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Abstract. The authors study the stabilization problem for Navier-Stokes and

Oseen equations near steady-state solution by feedback control. The cases of
control in initial condition (start control) as well as impulse and distributed

controls in right side supported in a fixed subdomain of the domain G filled

with a fluid are investigated. The cases of bounded and unbounded domain G
are considered.

1. Introduction. In this paper we continuer to study stabilization problem for
Navier-Stokes system and its linearization near a steady-state solution by feedback
control. The case when a control is defined on the boundary ∂G of the domain G
filled with the fluid is the most interesting for application. That is why the most
part of investigations in this topic were made just for control from the boundary
(see [3]-[6], [7]-[13], [27]).

This article is devoted to investigation of stabilization problem with other types
of feedback control such as control in initial condition (start control), impulse and
distributed controls in right side. We assume that for all of these cases a control
is supported in a given subdomain ω of G. There is a big reason in such studies,
for instance, because anyone from these controls can be used to construct feedback
stabilizing control on the boundary ∂G with help of technique developed in ([7]-
[13]): actually in mentioned papers the start control already has been implicitly
used for construction of control on the boundary.

The necessity to apply impulse control for feedback stabilization from the bound-
ary was understood in [12],[13] where physical feedback property (that is the most
important for application) has been studied. But there is at least one reason
more to study impulse control, and this reason is as follows. In the paper [22]
of A.A.Ivanchikov where approach from [7]-[13] was applied for numerical stabiliza-
tion of Taylor curls to Couette flow by feedback boundary control, this stabilizing
control u had big gradients for times close to zero. It was clearly seen in examples
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of numerical stabilization described in [22]. Evidently, these gradients should be
an obstacle in possible attempts to increase Reynolds number. These big gradients
arise because of big gradients in start control u for auxiliary stabilization problem
in extended domain (see [7],[8]). It is easy to decrease gradients of u by imposing
restriction in the form ‖u‖H1 6 γ with sufficiently small γ. However, due to this
this restriction we can not push the phase variable into the corresponding invariant
manifold (that is the goal of stabilization construction). Therefore, we have to act
with restricted control u in several time instants. But this means that we apply
just impulse control with restriction imposed on impulses (see Section 5).

Note that one can also decrease gradients of boundary control mentioned above
by applying distributed control in auxiliary stabilization problem in extended do-
main. Besides, in exact controllability problems for Navier-Stokes equations just
distributed control in right side is used as a rule (see e.g. [16],[17]). Since exact con-
trollability and feedback stabilization are very close problems, it is useful to develop
technique of feedback stabilization by distributed control: it can give opportunity
to use some information from exact controllability topic for feedback stabilization.

The other important goal of this paper is to study feedback stabilization of solu-
tions defined in unbounded domains. The Cauchy problem for Stokes and Navier-
Stokes systems in R2 with impulse control in the right-hand side is investigated (see
Section 7 below).

Unbounded domains have some features which distinguish them from bounded
domains. First, in unbounded domains the rate of stabilization is slower than
in bounded ones. In bounded domains solutions from stable invariant manifolds
exponentially decay to stationary solutions, whereas for Cauchy problem the rate
of convergence is only of power-type (see [18]).

Another one feature of Cauchy problem, which can be very useful for applications
is that for Stokes system stable invariant subspaces can be constructed in explicit
form. Moreover, in some cases stable invariant manifolds for Navier-Stokes system
coincide with these linear subspaces.

The paper is build up as follows. In sections 2-4 we study feedback stabilization
problem with start control. This topic was investigated implicitly in [7]-[11], and
therefore rather often instead of proofs we give references on corresponding papers
containing these proofs. Nevertheless in subsection 3.3 we give a complete proof
of one important theorem that is more simple than one obtained in [7]. Using [15]
we get here new result on local stabilization when initial condition belongs to an
unbounded neighborhood of stabilized steady-state solution.

Section 5 is devoted to stabilization problem for Oseen equations with impulse
feedback control when impulses satisfy certain restrictions on their gradients.

In Section 6 stabilization by distributed control supported in a prescribed subdo-
main for Oseen and Navier-Stokes equations is constructed. Note that stabilization
of Navier-Stokes equations by feedback distributed control has been studied by
V.Barbu, R.Triggiani [6] with help of Riccati equation. This method is rather diffi-
cult for numerical simulation. Our approach we have proposed in Section 6 is more
preferable from this point of view.

In Section 7 we consider 2D Stokes and Navier-Stokes equations defined in R2 and
investigate their power-like stabilization with impulse control in right-hand side.

Note that for each type of control considered here feedback property is realized
by a connection u(t, ·) = Ey(t, ·) where u is a control, y is phase variable and E is a
certain map (in the case of start control t = 0). One of the main issue of this paper
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is that for different types of control (start, impulse and distributed) operators E
from feedback connection are identical up to a constant.

2. Setting of the stabilization problem with a control in initial condition
(with a start control). In this section we formulate the stabilization problem
with control in initial condition.

Let G ⊂ Rd, d = 2, 3 be a domain with the boundary ∂G ∈ C∞, Q = R+ × G.
Everywhere below until the Section 7 we assume that domain G is bounded. We
consider the Navier-Stokes equations

∂tv(t, x)−∆v + (v,∇)v +∇p(t, x) = h(x), div v(t, x) = 0 (2.1)

with boundary condition

v(t, x)|x∈∂G = 0 (2.2)

and initial condition containing a control

v(t, x)|t=0 = v0(x) + u(x). (2.3)

Here (t, x) = (t, x1, . . . , xd) ∈ Q, v(t, x) = (v1, . . . , vd) is a velocity of fluid flow,
p(t, x) is a pressure, h(x) = (h1, . . . , hd) is a given right side, v0(x) is a given initial
condition, and u(x) is a control supported in a given fixed subdomain ω b G.

Denote, as usually, by Hk(G), k ∈ N the Sobolev space of scalar functions,
defined and square integrable on G together with all its derivatives up to order k
and by (Hk(G))d the analogous space of vector fields. Besides, H1

0 (G) = {f(x) ∈
H1(G) : f(x)|x∈∂G = 0}. We will also use the following spaces of solenoidal vector
fields:

V k(G) =
{
v(x) = (v1, . . . , vd) ∈ (Hk(G))d : div v = 0

}
, k = 0, 1, 2, . . . (2.4)

V 1
0 (G) = V 1(G) ∩H1

0 (G)d, V 0
0 (G) = closure V(G) in L2(G)d (2.5)

where V(G) = {v(x) ∈ (C∞0 (G))d : div v = 0}. Evidently,

‖v‖V 0(G) = ‖v‖V 0
0 (G) := ‖v‖(L2(G))d ; ‖v‖V 1

0 (G) := ‖∇v‖(L2(G))d2 .

Let introduce the notations:

V = V 1
0 (G) V 1

00(ω) = {v(x) ∈ V : supp v ⊂ ω} (2.6)

By V we denote the phase space of dynamical system generated by boundary value
problem (2.1)–(2.3).

The setting of local stabilization problem for a solution of boundary value prob-
lem (2.1)–(2.3) with start control is as follows:

Let h ∈ L2(G)d, v0 ∈ V 1
0 (G) and O is a neighborhood of origin in the phase space

V = V 1
0 (Ω). Suppose that σ > 0 and an unstable steady-state solution (v̂(x), p̂(x))

of Navier-Stokes equations

−∆v̂(x) + (v̂,∇)v̂ +∇p̂(x) = h(x), div v̂(x) = 0 (2.7)

(v̂(x), p̂(x)) ∈ (V 2(G) ∩ V 1
0 (G))×H1(G) (2.8)

are given, and inclusion v̂ − v0 ∈ O is true. Construct a control u(x) ∈ V 1
00(ω)

such that the component v(t, x) of the solution (v,∇p) to boundary value problem
(2.1)–(2.3) satisfies:

‖v(t, ·)− v̂‖2V 1
0 (G) 6 c‖v0‖2V 1

0 (G)e
−σt (2.9)

with a certain constant c > 0 independent of v0 ∈ v̂ +O.
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The simplest example of the neighborhood O is the ball Bρ = {v0 ∈ V 1
0 (Ω)} with

small enough ρ but it is possible to prove stabilization problem for some unbounded
O.

Moreover, we would like to look for feedback control. We will use the following
mathematical formalization of this general physical definition. 1

Definition 2.1. Control u(x) is called feedback if there exist a continuous operator
F : O → V 1

00(ω) such that after substitution

u(x) = v0(x) + (Fv0)(t, x) (2.10)

into (2.3) the solution v(t, x) of closed-loop system (2.1)–(2.3) 2 satisfies inequality
(2.9) with constant c independent of v0 ∈ O

3. Stabilization of Oseen equations by start control. In this and next sec-
tions we describe stabilization construction with control by initial condition.

3.1. Reduction to linear case. We make change of unknown functions

v(t, x) = y(t, x) + v̂(x), p(t, x) = q(t, x) + p̂(x) (3.1)

in (2.1) where (v̂, p̂) is solution of (2.7). As a result we get

∂ty(t, x)−∆y + (v̂(x),∇)y + (y,∇)v̂ + (y,∇)y +∇q(t, x) = 0, div y = 0, (3.2)

y(t, x)|t=0 = y0(x) + u(x) (3.3)

where y0 = v0− v̂. We omit in (3.2) nonlinear term (y,∇)y, and, changing notation
for pressure from q on p, we obtain:

∂ty(t, x)−∆y + (v̂(x),∇)y + (y,∇)v̂ +∇p(t, x) = 0, div y = 0, y|∂G = 0 (3.4)

Set initial condition

y(t, x)|t=0 = y0(x) (3.5)

Our aim now is to describe the set of initial conditions {y0} such that solutions
y(t, x) of (3.4)-(3.5) satisfy estimate

‖y(t, ·)‖V 1
0 (G) 6 c‖y0‖V 1

0 (G)e
−σt for t > 0 (3.6)

with constant c > 0 independent of y0.

3.2. Description of initial conditions generating decreasing solutions. De-
note by

π̂ : (L2(G))2 −→ V 0
0 (G) (3.7)

the operator of orthogonal projection. We consider the Oseen steady-state operator

Av := −π̂∆v + π̂[(v̂(x),∇)v + (v,∇)v̂] : V 0
0 (G) −→ V 0

0 (G) (3.8)

and its adjoint operator A∗. These operators possess the following properties:

1We will not discuss here connection of the notion given here with the notion of physical
feedback (see [12],[13]).

2More exactly, the component v of solution (v, p)
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Theorem 3.1. Operator A defined in (3.8) and its adjoint A∗ are closed and have
the domain D(A) = V 2(G) ∩ (H1

0 (G))2. They are sectorial operators, i.e. spec-
tra Σ(A),Σ(A∗) of operators A and A∗ are discrete subsets of a complex plane C
belonging to a sector S symmetric with respect to R and containing R+:

S = −γ0 + S0, where γ0 > 0, S0 = {z ∈ C : |arg z| < θ < π/2},

and

‖(A− λI)−1‖ 6M/|λ+ γ|, ∀λ /∈ S (3.9)

Moreover Σ(A) = Σ(A∗).

