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Abstract

Stabilization problem for Navier-Stokes equations defined in a bounded

domain by feedback control is considered. The cases of control in right

side (distributed and impulse) supported in a subdomain, of control

in initial condition and on boundary are studied; intercommunications

between different kinds of control are presented. Feedback property

is discussed, and feedback map expressing control via state variable is

constructed for initial and distributed control (the last one for Oseen

equations only). Numerical algorithms for calculation of stable invariant

manifolds and projection operators on these sets are discussed. Results

of numerical stabilization a certain fluid flow are presented.

1.1 Introduction

The aim of this paper is to give a relatively short presentation of math-

ematical and numerical results concerning stabilization of Navier-Stokes

equations by feedback control. Description of the mathematical sta-

bilization construction will be accompanied with discussion how much

some mathematical notions of stabilization theory are adapted to calcu-

lations.

The control theory for partial differential equations to where the topic

of this article can be included was developed last decades very intensively

and transforms now to very wide and reach field even if we exclude

extremal theory for PDE. To have some idea of this field see recent

books Coron (2007) and Tucsnk & Weiss (2009), as well as more early
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survey in Fursikov & Imanuilov (1999) together with references in these

publications.

The stabilization problem for 2D Navier-Stokes system by feedback

distributed control supported in the whole domain filled the fluid was

studied in Barbu & Sritharan (1998). For 2D Euler equations with

feedback boundary control the similar problem was investigated in Coron

(1999).

The local stabilization theory for Navier-Stokes equations by feed-

back control supported on the boundary of domain filled with liquid

was created in Fursikov (2001a) - Fursikov (2004). In particular, feed-

back theory was developed in Fursikov (2002b), Fursikov (2002c) and

some probability aspects of this theory were worked in Duan & Fursikov

(2005). In these works classical mathematical notion of feedback control

as a function on phase variable was used but in implicit veiled form.

The construction of local stabilization theory for Navier-Stokes equa-

tions with use of mentioned mathematical definition of feedback obtained

by classical Riccati-based approach was begun in Barbu (2003), Barbu

& Triggiani (2004), Barbu, Lasiecka, & Triggiani (2006) and had been

completed in Raymond (2006), Raymond (2007), Raymond & Thevenet

(2010) (see also Ravindran (2007)). It is necessary to note that this ap-

proach leads to complicate Riccati-based construction of the map con-

necting feedback control with phase variable.

That is why it seams quite natural that creation of numerical feedback

stabilization theory became based on the mathematical notion of stable

invariant manifold which is the key notion in mathematical stabilization

theory developed in Fursikov (2001a)-Fursikov (2004).

General theory of invariant manifolds was developed in classical works

of H.Poincare, A.M.Liapunov, J.Hadamard, O.Perron (see, for example,

Hartman (1964), Anosov (1967), Hirsch, Pugh, & Shub (1977)) and with

applications to hydrodynamical equations was developped in Ladyzhen-

skaya & Solonnikov (1973), Marsden & McCracken (1976), Babin &

Vishik (1992).

The problem on numerical construction of invariant manifolds is also

well-known; in the case of small dimensional spaces it was studied by

many authors (see, for example Shil’nikov, Shil’nikov, Turaev, & Chua

(2004))

The fisrt numerical solution of stabilization problem with feedback

boundary control based on approach from Fursikov (2001a)-Fursikov

(2004) has been made in Chizhonkov (2003), Chizhonkov (2004) in the

case of 1D Chafee-Infante equation. Similar stabilization problems for



Feedback stabilization 3

Navier-Stokes Equations, including stabilization of classical Couette flow

between two rotating cylinders in 2D formulation have been solved nu-

merically in Chizhonkov & Ivanchikov (2004), Ivanchikov (2006).

Simultaneously in Kornev (2003) - Kornev (2006) developed numeri-

cal methods of invariant manifold construction and feedback stabiliza-

tion by boundary, initial, and right sides feedback control for Lorenz

system, Chafee-Infante, Burgers and Navier-Stokes equations as well as

for barotropic vorticity equation on a rotating sphere.

It is necessary to emphasize that all aforementioned stabilization re-

sults are related with stabilization near steady-state or periodic solution.

This setting admits natural generalization. Indeed, in kindred exact con-

trollability theory the notion of local exact controllability introduced in

Fursikov & Imanuvilov (1995) (see also Fursikov & Imanuvilov (1996),

Fursikov (2000)) has deal with controllability not relatively to steady-

state solution but with respect to general time-dependent solution be-

cause the last variant is incomparably more natural. Stabilization to an

arbitrary bounded time-depended solution is not less (and maybe much

more) natural than stabilization to steady-state solution. Creation of

mathematical theory for feedback stabilization to time-dependent solu-

tion is in the very begining now (see Barbu, Rodrigues, & Shirikyan)

(2010)) in contrast to local exact controllability theory. But such prob-

lem arises in applications and its numerical solution is developed already

several years.

