̂ of (4.1)–(4.2) in the form

v̂ = Eb + v . (4.5)

Substitution of (4.5) into (4.1)–(4.2) implies that v (along with a p) must satisfy
the following relations:

−∆v(t,x) +∇p(t,x) = ∆(Eb)(t,x), div v(t,x) = 0, in ΩN+2 , (4.6)

v(t,x)
∣∣
∂Ω

= 0, and v|{x∈R3 : |x|=N+2} = 0 . (4.7)

Using Theorem 3.10, we have that ∆(Eb) ∈ L2(0, T ; (H1/2
00 (ΩN+2))′) and ∆(Eb) =

0 for |x| > N +1. We claim that (4.6)–(4.7) have a unique solution (v(t),∇p(t)) ∈
V3/2(ΩN+2)×(H1/2

00 (ΩN+2))′ for almost every t ∈ (0, T ). Indeed, in [9], it is proved
that if the right-hand side ∆(Eb)(t, ·) of (4.6)–(4.7) belongs to H−1(ΩN+2), then
there exists a unique solution (v,∇p) ∈ V1(ΩN+2)×H−1(ΩN+2) satisfying

‖v(t, ·)‖H1(ΩN+2) + ‖∇p(t, ·)‖H−1(ΩN+2) ≤ C‖∆(Eb)(t, ·)‖H−1(ΩN+2);

if ∆(Eb)(t, ·) ∈ L2(ΩN+2), then the unique solution (v,∇p) belongs to V2(ΩN+2)×
L2(ΩN+2) and satisfies

‖v(t, ·)‖H2(ΩN+2) + ‖∇p(t, ·)‖L2(ΩN+2) ≤ C‖∆(Eb)(t, ·)‖L2(ΩN+2).

Applying to these results the interpolation theorem of [12, Ch.1, §5.1] we obtain
that if ∆(Eb)(t, ·) ∈ (H1/2

00 (ΩN+2))′ = [L2(ΩN+2),H−1(ΩN+2)]1/2, then

v ∈ V0(ΩN+2) ∩ [H2(ΩN+2),H1(ΩN+2)]1/2 = V3/2(ΩN+2)

and ∇p ∈ [L2(ΩN+2),H−1(ΩN+2)]1/2 = (H1/2
00 (ΩN+2))′. Moreover, there exists a

C > 0, independent of v and p, such that

‖v(t, ·)‖V3/2(ΩN+2)+‖∇p(t, ·)‖
(H

1/2
00 (ΩN+2))′

≤ C‖∆(Eb)(t, ·)‖
(H

1/2
00 (ΩN+2))′

. (4.8)

The fact that ∆(Eb) ∈ L2(0, T ; (H1/2
00 (ΩN+2))′) further implies that

(v,∇p) ∈ L2(0, T ;V3/2(ΩN+2)× L2(0, T ; (H1/2
00 (ΩN+2))′) .

We claim that ∂tv ∈ L2(0, T ;V1/2(ΩN+2)). To prove this, we need to estimate
|〈∂tv, f〉| for arbitrary, appropriately chosen f . Let a function f be given with f ∈
C1(0, T ;C∞

0 (ΩN+2)) and f(0,x) = f(T,x) ≡ 0. Let w ∈ C1(0, T ;C∞(ΩN+2) ∩
V1(ΩN+2)), together with some q ∈ C1(0, T ;C∞(ΩN+2)), be a solution of

−∆w +∇q = f , div w = 0, in ΩN+2

w
∣∣
∂Ω

= 0, and w|{x∈R3 : |x|=N+2} = 0 .
(4.9)
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Then, (∂tw, ∂t∇q) satisfies

−∆∂tw +∇∂tq = ∂tf , div ∂tw = 0, in ΩN+2

∂tw
∣∣
∂Ω

= 0, and ∂tw|{x∈R3 : |x|=N+2} = 0 .
(4.10)

We rewrite (3.35) as follows:

Eb = Ecb̂ +∇r ,

where∇r is defined by (3.36) with αj(t) = 1
|Γj |

∫
Γj

b(t,x′)·n ds, Ec is the extension

operator constructed in Theorem 3.8, and b̂(t,x) is the vector field defined on Σ
which is constructed from b as follows:

b̂(t,x) = b(t,x)− (∇r)|Σ .

