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Abstract. An optimal control problem, the minimization of drag, is
considered for the 2D stationary Navier-Stokes equations. The control is
of Neumann kind and acts at a part of the boundary which is contiguous
to the rigid boundary where the no-slip condition holds. Further, certain
constraints are imposed on the control and the phase variable. We derive
an existence theorem as well as the corresponding optimality system

To the memory of Alexander Vasil’evich Kazhikhov.

1. Introduction

This paper is devoted to the study of an optimal control problem for
the Navier-Stokes equations defined in a bounded domain Ω. We are in-
terested in the existence of optimal solutions as well as in the derivation
of the corresponding “optimality system”, i.e. the first-order optimality
conditions. These problems have been studied already for the stationary
Navier-Stokes equations (see [GHS1],[GHS2], [CH], [A], [ALT]) and the non-
stationary Navier-Stokes equations (see [F1], [F2], [AT], [S] [F], [FGH]) for
small as well as large Reynolds numbers. However, not all aspects of these
optimization problems have been completely investigated, yet.

In this paper, we concentrate on the following questions arisen in opti-
mal control problems. First of all the extremal problem we study contains
restrictions not only on the control but on the phase variable as well. The
restriction is imposed that the component v1(x) of the fluid velocity should
be nonnegative on a certain subdomain ω of Ω .

The derivation of the optimality system in such a situation needs a spe-
cific Lagrange principle. A general Lagrange principle of such kind was
worked out by I. V. Girsanov [G] and A. A. Milutin, A. V. Dmitruk, N. P.
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Osmolovskiy [MDO]. In this paper, we have to adapt the approach from
[G], [MDO] to the optimal control problem for the Navier-Stokes equations.

Usually in applications the boundary control is acting not on the whole
boundary ∂Ω but only on a certain part Γ . Besides, often it is more reason-
able to use Neumann control on Γ instead of Dirichlet control. Moreover
Γ is contiguous with the part of boundary where the adhesion condition is
posed. In such a situation Neumann control causes a local singularity of the
state at ∂Γ . This effect was studied in many papers beginning by V. A.
Kondrat’ev’s work [Kon1]. This effect is not essential in the proof of the ex-
istence theorem for the optimal control problem, but it becomes important
in the derivation of the optimality system.

In this paper, we derive the optimality system for an optimal control
problem in which all the aforementioned complications take place. In order
to focus on the essential aspects, we minimize all other possible difficulties by
only considering an optimal control problem for the 2D steady-state Navier-
Stokes equations. However we are sure that the results of this paper can
be extended to the 3D case as well as to the nonstationary Navier-Stokes
equations.

The investigation of the problem considered in this paper was begun dur-
ing the visit of the first author at the University of Heidelberg under the
support by a Humboldt Research Award. The first author expresses his
deep gratitude to the Alexander von Humbolt Foundation for this award
and to Rolf Rannacher and his group for their hospitality and the very good
working conditions.

The authors thank Dominik Meidner for providing the numerical results
(see Section 8) by the software package GASCOIGNE [GA].

2. Setting of the optimal control problem

Let Ω be the two-dimensional domain shown in Figure 1, i.e.rectangle
without the set bounded by the curve S. We introduce the following notation
for parts of the boundary ∂Ω: AH = Γin, DE = Γout, AB ∪ CD ∪ FE ∪
HG = S′, BC = Γ1, GF = Γ2, Γ1 ∪ Γ2 = Γ and ∂Ω = Γin ∪ Γout ∪ Γ ∪
S ∪ S′. We shall use the abbreviated notation (·, ·) = (·, ·)L2(Ω) for the
L2 scalar product over Ω and ‖ · ‖ = ‖ · ‖L2(Ω) for the associated norm.
For subdomains D ⊂ Ω and Γ ⊂ ∂Ω , we write ‖ · ‖D = ‖ · ‖L2(D) and
‖ · ‖Γ = ‖ · ‖L2(Γ ) , respectively, and similarly for the corresponding scalar
products. We will distinguish notations of norms and scalar products for
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scalar functions and corresponding vector fields: this should not lead to
misunderstandings.
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Figure 1. Domain

On Ω, we consider the Navier-Stokes equations

−∆v + v · ∇v +∇p = 0 in Ω,(2.1)

∇ · v = 0 in Ω,(2.2)

where v = (v1, v2) is the velocity vector field, ∇p = (∂1p, ∂2p) the pres-
sure gradient, v · ∇v =

∑2
j=1 vj∂jv, and ∇ · v =

∑2
j=1 ∂jvj . The system

(2.1), (2.2) is supplemented by the boundary conditions

(2.3) v|Γin = vin, (∂nv − pn)|Γout = 0, v|S∪S′ = 0,

where vin is a given inflow vector field, and n = n(x), x ∈ ∂Ω, is the
outside normal unit vector field to ∂Ω. The goal is to minimize the drag
functional of S,

(2.4) J =
∫
S
n · σ · e1 dx → inf,

under the action of a control u(x1) = (u1(x1), u2(x1)) at the horizontal
boundary component Γ = Γ1 ∪ Γ2,

(2.5) (∂nv − pn)|Γ1 = u1, (∂nv − pn)|Γ2 = u2.

Here e1 is the unit vector in the x1 direction, and

(2.6) n · σ = −pn+ 2D(v)n, 2D(v) =
(
∂jvi + ∂ivj

)
i,j=1,2 .

This control problem is supplemented by the following additional constraint
on the phase variable v1(x):

(2.7) v1(x) ≥ 0, x ∈ ω,
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where ω ⊂ Ω is a prescribed closed subset. Further, we impose the following
restriction on the controls u = (u1, u2):

(2.8) ‖u1‖2Γ1 + ‖u2‖2Γ2 ≤ γ2,

where γ > 0 is a given constant.
Our goal is to prove an existence theorem for the optimal control problem

(2.1)-(2.8) and to derive the corresponding optimality system.

3. Boundary value problems

In this section, we prove an existence theorem for several boundary value
problems that will be used to prove the existence theorem for the optimal
control problem (2.1)-(2.8).

3.1. The Stokes boundary value problem. On the domain Ω, we con-
sider the Stokes system

(3.1) −∆v +∇p = f, ∇ · v = 0, in Ω,

supplemented by the boundary condition (2.3), (2.5). For simplicity let the
coordinates of the points A, B, . . . ,H in Figure 1 be as follows:

A = (0, π), B = (b, π), C = (c, π), D = (d, π),

H = (0, 0), G = (b, 0), F = (c, 0), E = (d, 0).
(3.2)

We suppose that

(3.3) u1(x1) ∈ L2(Γ1)2, u2(x1) ∈ L2(Γ2)2, vin ∈ H1
0 (Γin)2

where

(3.4) H1
0 (Γin) =

{
w ∈ L2(Γin)

∣∣∣ ‖∂2w‖Γin <∞, w(0) = w(π) = 0
}
.

It is convenient for us to suppose that in (3.1)

(3.5) f(x) ∈ L3/2(Ω)2.

In this subsection, we prove an existence and uniqueness theorem for the
generalized solution of the boundary value problem (3.1), (2.3), (2.5). To
define the notion of “generalized solution”, we introduce the space

(3.6) Φ =
{
v ∈ H1(Ω)2

∣∣∣∇ · v = 0, v|S∪S′ = 0
}
,

where as above H1(Ω)2 = H1(Ω)×H1(Ω) and H1(Ω) is the usual Sobolev
space over Ω. We recall that for natural k the Sobolev space Hk(Ω) is
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defined as follows: Hk(Ω) = W k2 (Ω), and for each integer k ≥ 1 and
1 ≤ p <∞:

W kp (Ω) =
{
ϕ ∈ Lp(Ω)

∣∣∣ ‖ϕ‖pW kp (Ω) =
∑
|α|≤k
‖Dαϕ‖pLp(Ω) <∞

}
,

with α = (α1, α2), |α| = α1 + α2, αi nonnegative integers. For arbitrary
s > 0 the Sobolev space Hs(Ω) can be defined by interpolation (see [LM]).
Further, we introduce the space

(3.7) Φ0 :=
{
v ∈ H1(Ω)2 | ∇ · v = 0, v|Γin = 0, v|S∪S′ = 0

}
,

and supply the spaces Φ and Φ0 with the norms

‖ϕ‖Φ := ‖ϕ‖H1(Ω), ‖ϕ‖Φ0 := ‖ϕ‖H1(Ω).

Definition 3.1. Let u1 ∈ L2(Γ1)2, u2 ∈ L2(Γ2)2, f ∈ L3/2(Ω)2, and
vin ∈ H1

0 (Γin)2. The vector function v ∈ Φ satisfying v|Γin = vin and

(3.8) (∇v,∇ϕ)− (u2, ϕ)Γ2 − (u1, ϕ)Γ1 = (f, ϕ) ∀ϕ ∈ Φ0,

is called a “generalized solution” of problem (3.1), (2.3), (2.5).1

The following result clarifies the connection between the generalized so-
lution satisfying (3.8) and the solution of problem (3.1), (2.3), (2.5).

Proposition 3.1. Let v ∈ Φ be the generalized solution of problem (3.1),
(2.3), (2.5). Then, there exists a p ∈ L3/2(Ω) such that the pair (v, p)
satisfies (3.1). Moreover, if (v, p) ∈W 2

3/2(Ω)2×W 1
3/2(Ω), then p is unique,

and this pair satisfies (2.3), (2.5)2.

Proof. Integration by parts in (3.8) with ϕ ∈ Φ0 ∩ C∞0 (Ω)2 implies

(3.9) (∆v + f, ϕ) = 0 ∀ϕ ∈ Φ0 ∩ C∞0 (Ω)2.