The proof see, for instance, in [7],[8].
We rewrite boundary value problem (3.4)-(3.5) for Oseen equations in the fol-

lowing form

dy(t, ·)
dt

+Ay(t, ·) = 0, y|t=0 = y0. (3.10)

where A is operator (3.8). (To get (3.10) we have to act operator π̂ to both parts of
the first equation in (3.4).) Then for each y0 ∈ V 0

0 (G) the solution y(t, ·) of (3.10) is
defined by y(t, ·) = e−Aty0 where e−At is the resolving semigroup of problem (3.10).

Although the most natural phase space for problem (3.10) is the space V =
V 1

0 (G), in order to solve so-called stabilization problem for Navier-Stokes equations
with unbounded neighborhood O we have to study (3.10) in some other phase spaces
as well. For this we recall definition of one family of spaces.

Let {êj(x), λ̂j , j = 1, 2, . . . } be eigenfunctions and eigenvalues of the following
spectral problem for the Stokes operator:

−∆ê(x) +∇p̂(x) = λ̂ê(x), div ê = 0, x ∈ Ω; ê|∂Ω = 0 (3.11)

As well-known, 0 < λ̂1 6 λ̂2 6 . . . , λ̂j →∞ as j →∞, and {êj(x)} forms orthonor-
mal basis in V 0

0 (G):

∀v ∈ V 0
0 (G) v(x) =

∞∑
j=1

vj êj(x), where vj = (v, êj)V 0(G), ‖v‖2V 0
0 (G) =

∞∑
j=1

|vj |2

For each s ∈ R we introduce the space V s by the formula

V s =

v(x) =

∞∑
j=1

vj êj(x), vj ∈ R : ‖v‖2s =

∞∑
j=1

λ̂sj |vj |2 <∞

 (3.12)

It is well-known (see, for instance [14], Ch.3,Sect.4) that

V s = V s0 (G), s = 1, 2, V 2 = V 1
0 (G) ∩H2(G), ‖v‖s = ‖v‖V s(G) s = 0, 1, 2

(3.13)
where V s is defined in (3.12), and spaces V 0

0 (G), V 1
0 (G), V 2(Ω) are defined in (2.5),

(2.4).
Theorem 3.1 and results of [1], [25] implies

Corollary 1. There exists a constant c0 such that

‖e−Aty0‖V s 6 c0‖y0‖V seγ0t (3.14)

for each y0 ∈ V s, s ∈ [−1, 1]. Besides, the bound (3.9) is true when operator
(A− λI)−1 is considered in the space V s, s ∈ [−1, 1].
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Let σ > 0 satisfy:

Σ(A) ∩ {λ ∈ C : Reλ = σ} = ∅ (3.15)

The case when there are certain points of Σ(A) which are in the left of the line
{Reλ = σ} will be interesting for us. That is why everywhere below we will assume
that the following condition is true:

Condition 3.1. Operator A defined in (3.8) possesses eigenvalues with negative
real part.

Denote by X+
σ (A) the subspace of V 0

0 (G) generated by all eigenfunctions and
generalized eigenfunctions of operator A 3 corresponding to all eigenvalues of A
placed in the set {λ ∈ C : Reλ < σ}. By X+

σ (A∗) we denote analogous subspace
corresponding to adjoint operator A∗. We denote the orthogonal complement to
X+
σ (A∗) in V 0

0 (G) by Xσ(A) ≡ Xσ:

Xσ = V 0
0 (G)	X+

σ (A∗) (3.16)

For each s ∈ [−1, 1] we set

V s− = Xσ ∩ V s if s > 0; V s− = closure of Xσ in V s(Ω) for s < 0 (3.17)

Let V s+ = X+
σ (A), s ∈ [−1, 1], i.e. finite-dimensional space V s+ as set does not

depend on s.
One can show that subspaces V s+, V

s
− are invariant with respect to the action of

semigroup e−At, and V s− + V s+ = V s.

Theorem 3.2. Suppose that A is operator (3.8) and σ > 0 satisfies (3.15). Then
for each y0 ∈ V s−, s ∈ [−1, 1] the following analog of inequality (3.6) holds:

‖y(t, ·)‖V s 6 c‖y0‖V se−σt for t > 0 (3.18)

with constant c > 0 independent of y0. Besides, the solution of problem (3.10) with
such initial conditions is defined by the formula

y(t, ·) = e−Aty0 = (2πi)−1

∫
γ

(A− λI)−1e−λty0dλ. (3.19)

Here γ is a contour belonging to ρ(A) := C \ Σ(A) such that arg λ = ±θ for λ ∈
γ, |λ| > N for certain θ ∈ (0, π/2) and for sufficiently large N . Moreover, γ encloses
from the left the part of the spectrum Σ(A) placed right to the line {Reλ = σ}. The
complementary part of the spectrum Σ(A) is placed on the left to the contour γ.

Proof: See [7], [8].

3.3. The basic property of eigenfunctions for Oseen equations. We discuss
here one property of eigenfunctions and generalized eigenfunctions for the operator
A∗ adjoint to (3.8)

A∗v := −π̂∆v − π̂[(v̂(x),∇)v − (∇v̂)∗v] : V 0
0 (G) −→ V 0

0 (G) (3.20)

supplied with zero Dirichlet boundary condition where

(∇v̂)∗v = (

3∑
k=1

∂j v̂kvk, j = 1, 2, 3)

3Their definition see below, in Subsection 3.3 before Definition 3.3
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Recall that if λj ∈ C is eigenvalue of operator A∗ then by definition there exist
functions ε0(x), . . . εk(x) with integer k > 0 such that

(A∗ − λjI)ε0 = 0, ε0 + (A∗ − λjI)ε1 = 0, , . . . εk−1 + (A∗ − λjI)εk = 0, (3.21)

and ε0 is called eigenfunction as well as εm with m > 1 are called generalized
eigenfunctions.

Definition 3.3. The set of eigenfunctions and generalized eigenfunctions

ε
(k)
0 , ε

(k)
1 , . . . , ε(k)

mk
(k = 1, 2, . . . , N) (3.22)

corresponding to an eigenvalue λj is called canonical system which corresponds to
the eigenvalue λj if set (3.22) satisfies the properties:

i) Functions ε
(k)
0 (x), k = 1, 2, . . . , N form a basis in the space of eigenfunctions

corresponding to the eigenvalue λj .

ii) ε
(1)
0 is an eigenfunction with maximal possible multiplicity.

iii) ε
(k)
0 is an eigenfunction which can not be expressed by a linear combination

of ε
(1)
0 , . . . , ε

(k−1)
0 and multiplicity of ε

(k)
0 achieves a possible maximum.

iy) Vectors (3.22) with fixed k form a maximal chain of generalized eigenfunctions.
Evidently, numbers m1,m2, . . . ,mN do not depend on a choice of canonical
system.

The number N(λj) = m1 + 1 + m2 + 1 + · · · + mN + 1 is called multiplicity of
the eigenvalue λj . Evidently, this number is the dimension of the space generated
by canonical system.

Let λj ∈ C be the finite set of eigenvalues for operator (3.20) satisfying

Re λj < σ (3.23)

where σ is the magnitude from (3.15), and

ε
(k)
0 (λj ;x), ε

(k)
1 (λj ;x), . . . , ε(k)

mk
(λj ;x) (k = 1, 2, . . . , N(λj)) (3.24)

be canonical system corresponding to λj . Evidently the union of all these canonical
systems over λj satisfying (3.23) forms a basis in the subspace X+

σ (A∗). This basis
satisfies the following property:

Theorem 3.4. Let (3.24) be the set of canonical systems with eigenvalues λj of
operator A∗ running trough the set (3.23). Then for each open subset ω b G re-
striction of all functions from indicated canonical systems forms linear independent
family of functions.

Remark 1. As it will be clear below, the property formulated in Theorem 3.4 is
the key to construct stabilization of Oseen equation.

Proof. Step 1. First the following unique continuation property of operator (A∗ −
λjI) should be established: Let a solution f(x) of the problem

(A∗ − λjI)f(x) = 0, x ∈ G; f |∂Ω = 0 (3.25)

equals to zero on an open subset ω b G : f |ω ≡ 0. Then f(x) = 0 ∀x ∈ G.
The proof of this assertion had been obtained in [10], [11] with help of Carleman
estimates.

7



Step 2. Show first that eigenfunctions ε
(k)
0 (λj ;x)|ω with a fixed λj , restricted on

ω are linear independent. Let

f(x) ≡
∑
k

ckε
(k)
0 (λj ;x) = 0 for x ∈ ω, (3.26)

where ck are complex coefficients. By definition of eigenfunction the function f(x)
defined in (3.26) satisfies (3.25). By unique continuation property for equation
(3.25) equality (3.26) implies that f(x) ≡ 0 for x ∈ G. Therefore in virtue of linear
independence ε(k)(λj ;x) on G we get that ck = 0 ∀k.

Step 3. Let show that eigenfunctions and generalized eigenfunctions ε
(k)
j (λj ;x)|ω

with a fixed λj , restricted on ω, are linear independent. Let

N(λj)∑
k=1

mk∑
i=0

d
(k)
i ε

(k)
i (λjx) = 0 for x ∈ ω, (3.27)

and eigenfunctions ε
(k)
0 , k = 1, ..., k1 have maximal multiplicity n1 + 1 : m1 = ... =

mk1 = n1, functions ε
(k)
0 , k = k1 +1, k1 +2, ..., k2 have maximal multiplicity among

the rest functions 1 + n2 : mk1+1 = ... = mk2 = n2 and so on. Applying to (3.27)
operator (A∗ − λjI)n1 we get by (3.21) 4 that

k1∑
k=1

d(k)
n1
ε

(k)
0 (λj ;x) = 0, for x ∈ ω.

Therefore, by Step 2 of this Theorem proof d
(k)
n1 = 0, k = 1, ..., k1. We continuer this

process applying to rest part of (3.27) operator (A∗ − λjI)m with corresponding m

and conclude that new portion of d
(k)
m equals to zero. After finite number of such

steps we prove the assertion.
Step 4. The general case we prove by induction with respect to number M of

eigenvalues satisfying (3.23) which we take into consideration. The case M = 1
has been proved in Step 3. Assume that we proved assertion when the number
of choosed eigenvalues equals M − 1, and prove it for the case M . We numerate
choosed eigenvalues in the order of decreasing of maximal possible multiplicity for
corresponding eigenfunctions: if m1(λj) is maximal possible multiplicity for eigen-
functions corresponding to the eigenvalue λj , then

m1(λ1) > m1(λ2) > ... > m1(λM ).