The key mathematical notion of proposed numerical method of solu-

tion for stabilization problem is local stable manifold W− corresponding

to a given time-dependent solution of dynamical system {S(t, ·)}. Cor-

responding numerical schemes are constructed in terms W− and S(t, ·)

as well. This gives opportunity to apply them to the whole class of

problems.

General theory of local stable manifolds was developed from afore-

mentioned results in Anosov (1967), Pesin (1977), Daletskiy & Krein

(1974), for hydrodynamical equations in Ladyzhenskaya & Solonnikov

(1973) and Yudovich (1989).

Numerical schemes for construction of local stable manifolds and ap-

plication of these results were obtained in Kornev (2003) - Kornev &

Ozeritskii (2010), Kalinina (2006). Note that for working out numer-

ical algorithms in the case of fixed point theoretical constructions of

Ladyzhenskaya & Solonnikov (1973) were essentially used, and in the

case of trajectory constructions from Pesin (1977) were very important.

In Vazquez & Krstic (2008) proposed the algorithm of other type for
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solving boundary stabilization problem for Navier-Stokes and magneto-

hydrodynamic channel flows.

In the first part of this paper we give a survey of results from Fursikov

(2001a)-Fursikov (2004) that is built as follows. In fact aforementioned

stabilization results on boundary feedback control contains implicitly

feedback stabilization by initial and impulse controls. Here we explain

why it is so: In section 1.2 we give settings of stabilization problems

for Navier-Stokes equations with control (distributed and impulse) in

right side supported in spatial subdomain, with initial control, and with

control supported on a boundary. We investigate carefully correlation

between different types of control, and in particular explain how stabi-

lization by boundary control can be obtained by initial control. In sec-

tions 1.3,1.4 we give construction of stabilization by initial control based

on projection of initial condition on stable invariant manifold. This pro-

jection is realized by classical feedback relation of the form u = F (y0)

where u is the control, y0 is the given initial condition, and the map

F is constructed by some simple tools (without any Riccati equations

as in Barbu et al. (2006), Raymond (2007)). Section 1.5 is devoted

to discussion of feedback property and its realization for different types

of control. Feedback state-control relation in the case for distributed

control is a new result obtained in this paper although it is very close

to relation for initial control.

The second part of the paper is devoted to numerical solution of sta-

bilization problem. The original problem is reduced to projecting on the

stable manifold of the resolving operator of the given (semi)dynamical

systems. This approach makes it possible to apply the results to a wide

class of dynamical systems including Navier-Stokes equations. Corre-

sponding numerical algorithms are presented in section 1.6 in the case

of stable invariant manifolds for fixed point as well as for stable man-

ifolds corresponding time-dependent solution. In section 1.7 results of

numerical solution of the quasi-two-dimensional Navier-Stokes equations

in the initial data or in the boundary conditions or in the right-hand side

is given.

1.2 Setting of the stabilization problem

In this section we recall formulation of the stabilization problem for

three kinds of the control: for initial control, boundary control, and for

distributed and impulse control in right side.
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1.2.1 Formulation of the stabilization problem with a control

in right-hand side.

Let G ⊂ Rd, d = 2, 3, ∂G ∈ C∞, Q = R+ × G. We consider the

Navier-Stokes equations with control in the right-hand side:

∂tv(t, x)−∆v+(v,∇)v+∇p(t, x) = h(x)+u(t, x), div v(t, x) = 0 (1.1)

with boundary condition

v(t, x)|x∈∂G = 0 (1.2)

and initial condition

v(t, x)|t=0 = v0(x). (1.3)

Here (t, x) = (t, x1, . . . , xd) ∈ Q, v(t, x) = (v1, . . . , vd) is a velocity

of fluid flow, p(t, x) is a pressure, h(x) = (h1, . . . , hd) is a given right

side, and u(t, x) is a control supported at each t ∈ R+ in a given fixed

subdomain ω ⊂ Ω.

Denote, as usually, by Hk(G), k ∈ N the Sobolev space of scalar func-

tions, defined and square integrable on G together with all its derivatives

up to order k and by (Hk(G))d the analogous space of vector fields. Be-

sides, H1
0 (G) = {f(x) ∈ H1(G) : f(x)|x∈∂G = 0}. We will use also the

following spaces of solenoidal vector fields:

V k(G) =
{
v(x) = (v1, . . . , vd) ∈ (Hk(G))d : div v = 0

}
, k = 0, 1, 2, . . .

V 1
0 (G) = V 1(G) ∩H1

0 (G)d, V 0
0 (G) = closure V(G) in L2(G)d

where V(G) = {v(x) ∈ C∞
0 (G)d : div v = 0}. Evidently,

‖v‖V 0(G) = ‖v‖V 0
0 (G) := ‖v‖(L2(G))d ; ‖v‖V 1

0 (G) := ‖∇v‖(L2(G))d2 .