Then, by the De Rham theorem (see [T]) there exists p ∈ L3/2(Ω) such that
(v, p) satisfies (3.1) in the distributional sense. Notice that though ∇p is
defined uniquely in (3.1), p is determined only up to a constant. To define
it uniquely, we substitute f = −∆v + ∇p in the right hand side of (3.8)

1As we will show, a generalized solution exists even under weaker assumptions on
u1, u2, vin.
2Notice that in virtue of the ellipticity of the system (3.1) in the Douglas-Nirenberg sense
the inclusion (v, p) ∈W 2

3/2(Ω′)2 ×W 1
3/2(Ω′) holds for an arbitrary subdomain Ω′ � Ω.
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and integrate by parts in this term. As a result, we get

(3.10)
2∑
i=1

(∂nv − pn− ui, ϕ)Γi + (∂nv − pn, ϕ)Γout = 0 ∀ϕ ∈ Φ0.

Equality (3.10) implies that

(3.11) (∂nv − pn− ui + cn)|Γi = 0, i = 1, 2, (∂nv − pn+ cn)|Γout = 0,

where the constant c in all the equalities is the same. We choose the con-
stant component of the pressure p such that c in equations (3.11) becomes
zero.3 �

Theorem 3.2. Let ui ∈ L2(Γi)2, i = 1, 2, f ∈ L3/2(Ω)2. Then, there
exists a unique generalized solution of problem (3.1), (2.3), (2.5).

Proof. Let us consider the extremal problem

(3.12) J0(v) := 1
2
‖∇v‖2 − (f, v)−

2∑
j=1

(uj , v)Γj → inf,

(3.13) v ∈ Φ, v|Γin = vin,

for v ∈ Φ with v|Γin = vin, where Φ is defined in (3.6). The functional
J0(v) is convex and continuous on H1(Ω)2. Therefore it is semi-continuous
on H1(Ω)2 with respect to the weak convergence in H1(Ω)2. Besides, being
a closed convex subset of H1(Ω)2, the set of restrictions (3.13) is sequentially
weakly closed in H1(Ω)2. At last, J0(vk)→∞ , as vk ∈ Φ, ‖vk‖H1(Ω) →∞.
Therefore (see [F]) there exists a unique solution v̂ ∈ Φ of problem (3.12),
(3.13). The conditions v̂ ∈ Φ, v̂ + ϕ ∈ Φ , and v̂|Γin = (v̂ + ϕ)|Γin = vin

imply the inclusion ϕ ∈ Φ0. Since v̂ is a solution of (3.12), (3.13),

0 = lim
λ→0

J0(v̂ + λϕ)− J0(v̂)
λ

= (∇v̂,∇ϕ)− (f, ϕ)−
2∑
j=1

(uj , ϕ)Γj ,

for all ϕ ∈ Φ0. �

3.2. An extension result. We recall a well-known extension result using
the notation

V 1(Ω) =
{
v ∈ H1(Ω)2 |∇ · v = 0

}
, V 1

0 (Ω) =
{
v ∈ V 1(Ω) | v|∂Ω = 0

}
.

3The uniqueness of p without the additional assumption (v, p) ∈ W 2
3/2(Ω)2 ×W 1

3/2(Ω)
will be proved below in Theorem 4.1.
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Lemma 3.3. For each function g ∈ H1/2(∂Ω)2 satisfying (g, n)S = 0 and
(g, n)∂Ω\S = 0, where n is the outer normal to ∂Ω, there exists u ∈ V 1(Ω)
such that u|∂Ω = g. Moreover

(3.14) inf
v∈V 1

0

‖u+ v‖H1(Ω) ≤ c‖g‖H1/2(∂Ω),

where the constant c does not depend on g.

Proof. For the proof of this lemma we refer to [GR], [ALT]. �

We introduce the space

(3.15) Ψ1 :=
{
v ∈ H1(G)2

∣∣∣∇ · v = 0, v|S∪S′∪Γ1∪Γ2 = 0
}
,

For each v ∈ Ψ1 only the components v|Γin = vin and v|Γout = vout of the
restriction v|∂Ω can differ from zero and

(3.16) (vin, n)Γin + (vout, n)Γout = 0.

We set

Ĥ1/2(Γin ∪ Γout) =
{
vin ∈ H1/2

00 (Γin)2, vout ∈ H1/2
00 (Γout)2

∣∣∣ (3.16) holds
}
,

where H1/2
00 is the space defined in [LM], Chapter 1, Theorem 11.7 4

Lemma 3.4. There exists a bounded extension operator

E : Ĥ1/2(Γin ∪ Γout)→ Ψ1,

i.e., the operator satisfying E(vin, vout)|Γin = vin, E(vin, vout)|Γout = vout.

Proof. This lemma follows directly from Lemma 3.3. �

Corollary 3.5. There exists a bounded extension operator

E : H1
0 (Γin)→ Ψ1.

Proof. Since the embedding H1
0 (Γin) ⊂ H1/2

00 (Γin) is continuous, for each
vin ∈ H1

0 (Γin), we have to choose vout ∈ H1
0 (Γout) satisfying (3.16) and to

apply Lemma 3.4. �

3.3. Estimates for the solution of the Stokes problem. We introduce
the solution operator

R : L3/2(Ω)2 ×H1/2
00 (Γin)2 ×H−1/2

00 (Γ1)2 ×H−1/2
00 (Γ2)2 → Φ ⊂ H1(Ω)2

4Actually, H1/2
00 (a, b) consists of restrictions on [a, b] of functions from the space {f ∈

H1/2(R) : supp f ⊆ [a, b]}
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whereH−1/2
00 = (H1/2

00 )′, that maps the data (f, vin, u1, u2) to the generalized
solution v̂ of problem (3.1), (2.3), (2.5), i.e., R

(
f, vin, u1, u2

)
(x) = v̂ (x).

(Proof of Theorem 3.2 does not change if data belong to aforementioned
spaces.)

Lemma 3.6. The solution operator R is bounded,

‖R(f, vin, u1, u2)‖2H1(Ω)2 ≤ c
(
‖f‖2L3/2(Ω)2 + ‖vin‖2

H
1/2
00 (Γin)2

+
2∑
i=1
‖ui‖2

H
−1/2
00 (Γi)2

)
,

(3.17)

where c > 0 is independent of the data (f, vin, u1, u2).

Proof. In virtue of Lemma 3.4, the following decomposition is true for the
solution v̂(x) = R(f, vin, u1, u2)(x) :

(3.18) v̂ = Evin + ϕ̂, ϕ̂ = v̂ − Evin ∈ Φ0.

The equalities (3.18) and (3.8) imply

‖∇v̂‖2 = (∇v̂,∇Evin) + (∇v̂,∇ϕ̂)

= (∇v̂,∇Evin) +
2∑
i=1

(ui, ϕ̂)Γi + (f, ϕ̂).
(3.19)

In virtue of Lemma 3.4, we get

|(∇v̂,∇Evin)| ≤ c‖∇v̂‖‖vin‖
H

1/2
00 (Γin) ≤ ε‖∇v̂‖

2 + c
ε
‖vin‖2

H
1/2
00 (Γin)

.(3.20)

By means of the trace theorem and the Poincaré inequality,∣∣∣∣
2∑
i=1

(ui, ϕ̂)Γi
∣∣∣∣ ≤ c

( 2∑
i=1
‖ui‖

H
−1/2
00 (Γi)

)
‖∇ϕ̂‖

≤ c
ε

( 2∑
i=1
‖ui‖2

H
−1/2
00 (Γi)

)
+ ε‖∇ϕ̂‖2.

(3.21)

Using the Sobolev embedding theorem H1(Ω) ⊂ L3(Ω) and the Poincaré
inequality, we get

(3.22) |(f, ϕ̂)| ≤ c‖f‖L3/2(Ω)‖∇ϕ̂‖ ≤
c

ε
‖f‖2L3/2(Ω) + ε‖∇ϕ̂‖2.

At last, (3.18) and Lemma 3.4 imply

(3.23) ‖∇ϕ̂‖2 ≤ c
(
‖∇v̂‖2 + ‖vin‖2

H
1/2
00 (Γin)

)
.
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After substituting inequalities (3.20)-(3.23) into (3.19), we obtain that

‖∇v̂‖2 ≤ c
(
‖f‖2L3/2(Ω) + ‖vin‖2

H
1/2
00 (Γin)

+
2∑
i=1
‖ui‖2

H
−1/2
00 (Γi)

)
.

This bound and again the Poincaré inequality imply the asserted estimate
(3.17). �

3.4. The Navier-Stokes boundary value problem. Now, we consider
the Navier-Stokes equations

(3.24) −∆v + v · ∇v +∇p = 0, ∇ · v = 0, in Ω,

with boundary conditions (2.3), (2.5).

Definition 3.2. Let ui ∈ L2(Γi)2, i = 1, 2, and vin ∈ H1
0 (Γin)2. The vector

field v ∈ Φ is called “generalized solution” of problem (3.24), (2.3), (2.5) if
v|Γin = vin and the following equality holds:

(3.25) (∇v,∇ϕ) + (v · ∇v, ϕ)−
2∑
i=1

(ui, ϕ)Γi = 0 ∀ϕ ∈ Φ0,

where Φ and Φ0 are defined in (3.6), (3.7).

Our goal is now to prove the following theorem.

Theorem 3.7. Suppose that

(3.26) ‖vin‖2H1
0 (Γin) +

2∑
i=1
‖ui‖2L2(Γi) ≤ ε,

where ε > 0 is sufficiently small. Then, there exists a unique generalized
solution v ∈ Φ of problem (3.24), (2.3), (2.5). This solution satisfies the
inequality

(3.27) ‖v‖2H1(Ω) ≤ α
(
‖vin‖2H1

0 (Γin) +
2∑
i=1
‖ui‖2L2(Γi)

)
,

with function α (λ) = c
(
λ2 + λ

)
.