By virtue of (3.36),
‖b̂‖H1(Σ) ≤ C‖b‖H1(Σ)

and
∆(Eb) = ∆(Ecb̂) . (4.11)

Now we estimate |〈∂tv, f〉|. Using (4.11), integrating by parts repeatedly, and
taking into account (4.6)–(4.7), (4.10), and the boundary conditions of f , we obtain∫

QN+2

v · ∂tf dxdt = −
∫

QN+2

v ·∆∂tw dxdt

= −
∫

QN+2

∆v · ∂tw dxdt =
∫

QN+2

∆(Ecb̂) · ∂tw dxdt

=
∫

QN+2

(Ecb̂) ·∆∂tw dxdt−
∫

Σ

b̂ · ∂n(∂tw) dsdt

=
∫

QN+2

(Ecb̂) · (∇∂tq − ∂tf) dxdt−
∫

Σ

b̂ · ∂n(∂tw) dsdt

= −
∫

QN+2

(Ecb̂) · ∂tf dxdt +
∫

Σ

(
(b̂ · n)∂tq − b̂ · ∂n∂tw

)
dsdt

=
∫

QN+2

∂t(Ecb̂) · f dxdt +
∫

Σ

∂tb̂ · (∂nw − qn) dsdt .

(4.12)

Note that in the last step we used the equalities w(0, ·) = w(T, ·) = 0 which are
trivial consequences of (4.9) and the assumptions f(0, ·) = f(T, ·) = 0. Multiplying
the first equation of (4.9) by ∂t(Ecb̂) and integrating by parts, we deduce∫

Σ

∂tb̂ · (qn− ∂nw) dsdt =
∫

QN+2

[
f · ∂t(Ecb̂)−∇w : ∇∂t(Ecb̂)

]
dxdt . (4.13)

Substitution of (4.13) into (4.12) yields∫
QN+2

v · ∂tf dxdt =
∫

QN+2

∂t(Ecb̂) · fdxdt−
∫

QN+2

(
f · ∂t(Ecb̂)−∇w : ∇∂t(Ecb̂)

)
dxdt

=
∫

(0,T )×R3
∇w̃ : ∇∂t(Ecb̂) dxdt ,
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where w̃ is the extension of w from QN+2 to (0, T ) × R3 by zero on
(
(0, T ) ×

R3
)
\ QN+2 and Ecb̂ is the natural extension of b̂ to (0, T ) × R3 described in

Remark 3.9. Therefore,∣∣∣∣ ∫
QN+2

v · ∂tf dx dt

∣∣∣∣ ≤ ‖∇∂t(Ecb̂)‖L2(0,T ;H−1/2(R3))‖∇w‖L2(0,T ;H1/2(ΩN+2))

≤ C‖∂t(Ecb̂)‖L2(0,T ;H1/2(R3))‖f‖L2(0,T ;(H
1/2
00 (ΩN+2))′)

,

where in the last step we used the well-known estimates for the solution w of the
problem (4.9) (see the derivation of (4.8)). This bound, [12, Ch.1, Eq.11.53], and
Remark 3.9 imply

‖∂tv‖L2(0,T ;H1/2(ΩN+2)) ≤ ‖∂tv‖L2(0,T ;H
1/2
00 (ΩN+2))

≤ CN+2‖Eb‖H1(Σ). (4.14)

Thus, the estimate (4.4) follows from (4.5), (4.8), (4.14), and Theorem 3.10. ¤

4.2. Extension to Ω

Now we intend to extend the solution v̂ of (4.1)–(4.2) obtained in Theorem 4.1 to
a sufficiently smooth vector field defined on Ω that equals zero at infinity. To this
end, we first derive some further estimates for v̂.

For 0 < α < β, we denote

KN+α,N+β = {x ∈ R3 : N + α < |x| < N + β} .