We consider in (1.1) a control u(t, x) of two kinds:

i) Impulse control, i.e. control of the form of kick forces:

u(t, x) =
∑

j

δ(t− tj)uj(x), (1.4)

where δ(t − tj) is Dirac δ-function supported in tj , 0 = t0 < t1 < · · · <

tj < . . . , uj(x) = (uj1, . . . , ujd) is a solenoidal vector field supported in

a given fixed subdomain ω ⊂ G.

ii) Distributed control in subdomain:

u(t, x) ∈ L2(0, T ;V 0
0 (G)) ∀T > 0, suppu(t, ·) ⊂ ω ∀t > 0 (1.5)



6 A.V.Fursikov & A.A.Kornev

The setting of stabilization problem for each kind of a control written

above is as follows:

Let h ∈ L2(G)d, v0 ∈ V 1
0 (G). Suppose that σ > 0 and an unstable

steady-state solution (v̂(x), p̂(x)) ∈ (V 2(G)∩V 1
0 (G))×H1(G) of Navier-

Stokes equations

−∆v̂(x) + (v̂,∇)v̂ + ∇p̂(x) = h(x), div v̂(x) = 0 (1.6)

are given. The problem of stabilization a solution of (1.1)–(1.3) with

rate σ is to construct a control u(t, x) of kind (1.4) or of kind (1.5) such

that the solution v(t, x) of boundary value problem (1.1)–(1.3) satisfies:

‖v(t, ·) − v̂‖2
V 1
0 (G) 6 ce−σt (1.7)

with a certain constant c > 0 depending on σ, ‖v0‖V 1
0 (G), and u.

1.2.2 The case of a control in initial conditions.

Instead of problem (1.1)-(1.3) let consider the following control problem:

∂tv(t, x) − ∆v + (v,∇)v + ∇p(t, x) = h(x), div v(t, x) = 0 (1.8)

v(t, x)|t=0 = v0(x) + u(x). (1.9)

supplied with boundary condition (1.2). In this problem control u(x) is

in initial condition, and we assume that suppu ⊂ ω where ω is a given

subdomain of G.

The stabilization problem is formulated in this case as follows:

Given σ > 0, h ∈ L2(G)d, v0 ∈ V 1
0 (G) and steady-state solution

(v̂(x), p̂(x)) ∈ (V 2(G)∩V 1
0 (G))×H1(G) of system (1.6). Find a control

u(x) ∈ V 1
0 (G) with supp u ⊂ ω such that the solution (v, p) of problem

(1.8), (1.2), (1.9) satify estimate (1.7).

The following assertion is true:

Lemma 1.2.1 Stabilization problem (1.8),(1.2),(1.9)with a control in

initial condition is equivalent to stabilization problem (1.1)-(1.3) with

impulse control satisfying condition

uj(x) ≡ 0 ∀ j > 1.1 (1.10)

Proof Recall, that generalized solution of problem (1.8),(1.2),(1.9) with

1I.e. when we have only one impulse at t=0.
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given initial condition v0 + u ∈ V 1
0 (G) and right side h ∈ L2(G)d is the

vector field v ∈ L∞(0, T ;V 0
0 (G)) ∩ L2(0, T ;V 1

0 (G)) satisfying

−
∫ T

0

∫
G

[(v(t, x), ∂tϕ(t, x)) +
∑d

j=1(∂xj
v, ∂xj

ϕ)

+(v,
∑d

j=1 vj∂xj
ϕ)] dxdt +

∫
G(v(T, x), ϕ(T, x)) dx

=
∫ T

0

∫
G(h(x), ϕ(t, x)) dxdt +

∫
G(v0(x) + u(x), ϕ(0, x)) dx,

∀ϕ(t, x) ∈ C1(0, T ;V(G))

(1.11)

To get (1.11) we multiply scalarly (1.8) on ϕ and integrate by parts

using (1.9).

If we multiply scalarly on ϕ equation (1.1),(1.4) that satisfies (1.10)

and integrate by parts using (1.3) we obtain (1.11) as well. There-

fore vector field v(t, x) ∈ L∞(0, T ;V 0
0 (G)) ∩ L2(0, T ;V 1

0 (G)) that sat-

isfies equality (1.11) is generalized solution of boundary value problem

(1.8),(1.2),(1.9) with given v0 + u ∈ V 1
0 (G), and f ∈ L2(G)d as well as

of boundary value problem (1.1)-(1.3),(1.10) with given v0, u ∈ V 1
0 (G),

and h ∈ L2(G)d. Note that in virtue of (1.7) our generalized solution

satisfies inclusion v ∈ L∞(0, T ;V 1
0 (G)) that, as well-known (see La-

dyzhenskaya (1963), Temam (1984)), guarantees its uniqueness. That

is why boundary value problems (1.8),(1.2),(1.9) and (1.1)-(1.3),(1.10)

with given v0, u ∈ V 1
0 (G), and h ∈ L2(G)d are equivalent. Thus, corre-

sponding control problems are equivalent as well.