Suppose that

M∑
j=1

N(λj)∑
k=1

mk(λj)∑
i=0

d
(k)
i (λj)ε

(k)
i (λj ;x) = 0 for x ∈ ω. (3.28)

We apply to (3.28) the operator (A∗−λ1I)m1(λ1)+1. Then by (3.21) with λ1 instead
of λj we get that summand with j = 1 disappears and the rest members transform
to

M∑
j=2

N(λj)∑
k=1

mk(λj)∑
i=0

d
(k)
i (λj)((λj − λ1)I + (A∗ − λjI))m1(λ1)+1ε

(k)
i (λj ;x) = 0 (3.29)

4In virtue of (2.8) smoothness of eigenfunctions and generalized eigenfunctions is finite (ε
(k)
r ∈

V 2(G)). Nevertheless application to them of operator (A∗ − λjI)n1 is correctly defined in virtue

of relations (3.21).
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Applying to (3.29) binomial formula and taking into account (3.21) we get:

M∑
j=2

N(λj)∑
k=1

mk(λj)∑
i=0

d
(k)
i (λj)

i∑
l=0

(
m1(λ1) + 1

l

)
(λj − λ1)m1(λ1)+1−lε

(k)
i−l(λj ;x) = 0,

(3.30)
where

(
n
p

)
= n!

p!(n−p)! are binomial coefficients. Making change of variables i− l = r

in inner sum, and then changing the order of summation on i and r we obtain:

M∑
j=2

N(λj)∑
k=1

mk(λj)∑
r=0

(Λ1d(λj))
(k)
r ε(k)

r (λj ;x) = 0, (3.31)

where

(Λ1d(λj))
(k)
r =

mk(λj)∑
i=r

(
m1(λ1) + 1

i− r

)
d

(k)
i (λj)(λj − λ1)m1(λ1)+1+r−i, j > 2. (3.32)

By induction assumption we have (Λ1d(λj))
(k)
r = 0. Applying to (3.28) the operator

(A∗− λ1I)m1(λ1)+p with p = 2, 3, . . . ,mk(λj)− r+ 1 and repeating aforementioned
arguments we get the following system of equations

mk(λj)∑
i=r

(
m1(λ1) + p

i− r

)
d

(k)
i (λj)(λj−λ1)m1(λ1)+p+r−i = 0, p = 1, 2, . . . ,mk(λj)−r+1

(3.33)

To prove desired equalities d
(k)
i (λj) = 0 we have to prove that determinant of the

matrix corresponding to system (3.33) is not equal to zero.
Step 5. Let prove this assertion. In this determinant we take out common

multiplier (λj − λ1)p of p-th line (p = 1, 2, . . . ) and after that take out common

multiplier (λj − λ1)m1(λj)+r−i of i-th column (i = 1, 2, . . . ). Then it is enough to
prove that

det

∥∥∥∥(m1(λj) + p

i− r

)∥∥∥∥mk(λj)−r+1

p,i−r+1=1

6= 0, r = 0, 1, . . . ,mk(λj) (3.34)

Renaming m1(λj) + 1 = m, mk(λj) − r = n, i − r = q we can rewrite (3.34) as
follows:

det

∥∥∥∥(m+ p

q

)∥∥∥∥n
p,q=0

6= 0, n = 0, 1, . . . ,mk(λj) (3.35)

Using formula
(
m+p
q

)
= ((m+p)!

q!(m+p−q)! and taking out common multiplier q! of q-th

column (q = 2, 3, . . . ) we get that (3.35) is equivalent to the relation

det

∥∥∥∥ (m+ p)!

(m+ p− q)!

∥∥∥∥n
p,q=0

6= 0, n = 0, 1, . . . ,mk(λj) (3.36)

We multiply q-th column of determinant from (3.36) on m− q and subtract it from
(q + 1)-th column for q = 0, 1, . . . . After that we decompose obtained determinant
with respect to upper line (it has 1 on the first place and 0 on others ones), and
take out common multiplear p of p-th line (p = 1, 2, . . . ). As a result we obtain

det

∥∥∥∥ (m+ p)!

(m+ p− q)!

∥∥∥∥n
p,q=0

= n!det

∥∥∥∥ (m+ p)!

(m+ p− q)!

∥∥∥∥n−1

p,q=0

, n = 1, 2, . . . ,mk(λj)

(3.37)
9



Repeating these operations we step by step will decrease the size of determinant
from n× n until 1× 1. As a result we prove relation (3.34)

We apply reasons written after (3.32) until (3.37) to each coefficients (Λ1d(λj))
(k)
r

from (3.31). As a result we obtain that d
(k)
i (λj) = 0 for each k, i and j > 2. Similar

equality with j = 1 follows from Step 3.

Remark 2. Steps 2-5 of Theorem 3.4 are simplification of complete version of the
proof of Theorem 4.1 from [7]

Remark 3. The most deep and untrivial part of the proof of Theorem 3.4 is the
Step 1. It based on Carleman estimates (see [10], [11]). Note that just here deep
connection between feedback stabilization and exact controllability problems be-
comes apparent. Solutions of both these problems are based on Carleman estimates
but for exact controllability problem more hard evolution version of Carleman esti-
mate is used (see [16],[17]), whereas for stabilization problem it is quite enough to
use Carleman estimates for steady-state equation ([10],[11]). Recall that from the
point of view of ill-posed problems theory feedback stabilization can be considered
as regularization of exact controllability problem.

Note that the basis {ε(k)
r (λj ;x)} studied in Theorem 3.4 consists of complex val-

ued functions. Then the set {Re ε
(k)
r (λj ;x), Im ε

(k)
r (λj ;x)} will form a basis in the

space of real valued functionsX+
σ (A∗) and it will possess the property proved in The-

orem 3.4 (see details in [7]). Let rename this real valued basis as (d1(x), . . . , dK(x)).
So the following corollary of Theorem 3.4 is true:

Lemma 3.5. There exists a basis (d1(x), . . . , dK(x)) in the space X+
σ (A∗) such that

restriction (d1(x)|ω, . . . , dK(x)|ω) on an arbitrary subdomain ω b G forms a linear
independent set of vector fields.

It is known that one can choose the basis (e1(x), . . . , eK(x)) in the space X+
σ (A)

that satisfies together with the basis (d1(x), . . . , dK(x)) in X+
σ (A∗) the following

relation:

(ej , dk)V 0(G) = δj,k ∀ j, k = 1, . . . ,K (3.38)

where δj,k is Kronecker symbol.

3.4. Theorem on stabilization of Oseen equations. We consider stabilization
problem in the phase space V = V s, s ∈ [0, 1], i.e. the problem to find a control

u ∈ V 1
00(ω) := {w ∈ V 1

0 (G) : w(x) = 0 ∀x ∈ G \ ω)} (3.39)

such that the solution y of (3.4),(3.3) with y0 ∈ V s satisfies (3.18). To complete the
construction of stabilization for Oseen equations (3.4), (3.3) we have to construct
the operator E : V s → V 1

00(ω) that transforms arbitrary initial condition y0 from
(3.3) to control u such that y0 + u ∈ V s−. We consider here analog of construction
from [11].

Using (3.38) we can define space (3.17) by the following equivalent form:

V s− = {v(x) ∈ V s :

∫
G

v(x) · dj(x) dx = 0, j = 1, . . . ,K}. (3.40)

Theorem 3.6. ([10], [11]) For each s ∈ [0, 1] there exists a linear bounded operator

E : V s → V 1
00(ω) such that y0 + Ey0 ∈ V s−. (3.41)
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Proof. Let subset ω1 ⊂ ω be a domain with C∞- boundary ∂ω1. In this set we
consider the Stokes problem:

−∆w(x) +∇p(x) = v(x), divw(x) = 0, x ∈ ω1; w|∂ω1 = 0

As is well known, for each v ∈ V 0(ω1)5 there exists the unique solution w ∈ V 1
0 (ω1)

of this problem. The resolving operator to this problem we denote as (−π̂∆)−1
ω1
v =

w. Extension of (−π̂∆)−1
ω1
v from ω1 in G by zero we also denote as (−π̂∆)−1

ω1
v.

Evidently, (−π̂∆)−1
ω1
v ∈ V 1

00(ω1).
We look for the desired operator E in the form

Ev(x) =

[ K∑
j=1

cj(−π̂∆)−1
ω1
dj

]
(x), (3.42)

where cj = cj(v) are constants which should be determined. Since dj ∈ V 0
0 (G),

Ev ∈ V 1
0 (G), suppEv ⊂ ω1 for every v ∈ V s and for each s ∈ [0, 1]. To define

constants cj we note that by (3.40) v + Ev ∈ V s− if∫
G

dk(x)

[ K∑
j=1

cj(−π̂∆)−1
ω1
dj(x)

]
dx = −

∫
G

dk(x)v(x)) dx (3.43)

for k = 1, . . . ,K. Lemma 3.7 (see below) implies that this system of linear equations
has a unique solution.

Lemma 3.7. The matrix M = {mkj}Kk,j=1 where

mkj =

∫
G

dk(x)(−π̂∆)−1
ω1
dj(x) dx (3.44)

is positive defined.

Proof. Using notation d̃j(x) = (−π̂∆)−1
ω1
dj(x) we get from (3.44) that

mkj =

∫
G

(−π̂∆)ω1 d̃k(x) · d̃j(x) dx =

∫
ω1

∇d̃k(x) · ∇d̃j(x) dx

Then for each c = (c1, . . . , cK) we get using notation

d̂(x) =

K∑
j=1

= cj d̃j(x)

the following relations:

(Mc, c) =

K∑
k,j=1

mk,jckcj =

K∑
k,j=1

ckcj

∫
ω1

∇d̃k(x) · ∇d̃j(x) dx =

∫
ω1

|∇d̂(x)|2 dx > 0

Note that the last inequality transforms to equality only if c = 0. This follows from
Lemma 3.5. Therefore matrix M is positive defined, i.e.

(Mc, c) > α‖c‖2 ∀c = (c1, . . . , cK)

Theorems 3.2, 3.6 imply the final result on stabilization of problem (3.4),(3.3):

5For definition of this space see (2.4),(2.5) where G is changed on ω1.
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Theorem 3.8. Let s ∈ [0, 1] and u = Ey0 in (3.3) where E is operator constructed
in Theorem 3.6. Then solution y(t, x) of closed-loop problem (3.4),(3.3) satisfies
inequality

‖y(t, ·)‖V s(G) 6 c‖y0‖V s(G)e
−σt (3.45)

where constant c > 0 does not depend on initial condition y0 ∈ V s(G).

Proof. In virtue of Theorem 3.6 and inequality (3.18) proved in Theorem 3.2 solution
y(t, x) of problem (3.4),(3.3) with u = Ey0 satisfies inequality

‖y(t, ·)‖V s(G) 6 c1‖y0 + Ey0‖V s(G)e
−σt 6 c‖y0‖V s(G)e

−σt

Remark 4. Note that although a function v ∈ V s(G) is equal to zero on ∂G only
if s > 1/2,6 the solution y from Theorem 3.8 satisfies y(t, ·)|∂G = 0 for almost
every t ∈ [0, T ]. indeed, by [1], [25] the solution of problem (3.4),(3.3) with initial
condition y0 + Ey0 ∈ V s(G), s ∈ [0, 1] belongs to the space V 1,2(s−1)(QT ) where

V 1,2(−α)(QT ) = L2(0, T ;V 2−α(G)) ∩H1(0, T ;V −α(G)) α ∈ [0, 1]. (3.46)

4. Stabilization for Navier-Stokes equations by start control. In this sec-
tion we give a construction for stabilization of problem (3.2),(3.3) obtained from
Navier-Stokes system (2.1) by change of unknown function.