Proof. We look for a generalized solution v of (3.24), (2.3), (2.5) in the
form v = R (f, vin, u1, u2) where R is the solution operator of the Stokes
boundary value problem, and f ∈ L3/2(Ω)2 is an unknown vector field.
We substitute v = R(f, vin, u1, u2) into (3.25) and take into account that
v = R(·) satisfies (3.8). As a result we get the equation

(3.28) (ϕ, f +R · ∇R) = 0 ∀ϕ ∈ Φ0.
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Since H1(Ω) ⊂ L6(Ω), we get using the Lipschitz inequality:

(3.29)
∫
Ω

∣∣(R,∇)R
∣∣3/2 dx ≤‖R ‖3/2L6 ‖∇R ‖3/2L2 ,≤ c‖∇R ‖3L2

and therefore R · ∇R ∈ L3/2(Ω)2. We set, for p > 1,

(3.30) L̂p (Ω) = {ϕ ∈ Lp (Ω)2 | divϕ = 0, ϕ · n
∣∣∣
Γin∪S∪S′

= 0 }

and define the projection operator P : L3/2 (Ω)2 → L̂3/2 (Ω) as follows: for
each f ∈ L3/2 (Ω)2 the function Pf ∈ L̂3/2(Ω) is defined as the unique
solution of the equation

(3.31) (ϕ,Pf) = (ϕ, f) ∀ϕ ∈ L̂3(Ω).

Since the space Φ0 defined in (3.7) is dense in L̂3(Ω), for each f ∈ L̂3/2(Ω)
equation (3.28) is equivalent to the equality

(3.32) f + P
(
R(f) · ∇R(f)

)
= 0.

We use the notation R(f) = R(f, vin, u1, u2) since vin, u1, u2 are given and
fixed. To prove the theorem, we have to check that the operator

(3.33) S(f) = −P
(
R(f) · ∇R(f)

)
: L̂3/2(Ω)→ L̂3/2(Ω)

is a contraction operator. Using (3.29) and (3.17), we have

‖S(f1)− S(f2)‖L3/2 ≤ ‖(R(f1 − f2, 0, 0, 0),∇)R(f1)‖L3/2

+ ‖(R(f2),∇)R(f1 − f2, 0, 0, 0)‖L3/2

≤ c‖∇R(f1 − f2, 0, 0, 0)‖L2

(
‖∇R(f1)‖L2

+ ‖∇R(f2)‖L2

)
≤ ĉ‖f1 − f2‖L3/2 ,

(3.34)

where, in virtue of (3.17),

ĉ = c
(
‖∇R(f1)‖L2 + ‖∇R(f2)‖L2

)

≤ 2c
(

1
2

(
‖f1‖L3/2 + ‖f2‖L3/2

)
+

2∑
i=1
‖ui‖L2(Γi) + ‖vin‖H1

0 (Γin)

)
.

(3.35)

By the assumption of the theorem the right hand side of (3.35) is small
enough if ‖fj‖L3/2 , j = 1, 2 are sufficiently small. Therefore ĉ < 1 and
the operator in(3.33) is a contraction. Hence equation (3.32) has a unique
solution f ∈ L̂3/2(Ω).

As is well-known, the solution of (3.32), i.e. of the equation f = S(f),
has the form f = limk→∞ fk where f1 = S(0), . . . , fk = S(fk−1). Since
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fk =
∑k
j=1(fj − fj−1),

‖f‖L3/2 ≤ lim
k→∞

k∑
j=1
‖fj − fj−1‖L3/2

≤
∞∑
j=1
ĉj‖S (0) ‖L3/2 ≤ ĉ

1− ĉ‖R(0, vin, u1, u2)‖2H1 .

(3.36)

This completes the proof. �

4. Existence theorem for the optimal control problem

In this section, we prove the existence of the solution for the extremal
problem (2.1)-(2.4), (2.7), (2.8). For this, we need a smoothness result for
the solution of the Navier-Stokes equations, which we recall in subsection
4.1.

4.1. The smoothness theorem. For small enough δ > 0 denote by ∂Ωδ
the curve belonging to Ω which is the rectangle with sides parallel to the
sides AD, EH, HA of ∂Ω placed with distance δ from them and extend-
ing up to the side DE. Denote by Ωδ the open subset of Ω with boundary
∂Ωδ ∪ S. Let χ(x) ∈ C∞(Ω) be a corresponding cut-off function satisfying

(4.1) χ(x) =

⎧⎪⎨
⎪⎩

1, x ∈ Ωδ,
0, x ∈ Ω \Ωδ/2.

and near DE χ(x1, x2) ≡ χ(x2). The following theorem holds.

Theorem 4.1. Let v be the generalized solution constructed in Theorem 3.7.
Then, v ∈ W 2

3/2(Ωδ)2 and there exists unique p ∈ L2(Ω) satisfying (3.24)
and p ∈W 1

3/2(Ωδ). Moreover

(4.2) ‖v‖W 2
3/2(Ωδ) + ‖p‖W 1

3/2(Ωδ) ≤ ρ
(
‖vin‖H1

0 (Γin) +
2∑
j=1
‖uj‖L2(Γj)

)
,

where ρ(λ) is a continuous function for λ > 0 and ρ(0) = 0.

Proof. Since v is a generalized solution of the Navier-Stokes equations,
(3.25) implies

(−∆v + v · ∇v, ϕ) = 0 ∀ϕ ∈ Φ0 ∩C∞0 (Ω)2.

This equality, identity v · ∇v =
∑2
j=1 ∂j(vjv), inclusions vjv ∈ L2(Ω), j =

1, 2 , and the De Rham theorem (see [T]) yield that there exists p ∈ L2(Ω)
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such that

(4.3) −∆v +∇p = −v · ∇v, ∇ · v = 0 in Ω.

Since v ·∇v ∈ L3/2(Ω), and the Stokes system with right hand side −v ·∇v
and boundary condition ∂nv−np = 0 on Γout ∩Ωδ/4 is a Douglas-Nirenberg
elliptic system, we get from (4.3) that v ∈W 2

3/2(Ωδ/4) and p ∈W 1
3/2(Ωδ/4).

To prove (4.2), we note that equations (4.3) imply

(4.4) −∆(χv) +∇(χp) = g, ∇ · (χv) = g1,

where

(4.5) g = −χv · ∇v − 2(∇χ · ∇)v − v∆χ+ p∇χ, g1 = ∇χ · v.
Using (3.27), we obtain that

(4.6) ‖g1‖H1(Ω) ≤ c‖v‖H1(Ω) ≤ cα1/2
{
‖vin‖2H1

0 (Γin) +
2∑
j=1
‖ui‖2L2(Γi)

}
,

and

(4.7) ‖g‖L3/2(Ω) ≤ c1α
{
‖vin‖2H1

0 (Γin) +
2∑
j=1
‖ui‖2L2(Γi)

}
+ c‖p∇χ‖L2(Ω).

Below, we will prove that

(4.8) ‖p∇χ‖L2(Ω) ≤ c2β
{
‖vin‖2H1

0 (Γin) +
2∑
j=1
‖ui‖2L2(Γi)

}
,

where the function β(λ) > 0 is continuous, and β(0) = 0. Let us iden-
tify the sides AD and HE of the rectangle ADEH (see Figure 1). Then
this rectangle turns into a lateral area LC of a cylinder with boundary
∂LC = Γ̂in ∪ Γ̂out ∪ S where Γ̂in = Γin with points A and H being iden-
tified, and Γ̂out = Γout with points D and E being identified. In virtue
of the properties of the cut-off function in (4.1), we can consider (4.4) as a
system defined on LC . Evidently, the pair (χv, χp) from (4.4) satisfies the
following boundary conditions:

(4.9) χv|Γ̂in
= 0, χv|S = 0,

(
∂1v(x1, x2)− p(x1, x2)n

)
χ(x2)|Γ̂out

= 0.

Since this boundary value problem is elliptic in the Douglas-Nirenberg sense,
inequalities (4.6), (4.7), (4.8), and the evident bound

‖v‖W 2
3/2(Ωδ) + ‖p‖W 1

3/2(Ωδ) ≤ ‖χv‖W 2
3/2(LC) + ‖χp‖W 1

3/2(LC)
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imply the asserted estimate (4.2).
Let us prove estimate (4.8). The following bound holds (see inequality

(6.12) of Chapter 1 in [T]):

(4.10) ‖p∂jχ‖L2(Ω) ≤ c
{∣∣∣∣
∫
Ω
p∂jχdx

∣∣∣∣+ ‖∇(p∂jχ)‖H−1(Ω)

}
, j = 1, 2.

We estimate the first term in right side of (4.10). Let ψ ∈ C∞(Ω) be a func-
tion satisfying ψ(x)∂2χ = ∂2χ , and ψ(x) ≡ 0 outside a small neighborhood
of supp(∂2χ) . Then integrating by parts and using (4.3), we get∫

Ω
p∂2χdx = −

∫
Ω
∂2pχψ dx =

∫
Ω

(∆v2 − v · ∇v2)χψ dx

=
∫
Γout
∂1v2χψ dx−

∫
Ω
∇v2 · ∇(χψ) dx−

∫
Ω

(v · ∇v2)χψ dx.
(4.11)

The boundary condition (∂nv − pn)|Γout = 0 implies ∂1v2|Γout = 0 . There-
fore estimation of other terms in the right side of (4.11) yields

(4.12)
∣∣∣∣
∫
Ω
p∂2χdx

∣∣∣∣ ≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)

)
.