Lemma 4.2. Let v̂(t,x) be the solution of (4.1)–(4.2) obtained in Theorem 4.1.
Then, there exists C > 0 such that

‖v̂(t, ·)‖V5/2(KN+5/4,N+3/2)
≤C‖b(t, ·)‖H1(∂Ω) for almost all t∈(0, T ). (4.15)

Proof. Let v be defined by (4.5), i.e., v = v̂ − Eb, and let u(t, ·) ≡ curl−1v(t, ·),
where curl−1 is the operator that transforms v into the solution u of the system

curl u(t,x) = v(t,x), div u(t,x) = 0 in ΩN+2 , (4.16)

(u · n)|∂ΩN+2 = 0 (4.17)

such that u is orthogonal in L2(ΩN+2) to the kernel of the problem (4.16)–(4.17),
i.e., to the following set of vector fields:

ker curl = {u0 ∈ V0
0(ΩN+2) : curl u0 = 0} .

It is well known (see, e.g., [16]) that curl−1v is well defined if∫
Γj

v · n ds =
∫
|x|=N+2

v · n ds = 0 , j = 1, . . . , J , (4.18)

where ∂Ω = ∪J
j=1Γj . Equalities (4.18) are indeed true by virtue of (4.7). Moreover

(see [7]),
‖u(t, ·)‖Vs+1(ΩN+2) ≤ C‖v(t, ·)‖Vs(ΩN+2), s > 0 . (4.19)
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We apply the curl operator to the first equation in (4.6) and substitute v =
curl u into the resulting equation. Since curl∇p = 0 and curl curl u = −∆u, we
obtain

∆2u(t,x) = curl∆(Eb)(t,x) in ΩN+2 . (4.20)

Let ϕ(x) ∈ C∞0 (ΩN+2) satisfy the conditions

ϕ(x) = 1 for x ∈ KN+5/4,N+3/2 and ϕ(x) = 0 for x 6∈ KN+1,N+7/4. (4.21)

By Theorem 3.10, (Eb)(t,x) = 0 if |x| > N + 1. Hence, by (4.21),

ϕ(x) curl∆(Eb)(t,x) = 0.

Taking into account this equality and using Leibnitz’s formula, we obtain from
(4.20)

∆2(ϕu)(t,x) =
∑

1≤|α|, |β|≤3

Cαβ(Dαϕ)
(
Dβu(t,x)

)
for x ∈ KN+1,N+7/4, (4.22)

(
ϕu(t, ·)

)
|∂KN+1,N+7/4 = 0, ∂n

(
ϕu(t, ·)

)
|∂KN+1,N+7/4 = 0 , (4.23)

where Cαβ are certain constants. For the solution ϕu of the elliptic boundary
value problem (4.22)–(4.23), the following estimate is well known (see, e.g., [12]):

‖ϕu(t, ·)‖Hs+4(KN+1,N+7/4) ≤ C
∥∥∥ ∑

1≤|α|≤3, |β|≤3

Cαβ(Dαϕ)
(
Dβu(t, ·)

)∥∥∥
Hs(KN+1,N+7/4)

≤ C1‖u(t, ·)‖Hs+3(KN+1,N+7/4), s ≥ −2.

(4.24)
Since v = curl u, we obtain, using (4.21), (4.24), (4.19), and (4.8),

‖v(t, ·)‖V5/2(KN+5/4,N+3/2)
≤ C‖ϕu(t, ·)‖H7/2(KN+1,N+7/4)

≤ C1‖u(t, ·)‖H5/2(KN+1,N+7/4)

≤ C2‖v(t, ·)‖V3/2(ΩN+2)

≤ C3‖(Eb)(t, ·)‖V3/2(ΩN+2).