4.1. Definition of stable invariant manifold. Applying orthoprojector π̂ de-
fined in (3.7) to both parts of the first equation from (3.2) we get equivalent equa-
tion

dy(t, ·)
dt

+Ay(t, ·) +B(y(t, ·)) = 0 (4.1)

where A is operator (3.8), and B is the operator

B(y) = π̂[(y,∇)y] (4.2)

Natural space for solution of problem (4.1), (3.5) is

V 1,2(0)(QT ) = L2(0, T ;V 2(G) ∩ V 1
0 (G)) ∩H1(0, T ;V 0

0 (G)),

and in virtue of inclusion C(0, T ;V 1
0 (G)) ⊂ V 1,2(QT ) natural phase space V for

corresponding dynamical system is V 1
0 (G). It is well-known (see [23], [28]), that

for each y0 ∈ V there exists a unique solution y(t, x) ∈ V 1,2(0)(QT‖v0‖) of problem

(4.1),(3.5), where 0 < T‖v0‖ → ∞ as ‖v0‖ := ‖v0‖V → 0. Denote by S(t, y0) the
solution operator of the boundary value problem (4.1),(3.5):

S(t, y0) = y(t, ·) (4.3)

where y(t, x) is the solution of (4.1),(3.5).
Definition of spaces given around (3.16) and relations for them imply:

V = V+ + V− where V = V 1
0 (G), V+ = X+

σ (A), V− = Xσ ∩ V 1
0 (G) (4.4)

Definition 4.1. The set W− = W−(O) defined in a neighborhood O of origin is
called a stable invariant manifold of the dynamical system generated by problem
(4.1),(3.5) if for each y0 ∈ W− the solution S(t, y0) is well-defined and belongs to
W− for each t > 0, and

‖S(t, y0)‖V 6 c‖y0‖V e−σt, t > 0 (4.5)

where quantities c > 0, σ > 0 does not depend on y0 ∈ O.

6This follows from definition (3.11),(3.12) of the space V s(G) (see [25])
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It is clear from this definition that solution of stabilization problem (3.2), (3.3)
can be reduced to projection on W−(O). To construct this projection one can use
that in a neighborhood O the stable invariant manifold can be defined as a graph
in the phase space V = V+ + V− by the formula

W− ≡ W−(O) ≡ W−(O(V−), f) := {y ∈ V : y = y− + f(y−), y− ∈ O(V−)} (4.6)

where O(V−) is a neighborhood of the origin in the subspace V−, and

f : O(V−)→ V+ (4.7)

is a certain map satisfying

‖f(y−)‖V+
/‖y−‖V− → 0 as ‖y−‖V− → 0. (4.8)

Existence of such map f when its domain of definition O(V−) is small ball in V−
is well-known (see [24], [26], [20], [2] and references there in).

It has been proved recently that actually domain O(V−) of f is unbounded. Let
formulate this result. Consider the set

Elρ = {v =

∞∑
j=1

vj êj(x) ∈ V 1 :

∞∑
j=1

λ̂
1/2
j v2

j < ρ} (4.9)

where ρ > 0. Since by definition (3.12) of V s, ‖vj êj‖2V 1 = λ̂jv
2
j , (4.9) can be

rewritten as follows

Elρ = {v ∈ V 1 :

∞∑
j=1

‖vj êj‖2V 1/(λ̂
1/2
j ρ) < 1} (4.10)

Therefore Elαρ is ellipsoid in V 1 with axises of length
√
λ̂αj ρ directed along êj . Since√

λ̂αρ→∞ as j →∞, Elαρ is an unbounded set.

The following existence theorem for invariant manifold W− holds (see [15]):

Theorem 4.2. Let G ⊂ Rd, d = 2, 3 be a bounded domain with C∞-boundary ∂Ω,
steady-state solution v̂ from (3.8) satisfies (2.8). Then there exists unique map
(4.7) defined on domain O(V−) = Elρ ∩ V− with sufficiently small ρ such that the
set W− defined by formula (4.6) is stable invariant manifold for family of maps
S(t, ·) defined in (4.3). Moreover,

‖S(t, y0)‖V 1 6 ce−σt‖y0‖V 1 as t→∞ (4.11)

where constants c > 0, σ > 0 do not depend on y0 ∈ W−

Note that the set (4.9) is intersection of V 1 and the ball in V 1/2 of radius ρ with
the center in origin. Straightforward repeating of proof from [24], [26], [20], [2] gives
Theorem 4.2 with analog of bound (4.11) where instead of norms in V 1 norms in
the space V 1/2 are used. Actually in [15] it has been proved that in this situation
estimate (4.11) with norms in V 1 also holds.

4.2. Feedback operator and stabilization. Here we construct feedback oper-
ator for Navier—Stokes equations. This operator is nonlinear analog of feedback
operator (3.41) constructed for Oseen equations.

As in Theorem 3.6 we use the domain ω b G and the space V 1
00(ω) defined in

(3.39). Denote Oε = {v ∈ V : ‖v‖V 1/2 < ε} ≡ Elε.
13



Theorem 4.3. Suppose that W− is the invariant manifold constructed in a neigh-
borhood of origin in V = V 1

0 (G) in Theorem 4.2. Then for sufficiently small ε there
exists a continuous operator

F : Elε → V 1
00(ω), (4.12)

such that

v + F (v) ∈ W− ∀v ∈ Elε. (4.13)

Proof. We introduce projection operators

P+ : V → V+, P− : V → V− (4.14)

for the spaces defined in (4.4) by the formulas

P+v =

K∑
j=1

(v, dj)V 0(G)ej , P−v = v − P+v (4.15)

where basises {ej}, {dj} are defined correspondingly after and before formulation
of Lemma 3.5. Introduce also the following notations:

Qv(x) = v(x) + w(x), where w = F (v) ∈ V 1
00(ω), (4.16)

and F is the operator we are looking for. By (4.14) and definition (4.6) of invariant
manifoldW− the desired inclusion Qv ∈ W− is equivalent to the following equality:

P+Qv = f(P−Qv) (4.17)

where f is operator (4.7). Besides, we have to ensure that the equality

(Qv)(x) ≡ v(x), x ∈ G \ ω (4.18)

is true. By (4.15) basis {ej(x)} generates V+ and therefore the map f(u) can be
written in the form

f(u) =

K∑
j=1

ejfj(u) where fj(u) = (f, dj)V 0(G)

and equality (4.17) is equivalent to the following one:∫
G

Qv(x)dj(x) dx = fj(P−Qz), j = 1, . . . ,K. (4.19)

Similarly to (3.42) we look for the vector field w(x) from (4.16) in the form

w = −(−π̂∆)−1
ω1

K∑
j=1

pjdj (4.20)

To find coefficients (p1, . . . , pK) ≡ ~p we substitute (4.20) into (4.16) taking into
account (4.19). As a result we get

~v −M~p = ~f
(
v − (~p, (−π̂∆)−1

ω1
~d)− (~e,~v −M~p)

)
, (4.21)

where ~v = (v1, . . . , vK), M = ‖mjk‖ and

vj =

∫
G

(v(x), dj(x)) dx, mjk =

∫
G

((−π̂∆)−1
ω1
dk(x), dj(x)) dx,

~f(u) = (f1(u), . . . , fK(u)), ~e = (e1(x), . . . , eK(x)), ~d = (d1(x), . . . , dK(x)),
14



(~c, ~d) =

K∑
j=1

cjdj .

In order right side of (4.21) to be well-defined we have to assume in virtue of
Theorem 4.2 that

v − (~p, (−π̂∆)−1
ω1
~d) ∈ Elρ (4.22)

where the magnitude ρ is defined in the mentioned Theorem. Taking into account
invertibility of matrix M = ‖mjk‖ ascertained in Lemma’s 3.7 proof one can apply
to relations (4.21),(4.22) contraction mapping principle ( see for details e.g. [11]).
As a result we obtain that if ‖~v‖ is sufficiently small, equation (4.21) possesses
unique solution ~p. The last assumption is fulfilled because ε in (4.12) is small
enough.

Now in virtue of Theorem 4.3 for stabilization of problem (3.2),(3.3) one has to
take u = F (y0).

5. Stabilization by impulse control. In this section we construct feedback im-
pulse control for stabilization of Oseen equations. We begin from the motivations.

5.1. Motivations and setting of the problem. Stabilization construction by
start control described above was implicitly used in [7]-[11] (in the case O =
Bρ(V 1

0 (Ω))) for stabilization by control on boundary. That method was used in [22]
for numerical stabilization of Taylor curls in Cuette problem. Since start control
is supported in small subdomain, it generated big gradients, almost singularities,
in boundary control near t = 0. It was clear that this singularity should prevent
to use the stabilization technique for bigger Reynolds numbers. To overcome this
difficulty it is possible to impose restriction on magnitude of the start control norm
using such restricted start control in several time moments. Below we show that
this algorithm leads to stabilization by impulse control. The corresponding control
problem can be written as follows:

∂tv(t, x)−∆v+(v,∇)v+∇p(t, x) = h(x)+

N∑
j=0

δ(t−tj)uj(x), div v(t, x) = 0 (5.1)

v(t, x)|t=0 = v0(x). (5.2)

where v(t, x) additionally satisfies boundary condition (2.2), δ(t − tj) is Dirac δ-
function supported in tj , 0 = t0 < t1 < · · · < tj < · · · < tN with N =
N(v0), uj(x) = (uj1, . . . , ujd) is a solenoidal vector field supported in a given fixed
subdomain ω ⊂ G. The following restriction is imposed on uj :

‖uj‖V 0
0 (G) 6 γ, ∀j (5.3)

where γ > 0 is a given fixed magnitude.
There is a close connection between impulse control and start control. indeed,

the following assertion is true:

Lemma 5.1. Stabilization problem (2.1),(2.2),(2.3)with a start control is equivalent
to stabilization problem (5.1),(5.2),(2.2) with impulse control satisfying condition

uj(x) ≡ 0 ∀ j > 1, γ =∞.7 (5.4)

7I.e. when we have only one impulse at t = 0, and there is no any restriction on control u0.
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Proof. Recall, that generalized solution of problem (2.1),(2.2),(2.3) with given ini-
tial condition v0 + u ∈ V 1

0 (G) and right side h ∈ L2(G)d is the vector field
v ∈ L∞(0, T ;V 0

0 (G)) ∩ L2(0, T ;V 1
0 (G)) satisfying

−
∫ T

0

∫
G

[(v(t, x), ∂tϕ(t, x)) +
∑d
j=1(∂xjv, ∂xjϕ) + (v,

∑d
j=1 vj∂xjϕ)] dxdt

+
∫
G

(v(T, x), ϕ(T, x)) dx =
∫ T

0

∫
G

(h(x), ϕ(t, x)) dxdt+
∫
G

(v0 + u, ϕ(0, ·)) dx
∀ϕ(t, x) ∈ C1(0, T ;V(G)) (5.5)

To get (5.5) we multiply scalarly (2.1) on ϕ and integrate by parts using (2.3).
If we multiply scalarly on ϕ equation (5.1) that satisfies (5.4) and integrate

by parts using (5.2) we obtain (5.5) as well. Therefore vector field v(t, x) ∈
L∞(0, T ;V 0

0 (G)) ∩ L2(0, T ;V 1
0 (G)) that satisfies equality (5.5) is generalized so-

lution of boundary value problem (2.1),(2.2),(2.3) with given v0 + u ∈ V 1
0 (G),

and h ∈ L2(G)d as well as of boundary value problem (5.1)-(5.2),(5.4) with given
v0, u ∈ V 1

0 (G), and h ∈ L2(G)d. Note that in virtue of (2.9) our generalized so-
lution satisfies inclusion v ∈ L∞(0, T ;V 1

0 (G)). As well-known (see [23],[28]) the
last inclusion guarantees its uniqueness. That is why the boundary value problems
(2.1),(2.2),(2.3) and (5.1)-(5.2),(5.4) with given v0, u ∈ V 1

0 (G), and h ∈ L2(G)d are
equivalent. Thus, corresponding control problems are equivalent as well.