Since supp(∂1χ) � Ω, we can choose ψ ∈ C∞0 (Ω) such that ψ∂1χ ≡ ∂1χ .
Thereore the inequality

(4.13)
∣∣∣∣
∫
Ω
p∂1χdx

∣∣∣∣ ≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)

)
can be obtained similarly to (4.11), (4.12), but now without any boundary
term. In virtue of (4.3) there holds

‖∇(p∂jχ)‖H−1(Ω) ≤ ‖∆v∂jχ‖H−1(Ω) + ‖v · ∇v∂jχ‖H−1(Ω)

+ ‖p∇∂jχ‖H−1(Ω)

≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)) + ‖p∇∂jχ‖H−1(Ω).

(4.14)

Now we estimate the last term on the right side of (4.14). We choose a
function ψ ∈ C∞(Ω) satisfying ψ(x)∂i∂jχ ≡ ∂i∂jχ , ψ(x) ≡ 0 outside a
small neighborhood of supp(∂i∂jχ) . Besides, we take an arbitrary function
ϕ ∈ W 1

3 (Ω) satisfying ϕ|∂Ω = 0 , and set w := ϕψ∂i∂jχ . Then, for any
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fixed point x0 = (x0
1, x

0
2) ∈ Ω \ supp(ψ) , there holds∫

Ω
p∂i∂jχϕdx =

∫
Ω

∫ x1

x0
1

∂yp(y, x2) dyw(x) dx

=
∫
Ω

∫ x1

x0
1

∆v1 dyw dx−
∫
Ω

∫ x1

x0
1

v · ∇v1 dy w dx

=
∫
Ω

(
∂1v1 −

∫ x1

x0
1

v · ∇v1 dy
)
w dx−

∫
Ω

(∫ x1

x0
1

∂2v1 dy

)
∂2w dx.

Estimating the right side of this equality, we get

(4.15)
∣∣∣∣
∫
Ω
p∂i∂jχϕdx

∣∣∣∣ ≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)

)
‖ϕ‖H1(Ω).

Estimates (4.10), (4.12)-(4.15) imply

(4.16) ‖p∇χ‖L2(Ω) ≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)).

Finally, the bound (4.8) follows from (4.16) and (3.27). �

Remark 4.1. The generalized solution v ∈ H1(Ω) of problem (3.24),(2.3),
(2.5) constructed in Theorem 3.7 together with the function p ∈ L2(Ω)
constructed in Theorem 4.1 possess enough smoothness in order to define
traces (∂nv− pn)|Γ1 and (∂nv− pn)|Γ2 . Moreover, the relations (2.5) hold.
To prove this assertion, one has to use methods of [LM], [F] Chapter 2.5,
and of Theorem 4.1 proved above.

4.2. Existence theorem for the extremal problem. In order to prove
the existence theorem for problem (2.1)-(2.5), (2.7), (2.8), we have to de-
scribe the set of admissible elements for this problem. First of all, for given
boundary condition vin ∈ H1

0 (Γin) and controls ui ∈ L2(Γi), i = 1, 2,
satisfying

(4.17)
2∑
i=1
‖ui‖2L2(Γi) ≤ γ2; γ2 + ‖vin‖2H1

0 (Γin) ≤ ε,

where ε is small enough, we have to define uniquely the pair (v, p) that
is the solution of the boundary value problem (2.1)-(2.3),(2.5). In virtue
of the second condition in (4.17), by Theorem 3.7 there exists a unique
generalized solution v ∈ Φ of the Navier-Stokes equation. In virtue of the
De Rham Theorem and the argument in the proof of Theorem 4.1 there
exists a unique p ∈ L2(Ω) that together with v satisfies equation (4.3).
Assuming that vin ∈ H1

0 (Γin) is fixed and small enough, we define the map
NRδ(u1, u2) that maps the pair (u1, u2) to the corresponding generalized
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solution (v, p) of problem (2.1)-(2.5),

(4.18) NRδ(u1, u2) = (v(u1, u2), p(u1, u2)) ∈ Φ× L2(Ω).

We introduce the following notation:

(4.19) B :=
{

(u1, u2)
∣∣∣ ‖u1‖2L2(Γ1) + ‖u2||2L2(Γ2) ≤ γ2

}
,

(4.20) V P (Ω) :=
{

(v, p) ∈ Φ×L2(Ω) : (v, p)|Ωδ ∈W 2
3/2(Ωδ)2×W 1

3/2(Ωδ)
}
,

(4.21) ‖(v, p)‖V P (Ω) := ‖v‖H1(Ω)+‖∇p‖H−1(Ω)+‖v‖W 2
3/2(Ωδ)+‖p‖W 1

3/2(Ωδ).

Lemma 4.2. Let ‖vin‖H1
0 (Γin) + γ be small enough. Then, the mapping

(4.22) NRδ : B → V P (Ω)

is continuous and its range NRδ (B) is a bounded and closed set.

Proof. Using the estimate (3.27) and expressing ∇p by (3.24) with the fol-
lowing application of (3.27), (3.29), we get the inequality

(4.23) ‖v‖H1(Ω) + ‖∇p‖H−1(Ω) ≤ c
(
‖vin‖H1

0 (Γin) +
2∑
j=1
‖uj‖L2(Γj)

)
,

where c(λ) = c1(λ+λ2). The bounds (4.23), (4.2) imply the boundedness of
the operator NRδ(B) in (4.22). Let us prove the closedness of NRδ(B). We
only prove the closedness of NRδ(B)|Ωδ in W 2

3/2(Ωδ)2×W 1
3/2(Ωδ) because

the closedness of NRδ(B) in Φ × L2(Ω) can be established in the same
way. Let (vk, pk) ∈ NRδ(B) with

(4.24) (vk, pk)|Ωδ → (v̂, p̂)|Ωδ in W 2
3/2(Ωδ)2 ×W 1

3/2(Ωδ) (k →∞).

Inclusion (vk, pk) ∈ NRδ(B) implies relation (vk, pk) = NRδ(u1
k, u

2
k) for

some (u1
k, u

2
k) ∈ B . Since B is a bounded set, passing if necessary to a sub-

sequence, we can assume that (u1
k, u

2
k)⇀ (û1, û2) weakly in L2(Γ1)×L2(Γ2).

Hence, (û1, û2) ∈ B because the set B is convex. Now, we substitute
(vk, u1

k, u
2
k) into (3.25). Evidently one can pass to the limit in (3.25).

Since ∇pk = ∆vk − vk · ∇vk, then, ∇pk → ∇p̂ weakly in the space
∇W 1

3/2(Ωδ) = {∇p | p ∈ W 1
3/2(Ωδ)}. In virtue of (4.2) the functions pk

are bounded with respect to k. That is why, passing if necessary to a subse-
quence, we get that pk → p̂ in W 1

3/2(Ωδ) weakly. So (v̂, p̂) = NRδ(û1, û2)
and the set NRδ(B) is closed in W 2

3/2(Ωδ)×W 1
3/2(Ωδ). �



16 A. V. FURSIKOV AND R. RANNACHER

Since ω ⊂ Ω in (2.7) is a given closed subset of domain Ω, there exists
δ > 0 so small that

(4.25) ω ⊂ Ωδ ⊂ Ω.
We choose δ > 0 such that (4.25) holds and from now on assume it as fixed.

Definition 4.1. Let vin ∈ H1
0 (Γin) be fixed. The collection (v, p, u1, u2) ∈

V P (Ω) × B is called “admissible” for problem (2.1)-(2.5), (2.7), (2.8) if
(v, p) = NRδ(u1, u2) and inequality (2.7) is fulfilled.

Notice that the equality (v, p) = NRδ(u1, u2) means that (v, p) is a
generalized solution of the boundary value problem (2.1)-(2.3), (2.5). Be-
sides, the integral in (2.4) is well defined because in virtue of the inclusion
(v, p) ∈W 2

3/2(Ωδ)2×W 1
3/2(Ωδ) all traces used in (2.4) are well defined. An in-

equality for each x ∈ ω , as in (2.7), is well defined for (v, p) = NRδ(u1, u2)
because such v = (v1, v2) belong to W 2

3/2(Ωδ) that is embedded into C(Ωδ)
by the Sobolev embedding theorem. The set of all admissible collections,
i.e. the admissible set for the extremal problem (2.1)-(2.5), (2.7), (2.8) is
denoted by A. We impose the following important condition.

Condition 1. The admissible set of the extremal problem (2.1)-(2.5), (2.7),
(2.8) is not empty,

(4.26) A = ∅.

Remark 4.2. The situation with Condition 1 is not trivial at all. Calculations
show that this condition is fulfilled rather often. Indeed, if ‖vin‖

Ĥ1
0

and γ2

in (2.8) are sufficiently small, and the part S of the boundary is convex,
then, as numerical calculations show (see Section 8), v1 ≥ 0 on certain
subdomains ω ⊂ Ω (see also [VD]). Moreover, the calculated steady flow
is stable and therefore this is the case of small Reynolds number which we
consider in this paper.

Recall that by definition the collection (v̂, p̂, û1, û2) is the solution of
problem (2.1)-(2.5), (2.7), (2.8) if (v̂, p̂, û1, û2) ∈ A and

(4.27) J(v̂, p̂, û1, û2) = inf
(v,p,u1,u2)∈A

J(v, p, u1, u2),

where J(v, p, u1, u2) is the functional in (2.4), (2.6). Notice that the depen-
dence of J on (u1, u2) is implicit and connected with the domain A for
the functional J .
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Theorem 4.3. If ‖vin‖H1
0 (Γin) and γ2 in (2.8) are small enough, then there

exists a solution (v̂, p̂, û1, û2) of problem (2.1)-(2.8).