(4.25)

Since, by Theorem 3.10, Eb(t,x) = 0 for |x| > N + 1, we obtain by (4.25) and
(3.37), the inequality (4.15). ¤

Let N > 0 be fixed and satisfy (3.34). We introduce the space

V1,1/2
N (Q) = {v ∈ V1,1/2(Q) : suppv ⊂ [0, T ]× ΩN+2,

∆v ∈ L2(QN+2) + L2(0, T ;∇H1/2(ΩN+2))} ,
(4.26)

where ∇H1/2(ΩN+2) = {∇p(x) : p ∈ H1/2(ΩN+2)} equipped with the norm

‖∇p‖∇H1/2(ΩN+2) ≡ ‖∇p‖
(H

1/2
00 (ΩN+2))′

.
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The space (4.26) is equipped with the norm2

‖v‖2
V

1,1/2
N (Q)

= ‖v‖2V1,1/2(Q) + ‖∆v‖L2(QN+2)+L2(0,T ;∇H1/2(ΩN+2)) , (4.27)

where V1,1/2(Q) is the space (2.6) with s = 1/2.
We now prove the main result of this section.

Theorem 4.3. There exists a continuous extension operator

E : Ĥ1(Σ) → V1,1/2
N (Q) , (4.28)

where Ĥ1(Σ) = Ĥ1,0(T (Σ)) is the space defined in (3.31) with s = 0 and V1,1/2
N (Q)

is defined in (4.26).

Proof. Let v̂(t,x) be the solution of problem (4.1)–(4.2). We consider v̂(t,x)
on the set (0, T ) × KN+5/4,N+3/2 and apply to v̂(t,x) Theorem 2.4 with Ω =
KN+5/4,N+3/2, Ψ = {x ∈ R3 : |x| > N + 5/4}, K = {x ∈ R3 : N + 5/4 < |x| ≤
N + 2}, and m = 1. Then, we define the extension operator E as follows:

Eb =

{
v̂(t,x) for (t,x) ∈ (0, T )× ΩN+3/2

(L2v̂)(t,x) for (t,x) ∈ (0, T )× {x ∈ R3 : |x| > N + 3/2} .
(4.29)

Taking ∇p = 0 in the decomposition w = a +∇p we obtain

‖w‖L2(QN+α)+L2(0,T ;∇H1/2(ΩN+α)) ≤ ‖w‖L2(QN+α)

for any α > 0. Thus, by virtue of (4.29), (4.27), (4.26), and (2.7) we obtain

‖Eb‖
V

1,1/2
N (Q)

≤ ‖L2v̂‖V1,1/2((0,T )×{x∈R3 : |x|>N+3/2}) + ‖v̂‖V1,1/2(QN+3/2)

+‖∆L2v̂‖L2((0,T )×{x∈R3 : |x|>N+3/2})

+‖∆v̂‖L2(QN+3/2)+L2(0,T ;∇H1/2(ΩN+3/2))

≤ C
(
‖v̂‖V1,1/2(QN+3/2)

+ C‖∆v̂‖L2((0,T )×KN+5/4,N+3/2)

+‖∆v̂‖L2(QN+5/4)+L2(0,T ;∇H1/2(ΩN+5/4))

)
.

(4.30)

Note that by Theorem 4.1, the pair (v̂,∇p̂) satisfies (4.1) and, by virtue of (4.5)
and (4.6), ∇p̂ equals ∇p from (4.6). This and (4.8) and (3.29) imply that

‖∆v̂‖L2(QN+5/4)+L2(0,T ;∇H1/2(Ω)N+5/4)
≤ ‖∇p̂‖

L2(0,T ;(H
1/2
00 (ΩN+2))′)

≤ C‖∆(Eb)‖
L2(0,T ;(H

1/2
00 (ΩN+2))′)

≤ C‖Eb‖L2(0,T ;H3/2(ΩN+2)) ≤ C‖b‖H1(Σ) .

(4.31)

2 Recall that by virtue of (1.1),

‖∆v‖2
L2(QN+2)+L2(0,T ;∇H1/2(ΩN+2))

= inf
(‖u‖L2(QN+2) + ‖∇p‖2

L2(0,T ;(H
1/2
00 (ΩN+2))′)

)
,

where the infimum is taken over all u,∇p such that ∆v = u +∇p.
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Now, we obtain from (4.30), (4.31), (4.4), and (4.15) the estimate

‖Eb‖
V

1,1/2
N (Q)

≤ C‖b‖H1(Σ) . (4.32)

This proves the boundedness of the operator (4.28). ¤

5. Evolution problems

In this section, we study inhomogeneous boundary value problems for the Oseen
equations and the Navier–Stokes equations on exterior domains. As in Section 4, we
assume Ω is the exterior of a bounded domain having a boundary ∂Ω of class C∞.