For briefness we study below stabilization by impulse control only for Oseen
equations although considering the case of Navier-Stokes equations is also possible.
The point is that one can overcome difficulties from [22] mentioned above with
help of distributed control as well, and we realize this kind of control in nonlinear
case of Navier-Stokes equations in the next section. Actually, impulse control is
intermediate between start and distributed controls. Note also that the stabilization
of 2D Navier-Stokes equations by impulse control will be considered below in Section
7 in the case of Cauchy problem (i.e. in the case of unbounded domain G = R2).

5.2. The case of Oseen equations. Let consider the following stabilization prob-
lem:

dy(t, ·)
dt

+Ay(t, ·) =

N∑
j=0

δ(t− tj)uj(x), y|t=0 = y0. (5.6)

uj(x) ∈ V 1
00(ω), ‖uj‖V 1

0 (G) 6 γ ∀j (5.7)

where A is the operator (3.8), y0 ∈ V 1
0 (G) is the given initial datum, ω ⊂ G, and

the constant γ > 0 is prescribed restriction.
We have to look for instants {tj} and controls uj such that solution y of (5.6)

satisfies inequality

‖y(t, ·)‖V 1
0 (G) 6 (c1‖y0‖V 1

0 (G) + c2) min (1, e−σ(t−t̂)) (5.8)

where t̂ is the instant when the solution y(t, x) reaches the subspace V−, and con-
stants c1, c2 do not depend on y0 ∈ V 1

0 (G).
Moreover, we look for feedback control that is defined as follows.

Definition 5.2. Control (tj , uj , j = 1, 2, . . . ) is called feedback if for every j

uj = Ey(tj , ·) where E : V 1
0 (G)→ V 1

00(ω) (5.9)

is a linear bounded operator that should be constructed in a such way that after
substitution (5.9) into (5.6) solution y of (5.6) will satisfy inequality (5.8).
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Taking into account close connection between start and impulse controls (see
Lemma 5.1) we can take as E from (5.9) the feedback operator constructed in
subsection 3.4 for the case of start control. Thus, the main problem now is to
choose properly instants {tj}. By reasons cited above and connected with big
gradients it is useful to take distances |tj+1 − tj | as big as possible. But, obviously,
it is impossible to make this distances too big. indeed, the aim of stabilization is
to push the solution y to the subspace V−. In virtue of restriction (5.7) control
uj usually can only approach solution to V− and in order not to give solution to
move off from V− far away the distance |tj+1− tj | should not be too big. Let define
u0 = Ey0 where E is operator (5.9) and y0 is initial condition from (5.6). Our goal
is to define by induction uj , tj , with proper distance |tj − tj−1|.

Denote

‖ · ‖ := ‖ · ‖V 1
0 (G) (5.10)

where A is operator (3.8). Recall that we assume that the Condition 3.1 holds.
Assume also that

‖Ey0‖ > γ (5.11)

where y0, γ are defined in (5.6),(5.7): otherwise to solve stabilization problem
(5.6),(5.7) it is enough to use one impulse at t = 0, i.e. to use start control.

To solve stabilization problem (5.6),(5.7) we have to push solution y to subspace
V−. We will do it with help of impulse control

∑
ukδ(t − tk), and in virtue of

restriction (5.7) we are forced to use the following modification of formula (3.41):

uk−1 =
γ

‖Eyk−1‖
Eyk−1 (5.12)

where yk−1 = y(tk−1, ·) that only bring our solution nearer to V−. Up to next
impulse our solution is defined by the formula

y(t, ·) = e−A(t−tk−1)

(
yk−1 +

γEyk−1

‖Eyk−1‖
}
)
. (5.13)

Let t0 = 0, y0 is initial condition from (5.6). Define by induction the sequence
(yk, tk), k = 1, 2, . . . with help of the formulas

yk = e−A(tk−tk−1)

(
yk−1 +

γEyk−1

‖Eyk−1‖
}
)

if ‖Eyk−1‖ > γ (5.14)

where tk > tk−1 is minimal from magnitudes satisfying(
1− γ

‖EP+yk−1‖

)
‖e−A(tk−tk−1)P+yk−1‖ =

(
‖P+yk−1‖ −

γ

2‖E‖

)
. (5.15)

We stop this process when for some k

‖Eyk−1‖ 6 γ. (5.16)

After that for stabilization of Oseen equation we use start control at instant t = tk−1

constructed in Theorem 3.8.

Lemma 5.3. Let (yk−1, tk−1) with k > 1 that does not satisfy (5.16) is constructed.
Then there exists unique pair (yk, tk) that satisfies (5.14),(5.15). Moreover,

‖P+yk‖ = ‖P+yk−1‖ −
γ

2‖E‖
. (5.17)

Therefore after several steps k − 1→ k parameter k will satisfying (5.16).
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Proof. In virtue of Condition 3.1 the set of values for the function

f(t) = ‖e−A(t−tk−1)P+yk−1‖, t > tk−1

contains the set [‖P+yk−1‖,∞). Besides, evidently, the inequality(
1− γ

‖EP+yk−1‖

)
‖P+yk−1‖ <

(
‖P+yk−1‖ −

γ

2‖E‖

)
is true. Hence, there exists t = tk > tk−1 that satisfies equality (5.15). The minimal
from all such solutions we denote by tk.

Let prove that if yk is defined by formula (5.14) then equality (5.17) holds. By
definition (3.42) of operator E and by Theorem 3.6 we get: KerE = V−, y +Ey ∈
V−. Therefore by definition (4.15) of P+ we obtain from (5.14):

P+yk = e−A(tk−tk−1)

(
P+yk−1 +

γ

‖Eyk−1‖
P+(Eyk−1 + yk−1)− γ

‖Eyk−1‖
P+yk−1

)
=

(
1− γ

‖EP+yk−1‖

)
e−A(tk−tk−1)P+yk−1

This relation and (5.15) imply the desired equality.

Using (5.17) we can calculate the number m of impulses required for phase vari-
able y(t, ·) to reach subspace V−. It can be defined from relations

γm

2‖E‖
< ‖P+y0‖ 6

γ(m+ 1)

2‖E‖
that are equivalent to

2‖E‖‖P+y0‖
γ

− 1 6 m <
2‖E‖‖P+y0‖

γ
(5.18)

In other words

m =


[

2‖E‖‖P+y0‖
γ

]
, 2‖E‖‖P+y0‖

γ is not integer[
2‖E‖‖P+y0‖

γ

]
− 1, 2‖E‖‖P+y0‖

γ is integer
(5.19)

where [a] denotes integer part of a.
Let

τ = τ(y0) := min
k=1,...,m

(tk − tk−1) (5.20)

Lemma 5.4. The following estimate holds:

‖P−yk‖ 6 ce−σkτ‖P−y0‖+
γc‖P−‖e−στ

1− e−στ
(5.21)

Proof. We get from (5.14) that

yk = e−A(tk−tk−1)

(
e−A(tk−1−tk−2)

(
yk−2 +

γEyk−2

‖Eyk−2‖

)
+

γEyk−1

‖Eyk−1‖

)
= e−A(tk−tk−2)yk−2 + e−A(tk−tk−1) γEyk−1

‖Eyk−1‖
+ e−A(tk−tk−2) γEyk−2

‖Eyk−2‖
= . . .

= e−Atky0 + γ

k∑
j=1

e−A(tk−tk−j) γEyk−j
‖Eyk−j‖

18



This equalities imply the estimates

‖P−yk‖ 6 ce−σtk‖P−y0‖+ γc‖P−‖
∑k
j=1 e

−σ(tk−tk−j)

6 ce−σkτ‖P−y0‖+ γc‖P−‖ eστ

1−eστ
(5.22)

Now we are ready to obtain the estimate for the solution stabilized by impulse
control.

Theorem 5.5. Let y(t, ·) be the solution of the stabilization problem (5.6),(5.7) by
the method descibed above. Then

‖y(t, ·)‖ 6

‖P+y0‖ − kγ
2‖E‖ + ce−σ(k−1)τ‖P−y0‖+ cγ‖P−‖e−στ

1−e−στ , t ∈ (tk−1, tk), k 6 m

c
(
e−σmτ‖P−y0‖+ cγ‖P−‖e−στ

1−e−στ

)
eσ(t−tm), t > tm

(5.23)

Proof. Evidently, ‖y(t, ·)‖ 6 ‖P+y(t)‖ + ‖P−y(t)‖. By definition (5.15) of tk we
get that ‖P+y(t)‖ 6 ‖P+yk−1‖ − γ/(2‖E‖) for t ∈ (tk−1, tk). Besides, similarly to
(5.22) we get for this t that

‖P−y(t)‖ 6 ce−σ(k−1)τ‖P−y0‖+
cγ‖P−‖e−στ

1− e−στ
.

This proves (5.23) for t ∈ (tk−1, tk). Inequality (5.23) for t > tm follows from
Theorem 3.8 and estimate (5.22) with k = m.

6. Stabilization by distributed control in right-hand-side supported in
subdomain.

6.1. The case of controlled Oseen equations. Let us consider the boundary
value problem

v(t, ·)
dt

+Av(t, ·) = u(t, ·), v|t=0 = v0 (6.1)

with v0 ∈ V 1
0 (G), operator A from (3.8), control u(t, x) ∈ L2(R+;V 1

00(ω)) we are
looking for. This control should satisfy the following conditions:

i) The solution of problem (6.1) satisfies the estimate

‖v(t, ·)‖V 1
0 (G) 6 C‖v0‖V 1

0 (G)e
−σt (6.2)

where constant C = Cσ does not depend on ‖v0‖V 1
0 (G).

Moreover we are looking for the feedback control. By the definition it means that

ii) There exists a linear bounded operator: Ê : V 1
0 (G)→ V 1

00(ω) such that control
u(t, ·) is expressed by phase function y(t, ·) with help of the formula

u(t, ·) = Êv(t, ·) (6.3)

Theorem 6.1. There exists a control u(t, x) ∈ L2(R+;V 1
00(ω)) that satisfies con-

ditions i), ii) written above. Moreover, operator Ê from (6.3) is defined by the
formula

Ê = −ΛE (6.4)

where Λ > 0 is a sufficiently large magnitude, and E : V 1
0 (G)→ V 1

00(ω) is feedback
operator defined in the proof of of theorem 3.6 (see (3.42), (3.43)).