Proof. i) First, we prove that the projection ΠA of the admissible set A ⊂
PV1(Ω)×B into W 2

3/2(Ωδ2)×W 1
3/2(Ωδ) is closed in this space. Since

A =
{

(v, p, u1, u2)
∣∣∣ (v, p) = NRδ(u1, u2), v1(x) ≥ 0, x ∈ ω

}
,

by virtue of Lemma 4.2, it is enough to prove that if (vk, pk) → (v̂, p̂) as
k → ∞ in W 2

3/2(Ωδ)2 × W 1
3/2(Ωδ) and vk1 ≥ 0 on ω for each k , then

v̂1 ≥ 0 on ω. But this assertion immediately follows from the embedding
v ∈W 2

3/2(Ωδ) ⊂ C(Ωδ) and the inclusion ω ⊂ Ωδ.
ii) Next, we consider the direct product of the Besov spaces W 11/6

3/2 (Ωδ)2 ×
W

5/6
3/2 (Ωδ) 5 and introduce the trace operator γ̂S(v, p) = n · σ|S := (−np +

2D(v)n)|S (see (2.4)). Then, the well-known Besov theorem ([BIN]) implies
that the operator

(4.28) γ̂S : W 11/6
3/2 (Ωδ)2 ×W 5/6

3/2 (Ωδ)→W 1/6
3/2 (S)2

is continuous. Since the embedding W 1/6
3/2 (S) ⊂ L1(S) is continuous, the

functional in (2.4),

(4.29) J(v, p) =
∫
S
n · σ · e1 ds =

∫
S
γ̂S(v, p) · e1 ds,

is continuous on the space W 11/6
3/2 (Ωδ)2 ×W 5/6

3/2 (Ωδ). As is well-known, the
embedding W 2

3/2(Ωδ)2 ×W 1
3/2(Ωδ) ⊂ W 11/6

3/2 (Ωδ)2 ×W 5/6
3/2 (Ωδ) is compact.

Therefore, in virtue of part i) of this proof, the set ΠA is a compact subset
of the space W 11/6

3/2 (Ωδ)2×W 5/6
3/2 (Ωδ). Evidently the extremal problem (2.1)-

(2.8) is equivalent to the problem

(4.30) J =
∫
S
γ̂S(v, p) · e1 ds→ inf, (v, p) ∈ ΠA.

Problem (4.30) is a minimization problem for a continuous function on a
compact set. Therefore it possesses a solution, which completes the proof.

�

5When the upper index is not integer, the Besov space coincides with the corresponding
Sobolev space. Therefore, we use the notation of Sobolev spaces. We use the Besov spaces
because the trace theorem is not always true for Sobolev spaces
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5. Abstract Lagrange principle

To derive the optimality system for problem (2.1)-(2.8), we use the ab-
stract Lagrange principle. For problems without phase constraints one can
recall the Lagrange principle from [ATF, F]. The essential peculiarity of
the extremal problem studied here is just the phase constraint (2.7). For
such extremal problems the Lagrange principle has been established as well
[DM, G, MDO]. We recall some abstract notion (for details we refer to
[MDO]).

5.1. Sub-linear functionals. Let Y be a Banach space. A functional
ϕ : Y → R is called “sub-linear” if it satisfies

a) ϕ(λy) = λϕ(y), ∀y ∈ Y , λ > 0 (positive homogeneity)
b) ϕ(x+ y) ≤ ϕ(x) + ϕ(y) (subadditivity)

Notice that for a functional satisfying a) condition b) is equivalent to a
convexity condition. The sub-linear functional ϕ is called “bounded” if
there exists a constant c > 0 such that

c) |ϕ(y)| ≤ c‖y‖ ∀y ∈ Y .

Lemma 5.1. If the sub-linear functional ϕ satisfies ϕ(y) ≤ c‖y‖ ∀y ∈ Y
with a certain c > 0, then |ϕ(y)| ≤ c‖y‖ and |ϕ(y1)− ϕ(y2)| ≤ c‖y1 − y2‖,
i.e. ϕ is a Lipschitz functional with the same constant c.

Proof. The proof can be found in [MDO], p.75. �

A linear functional l ∈ Y ∗ is called “supported by a sub-linear functional
ϕ(y) ” if l(y) ≤ ϕ(y) ∀y ∈ Y . The set of all functionals supported by ϕ
is called “subdifferential of ϕ ” (at zero) and is denoted by ∂ϕ (at zero).
If ϕ is a bounded sub-linear functional, then ∂ϕ is a non-empty convex
closed set and ∀l ∈ ∂ϕ : ‖l‖ ≤ c. Let f : Y → R be a functional. If for
y0, y1 ∈ Y there exists the limit

f ′(y0, y1) := lim
λ→0

f(y0 + λy1)− f(y0)
λ

,

then f ′(y0, y1) is called “derivative” of f at the point y0 in the direction
y1.

5.2. Formulation of the Lagrange principle. Consider an abstract ex-
tremal problem of the form of problem (2.1)-(2.8),

(5.1) f0(y)→ inf, F (y) = 0, f1(y) ≤ 0, G(y) ≤ 0,
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where fi : Y → R, i = 0, 1, G : Y → R are functionals defined on a Banach
space Y , and F : Y → Z is a map to another Banach space Z. Suppose
that there exists a solution ŷ ∈ Y of problem (5.1) and the mappings
fi : Y → R, i = 0, 1, and F : Y → Z are continuously differentiable in a
neigborhood of ŷ. Assume also that
a) The image F ′(ŷ)Y of Y is closed in Z.
b) G(y) posseses a derivative G′(ŷ, y1) at ŷ in each direction y1 ∈ Y , and

the map Y � y → G′(ŷ, y) is a bounded sub-linear functional on Y .
The Lagrange function for problem (5.1) has the form

(5.2) L(ŷ, λ0, λ1, z
∗, α) =

1∑
j=0
λjfj(ŷ) +

〈
F (ŷ), z∗

〉
+ αG(ŷ).

The following theorem holds (see [DM, G, MDO]).

Theorem 5.2. Let the conditions formulated above be fulfilled. Then, there
exist Lagrange multipliers (λ0, λ1, z

∗, α) ∈ R2 × Z∗ ×R satisfying
i) Non-triviality condition:

(5.3) |λ0|+ |λ1|+ ‖z∗‖+ |α| > 0.

ii) Condition of sign concordance:

(5.4) λ0 ≥ 0, λ1 ≥ 0, α ≥ 0.

iii) Condition of complementary slackness:

(5.5) λifi(ŷ) = 0, i = 0, 1; αG(ŷ) = 0.

iv) Euler-Lagrange equation: there exists µ∗ ∈ ∂G′(ŷ, ·) such that
〈
L′y(ŷ, λ0, λ1, z

∗, α, µ∗), h
〉

=
1∑
j=0
λj
〈
f ′j(ŷ), h

〉

+
〈
F ′(ŷ), h

〉
+ α
〈
µ∗, h
〉

= 0,

(5.6)

for all h ∈ Y .

In the remaining of this section, we briefly recall some properties of con-
crete functionals used for defining the phase constraints. Details can be
found in [MDO]. These properties will be used in the derivation of the
optimality system for the extremal problem (2.1)-(2.8).

5.3. The functional maxx∈M y(x) and its support functionals. Let
M ⊂ Ω be an arbitrary closed subset. We consider the functional Θ :
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C (Ω)→ R:

(5.7) Θ(y) = max
x∈M
y(x), y ∈ C(Ω),

where C(Ω) is the space of continuous functions defined on Ω. This is a
Lipschitz functional with constant one because

|Θ(y1)−Θ(y2)| ≤ max
x∈M
|y1(x)− y2(x)| ≤ ‖y1 − y2‖C(Ω).

By the Riesz Theorem C(Ω)∗ consists of functionals of the form

(5.8) λ(y) =
∫
Ω
y(x)µ(dx),

where µ(dx) is a measure that can have positive as well as negative values.
Evidently the functional in (5.7) is sub-linear (see subsection 5.1).

Lemma 5.3. The functional λ(y) =
∫
Ω y(x)µ(dx) from C(Ω)∗ is sup-

ported by the functional Θ(y) from (5.7) if and only if µ(dx) satisfies

1) µ(dx) is supported on M , i.e. ∀ y ∈ C(Ω) : y(x) = 0, for x ∈ M , we
have λ(y) =

∫
Ω y(x)µ(dx) = 0.

2) µ(dx) ≥ 0.
3)
∫
Ω µ(dx) = 1.

Proof. For the proof see [MDO], p.95. �

5.4. Directional derivatives of max y(x). Let y0 ∈ C(Ω), y1 ∈ C(Ω)
and Θ(y) be the functional in (5.7). We calculate the derivative Θ′(y0, y1)
in the direction y1. Without loss of generality, we suppose that Θ(y0) = 0.
Then, the closed set

M0 = {x ∈M | y0(x) = 0 }
is not empty.

Lemma 5.4. For all y1 ∈ C(Ω) the functional in (5.7) possesses a deriv-
ative in the direction y1 at y0(x) ∈ C(Ω) , which is defined by the equality

(5.9) Θ′(y0, y1) = max
x∈M0
y1(x).

Evidently (5.9) defines a sub-linear functional. By Lemma 5.3 the set
∂Θ′(y0, y1) of linear functionals supported by Θ′(y0, y1) consists of all prob-
ability measures µ(dx) concentrated (supported) on the set M0.
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5.5. Directional derivative of the functional maxΦ(x, y). Let Φ(x, y) :
Ω×R→ R be a continuously differentiable function. On C(Ω) , we consider
the functional

(5.10) G(y) = max
x∈M
Φ(x, y(x)),

where M is a closed subset of Ω. Let y0 ∈ C(Ω) be such that G(y0) = 0
and

(5.11) M0 :=
{
x ∈ Ω

∣∣∣Φ(x, y0(x))
}

= 0.