As we will see later the main mathematical tools for stabilization

construction will be worked out to the case of control in initial conditions.

The case of impulse control will be important for construction theory of

feedback control based on the notion of real process.

1.2.3 The case of a control supported on a part of boundary.

Set now the stabilization problem with control in a boundary conditions.

This case, perhaps, is the most interesting for applications.

Let Ω ⊂ Rd, d = 2, 3. be a bounded domain with the boundary ∂Ω

of class C∞. Consider now Navier-Stokes system with initial conditon

∂tv(t, x) − ∆v + (v,∇)v + ∇p(t, x) = g(x), div v(t, x) = 0 (1.12)

v(t, x)|t=0 = v0(x) (1.13)
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and introduce boundary condition by the following way.

Let ∂Ω = Γ ∪ Γ0, Γ 6= ∅ where Γ,Γ0 be open sets (in topology of

∂Ω). Here, as usual, the over line means the closure of a set. We define

Σ = R+ × Γ,Σ0 = R+ × Γ0, and set:

v|Σ0 = 0, v|Σ = u (1.14)

where u is a control, supported on Σ.

Stabilization problem is formulated now as follows:

Given σ > 0, g ∈ L2(Ω)d, v0 ∈ V 1(Ω), v0|Γ0 = 0, and steady-state

solution (v̂(x), p̂(x)) ∈ V 2(Ω) ×H1(Ω) of the problem

−∆v̂(x) + (v̂,∇)v̂ + ∇p̂ = g(x), div v̂ = 0, v̂|Γ0 = 0 (1.15)

Find a control u(t, x) supported on Σ such that the solution (v, p) of

problem (1.12), (1.14), (1.13) satisfies the estimate:

‖v(t, ·) − v̂‖2
v1(Ω) 6 c‖v0 − v̂‖V 1(Ω)e

−σt (1.16)

with a certain constant c = c(σ,Σ) > 0.

1.2.4 Reduction of the case with control on a boundary to the

case with a control in initial condition.

Let ω ⊂ R
d be a bounded domain such that Ω∩ω = ∅, Ω∩ω = Γ. We

set

G = Int(Ω ∪ ω) (1.17)

(the notation IntA means, as always, the interior of the set A).

We suppose that ∂G ∈ C∞. We extend problem (1.12)–(1.13) from Ω

to G via Σ forgetting about the second condition in (1.14). For this we

extend first the steady-state solution (v̂, p̂) of (1.6) satisfying v̂|Γ0 = 0

from Ω in the pair (a(x), q(x)) defined on G satisfying:

a(x) ∈ V 2(G) ∩
(
H1

0 (G)
)d
, q(x) ∈ H2(G), (1.18)

After substitution (a, q) into the left part of equation (1.6) considered

on G we obtain

−∆a(x) + (a,∇)a+ ∇q(x) = h(x), div a(x) = 0, a|∂G = 0 (1.19)

where, evidently, h(x) ∈ L2(G) is the extension of right side g(x) from

(1.15): h|Ω = g.

The extension of (1.12)–(1.14) from Ω to G can be written as follows:

∂tw(t, x)−∆w+(w(x),∇)w+∇p(t, x) = h(x), divw(t, x) = 0, (1.20)
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w(t, x)|t=0 = w0(x) + u(x), w|S = 0, (1.21)

where w0(x) ∈ V 1
0 (G) is some extension of initial condition v0 from

(1.13), u(x) ∈ V 1
0 (G), suppu ⊂ ωε := {x ∈ ω : dist(x, ∂ω) > ε} with

small enough ε, and S = R+ × ∂G.

Suppose, that we find a control u in (1.20),(1.21) such that the solution

(w, p) of this boundary value problem satisfies the inequality

‖w(t, ·) − a‖V 1
0 (G) 6 ce−σt‖w0 + u− a‖V 1

0 (G) for t > 0 (1.22)

For vector fields defined on G we denote by γΩ the operator of restric-

tion on Ω and by γΓ we denote the operator of restriction on Γ:

γΩ : V k(G) −→ V k(Ω), γΓ : V k(G) −→ V k−1/2(Γ), k > 0 (1.23)

Evidently, these operators are well-defined and bounded (see Temam

(1984)).

Introduce the functions:

v(t, ·) = γΩw(t, ·), u(t, ·) = γΓw(t, ·) ∀t > 0 (1.24)

It is clear that if w(t, ·) is the solution of boundary value problem (1.20)-

(1.21) then (v(t, ·), u(t, ·)) is the solution of stabilization problem (1.12)–

(1.16).

Evidently, if the solution w of (1.20)-(1.21) satisfies (1.22), the pair

(v, u) defined in (1.24) satisfies (1.16). Hence (v, u) forms a solution of

the initial stabilization problem (1.12)-(1.16).