19



Proof. Recall that phase space V = V 1
0 (G) admits decomposition (4.4), in V+ =

X+
σ (A) one can choose a basis (e1(x), . . . , ek(x)) constructed from eigenfunctions

and generalized eigenfunctions of operator A corresponding to eigenvalues λj with
Re λj < σ, (see [7],[8]). Besides, inX+

σ (A∗) one can choose a basis (d1(x), . . . , dk(x))
constructed from eigenfunctions and generalized eigenfunctions of operator A∗ cor-
responding to eigenvalues µj with Re µj < σ, ([7], [8]). These basises are biorthog-
onal, i.e. they satisfy: (ej , dm)L2(G) = δjm, where δjm is Kronecker symbol. There-
fore v ∈ V+ if and only if

v =

k∑
j=1

vjej(x), where vj = (v, dj)L2(Ω) (6.5)

We define desired operator E by formulas (3.42), (3.43) explained in the proof of
the Theorem 3.6. Comparing (3.43), (6.5) we see that in fact

u(t, ·) = ΛEv(t, ·) = −ΛEP+v(t, ·) (6.6)

where P+ is the projector defined in (4.15). After substitution (6.6) into (6.1) and
applying to obtained equation projectors P+, P− we get using notation

v+(t, ·) = P+v(t, ·), v−(t, ·) = P−v(t, ·)
that problem (6.1), (6.6) is equivalent to the following one:

dv+(t, ·)
dt

+Av+ = −ΛP+Ev+(t, ·), v+|t=0 = v0+ ≡ P+v0 (6.7)

dv−(t, ·)
dt

+Av− = −ΛP−Ev+(t, ·), v−|t=0 = v0− ≡ P−v0 (6.8)

Using the notations: c̄ = (c1, . . . , ck), v̄ = (v1, . . . , vk),

mkj =

∫
G

dk(x)(−π̂∆)−1
ω1
dj(x)dx =

∫
ω1

∇(−π̂∆)−1
ω1
dk(x) · ∇(−π̂∆)−1

ω1
dj(x)dx,

M = (mkj)
K
k,j=1

we can rewrite (3.43) in the form mc̄ = −v̄, and (3.42) as follows:

Ev(x) = −
K∑
j=1

(M−1v̄)j(−π̂∆)−1
ω1
dj(x), where (M−1v̄)j = cj (6.9)

Applying to (6.9) operator P+ we get

P+Ev(x) = −
K∑
j=1

(M−1v̄)jmkjek(x) = −
K∑
k=1

(MM−1v̄)kek(x) = −P+v(x)

Therefore (6.7) is equivalent to the problem:

dv+(t, ·)
dt

+ (A|V+
+ ΛI)v+(t, ·) = 0, v+|t=0 = v0+ (6.10)

where A|V+
is restriction of operator A on V+ (recall that V+ is invariant with

respect of A), and I is identity operator. We choose now Λ > 0 such that

Re λj + Λ > σ + ε (6.11)

for each eigenvalue λj of operator A|V+
where ε > 0 is fixed. Then (6.10), (6.11)

implies:

‖v+(t, ·)‖V+ 6 C‖P+v0‖v+e−(σ+ε)t (6.12)
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where C = Cσ+ε does not depend on v0, and solution v− is defined by the formula:

v−(t, ·) = e−AtP−v0 +

∫ t

0

e−A(t−τ)(P−Ev+(τ, ·))dτ (6.13)

where e−At is operator (3.19). In [7, 8] the following estimate for operator e−At had
been proved

‖e−AtP−v0‖V− 6 Ce−σt‖P−v0‖V− (6.14)

with constant C = Cσ independent of ‖P−v0‖V− .
Applying (6.12), (6.14) to (6.13) we obtain

‖v−(t, ·)‖V− 6 C1e
−σt‖P−v0‖V− + C2

∫ t
0
e−σ(t−τ)e−(σ+ε)τdτ‖P+v0‖V+

6 e−σt(C1‖P−v0‖V− + C2
1−e−εt

ε ‖P+v0‖V+
) 6 C‖v0‖V e−σt

(6.15)

Bounds (6.12), (6.15) imply (6.2).

6.2. The case of controlled Navier-Stokes equations. Let consider controlled
Navier-Stokes equation written in abstract form

dv(t, ·)
dt

+Av +B(v) = u(t, ·), v|t=0 = v0 (6.16)

where A is operator (3.8),

B(v) = π[(v,∇)v], (6.17)

π is projector (3.7), v0 ∈ V 1
0 (G) is given, u(t, x) ∈ L2(R+;V 1

00(ω)) is a control. As
in the case of Oseen equation we look for control u in the form (6.3)

After substitution (6.3) into (6.16) we get

dv(t, ·)
dt

+ Av +B(v) = 0, v|t=0 = v0 (6.18)

where

A = A+ ΛE (6.19)

We will use the spaces (3.12) for problem (6.18),(6.19). Introduce also the spaces
of vector fields defined on cylinder Q = R+ ×G

V 1,2(s)(Q) = L2(R+;V 2+s) ∩H1(R+;V s). (6.20)

(They are analog of spaces (3.46)) Recall that γ0 is operator of restriction at t =
0 : γ0v = v|t=0.

Lemma 6.2. Let A be operator (6.19) with operators A,E from (3.8),(3.42),(3.43),
and magnitude Λ > 0 satisfying (6.11). Then

i) Each eigenvalue λ̃j of operator A satisfies condition

λ̃j > σ > 0. (6.21)

ii) For every s ∈ [−1, 0] operator(
d

dt
+ A, γ0

)
: V 1,2(s)(Q) −→ L2(R+;V s)× V s+1 (6.22)

realizes isomorphism of the spaces.
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Proof. i) It has been proved in Theorem 6.1 that for each v0 ∈ V 1
0 (G) solution

v(t, x) of the problem

dv(t, ·)
dt

+ Av = 0, v|t=0 = v0

satisfies estimate (6.2). This estimate implies (see e.g.[21] Ch.IX, Sect.4) that each

eigenvalue λ̃j of A satisfies equality Reλj > σ. Suppose that A possesss eigenvector
e(x) and eigenvalue λ with Reλ = σ:

Ae = λe. (6.23)

Denote e+ = P+e, e− = P−e and recall (see proof of Theorem 6.1) that

Ae = (A+ ΛE)(e+ + e−) = (A+ ΛE)e+ +Ae−; P+(A+ ΛE)e+ = (A+ ΛI)e+.
(6.24)

That is why applying to both parts of (6.23) operators P+, P− we can rewrite (6.23)
in the following equivalent form:

(A+ ΛI)e+ = λe+, Ae− + P−(A+ ΛE)e+ = λe−. (6.25)

In virtue of (6.11) and equality Reλ = σ we get that the first equality in (6.25) holds
only if e+ = P+e = 0. Then the second equality in (6.25) has the form Ae− = λe−.
But since all eigenvalues λj of operator A|V− satisfy Reλj > σ, equality Ae− = λe−
implies e− = 0. Hence e = e+ + e− = 0 and equality Reλ = σ is impossible.

ii) Since A = A+ΛE, E is finite dimensional operator (3.42),(3.43), and continu-
ity of operator (6.22) with A changed on A is well-known (see, e.g. [14]), continuity
of operator (6.22) is also true. To prove reversibility of operator (6.22) we have to
solve the problem

dv(t, x)

dt
+ Av = f(t, x), v|t=0 = v0 (6.26)

for each v ∈ V s+1, f ∈ L2(R+;V s). It is enough to solve (6.26) with f = 0 and
arbitrary v0 ∈ V s+1 and after that with v0 = 0 and arbitrary f ∈ L2(R+;V s).

Let v(t, x) be solution of (6.26) with f = 0. Then

v = v+ + v−, where v± = P±v, v+(t, ·) = e−(A+ΛI)tP+v0 (6.27)

and v−(t, x) is defined by (6.13). It is well-known that (6.13) implies

‖v−‖2V 1,2(s)(Q) 6 c(‖P−v0‖2V 1+s + ‖P−Ev+‖2L2(R+;V s)) (6.28)

Since for each t > 0 function v+(t, ·) belongs to finite dimensional space V s+ = P+V
s,

we get using (6.27),(6.11) that

‖P−Ev+‖2L2(R+;V s) 6 c‖v+‖2L2(R+;V s) 6 c

∫ ∞
0

e−2(σ+ε)dt‖P+v0‖V s+ (6.29)

Bounds (6.28),(6.29) imply

‖v−‖2V 1,2(s)(Q) 6 c‖v0‖V s+1 . (6.30)

Let v be solution of (6.26) with v0 = 0. Using notations v± from (6.27) and
f± = P±f we get

dv+

dt
+ (A+ ΛI)v+ = f+,

dv−
dt

+Av− = f− −AP−Ev+, v|t=0 = v0 (6.31)

These equations imply

‖v+‖2V 1,2(s)(Q) 6 c‖f+‖L2(R+;V s), ‖v−‖2V 1,2(s)(Q) 6 c‖f− −AP−Ev+‖L2(R+;V s)

(6.32)
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Since for each t > 0 function v+(t, ·) belongs to finite dimensional space V s+ where
all norms are equivalent, we get using the first inequality in (6.32)

‖AP−Ev+‖L2(R+;V s) 6 c‖v+‖L2(R+;V s+2) 6 c‖f+‖L2(R+;V s) (6.33)

Inequalities (6.32),(6.33) imply

‖v‖2V 1,2(s)(Q) 6 c‖f‖L2(R+;V s)

Let consider the set

Elρ = {v =

∞∑
j=1

vj êj(x) ∈ V 1 :

∞∑
j=1

λ̂
1/2
j v2

j < ρ} (6.34)

where ρ > 0. Recall that this set is unbounded ellipsoid in V 1 (see (4.10) and
explaination below this formula).

Now we are in position to consider nonlinear stabilization problem (6.16) with
feedback law (6.3).

Theorem 6.3. Let feedback law (6.3) of nonlinear stabilization problem (6.16)
satisfies conditions of Lemma 6.2. Then there exists ρ > 0 such that solution
v(t, x) of this stabilization problem with arbitrary initial condition v0 ∈ Elρ exists,
is unique, and satisfies the estimate:

‖v(t, ·)‖V 1 6 c‖v0‖V 1e−σt ∀t > 0 (6.35)

where constant c does not depend on v0 ∈ Elρ.

Proof. The main idea of the proof is very simple and is as follows: It is well-known
(see e.g. [14]) that operator B defined in (6.17) is continuous in the following spaces:

B : V 1,2(s)(Q) −→ L2(R+;V s), s > −1/2 (6.36)

Since feedback stabilization problem (6.16),(6.3) is equivalent to boundary value
problem (6.18), let consider problem (6.18) with v0 ∈ V 1/2. Taking into account
that by Lemma 6.2 linear part from left side of (6.18) realized isomorphism of spaces
in (6.22) with s = −1/2, and nonlinear part is continuous in spaces (6.36) with s =

−1/2 we get by Theorem on Inverse Operator that for v0 ∈ B1/2
ρ := {‖v0‖V 1/2 < ρ}

with small enough ρ there exists unique solution v ∈ V 1,2(−1/2)(Q) of problem
(6.18). Moreover, simple reasonings yield the estimate

‖v(t, ·)‖V 1/2 6 c‖v0‖V 1/2e−σt (6.37)

where constant c does not depend on v0 ∈ B1/2
ρ . Note that the ball B

1/2
ρ of space

V 1/2 after intersection with V 1 becomes ellipsoid Elρ ⊂ V 1 and the bound (6.37)
can be transformed to bound (6.35). Detailed proof of this theorem can be obtained
by almost word for word repeating the proof of Theorem 2.2 from [15].