5.1. The Oseen equations

Let z(t,x) be a given solenoidal vector field. The system of Oseen equations is
defined as follows:

∂tw −∆w + (z · ∇)w + (w · ∇)z +∇p = f in (0, T )× Ω (5.1)

and
div w = 0 in (0, T )× Ω . (5.2)

Evidently, (5.1)–(5.2) can be treated as the linearization of the Navier–Stokes
equations at the vector field z. We supplement (5.1)–(5.2) with the initial condition

w(0,x) = w0(x) in Ω (5.3)

and the boundary conditions

w
∣∣
Σ

= b and w||x|→∞ = 0 . (5.4)

We assume that

f ∈ L2(Q), w0 ∈ V1(Ω), and b ∈ Ĥ1,0(Σ) ,

where the spaces V1(Ω) and Ĥ1,0(Σ) ≡ Ĥ1,0(T (Σ)) are as defined in (2.3) and
(3.31), respectively.

It is well known that finding the solution (w,∇p) of (5.1)–(5.4) can be reduced
to finding w only, for the following de Rham Lemma (see, e.g., [16]) will allow us
to obtain ∇p once we have found w.

Lemma 5.1. A vector field f(x) = (f1(x), f2(x), f3(x)), where each fi(x) is a
distribution on Ω, has the form

f = ∇p for some p

if and only if
〈f ,v〉 = 0 ∀v ∈ V(Ω) ,

where
V(Ω) = {v ∈ C∞

0 (Ω) : divv = 0}
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and 〈f ,v〉 denotes the value of the distribution f at the test function v ∈ V(Ω)
generated by the scalar product in L2(Ω). ¤

With a fixed N satisfying (3.34) we look for a solution w of (5.1)–(5.4) in the
space

Y = V1,1/2
N (Q) + V(1,2)

0 (Q) (5.5)

which is the direct sum of the space (4.26) and the space

V(1,2)
0 (Q) = {v ∈ L2(0, T ;V2(Ω)) ∩H1(0, T ;V0(Ω)) : v

∣∣
Σ

= 0} . (5.6)

(Recall that the direct sum of two Hilbert spaces and its norm are defined in (1.1)
and above.) If w ∈ Y is a solution of (5.1)–(5.4), then the data w0 and b must
satisfy the compatibility condition

w0

∣∣
∂Ω

= b
∣∣
t=0

. (5.7)

The following theorem asserts the existence of a desired w.

Theorem 5.2. Assume that f ∈ L2(Q), z ∈ Y, w0 ∈ V1(Ω), and b ∈ H1(Σ)
and that w0 and b satisfy (4.3) and (5.7). Then, there exists a unique solution
(w,∇p) for (5.1)–(5.4) such that w ∈ Y and

‖w‖2Y + ‖∇p‖2
L2(0,T ;(H

1/2
00 (Ω))′)

≤ C
(
‖f‖2L2(Q) + ‖w0‖2V1(Ω) + ‖b‖2H1(Σ)

)
.

Proof. Let Eb ∈ V1,1/2
N (Q) be the extension of b ∈ Ĥ1,0(Σ) constructed in Theo-

rem 4.3. By virtue of (4.28),

‖Eb‖
V

1,1/2
N (Q)

≤ C‖b‖H1(Σ) . (5.8)

Now we look for the solution w for (5.1)–(5.4) in the form

w = v + Eb , (5.9)

where v is a new unknown vector field. The substitution of (5.9) into (5.1)–(5.4)
yields