1.3 Construction of stabilization for Oseen equations

In this and next sections we describe stabilization construction in the

case of control belonging to initial condition.

1.3.1 Reduction to linear case

Let G ⊂ Rd, d = 2, 3 be a bounded domain with a boundary ∂G of

class C∞, ω b G be a subdomain of G. We make change of unknown

functions

w(t, x) = y(t, x) + a(t, x), p(t, x) = s(t, x) + q(t, x) (1.25)

in (1.20) where (a, q) is solution of (1.19). As a result we get

∂ty(t, x) − ∆y + (a(x),∇)y + (y,∇)a

+(y,∇)y + ∇s(t, x) = 0,

div y = 0,

(1.26)
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y(t, x)|t=0 = y0(x) + u(x) (1.27)

where y0 = w0 − a. We omit in (1.26) nonlinear term (y,∇)y and,

changing notation s for pressure on p, we obtain:

∂ty(t, x) − ∆y + (a(x),∇)y + (y,∇)a+ ∇p(t, x) = 0,

div y = 0, y|∂G = 0
(1.28)

Set initial condition

y(t, x)|t=0 = y0(x) (1.29)

Our aim now is to describe the set of initial conditions {y0} such that

solutions y(t, x) of (1.28)-(1.29) satisfy estimate

‖y(t, ·)‖V 1
0 (G) 6 c‖y0‖V 1

0 (G)e
−σt for t > 0 (1.30)

1.3.2 Description of “correct” initial conditions

Denote by

π̂ : (L2(G))2 −→ V 0
0 (G) (1.31)

the operator of orthogonal projection. We consider the Oseen steady-

state operator

Av := −π̂∆v + π̂[(a(x),∇)v + (v,∇)a] : V 0
0 (G) −→ V 0

0 (G) (1.32)

and its adjoint operator A∗. These operators are closed and have the

domain D(A) = V 2(G) ∩ (H1
0 (G))2. Emphasize that D(A) consists of

vector fields equal to zero on ∂G. The spectrums Σ(A),Σ(A∗) of oper-

ators A and A∗ are discrete subsets of a complex plane C which belong

to a sector symmetric with respect to R and containing R+. In other

words, A is a sectorial operator. So spectrums Σ(A),Σ(A∗) contain only

eigenvalues of A,A∗, respectively. Since a(x) is real-valued vector field

satisfying (1.18), they are symmetric with respect to R, and moreover

Σ(A) = Σ(A∗).

We rewrite the boundary value problem (1.28)-(1.29) for Oseen equa-

tions in the following form

dy(t, ·)

dt
+Ay(t, ·) = 0, y|t=0 = y0. (1.33)

where A is the operator (1.32). Then for each y0 ∈ V 0
0 (G) the solution

y(t, ·) of (1.33) is defined by y(t, ·) = e−Aty0 where e−At is the resolving

semigroup of problem (1.33).
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Let σ > 0 satisfy:

Σ(A) ∩ {λ ∈ C : Reλ = σ} = ∅ (1.34)

The case when there are certain points of Σ(A) which are in the left of

the line {Reλ = σ} will be interesting for us.

Denote by X+
σ (A) the subspace of V 0

0 (G) generated by all eigenfunc-

tions and associated functions of operator A corresponding to all eigen-

values of A placed in the set {λ ∈ C : Reλ < σ}. By X+
σ (A∗) we denote

analogous subspace corresponding to adjoint operator A∗. We denote

the orthogonal complement to X+
σ (A∗) in V 0

0 (G) by Xσ(A) ≡ Xσ:

Xσ = V 0
0 (G) 	X+

σ (A∗) (1.35)

One can show that subspaces X+
σ (A), Xσ are invariant with respect to

the action of semigroup e−At, and Xσ +X+
σ (A) = V 0

0 (G).

Theorem 1.3.1 Suppose that A is operator (1.32) and σ > 0 satisfies

(1.34). Then for each y0 ∈ Xσ the inequality (1.30) holds. Besides, the

solution of problem (1.33) with such initial conditions are defined by the

formula

y(t, ·) = e−Aty0 = (2πi)−1

∫

γ

(A− λI)−1e−λty0dλ. (1.36)

Here γ is a contour belonging to ρ(A) := C \Σ(A) such that argλ = ±θ

for λ ∈ γ, |λ| > N for certain θ ∈ (0, π/2) and for sufficiently large N .

Moreover, γ encloses from the left the part of the spectrum Σ(A) placed

right of the line {Reλ = σ}. The complementary part of the spectrum

Σ(A) is placed left of the contour γ.

Proof: See Fursikov (2001a), Fursikov (2001b).