7. Impulse stabilization of 2D Navier-Stokes system in R2. In this section
we consider the case when the domain G filled with a liquid is unbounded, more
exactly G = R2. In other words, in Subsections 7.2,7.3 below we study Cauchy
problem for 2D Stokes and Navier-Stokes systems with impulse control in right-
hand side. In the context of the stabilization problem the case of unbounded do-
mains differs from bounded ones because as we show in Subsection 7.1 in this case
only power-like stabilization can be realized by means of control unlike the case of
bounded domains.
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7.1. Absence of exponential stabilizability in R+. We give here an example
of initial datum when the solution of the heat equation defined in half-line R+ can
not tend to zero with the exponential rate e−σt.

Let consider the heat equation

∂ty(t, x)− ∂xxy(t, x) = 0, (t, x) ∈ Q = (0,∞)× (0,∞) (7.1)

with a given initial datum

y(0, x) = y0(x) (7.2)

and the boundary condition

y(t, 0) = u(t) (7.3)

where u(t) is the control function.
We suppose that y0(x) ∈ C1(R+) with support on the segment [0, 1].
We will look for solutions y(t, x) of (7.1) in anisotropic Sobolev space H1,2(Q) of

functions y(t, x) that are square-integrable on Q together with ∂ty(t, x), ∂xy(t, x),
∂xxy(t, x). Then control function u(t) = y(t, 0) will belong to the Sobolev space

of traces H
3
4 (R+). The proof of this assertion as well as for more details about

Sobolev spaces with fractional superscripts see [25].

Definition 7.1. The solution of (7.1) supplied with initial condition (7.2) does
not possess the property of exponential stabilization if for no σ > 0 does there
exist a control function u(t) ∈ H

3
4

(
R+

)
such that the solution y(t, x) ∈ H1,2(Q)

of boundary-value problem (7.1)- (7.3) satisfies for all x ∈ R+ the stabilization
condition ∫ ∞

0

|eσty(t, x)|2dt <∞. (7.4)

Define the following initial function

y0(x) =

{
(x− 1)2, x ∈ (0, 1)
0, x ≥ 1

(7.5)

Proposition 1. Problem (7.1)-(7.3) with initial function (7.5) does not possess the
property of exponential stabilization.

Proof. Fix x ∈ R+. By means of Laplace transform y(τ, x) =
∫∞

0
e−τty(t, x)dt we

reduce our problem to the following elliptic one with parameter τ :

∂2
xxŷ(τ, x)− τ ŷ(τ, x) = −y0(x), ŷ(τ, 0) = û(τ) (7.6)

The solution of (7.6) is given by the formula:

ŷ(τ, x) = û(τ)e−
√
τx − e−

√
τx

2
√
τ

∫ ∞
0

e−
√
τzy0(z)dz

+
e−
√
τx

2
√
τ

∫ x

0

e
√
τzy0(z)dz +

e
√
τx

2
√
τ

∫ ∞
x

e−
√
τzy0(z)dz. (7.7)

Function ŷ(τ, x) is analytical in C\R−. In view of (7.4) it must be analytical for
λ ∈ C, Reλ > −σ, and particularly for λ from the neighborhood of the origin. But√
τ is the multi-valued function and after one circuit around origin

√
τ transforms
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into −
√
τ . So, formula (7.7) must be invariant when one changes

√
τ to −

√
τ :

û(τ)e−
√
τx − e−

√
τx

2
√
τ

∫ ∞
0

e−
√
τzy0(z)dz +

e−
√
τx

2
√
τ

∫ x

0

e
√
τzy0(z)dz

+
e
√
τx

2
√
τ

∫ ∞
x

e−
√
τzy0(z)dz = û(τ)e

√
τx +

e
√
τx

2
√
τ

∫ ∞
0

e
√
τzy0(z)dz

−e
√
τx

2
√
τ

∫ x

0

e−
√
τzy0(z)dz − e−

√
τx

2
√
τ

∫ ∞
x

e
√
τzy0(z)dz.

Then we have the following formula for û(τ):

û(τ) =

∫ ∞
0

e−
√
τz − e

√
τz

2
√
τ

y0(z)dz.

Some elementary calculations imply the following representation of ŷ(τ, x)

ŷ(τ, x) =

{
1
τ (x− 1)2 + 2

τ2 − 1
τ2 e
−
√
τ(1−x) − 1

τ2 e
√
τ(1−x), x ∈ (0, 1)

0, x ≥ 1

We set y(t, x) = 0 when t ≤ 0. Then ŷ(iξ, x), ξ ∈ R as the Fourier transform
of y(t, x) with respect to t must be square integrable by ξ. But one can easily see,
that y(τ, x) grows exponentially. This contradiction completes the proof.

This example shows, that under no-one boundary control the discontinuity of
ŷ(τ, x) is nonremovable. But with appropriate choice of u(t) this discontinuity can
be done arbitrarily small which lead to power-like stabilization of solution (see [19]).

7.2. Power-like stabilization for Stokes system defined in R2. Let us pass on
to stabilization problem for equations of viscous incompressible fluid. We consider
2D Stokes system defined in R2 with impulse control in the right-hand side

∂tv(t, x)−∆v +∇p =

N∑
k=0

δ(t− tk)uk(x) (7.8)

div v(t, x) = 0,

with a given initial datum

v(0, x) = v0(x) (7.9)

Here v(t, x) = (v1(t, x), v2(t, x)) is a vector field, tk, 0 = t0 < t1 < · · · < tk <
· · · < tN are the time moments of control action, {uk(·)}Nk=0 are the control functions
with support in the ball BR = {x ∈ R2||x| ≤ R}, that satisfy the restriction

‖uk‖H1(R2) ≤ γ, γ > 0 (7.10)

We shall solve the following stabilization problem. Given σ > 0 find control
functions uk(x), and instants {tk}Nk=0, such that the solution v of (7.8),(7.9) satisfies
the following stability condition with some C > 0

‖v(t, ·)‖L2(R2) ≤
C

(1 + t)σ
, t > tN (7.11)
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In this section and hereafter we will use the function spaces

L2,m(R2) =
{
f : ‖f‖2L2,m(Ω) =

∫
R2

|f(x)|2(1 + |x|2)mdx <∞
}

L∞(R+;V 1(R2)) =
{
v(t, x) = (v1, v2) ∈

(
L∞(R+;H1(R2)

)2

, div v(t, x) = 0
}

V 0
m(R2) = {v0(x) = (v0

1 , v
0
2) ∈

(
L2(R2)

)2

, rot v0 ∈ L2,m(R2), div v0(x) = 0}

The main goal of this subsection is to prove

Theorem 7.2. Fix σ > 0, v0 ∈ V 0
m(R2), m > 2σ + 2. Then there exist time

moments 0 = t0 < t1 < · · · < tk < · · · < tN and feedback controls {uk(·)}Nk=0 ∈
C∞0 (BR) such that the solution (v(t, x), p(x)) ∈ L∞(R+;V 1(R2))×H1(R2) of (7.8),(7.9),
(7.10) satisfies inequality (7.11) for t > tN .

Let w(t, x) = rot v(t, x) = ∂x1
v2 − ∂x2

v1 will be the vorticity of vector field
v(t, x). Then our Stokes system can be reduced to one-dimensional heat equation

∂tw(t, x)−∆w =

N∑
k=0

δ(t− tk)zk(x) (7.12)

w(0, x) = w0(x)

Here w0(x) = rot v0(x), and zk(x) = rot uk(x), k = 0...N are the control functions
for vorticity. Both zk(x), uk(x) have compact support in BR, so restriction (7.10)
in vorticity form changes to

‖zk‖L2(R2) ≤ γ′ (7.13)

with some γ′ > 0.
Below we use the following notation for averaging in phase space:

f(t) =

∫
R2

f(t, x)dx

For x = (x1, x2) ∈ R2 we use the notation xα = xα1
1 xα2

2 , where α = (α1, α2) ∈
Z+ × Z+ is a multi-index with |α| = α1 + α2.

Define the subspace

W−n = {w(x) ∈ L2,m :

∫
R2

w(x)xαdx = 0, |α| ≤ n},

Lemma 7.3. Subspace W−n is invariant under the semigroup e∆t.

Proof. We prove this lemma by induction. By inductive step suppose, that w ∈
W−n−1. Then for |α| = n integrating by parts we will have the following relation:

d

dt
xαw(t) = xαẇ(t) = xα∆w(t) = Pα(x)w(t) = 0, (7.14)

where Pα(x) is some polynomial of degree n − 2. Integration by parts is well-
founded because the solution of heat equation is smooth and exponentially decays
when |x| → ∞.

The basis cases n = 0, 1 of induction are evident in view of (7.14) with Pα = 0.

Corollary 2. If w ∈W−n , then xαe∆tw = const for |α| = n+ 2, t > 0.

Proof. This corollary immediately follows from the identity (7.14).
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Stabilization of the form (7.11) is based on the following result, which has been
proved by Th. Gallay, C. E. Wayne[18]. We reformulate this theorem in the following
form more convenient for our case.

Theorem 7.4. Let n,m satisfy the relation n + 1 < m < n + 2, and w0 ∈ W−n .
Then for each ε > 0 there exists C > 0 such that the following inequality holds:

‖e∆tw0‖L2(R2) ≤ Ct−
1
2 (m−1−ε)‖w0‖L2,m

(7.15)

Now we are ready to prove Theorem 7.2.

Proof. Fix n as in the Theorem 7.4. In view of (7.15) from now our main goal is to
push our solution w(t, x) into W−n by means of controls zk(x). First, we push the
solution into W0, and then we do the same sequentially with W1, ...,Wn.

Denote

wk(·) = w(tk, ·)
As we did it in the case of bounded domains, in accordance to lemma 5.1 we

reduce our impulse control problem to the one with start control. So, at time
t0 = 0 we perturb initial data w0 by control z0(·)

w(0, x) = w0(x) + z0(x)

Define

z0(x) = c0χ(x) (7.16)

where χ(x) is some function from C∞0 (BR) satisfying χ(x) ≥ 0, ‖χ(·)‖L2(BR) = 1,
and c0 is an unknown constant.

Solution w(t, x) for t ∈ (t0, t1) satisfies to heat equation with zero right-hand
side. Therefore by Lemma 7.3 its total mass w =

∫
R2 w(t, x)dx is preserved for all

t ∈ (t0, t1), and subspace W−0 is invariant under semiflow e∆t.

If we set c0 = −w0/χ, then e∆tw(0, x) = 0. Moreover, if |c0| ≤ γ′ then solution
w(t, x) of (7.12) with one impulse δ(t)z0(x) at t = 0 in right-hand side will belong
to invariant subspace W−0 .

If |c0| > γ′ then we set c0 = −γ′sign(w0), and at the time t = t1 the final state
w(t1, x) will satisfy

|w1| = |w0 + c0χ| = |w0| − γ′|χ| = |w0|
(

1− γ′ |χ|
|w0|

)
< |w0|

Then at time t1 we will generate impulse with control z1(x) = c1χ(x), where
c1 = −w1/χ. If such impulse control satisfies (7.13), the solution of (7.12) with pair
of two impulses (z0, z1) will belong to E0. Otherwise, we correct c1 in the same way
c1 = −γ′sign(w1).