∂tv(t,x)−∆v + (z · ∇)v + (v · ∇)z +∇p1 = f1, div v = 0, in Q , (5.10)

v
∣∣
t=0

= v0, v
∣∣
Σ

= 0, v
∣∣
|x|→∞ = 0 , (5.11)

where
v0(x) = w0(x)− Eb(0,x)

and

f1 = f − ∂t(Eb)− (z · ∇)(Eb)− ((Eb) · ∇)z + g , ∇p1 = ∇p +∇q

with g + ∇q = ∆(Eb) where g ∈ L2(QN+2), ∇q ∈ L2(0, T ;∇H1/2(ΩN+2)). By
virtue of (5.8), the definition of Eb, and (5.7), we see that

v0 ∈ V1
0(Ω) ≡ {v ∈ V1(Ω) : v

∣∣
∂Ω

= 0} , ‖v‖2V1
0(Ω) = ‖∇v‖2L2(Ω) + ‖v‖L2(Ω) .
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Using (4.26), (5.8), the inclusion z ∈ V1,1/2
N (Q), and Sobolev embedding theorems,

we easily deduce that f1 ∈ L2(Q) . Thus, (5.10)–(5.11) constitutes a boundary value
problem with a homogeneous boundary condition wherein (5.10) differs from the
Stokes equations by the terms (z·∇)v+(v·∇)z only. With the help of the standard
Galerkin method we may prove, as in [9] and [16], that (5.10)–(5.11) possesses a
unique generalized solution (v,∇p1), where v satisfies the energy estimate

‖v(t)‖2L2(Ω) +
∫ t

0

‖v(s)‖2V1(Ω) ds ≤ C

(
‖v0‖2L2(Ω) +

∫ t

0

‖f1(s)‖2H−1(Ω) ds

)
with C depending on ‖∇z‖L2(0,T ;V1/2(Ω)).

Recall that V0
0(Ω) = {v ∈ L2(Ω) : divv = 0, v ·n|∂Ω = 0} and define V−1

0 (Ω)
as the completion of V0

0(Ω) in the norm

‖f‖V−1
0 (Ω) = sup

φ∈V1
0(Ω)

〈f ,φ〉
‖φ‖V1

0(Ω)

,

where 〈·, ·〉 denotes the duality generated by the scalar product in V0
0(Ω). Note

that V−1
0 (Ω) is not a space of distributions; it is some abstract space. By in-

terpolation between V1
0(Ω) and V0

0(Ω) (see [12]), we define Vs
0(Ω) for s ∈ (0, 1).

Evidently Vs
0(Ω) ⊂ Vs(Ω). Analogous to V−1

0 (Ω), we define V−s
0 (Ω) for s ∈ (0, 1)

as the dual space of Vs
0(Ω). Since V1

0(Ω) ⊂ Vs
0(Ω) ⊂ V0

0(Ω), we have that
V−s

0 (Ω) ⊂ V−1
0 (Ω) if s ∈ (0, 1). We define the operator

P : H−s(Ω) → V−s
0 (Ω) , s ∈ [0, 1] , s 6= 1/2

P : (H1/2
00 (Ω))′ → V−1/2

0 (Ω) , s = 1/2 ,

by the formula

〈P f ,v〉 = 〈f ,v〉 ∀v ∈ Vs
0(Ω) , s ∈ [0, 1] ,

where on the left, 〈·, ·〉 denotes the duality generated by the scalar product in
V0

0(Ω) and on the right the duality generated by the scalar product in L2(Ω).
Since, by virtue of Lemma 5.1, P∇H1−s(Ω) = 0, one can reduce the boundary

value problem for the Stokes operator:

∂tv −∆v +∇p = f , div v = 0 in Q

v|t=0 = v0 , v|Σ = 0 , v||x|→∞ = 0

to the solution of the problem

P (∂tv −∆v) = P f in V−s
0 (Ω) , v|t=0 = v0 .