Evidently G(y) = Θ(N(y)) where Θ is the functional in (5.7) and

N : C(Ω)→ C(Ω) y → Φ(x, y(x))

is a Nemytskiy operator. Since N is differentiable in the Fréchet sense
and N ′(y)h = Φ′y(x, y(x))h(x) (see [ATF]), and Θ possesses a derivative
at N(y0) in an arbitrary direction y1 ∈ (Ω), then, by the theorem on the
derivative of the superposition of functions the functional G(y) = Θ(N(y))
at y0 also possesses a derivative in an arbitrary direction y1 that is defined
by the equality

(5.12) G′(y0, y1) = max
x∈M0

(
Φ′y(x, y0(x))y1(x)

)
.

Evidently, the functional in (5.12) is sub-linear in y1.

Lemma 5.5. The set of linear functionals supported by a sub-linear func-
tional y1 → G′(y0, y1) consists of the functionals l ∈ C(Ω)∗, which have
the representation

(5.13) l(y1) =
∫
Ω
Φ′y
(
x, y0(x)

)
y1(x)µ(dx),

where µ(dx) is a probability measure concentrated on the set M0 (see
(5.11)).

6. Application of the abstract Lagrange principle

After some preliminaries related to checking the condition a) in Subsection
5.2, we check that all conditions of the Lagrange principle are satisfied for
problem (2.1)-(2.8) and apply the Lagrange principle to this situation.

6.1. On the smoothness of solutions for the Oseen problem. Let
(v̂, p̂) ∈ Φ× L2(Ω) be the solution of the extremal problem (2.1)-(2.8) con-
structed in Section 4. We consider the Oseen problem, i.e. the linearization
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of the Navier-Stokes problem at (v̂, p̂):

(6.1) −∆v + v̂ · ∇v + v · ∇v̂ +∇p = f, ∇ · v = 0 inΩ,

(6.2) v|Γ0 = 0, (∂nv − pn)|Γ = g,

where Ω is the domain introduced in Section 2. We have

(6.3) Γ0 = Γin ∪ S′ ∪ S ∪A ∪H, Γ = Γ1 ∪ Γ2 ∪ Γout,

and therefore g consists of three components gi on Γi, i = 1, 2, and gout on
Γout. We suppose that gout ≡ 0. Since ‖v̂‖H1 is small enough one can prove,
as in Section 3, that for each f ∈ L2(Ω), g ∈ H1/2(Γ ) there exists a unique
generalized solution v ∈ Φ0 of problem (6.1), (6.2) where Φ0 is the space
in (3.7). Since problem (6.1), (6.2) is elliptic in the Agmon-Douglas sense,
the solution possesses additional smoothness: in each subdomain Ω0 of Ω,
such that Ω0 ⊂ Ω, v ∈ H2(Ω0) and the pressure p exists and belongs to
H1(Ω0). Moreover (v, p) are smooth up to ∂Ω except at the corner points
A, D, E, H and the points B, C, F, G: if B(ε) is the union of the circles
with radius ε centered at the indicated points, then v ∈ H2(Ω \ B(ε)),
p ∈ H1(Ω \B(ε)) for each ε > 0. Actually, the solution (v, p) is smooth in
a neighborhood of the corner points A, D, E, H, as well.

Lemma 6.1. Let B1(ε) be the union of the circles with radius ε and centers
at A,D,E,H. Then, (v, p) ∈ H2(Ω ∩B1(ε)) ×H1(Ω ∩B1(ε)).

Proof. Recall that the point H is the origin, the interval (A,H) belongs
to the axis x2 with x2(A) > 0, and the interval (EH) belongs to the axis
x1 with x1(H) > 0. Consider a neighborhood of the point H and extend
the solution (v, p) on the domain {x1 < 0, x2 > 0} in the odd sense:

forx1 < 0, x2 > 0 : v(x1, x2) = −v(−x1, x2), p(x1, x2) = −p(−x1, x2),

v̂(x1, x2) = −v̂(−x1, x2), f(x1, x2) = −f(−x1, x2).

It is easy to check that this extension satisfies (6.1) not only for the set
{x1 < 0, x2 > 0} but for {|x1| < ε, x2 > 0}, as well. Since the boundary of
the extended domain is smooth in a neighborhood of H, the extended pair
(v, p) belongs to H2 ×H1 in a neighborhood of H. Near the point E , we
use the same arguments but apply the extension on the domain {x2 < 0}.
Our arguments near the points A, D are analogous: additionally we need
only to do appropriate changing of the variables (x1, x2). �
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The situation of the smoothness of the solution (v, p) in a neighborhood
of the points B, C, F, G where the type of boundary condition changes
is different. At these points the solution (v, p) can possess a singularity.
Therefore there is a reason to study problem (6.1), (6.2) in function spaces
with weights near these points.

Let this weight be defined as a function ρ(x1, x2) ∈ C∞(Ω), ρ(x1, x2) >
0, ∀(x1, x2) ∈ Ω \B2(ε) for a certain ε > 0, where B2(ε) is the union of the
circles with radius ε and centers at B, C, F, G, and in Ω∩B2(ε) the weight
ρ(x1, x2) is equal to the distance of the closest points among B, C, F, G.

We introduce the following Sobolev spaces with weights. Let k be a
natural number or zero and α ∈ R. Then,

Hkα(Ω) :=
{
u(x), x ∈ Ω

∣∣∣∣ ‖u‖2Hkα =
k∑
j=0

∫
Ω
ρ2(α+j)(x)

∑
|β|=j
|Dβu(x)|2 dx <∞

}
,

where β = (β1, β2), βi ≥ 0, are integer, |β| := β1 + β2. For k ≥ 1 , let

(6.4) Ψkα(Ω) =
{
v ∈ Hkα(Ω)2 |∇ · v = 0, v|Γ0 = 0

}
.

We need also the spaces Hkα(B,C), Hkα(G,F ) of functions defined on in-
tervals (B,C) or (G,F ) with non integer k. For this, we first define the
space Hkα(R+). Using the sign ∼ for notation of norm equivalence, we get
for integers k and α ∈ R:

‖u‖2Hkα(R+) =
∫ ∞

0

k∑
j=0
x2(α+j)|∂jxu (x) |2 dx

≈
∫ ∞

0

k∑
j=0

∣∣∣(x · ∂x)j(xαu(x))∣∣∣2 dx

≈
∫ ∞
−∞

k∑
j=0

∣∣∣∂jt (e(α+1/2)t)u(et))
∣∣∣2 dt,

(6.5)

where in the last step, we made the change of variable x := et. Applying
the Melling transform

û(ξ) =
∫ ∞

0
u(x)eiξ lnx dx

x
=
∫ ∞
−∞
u (et) eitξ dt,
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(which in fact is the Fourier transform of u(et)), to the function xαu(x)
and taking into account the Plancherel theorem, we get∫ ∞

−∞

k∑
j=0

∣∣∣∂jt (e(α+1/2)tu(et))
∣∣∣2 dt

=
1

2π

∫ ∞
−∞

k∑
j=1
|ξ + i(α+ 1/2)|2j |û(ξ + i(α+ 1/2))|2 dξ.

(6.6)

By virtue of (6.5), (6.6), we can introduce the following equivalent norm for
Hkα(R+):

(6.7) ‖u‖2Hkα(R+) :=
∫ ∞
−∞

(1 + |ξ + i(α+ 1/2)|2)k|û(ξ + i(α + 1/2))|2 dξ.

But the norm in (6.7) is well-defined for arbitrary k ∈ R. To define Hkα (a, b)
with k ∈ R, α ∈ R, we define a decomposition of unity, i.e., ϕi(x) ∈
C∞(a, b), i = 1, 2, ϕi(x) ≥ 0, ϕ1(x) + ϕ2(x) ≡ 1, ϕ1(x) = 1 for x close to
a , and ϕ2(x) = 1 for x close to b. Then, by definition,

(6.8) ‖u‖2Hkα(a,b) = ‖ϕ̃1u‖2Hkα(R+) + ‖ϕ̃2u‖2Hkα(R+),

where by definition ϕ̃1u(y) = (ϕ1u)(a+y), y ∈ R+, and ϕ̃2u(y) = (ϕ2u)(b−
y), y ∈ R+.

Now, we are in the position to formulate the main theorem of this sub-
section.

Theorem 6.2. Let ‖v̂‖Φ be small enough (i.e., there exists a unique gener-
alized solution of (6.1), (6.2)). Then, there exists a discrete set {αi} = a ⊂
R such that for each α /∈ a and for every f ∈ H0

α(Ω)2, g ∈ H1/2
α (Γ )2 (we

suppose that gout ≡ 0) there exists a unique solution (v, p) ∈ Ψ2
α(Ω)×H1

α(Ω)
of problem (6.1), (6.2), and the following a priori estimates holds true:

(6.9) ‖v‖2Ψ2
α

+ ‖p‖2H1
α(Ω) ≤ c

(
‖f‖2H0

α(Ω)2 + ‖g‖2
H

1/2
α (Γ )

)
.

Proof. This theorem can be proved using the Mellin transform method of
Kondrat’ev [Kon1, Kon2] (see also [BR]). �

Remark 6.1. The considerations of this subsection can be extended to the
case when the assumption that the solution (v̂, p̂) of the extremal problem
(2.1)-(2.8) has a sufficiently small norm is not fulfilled. In this case for α /∈ a

one can prove an analog of Theorem 6.2 in which the solvability of (6.1),
(6.2) is true for (f, g) ∈ F where F is a subspace of H0

α(Ω)2 ×H1/2
α (Γ )2
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of finite codimension. This assertion is sufficient for the application of the
Lagrange principle.

6.2. First reduction of the problem. First of all, in problem (2.1)-(2.8),
we remove the unknown functions u1, u2 (controls) together with relations
(2.5) and change condition (2.8) to

(6.10)
2∑
i=1
‖∂nv − pn‖2Γi ≤ γ2.