At the k-th iteration in time t = tk we will have the control impulse zk(x):

zk(x) =

{
−χ(x)γ′sign

(
wk
)
, |wk|/|χ| > γ′

−χ(x)|wk|/|χ|, |wk|/|χ| ≤ γ′
(7.17)

While |wk|/|χ| > γ′ function wk will tend to zero

|wk+1| = |wk + ckχ| = |wk| − γ′|χ|

= |wk|
(

1− γ′ |χ|
|wk|

)
< |w0|

(
1− γ′ |χ|

|w0|

)k+1

27



Since |wk| → 0 when k → ∞, there exists K > 0, such that |wK | ≤ γ′|χ|. Set
zK = −χ(x)γ′sign

(
wK
)
. Then by means of z0, z1, ..., zK the solution of (7.12) after

time t = tK will belong to W−0 .
By inductive step, suppose, that at an instant t = tk our vorticity function wk

lies in W−n−1, i.e.:

xαwk =

∫
R2

xαw(tk, x)dx = 0 ∀α : |α| < n

Our goal is to push the solution w(t, x) into W−n by impulse control. By (7.14)
for multi-indices α with |α| = n the moments xαw(t) will stay constant during time
t > tk.

Let us make perturbation of wk by adding control impulse zk. Then the solution
of (7.12) for t = tk+1 will be given by the formula:

wk+1 = e∆(tk+1−tk)(wk + zk)

For t = tk define the function

Ewk = χ(x)
∑
|α|≤n

ckαx
α

Then the condition wk+1 ∈W−n with zk(x) = Ewk(x) is equivalent to the system

A~ck = ~bk,

where

A = ‖aαβ‖|α|≤n,|β|≤n, aαβ =

∫
R2

χ(x)xαxβdx

~bk = {bkα}|α|≤n, bkα = −xαwk
~ck = {ckα}|α|≤n

It is worth to note, that since wk ∈ En−1 then bkα = 0 for |α| < n. The dimension

of vectors ~bk, ~ck equal to number of combinations α1, α2 such that α1 + α2 ≤ n
which is exactly (n + 1)(n + 2)/2. Lets prove, that A is positive-definite, and so
inverse matrix A−1 is well defined. Indeed

(Aη, η) =
∑

|α|≤n,|β|≤n

aαβηαηβ =

∫ ∣∣∣∣ ∑
|α|≤n

√
χ(x)xαηα

∣∣∣∣2dx > 0

Set

~ck = A−1~bk

If ‖Ewk(·)‖ ≤ γ′, then zk(x) = Ewk(x) is the last impulse in series (z1, z2, ..., zk)
which realizes hit of w(t, x) into W−n . Otherwise, if ‖Ewk(·)‖ > γ′ we make correc-
tion of zk(x) by formula

zk(x) = γ′
Ewk(x)

‖Ewk(·)‖L2(R2)
(7.18)

Then for multi-indices β = (β1, β2) we will have:

|xβwk+1| = |xβwk + xβzk| =
∣∣∣xβwk + γ′

∑
|α|≤n aαβc

k
α

‖Ewk(·)‖L2(R2)

∣∣∣
=
∣∣∣xβwk +

γ′ · bkβ
‖Ewk(·)‖L2(R2)

∣∣∣ =
∣∣∣xβwk(1− γ′

‖Ewk(·)‖L2(R2)

)∣∣∣ < |xβwk+1|
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For any k ∈ Z+ the following relations hold with some C > 0

‖Ewk‖2L2
= ‖χ(x)

∑
|α|≤n

ckαx
α‖2 ≤ C‖

√
χ(x)

∑
|α|≤n

ckαx
α‖2

= C
∑
|α|≤n

∑
|β|≤n

aαβc
k
αc
k
β = C(~ck,~bk) ≤ C‖~ck‖‖~bk‖ ≤ C‖A−1‖‖~bk‖2

After l iterations we will have the estimate

|xβwk+l+1| = |xβwk+l + xβzk+l| = |xβwk+l|
(

1− γ′

‖Ewk+l(·)‖L2(R2)

)
= |xβwk|

l∏
i=0

(
1− γ′

‖Ewk+i(·)‖L2(R2)

)
≤ |xβwk|

l∏
i=0

(
1− γ′
√
C‖A−1‖ 1

2 ‖~bk+i‖

)
≤ |xβwk|

(
1− γ′
√
C‖A−1‖ 1

2 ‖~bk‖

)l+1

This inequality means, that the moments bkα = xαwk as well as ckα exponentially
decay when k → ∞. Therefore, after some time t = tN control zN (·) will satisfy
(7.13). Time tN will be the last instant of control action on the system (7.12), after
that w(t, x) will stay on W−n .

Fix ε > 0. Applying (7.15) we get the bound with some C1, C2 > 0 depending
on m and tN :

‖w(t, ·)‖L2(R2) ≤ Ct−
1
2 (n−ε)‖w(tN , ·)‖L2,m(R2) ≤ t−

1
2 (n−ε)(C1+C2‖w0(·)‖L2,m(R2)), t > tN

Since w(tN ) = 0, this inequality implies the estimate on velocity field v(t, x) with
some C3, C4 > 0(see [18], Lemma 2.1, Prop. B.1):

‖v(t, ·)‖L2(R2) + ‖∇v(t, ·)‖L2(R2) ≤ t−
1
2 (n−1−ε)(C3 + C4‖w0(·)‖L2,m(R2)), t > tN

The last inequality with σ = 1
2 (n− 1− ε) implies stabilization condition (7.11).

Finally, let show that the control is feedback one. For this we have to construct
a bounded operator F : L2,m(R2)→ L2(R2) satisfying zk(·) = F(wk)(·).

Remind that

Ewk = −χ(x)
∑

|α|≤n,|β|≤n

a−1
αβx

βwkx
α,

where {a−1
αβ}|α|≤n,|β|≤n denote elements of A−1.

Then operator F is defined as follows:

Fwk =

{
Ewk, ‖Ewk‖L2

≤ γ′

γ′ Ewk
‖Ewk‖L2

, ‖Ewk‖L2
> γ′

Let show that F is bounded. Due to smoothness of polynomials xα we get

‖F(wk)‖L2
≤ C‖~bk‖Rd ,

where d = (n+ 1)(n+ 2)/2 is the dimension of ~bk.
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Since m > n + 1, we obtain the inequality with some ε > 0 that completes the
proof of boundness of F :

|bkα| ≤
∫
R2

|w(tk, x)xα|dx ≤ C1

∫
R2

|w(tk, x)|(1 + |x|)ndx =

C1

∫
R2

|w(tk, x)|(1 + |x|)n+1+ε

(1 + |x|)1+ε
dx ≤ C1

∫
R2

|w(tk, x)|2(1 + |x|)2n+2+2εdx×∫
R2

dx

(1 + |x|)2+2ε
= C2

∫
R2

|w(tk, x)|2(1 + |x|)2n+2+2εdx ≤ C2‖wk‖2L2,m

7.3. Power-like stabilization for Navier-Stokes system defined in R2. As
we show below, in the case of Navies-Stokes system only the first order moments
xiw(t) stay constant. And therefore in the statement of stabilization problem the
rate of convergence will be restricted to σ = 1− ε, ε > 0.

Consider Navier-Stokes system

∂tv(t, x)−∆v + (v,∇)w +∇p =

N∑
k=0

δ(t− tk)uk(x) (7.19)

divv(t, x) = 0

v(0, x) = v0(x)

with the same restriction on control as above:

‖uk‖H1(R2) ≤ γ, γ > 0 (7.20)

Theorem 7.5. Fix ε > 0, v0 ∈ V 0
3 (R2) with sufficiently small ‖rot v0‖L2,3

. Then
there exist time moments 0 = t0 < t1 < · · · < tk < · · · < tN and feedback controls
{uk(·)}Nk=0 ∈ C∞0 (BR) such that the solution (v(t, x), p(x)) ∈ L∞(R+;V 1(R2)) ×
H1(R2) of problem (7.19),(7.20) satisfies for t > tN the following stability condition:

‖v(t, ·)‖L2(R2) ≤
C

(1 + t)1−ε (7.21)

Proof. Vorticity w(t, x) = rot v(t, x) is the solution of the Cauchy problem

∂tw(t, x)−∆w + (v,∇)w =

N∑
k=0

δ(t− tk)zk(x) (7.22)

w(0, x) = w0(x)

with zk(x) = rot uk(x), w0(x) = rot v0(x).
As in the linear case of Stokes system, our proof is based on the result of Th.

Gallay and E. Wayne[18] but for 2D Navier-Stokes system.
Suppose that Navier-Stokes system is free from control’s action, i.e. zk = 0,

k = 0, .., N . Define Oseen vector field and its derivatives by

vG(t, x) =
1

2π

x⊥

|x|2
(
1− e−

|x|2
4(1+t)

)
vFi(x) =

√
1 + t∂xiv

G(x), i = 1, 2

Oseen vector field plays very important role in asymptotical analysis for Navier-
Stokes system in R2. Namely, as it follows from the theorem below, it is the main
term in asymptotic decomposition of solution v(t, x) for t→∞.
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Theorem 7.6. (Th. Gallay, C. E. Wayne.[18]) Fix ε > 0. There exist r > 0 and
C > 0 such that for all initial data w0 ∈ L2,3 with ‖w0‖L2,3 ≤ r the solution of
(7.19) with zk = 0, k = 0, .., N satisfies∥∥∥v(t, ·)− A

1 + t
vG
( x√

1 + t

)
+

2∑
i=1

Bi

(1 + t)
3
2

vFi
( x√

1 + t

)∥∥∥
L2(R2)

≤ C

(1 + t)1−ε

where A = w0, Bi = xiw0, i = 1, 2.

This theorem implies that our stability condition (7.21) is equivalent to w(tN , x) ∈
W−1 .

It is well known, that total mass w(t) stays constant and equal to A for all
t > 0. In the following lemma we prove that the similar statement is valid for first
moments xiw. In other words, invariant spaces W−n for both Stokes and Navier-
Stokes systems are identical when n = 1.

Lemma 7.7. Let w be solution of problem (7.22) with zk = 0, k = 0, .., N . Then,
first moments xiw, i = 1, 2 stay constant and equal to Bi for all t > 0.

Proof. Without loss of generality we prove this lemma for i = 1. Applying free-
divergence condition to vector-field v we get

d

dt

∫
x1w(t, x)dx =

∫
x1∆wdx−

∫
x1(v,∇)wdx

=

∫ (
∂x1

(x1wx1
) + ∂x2

(x1wx2
)− ∂x1

w
)
dx+

∫
v1wdx

=

∫
v1(∂x1v2 − ∂x2v1)dx = −

∫
(v2∂x1v1 +

1

2
∂x2v

2
1)dx

=
1

2

∫
∂x2

(v2
1 + v2

2)dx = 0

Right now the last part of the proof is identical to the proof of theorem 7.2.
First, using finite set of instants t0, t1, ..., tK with impulses zk as in (7.17) we put
our solution into E0. After that we define operator Ewk and new controls zk as in
(7.18) with n=1. Then moments xiwk, i = 1, 2 will tend to zero when k →∞ and
will vanish after some k = N . Hence, w(t, x) will be in W−1 for all t > tN . Then
stabilization condition (7.21) immediately follows from Theorem 7.6.
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