Similarly to [17, Ch.1, §3], one can prove3 that the solution operator R : R(f ,v0) =
3 The difference between the proof here and that in [17] is that now Ω is the complement

of a bounded domain instead of a bounded domain as it was in [17]. We now take as the
basic operator for constructing interpolation spaces the operator A = P (−∆u + u), where

P : L2(Ω) → V0
0(Ω) is the orthogonal projector instead of Ã = P (−∆u) as in [17]. In an

unbounded domain, the operator A has a continuous spectrum and we must use general theorems
on spectral decompositions instead of decompositions in terms of eigenfunctions as were used in
[17]. In all other respects, the proof of (5.12) is the same as the analogous proof in [17].
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v of this problem (and, hence, of the Stokes problem) is well defined and

R : L2(0, T ;Vs−2
0 (Ω))×V1

0(Ω)

→ L2(0, T ;Vs(Ω) ∩V1
0(Ω)) ∩H1(0, T ;Vs−2(Ω)), s ∈ [1, 2]

(5.12)

is bounded. Applying the composition operator RP to (5.10) yields

v + RP
(
(z · ∇)v + (v · ∇)z

)
= RP f1 . (5.13)

Since f1 ∈ L2(Q), we deduce that RP f1 ∈ L2(0, T ;V2(Ω)) ∩H1(0, T ;V0(Ω)).
We easily obtain

‖P
(
(z · ∇)v + (v · ∇)z

)
‖

L2(0,T ;V
−1/2
0 (Ω))

≤ C‖z‖L∞(0,T ;V1(Ω))‖v‖L2(0,T ;V1(Ω)) .

(5.14)
From (5.12) with s = 3/2 and (5.13)–(5.14), we obtain

v ∈ L2(0, T ;V3/2(Ω)) ∩H1(0, T ;V−1/2
0 (Ω))

and for arbitrarily small ε > 0” we obtain

‖(z · ∇)v + (v · ∇)z‖L2(0,T ;V−ε
0 (Ω))

≤ C
(
‖z‖L2(0,T ;V3/2(ΩN ))+‖z‖L∞(0,T ;V1(Ω))

)
‖v‖

L2(0,T ;V3/2(Ω))∩H1(0,T ;V
−1/2
0 (Ω))

.

(5.15)
From (5.13), (5.15), (5.12) with s = 2 − ε, and the boundary condition v|Σ = 0,
we deduce

v ∈ L2(0, T ;V2−ε(Ω) ∩V1
0(Ω)) ∩H1(0, T ;V−ε(Ω)).

Using this inclusion we obtain:

‖(z · ∇)v + (v · ∇)z‖L2(Q)

≤ C
(
‖z‖L2(0,T ;V3/2(ΩN )) + ‖z‖L∞(0,T ;V1(Ω))

)
‖v‖L2(0,T ;V2−ε(Ω))∩H1(0,T ;V−ε

0 (Ω)).

From this equality, (5.13) and (5.12) with s = 2 we deduce that v ∈ V(1,2)
0 (Q).

Repeating the iteration argument used previously we obtain the estimate

‖v‖2
V

(1,2)
0 (Q)

≤ C
(
‖v0‖2V1(Ω) + ‖f1‖2L2(Q)

)
.

Relations (5.8), (5.9), and (5.12) guarantee the existence of a solution (w,∇p) of
problem (5.1)–(5.4) that belongs to Y × L2(0, T ; (H1/2

00 (Ω))′). The proof of the
uniqueness of the solution is easily reduced to the proof of the uniqueness of its
component v in the space Y. Such a proof is standard in the literature and can
be found in, e.g., [5]. ¤

5.2. The nonlinear evolution problem

We now consider the nonlinear evolution problem

∂tw −∆w + ([z + w] · ∇)w + (w · ∇)z +∇p = f in Q , (5.16)
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divw = 0 in Q , (5.17)

w
∣∣
t=0

= w0, w
∣∣
Σ

= b w
∣∣∣
|x|→∞

= 0 . (5.18)

This system differs from (5.1)–(5.4) by the term (w ·∇)w only. As in the previous
section, we suppose that the coefficient z in (5.16) belongs to the space Y (see
(5.5)) and we look for the solution w of (5.16)–(5.18) in the space Y as well.