Evidently, the new problem is equivalent to the old one. In problem (2.1)-
(2.3), (2.4), (2.7), (6.10), we make the following change of the dependent
variables:

(6.11) v = w + v̂, p = t+ p̂,

where (v̂, p̂) is a solution of the original extremal problem (2.1)-(2.8). As a
result, we obtain the following extremal problem: Minimize the functional

(6.12) J0(w, t) =
∫
S
(∂nw − tn) · e1 ds→ inf

on the set of pairs (w, t) satisfying

(6.13) −∆w + v̂ · ∇w + w · ∇v̂ + w · ∇w +∇t = 0, ∇ · w = 0 in Ω,

(6.14) w|Γ0 = 0, (∂nw − tn)|Γout = 0,

(6.15) J1(w, t) =
2∑
i=1
‖∂nv̂ − p̂n+ ∂nw − tn‖2Γi ≤ γ2,

(6.16) w1(x) + v̂(x) ≥ 0 x ∈ ω.
Evidently, problems (6.12)-(6.16) and (2.1)-(2.8) are equivalent; moreover
since (v̂, p̂) is a solution of (2.1)-(2.8), then by (6.11) the solution (ŵ, t̂) of
problem (6.12)-(6.16) is as follows:

(6.17) ŵ(x) ≡ 0, t̂(x) ≡ 0.

6.3. Second reduction of the problem. We take

(6.18) Y :=
{
y = (w, t) ∈ Ψ2

α(Ω)×H1
α(Ω)

∣∣∣ (∂nw − tn)|Γout = 0
}
,

(6.19) Z = H0
α(Ω)2,
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and define the map F (y) : Y → Z by the following formula:

(6.20) F (y) = F (w, t) = −∆w + v̂ · ∇w + w · ∇v̂ + w · ∇w +∇t.
The functionals f0, f1 and G in (5.1) are defined as follows:

(6.21) f0(y) = J0(w, t), f1(y) = J1(w, t), G(y) = max
x∈ω

(
− v̂(x)−w(x)

)
,

where J0, J1 are defined in (6.12), (6.15). With the help of (6.18)-(6.21), we
reduced problem (6.12)-(6.16) to the abstract problem (5.1). We check now
that all conditions of Theorem 5.2 are fulfilled. Let ΩS be a neighbourhood
of S. Then, evidently Hkα(ΩS ∩Ω) = Hk(ΩS ∩Ω) and therefore the trace
operators γ1w = ∂nw|S, γ0p = p|S are well defined and continuous in the
sense

γ1 : Ψ2
α(Ω)→ H1/2(S)2, γ0 : H1

α(Ω)→ H1/2(S).

Hence, the functional in (6.12) is bounded on Ψ2
α(Ω) × H1(Ω), and being

linear, it is continuously differentiable on this space and therefore also on
Y . It is well known [Kon1] that the operators γ1w = ∂nw|Γ , γ0p = p|Γ are
well defined and continuous in the sense

(6.22) γ1 : H2
α(Ω)→ H1/2

α (Γ )2, γ0 : H1
α(Ω)→ H1/2

α (Γ ).

Therefore, if α ≤ 0, then

2∑
i=1
‖∂nv̂ − p̂n+ ∂nw − tn‖2Γi ≤ c+ 2

2∑
i=1
‖∂nw + tn‖2Γi

≤ c+ 2 sup
x∈Γ

(ρ−2α)
2∑
i=1
‖ρα(∂nw + tn)‖2Γi

≤ c1
(
1 + ‖∂nw + tn‖2

H
1/2
α (Γ )

)
≤ c2
(
1 + ‖w‖2Ψ2

α(Ω) + ‖t‖2H1
α(Ω)

)
.

(6.23)

Relations (6.22), (6.23) imply the continuous differentiability of the func-
tional in (6.15) on the space Ψ2

α(Ω)×H1
α(Ω), for α ≤ 0.

The operator in (6.20) is evidently continuous and continuously differen-
tiable in the spaces (6.18), (6.19), for each α ≤ 0. In virtue of (6.17) the
derivative F ′(ŵ, t̂) at the solution (ŵ, t̂) is defined by the left part of equa-
tion (6.1). To check the property a) in subsection 5.2, we have to prove that
the boundary value problem (6.1), (6.2) with g ≡ 0 for each f ∈ H0

α(Ω)2

possesses a solution (v, p) ∈ Y . For this, we use Theorem 6.2. We choose
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the parameter α in the spaces in (6.18), (6.19) as follows: if 0 /∈ a , we
take α = 0, if 0 ∈ a , we take α < 0 close enough to zero (there are no
points from a in the semi-interval [α, 0)). By Theorem 6.2 property a) in
subsection 5.2 is fulfilled.

In virtue of definition (6.21) of the functional G(y), property b) in Subsec-
tion 5.2 is true because of Lemmas 5.1, 5.3. Hence all conditions of Theorem
5.2 are fulfilled, and we can apply this theorem to problem (6.12)-(6.16).

6.4. Application of the Lagrange principle. The Lagrange function for
the extremal problem (6.12)-(6.16) has the following form:

L(w, t, λ0,λ1, α, z) = λ0

∫
S

(∂nw − tn)e1 ds

+ λ1
2

∫
Γ1∪Γ2

|∂n(v̂ + w)− (p̂+ t)n)|2 dx1

+ α sup
x∈ω

(−w1(x)− v̂1(x))

+
∫
Ω

(−∆w + v̂ · ∇w + w · ∇v̂ + w · ∇w +∇t)z dx,

(6.24)

where (λ0, λ1, α, z) ∈ R3 ×H0−α(Ω)2 are Lagrange multipliers. In virtue of
Theorem 5.2 there exists Lagrange multipliers satisfying (5.3)-(5.5) (these
conditions will be discussed later). Condition (5.6) being applied to function
(6.24) at (ŵ, t̂) = (0, 0) leads to the relation

λ0

∫
S

(∂nh− τn)e1 ds + λ1

∫
Γ1∪Γ2

(∂nv̂ − p̂n) · (∂nh− τn) dx1

−α
∫
ω
h1(x)µ(dx) +

∫
Ω

(−∆h+ v̂ · ∇h+ h · ∇v̂ +∇τ)z dx = 0,
(6.25)

which is true for every (h, τ) ∈ Y (see (6.18)). In (6.25) µ(dx) is a measure
on ω. In the case of problem (6.12)-(6.16),

(6.26) G(w) = max
x∈ω (−v̂1(x)− w1(x)),

and we have to find the derivative of this functional at the point w =
(w1, w2) = (0, 0) in the direction h = (h1, h2). Recall that all functions in
(6.26) and below belong to Ψ2

α(Ω) and by the Sobolev embedding theorem
the restriction to ω of all these functions belong to C(ω). In virtue of
(5.10), (5.12), the derivative of the functional (6.26) at zero in the direction
h has the form

(6.27) G′(0, h) = max
x∈M0
−h1(x),
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where M0 =
{
x ∈ ω| − v̂1(x) = 0

}
. By Lemma 5.4 the sub-differential

∂G′(0, ·) consists of the functional

l(h) = −
∫
Ω
h1(x)µ(dx),

where µ(dx) is a probability measure supported on the set M0. Just this
measure is written in equation (6.25).

7. The optimality system

In this section, we obtain the main result of this paper, the optimality
system for problem (2.1) -(2.8).

7.1. Derivation of the optimality system. At first, we take h ∈ Ψ2
α(Ω)∩

C∞0 (Ω)2, τ ∈ C∞0 (Ω) in (6.25). In this way, we get

(7.1)
∫
Ω

(−∆h+ v̂ · ∇h+ h · ∇v̂ +∇τ) · z dx = α
∫
ω
h1(x)µ(dx).

If we take h = 0 in (7.1), the resulting equality yields

(7.2) ∇ · z = 0 in Ω,

which is to be understood in the distributional sense. Accordingly, taking
τ ≡ 0 in (7.1), we get

(7.3)
∫
Ω

(−∆z − v̂ · ∇z +∇v̂∗z) · hdx = α
∫
ω
h1 µ (dx) ,

for all h ∈ Ψ2
α(Ω) ∩ C∞0 (Ω)2 , where (∇v̂)∗z = (∂1v̂ · z, ∂2v̂ · z).

This equality and the De Rham Theorem (see [T]) imply that there exists
a distribution σ(x) such that

(7.4) −∆z − v̂ · ∇z +∇v̂∗z −∇σ = αe1µ(dx)

where e1 = (1, 0).
System (7.4), (7.2) is elliptic in the sense of Douglas-Nirenberg. Therefore

for each subdomain Ω1 of Ω compactly enclosed in Ω \ω, i.e. Ω1 ⊂ Ω \ω,
we have z ∈ H2(Ω1)2, ∇σ ∈ L2(Ω1)2.

Moreover (z,∇σ) posseses enough smoothness near ∂Ω in order to define
the traces of these functions on ∂Ω. To prove this one has to use methods
of ([F] Chapter 2.5, [LM]).
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Now, we take an arbitrary (h, τ) ∈ Y in (6.25) and integrate by parts.
Then, taking into account (7.2),(7.4), we get for all (h, τ) ∈ Y :

λ0

∫
S
(−τn+ ∂nh) · e1 dx+ λ1

∫
Γ1∪Γ2

(∂nv̂ − p̂n)(∂nh− τn)dx1

+
∫
∂Ω

{
(−∂nh+ τn)z + ∂nz · h+ (v̂ · n)(h · z)

}
dx

+
∫
Ω
∇σ · hdx = 0.

(7.5)

Suppose that (h, τ) ∈ Y and (h, τ) equals zero in a neigbourhood of (∂Ω \
S). Then, recalling that h|S = 0, we obtain from (7.5) that

(7.6)
∫
S

(−τn+ ∂nh)(λ0e1 − z) dx = 0.