1.3.3 Theorem on stabilization of Oseen equations

Recall that stabilization problem is to find a control

u ∈ V 1
00(ω) := {w ∈ V 1

0 (G) : w(x) = 0 ∀x ∈ G \ ω)} (1.37)

such that the solution y of (1.28),(1.27) satisfies (1.30) with y0 changed

on y0 +u. To complete the construction of stabilization for Oseen equa-

tions (1.28), (1.27) we have to construct the operator E : V 1
0 (G) →

V 1
00(ω) that transforms arbitrary initial condition y0 from (1.27) to con-

trol u such that y0 + u ∈ Xσ. We consider here analog of construction

from Fursikov (2004).
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It is known that in the spaceX+
σ (A∗) one can choose a basis (d1(x), . . . ,

dK(x)) such that restriction (d1(x)|ω , . . . , dK(x)|ω) on an arbitrary sub-

domain ω b G forms a linear independent set of vector fields. This prop-

erty had been proved in Fursikov (2002a), Fursikov (2004) with help of

Carleman estimates and one abstract result from Fursikov (2001a). We

can define space (1.35) by the following equivalent form:

Xσ = {v(x) ∈ V 0
0 (G) :

∫

G

v(x) · dj(x) dx = 0, j = 1, . . . ,K}. (1.38)

Theorem 1.3.2 (Fursikov (2002a), Fursikov (2004)) There exists a

linear bounded operator

E : V 1
0 (G) → V 1

00(ω) such that y0 + Ey0 ∈ Xσ. (1.39)

Proof Let subset ω1 ⊂ ω be a domain with C∞- boundary ∂ω1. In this

set we consider the Stokes problem:

−∆w(x) + ∇p(x) = v(x), divw(x) = 0, x ∈ ω1; w|∂ω1 = 0

As is well known, for each v ∈ V 0(ω1) there exists a unique solution w ∈

V 1
0 (ω1)∩V 2(ω1) of this problem. The resolving operator to this problem

we denote as follows: (−π̂∆)−1
ω1
v = w. Extension of (−π̂∆)−1

ω1
v from ω1

in G by zero we also denote as (−π̂∆)−1
ω1
v. Evidently, (−π̂∆)−1

ω1
v ∈

V 1
00(ω1).

We look for the desired operator E in the form

Ev(x) =

[ K∑

j=1

cj(−π̂∆)−1
ω1
dj

]
(x), (1.40)

where cj = cj(v) are constants which should be determined. Evidently,

Ev ∈ V 1
0 (G), suppEv ⊂ ω1. To define constants cj we note that by

(1.38) v + Ev ∈ Xσ if

∫

G

dk(x)

[ K∑

j=1

cj(−π̂∆)−1
ω1
dj(x)

]
dx = −

∫

G

dk(x)v(x)) dx (1.41)

for k = 1, . . . ,K. As in Fursikov (2002a), Fursikov (2004) one can prove

that this system of linear equations has a unique solution.

Thus, in virue of this theorem in order to stabilize problem (1.28),(1.27)

one has to take u = Ey0.
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1.4 Stabilization for Navier-Stokes equations

In this section we give a construction for stabilization of problem (1.26),

(1.27) obtained from Navier-Stokes system (1.20) by change of unknown

function.

1.4.1 Definition of stable invariant manifold

Natural space for solution of problem (1.26), (1.29) is

V 1,2(0)(QT ) = L2(0, T ;V 2(G) ∩ V 1
0 (G)) ∩H1(0, T ;V 0

0 (G)),

and in virtue of inclusion C(0, T ;V 1
0 (G)) ⊂ V 1,2(QT ) natural phase

space V for corresponding dynamical system is V 1
0 (G). Definition of

spaces given around (1.35) and relations for them imply:

V = V+ + V− where V = V 1
0 (G),

V+ = X+
σ (A), V− = Xσ ∩ V 1

0 (G)
(1.42)

It is well-known (see Ladyzhenskaya (1963), Temam (1984)), that for

each y0 ∈ V there exists a unique solution y(t, x) ∈ V 1,2(0)(QT‖v0‖) of

problem (1.26),(1.29), where 0 < T‖v0‖ → ∞ as ‖v0‖ := ‖v0‖V → 0.

Denote by S(t, y0) the solution operator of the boundary value problem

(1.26),(1.29):

S(t, y0) = y(t, ·) (1.43)

where y(t, x) is the solution of (1.26),(1.29). Then for S the following

semigroup property holds:

S(t2, S(t1, y0)) = S(t1 + t2, y0), ∀ t1, t2 > 0.

The triple {V, S(t, ·), t > 0} is called (semi)dynamical system with the

space of states (phase space) V , resolving operator S(t, ·), and continu-

ous time t > 0.