We will need the following lemma on analytic inverse operators (see [17]):

Lemma 5.3. Let X1 and X2 be Banach spaces, A : X1 → X2 be a linear iso-
morphism of X1 and X2, and B(·, ·) : X1 × X1 → X2 be a continuous bilinear
operator. Then the equation

Ax + B(x, x) = f (5.19)

has a solution x ∈ X1 if ‖f‖X2 < ε for a sufficiently small ε. The map x = Rf
which maps the right hand side f to the solution x of (5.19) is defined uniquely
and is analytic (i.e., R(f) can be expressed as a convergent series). ¤

Theorem 5.4. Let f ∈ L2(Q), v0 ∈ V1(Ω), and b ∈ H1(Σ) satisfy (4.3) and
(5.7). Assume that

‖f‖2L2(Q) + ‖w0‖2V1(Ω) + ‖b‖2H1(Σ) < ε ,

where ε > 0 is sufficiently small. Then, there exists a unique solution (w,∇p)
of the problem (5.16)–(5.18) which belongs to the space Y × L2(0, T ; (H1/2

00 (Ω))′).
Furthermore, the solution (w,∇p) satisfies the estimate

‖w‖2Y + ‖∇p‖2
L2(0,T ;(H

1/2
00 (Ω))′)

≤ C(ε) ,

where C(ε) is a positive continuous function which is defined for all sufficiently
small ε.

Proof. As in the proof of Theorem 5.2, we seek a solution of (5.16)–(5.18) in the
form (5.9) with Eb ∈ V1,1/2

N (Q) which is the extension of b ∈ Ĥ1,0(Σ) constructed
in Theorem 4.3. The substitution of (5.9) into (5.16)–(5.18) yields

∂tv−∆v+((z+Eb+v)·∇)v+(v·∇)(z+Eb)+∇p1 = f1, div v = 0 in Q (5.20)

v|t=0 = v0, v|Σ = 0, v||x|→∞ = 0 , (5.21)

where
v0(x) = w0(x)− Eb(0,x)

and

f1 = f − ∂t(Eb)− (Eb · ∇)z− ((z + Eb) · ∇)Eb + g , ∇p1 = ∇p +∇q
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with g +∇q = ∆Eb. By (5.8), (5.7), and the definition of Eb as in the proof of
Theorem 5.2, we see that v0 ∈ V1

0(Ω), f1 ∈ L2(Q), and

‖v0‖V1
0(Ω) ≤ ‖w0‖V1

0(Ω) + C‖b‖H1(Σ) , ‖f1‖L2(Q) ≤ ‖f‖L2(Q) + C‖b‖H1(Σ) ,

where C > 0 does not depend on b. Hence, by the hypothesis of the theorem,

‖v0‖2V1
0(Ω) + ‖f1‖2L2(Q) ≤ C1ε (5.22)

with C1 > 0 that does not depend on b and ε.
Applying P (defined before (5.12)) to (5.20)–(5.21), we obtain

P
(
∂tv−∆v+((z+Eb+v) ·∇)v+(v ·∇)(z+Eb)

)
= P f1 , div v = 0 . (5.23)

Evidently, it suffices to show the solvability and uniqueness of solutions for the
problem (5.21)–(5.23). We will prove this below with the help of Lemma 5.3.

To fit (5.23) and (5.21) into the framework of Lemma 5.3, we choose X1 =
V(1,2)

0 (Q) and X2 = L2(0, T ;V0
0(Ω))×V1

0(Q). We define

Av =
(
P

(
∂tv −∆v + ((z + Eb) · ∇)v + (v · ∇)(z + Eb)

)
, v

∣∣
t=0

)
and

B(v,v) =
(
P

(
(v · ∇)v

)
, 0

)
.

Then, the solvability of (5.21)–(5.23) is equivalent to the existence of a v ∈ X1

satisfying
Av + B(v,v) = (f ,v0) ,

where (f ,v0) is given in X2.
The continuity of the operators A : X1 → X2 and B : X1 → X2 is well known

(see, e.g., [5]) and can be easily established by the Sobolev embedding theorem.
The existence of the inverse operator A−1 : X2 → X1 is also well known and
was discussed above in Theorem 5.2. Then, by Lemma 5.3, there exists a unique
solution of the problem (5.21)–(5.23) if ε in (5.22) is sufficiently small. From this
the assertions of this theorem can be derived in the same way as the analogous
steps in Theorem 5.2. ¤
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