Since ∇ ·h = 0 and h|S = 0 , then (−τn+ ∂nh)|S = (−τn+ ∂nhT )|S where
hT is the component of vector field h that is tangent to S. Evidently the
set of (−τn+ ∂nhT )|S is dense in L2(S)2. Therefore (7.6) implies

(7.7) z|S = λ0e1.

Analogously, if we take (h, τ) ∈ Y that equals zero in a neighbourhood of
∂Ω \ {Γin ∪ S′}) , we obtain from (7.5)∫

Γin∪S′
(τn− ∂nh)z dx = 0.

This implies the equality

(7.8) z|Γin∪S′ = 0.

Taking (h, τ) ∈ Y , (h, τ) = 0 in a neighborhood of ∂Ω \ Γout and using
that (−∂nh+ τn)|Γout = 0, we get from (7.5) that∫

Γout

(
∂nz + nσ + (v̂ · n)z

)
hdx2 = 0,

and therefore, since
∫
Γout n · hdx2 = 0, we get

(7.9)
(
∂nz + nσ + (v̂ · n)z

)
|Γout

= nc,

where c is a constant.
At last, for (h, τ) ∈ Y , (h, τ) = 0 in neighbourhood of ∂Ω \ (Γ1 ∪ Γ2),

we obtain from (7.5)∫
Γ1∪Γ2

(
− ∂nh+ τn)z + (∂nz + nσ + (v̂ · n)z

)
· h

+ λ1(∂nv̂ − p̂n)(∂nh− τn) dx1 = 0.
(7.10)
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Taking in (7.10) h = 0 and −∂nh + τn running through the dense set in(
L2 (Γ1 ∪ Γ2)

)2
, we get

(7.11) z|Γ1∪Γ2 = λ1 (∂nv̂ − p̂n)
∣∣∣
Γ1∪Γ2

.

If we take −∂nh+ τn = 0 and h is arbitrary, then we obtain

(7.12)
(
∂nz + nσ + (v̂ · n)z

)∣∣∣
Γ1∪Γ2

= nc,

where c is a constant. Notice that the constant c in (7.9) and the constant
c in (7.12) corresponding to Γ1 and Γ2 are equal. Indeed, for determining
(7.9), (7.12), we can take h = 0 on ∂Ω \ (Γout)∪Γ1∪Γ2 and h arbitrary on
Γout ∪ Γ1 ∪ Γ2 (Compare with (3.11)). Adding this c to σ we can take
c = 0.

7.2. The final form of the optimality system. Let (v̂, p̂, û1, û2) be the
solution of problem (2.1)-(2.8). Then, the optimality system for this problem
consists of equations (2.1),(2.2), (7.4),(7.2) and the boundary conditions
(2.3), (7.7)-(7.9), (7.11), (7.12). We rewrite these equations in the following
form:

(7.13) −∆v̂ + v̂ · ∇v̂ +∇p̂ = 0, ∇ · v̂ = 0, x ∈ Ω,

(7.14) −∆z − v̂ · ∇z +∇v̂∗z −∇σ = e1αµ(dx), ∇ · z = 0, x ∈ Ω,

(7.15) v̂|Γin = vin, (∂nv̂ − p̂n)|Γout = 0, v|S∪S′ = 0

(7.16) z|S = λ0e1, z|Γin∪S′ = 0, z|Γ1∪Γ2 = λ1 (∂nv̂ − p̂n)|Γ1∪Γ2

(7.17)
(
∂nz + nσ + (v̂ · n)z

)
|Γout

= 0,
(
∂nz + nσ + (v̂ · n)z

)
|Γ1∪Γ2

= 0.

In virtue of (5.3), (5.5) the optimality system should be supplemented by
the following condition:

1) Conditions of signs concordance:

(7.18) λ0 ≥ 0, λ1 ≥ 0, α ≥ 0.

2) Conditions of complementary slackness

(7.19) λ1(J1 − γ2) = 0, αmin
x∈ω v̂(x) = 0,

where J1 = J1(0, 0) and J1(w, t) is defined in (6.15).
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8. Numerical calculations

The validity of the crucial Condition 1 for a given subset ω ⊂ Ω (see
(4.26)) can hardly be shown analytically but rather requires computational
confirmationFigure 2 shows a series of plots of the velocity component v1 for
increasing strength of the control (positive pressure drop). Figure 3 shows
corresponding plots for symmetric and asymmetric action of the control.
The latter results demonstrate that for a large class of sub-domains ω ⊂ Ω
the property v1|ω ≥ 0 can be achieved by applying appropriate controls.

Figure 2. Velocity component v1 for increasing strength
of control pressure; area of v1 < 0 dark blue

Figure 3. Velocity component v1 for symmetric (left) and
unsymmetric (right) control pressure drop; area of v1 < 0
dark blue



32 A. V. FURSIKOV AND R. RANNACHER

References

[AT] Abergel F., Temam R. On some control problems in fluid mechanics, Theoret.
Comput. Fluid Dynamics, 1, (1990) pp. 303–325.

[A] Alekseev G.V. Solvability of Control Problems for steady-state equations of Mag-
netic Hydrodynamics of viscous Fluid, Sibiryan Math Journ v.45:2, 2004, p.243-262
(in Russian).

[ALT] Alekseev G.V., Tereshko D.A. Analysis and optimization in viscous fluid hydrody-
namics, Dalnauka, Vladivostok, 2009 (in Russian).

[ATF] Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal Control, Consultants Bu-
reau, New York 1987.

[BIN] Besov O., Il’in V., Nikol’skiy S.. Integral representations of functions and embedding
theorems, Nauka, Moscow, 1975. (in Russian)

[BR] Blum H., Rannacher R.. On the boundary value problem of the biharmonic operator
on domains with angular corners, Math. Meth. Appl. Sci. 2, 556–581 (1980).

[CH] Chebotarev A.Yu. Maximum Principle in the Problem of Boundary Control for
Incompressible Fluid Flow. Sibirskiy Math. Journ. v.34:6, 1993, p.189-197 (in Rus-
sian)

[DM] Dubovitskij A.Ja., Milyutin A.A. Extremal Problems with the presence of
constraints.- USSR Comput. Mathematics and Math. Physics, 5(3), 1965, p.1-80.

[F] Fursikov A.V. Optimal Control of Distributed Systems. Theory and Applications
Translations of Math. Monographs v. 187. AMS, Providence, Rhode Island, 1999.

[F1] Fursikov A.V. Control problems and theorems concerning the unique solvability of a
mixed boundary value problems for the three-dimensional Navier-Stokes and Euler
equations, Math USSR Sb., 43 (1982), pp. 281–307.

[F2] Fursikov A.V. Properties of solutions of some extremal problems connected with the
Navier-Stokes system, Math USSR Sb., 46 (1983), pp. 323–351.

[FGH] Fursikov A.V., Gunzburger M., Hou S. Optimal Boundary Control for the evolu-
tionary Navier-Stokes system: The three dimensional case. SIAM J. Control Op-
tim., 42 (2005), pp.2191–2232.

[GA] GASCOIGNE: A Finite Element Software Library, http://www.gascoigne.uni-
hd.de, 2006.

[GR] Girault V., Raviart P.A. Finite element methods for Navier-Stokes equations. The-
ory and algorithms. Springer-Verlag, Berlin, 1986.

[G] Girsanov I.V. Lectures of mathematical theory of extremal problems. Lecture Notes
in Economics and Mathematical Systems, v.67, Springer , Berlin-Heidelberg-New
York, 1972.

[GHS1] Gunzburger M., Hou L., Svobodny T. Analysis and finite element approxima-
tion of optimal control problems for the stationary Navier-Stokes equations with
Dirichlet controls, Modél. Math. Anal. Numér., 25 (1991), pp. 711–748.

[GHS2] Gunzburger M., Hou L., Svobodny T. Analysis and finite element approxima-
tion of optimal control problems for the stationary Navier-Stokes equations with
distributed and Neumann controls, Math. Comp., 57 (1991), pp. 123–151.



OPTIMAL FLOW CONTROL 33

[Kon1] V. A. Kondrate’ev. Boundary problems for elliptic equations in domain with conical
or angular points, Trans. Moscow Math. Soc. 16, 227–313 (1967).

[Kon2] V. A. Kondrate’ev. Asymptotic of a solution of the Navier-Stokes equations near
the angular part of the boundary, J. Appl. Math. Mech. 31, 125–129 (1967).

[Lad] Ladyzhenskaya O.A. The Mathematical Theory of Viscous Incompressible Flow,
Gordon and Breach, New York, 1969.

[LM] Lions J.-L., Magenes E. Problems aux limites non homogenes et applications.
Dunod, Paris, 1968.

[MDO] Milyutin A.A., Dmitruk A.V., Osmolovskij N.P. Maximum Principle in Optimal
Control Preprint (in Russian), Moscow State Univ., Mech.-Math. Faculty, 2004.

[S] Sritharan S. An optimal control problem in exterior hydrodynamics, in Distributed
Parameter Control Systems, New Trends and Applications, Ed. by G. Chen, B.
Lee, W. Littman, and L. Markus, Marcel Dekker, New York, 1991, pp.385–417.

[T] Temam R. Navier-Stokes Equations. Theory and Numerical Analysis. Studies in
Math. and its Appl. v.2, North Holland Pub. Comp., Amsterdam, New York,
Oxford, 1979.

[VD] Van Dyke M. An Album of Fluid Motion. The Parabolic Press, Standford, 1982.

Department of Mathematics, Moscow State University, 119991 Moscow,

Russia

Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuen-

heimer Feld 293/294, D-69120 Heidelberg, Germany