Recall now some commonly used concept of the stable invariant man-

ifold W− = W−(O) defined in a neighborhood O of the origin. By the

definition

W−(O) = {y0 ∈ O :

S(t, y0) ⊂ O, ‖S(t, y0)‖V 6 c‖y0‖V e
−σt, t > 0}

(1.44)

where quantities c > 0, σ > 0 does not depend on y0. Manifold W−(O)

contains all points y0 of the neighborhood O, such that their trajectories

S(t, y0) tends to zero with asymptotic rate not less than e−σt. Using this
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property one can reduce solution of stabilization problem (1.7), (1.24) to

projection on W−(O).

Stable invariant manifold satisfies the following invariantness condi-

tion: S (t,W−(O)) ⊂ W−(O). Moreover, in the small neighbourhood

O the stable invariant manifold can be defined as a graph in the phase

space V = V+ + V− by the formula

W−(O) = W−(O, f) := {y ∈ V : y = y− + f(y−), y− ∈ O(V−)} (1.45)

where O(V−) is a neighborhood of the origin in the subspace V−, and

f : O(V−) → V+ (1.46)

is a certain map satisfying

‖f(y−)‖+/‖y−‖V− → 0 as ‖y−‖V− → 0. (1.47)

Since W− is defined by the map y+ = f(y−), using the term manifold is

quite natural in this case.

The following existence theorem for invariant manifold W− holds:

Theorem 1.4.1 There exists unique map (1.46) such that the set W−

defined by formula (1.45) is stable invariant manifold for family of maps

S(t, ·) defined in (1.43). Moreover,

‖S(t, y0)‖V 6 ce−σt‖y0‖V as t→ ∞ (1.48)

where constants c > 0, σ > 0 do not depend on y0 ∈ W−

This theorem as well as method of its proof is well-known (see Ladyzhen-

skaya & Solonnikov (1973), Marsden & McCracken (1976), Henry (1981),

Babin & Vishik (1992) and references there in). As it had been es-

tablished in Fursikov (2010), the domain O(V−) of operator (1.46) is

unbounded with respect to the norm of the space V−.

1.4.2 Feedback operator and stabilization.

Here we construct feedback operator for Navier—Stokes equations. This

operator is nonlinear analog of feedback operator (1.39) constructed for

Oseen equations.

As in Theorem 1.3.2 we use the domain ω b G and the space V 1
00(ω)

defined in (1.37). Denote Oε = {v ∈ V : ‖v‖V < ε}.
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Theorem 1.4.2 Suppose that W− is the invariant manifold constructed

in a neighborhood of origin in V = V 1
0 (G) in Theorem 1.4.1. Then for

sufficiently small ε there exists a continuous operator

F : Oε → V 1
00(ω), (1.49)

such that

v + F (v) ∈ W− ∀v ∈ Oε. (1.50)

Proof We introduce projection operators

P+ : V → V+, P− : V → V− (1.51)

for the spaces defined in (1.42) and the following notations:

Qv(x) = v(x) + w(x), where w = F (v) ∈ V 1
00(ω), (1.52)

and F is the operator we are looking for. By (1.51) and definition (1.45)

of invariant manifold W− the desired inclusion Qv ∈ W− is equivalent

to the following equality:

P+Qv = f(P−Qv) (1.53)

where f is operator (1.46). Besides, we have to ensure that the equality

(Qv)(x) ≡ v(x), x ∈ G \ ω (1.54)

is true. By (1.42),(1.38) {dj(x)} generates V+ and therefore the map

f(u) can be written in the form

f(u) =

K∑

j=1

djfj(u)

and equality (1.53) is equivalent to the following one:
∫

G

Qv(x)dj(x) dx = fj(P−Qz), j = 1, . . . ,K. (1.55)

Similarly to (1.40) we look for the vector field w(x) from (1.52) in the

form

w = −(−π̂∆)−1
ω1

K∑

j=1

pjdj (1.56)

To find coefficients (p1, . . . , pK) ≡ ~p we substitute (1.56) into (1.55)

taking into account (1.52). As a result we get

~v −A~p = ~f
(
v − (~p, (−π̂∆)−1

ω1
~d) − (~d,~v −A~p)

)
, (1.57)
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where ~v = (v1, . . . , vK), A = ‖ajk‖ and

vj =

∫

G

(v(x), dj(x)) dx, ajk =

∫

G

((−π̂∆)−1
ω1
dk(x), dj(x)) dx,

~f(u) = (f1(u), . . . , fK(u)), ~d = (d1(x), . . . , dK(x)), (~c, ~d) =

K∑

j=1

cjdj .

Taking into account invertibility of matrixA = ‖ajk‖ ascertained in The-

orem’s 1.3.2 proof one can apply to equation (1.57) contraction mapping

principle ( see Fursikov (2004)) As a result we obtain that if ‖~v‖ is suf-

ficiently small, equation (1.57) possesses unique solution ~p. The last

assumption is fulfilled because ε in (1.49) is small enough.

Now in virtue of Theorem 1.4.2 for stabilization of problem (1.28),

(1.37) one has to take u = F (y0).

1.5 Feedback property for a control

In this section we discuss feedback property that plays the central role

in the stabilization problem. We consider here the cases of initial control

and a control in right-hand side, both usual and impulse.

1.5.1 Definitions. The case of initial control

The important and distinctive property of the control used for stabiliza-

tion of a solution to unstable dynamical system is feedback property.

Just this property allows to stabilize a system in unstable situation and,

in particular, to create numerical algorithm simulating original stabi-

lization problem that can be realized in real time, i.e. simultaneously

with functioning of original stabilization problem.

Let

v′(t) = f(v(t)) +B(u(t)), v|t=0 = v0 (1.58)

be a controlled dynamical system in phase space V (v(t) ∈ V, ∀t > 0)

with space of controls u (u(t) ∈ U, ∀t > 0). Here v(t) is the state variable,

u(t) is a controle, B : U → V is a continuous operator, B(0) = 0.

Suppose also that v̂ ∈ V is unstable steady-state solution of problem

(1.58) without control: f(v̂) = 0, and stabilization problem to v̂ of

dynamical system (1.58) by means of control u is considered.
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In applied sciences the following not rigorous but very clear definition

of feedback control is used very often.

Definition 1.5.1 A control u(t) stabilizing dynamical system (1.58) is

called feedback if it can react on unpredictable fluctuations of state vari-

able v(t) dumping them.

The most popular mathematical formalization of this notion is as fol-

lows:

Definition 1.5.2 The control u(t) is called feedback if there exists a

continuous operator F : V → U such that u(t) = F (v(t)) for each t > 0

and the dynamical system

v′(t) = f(v(t)) +B(F (v(t))), v|t=0 = v0

is stable in a neighborhood of v̂ with respect to fluctuations of initial

condition v0.

Let pass from general definitions to the concrete stabilization prob-

lem (1.26), (1.27), with a control u ∈ V 1
00(ω) in initial condition. In this

problem no unpredictable fluctuations were introduced, and therefore

Definition 1.5.1 can not be applied to this case. From to other side Defi-

nition 1.5.2 also cannot be applied because control u depends on t there.

But if we consider analog of problem (1.58) with control u independent

from time, the (1.26), (1.27) will be a particular case of such problem,

and the control constructed in Theorem 1.4.2 for problem (1.26), (1.27)

will satisfy feedback property in the meaning of Definition 1.5.2 where

control does not depend on t and steady-state solution v̂ ≡ 0. Applying

to (1.26) change of functions (1.25) we get that stabilization problem

with initial control (1.20), (1.21) possesses solution with feedback con-

trol as well. In subsection 1.5.3 we introduce the notion of unpredictable

fluctuation of state variable and show that stabilization problem (1.1)-

(1.3) with impulse control (1.4) possesses solution with feedback control

in the meaning of Definition 1.5.1, but first we construct in subsection

1.5.2 feedback control for stabilization problem with usual (not impulse)

control in right-hand side.

1.5.2 The case of distributed control supported in subdomain

For simplicity we consider here only the case of Ozeen equation. Gener-

alization on Navier-Stokes system can be made similarly as in subsection
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1.4.2 above (see details in Fursikov (2001a), Fursikov (2001b), Fursikov

(2004)).

So let consider the boundary value problem

v(t, ·)

dt
+Av(t, ·) = u(t, ·), v|t=0 = v0 (1.59)

with v0 ∈ V 1
0 (G) be given, A be operator (1.32), u(t, x) ∈ L2(R+;V 1

00(ω))

be a control that we are looking for. This control has to satisfy the

following conditions:

i) The solution of problem (1.59) satisfies the estimate

‖v(t, ·)‖V 1
0 (G) 6 C‖v0‖V 1

0 (G)e
−σt (1.60)

where constant C = Cσ does not depend on ‖v0‖V 1
0 (G).

Moreover we are looking for the feedback control. By the definition this

means that

ii) There exists a linear bounded operator: E : V 1
0 (G) → V 1

00(ω) such

that control u(t, ·) is expressed by phase function y(t, ·) with help of the

formula

u(t, ·) = ΛEv(t, ·) (1.61)

where magnitude Λ > 0 will be chosen later.

Theorem 1.5.3 There exists a control u(t, x) ∈ L2(R+;V 1
00(ω)) that

satisfies conditions i), ii) written above.

Proof Recall that phase space V = V 1
0 (G) admits decomposition (1.42),

in V+ = X+
σ (A) one can choose a basis (e1(x), . . . , eK(x)) constructed

from eigen and associated functions of operator A corresponding to

eigenvalues λj with Re λj < σ, (see Fursikov (2001a), Fursikov (2001b)).

Besided, in X+
σ (A∗) one can choose a basis (d1(x), . . . , dK(x)) con-

structed from eigen and associated functions of operator A∗ correspond-

ing to eigenvalues µj with Re µj < σ, (Fursikov (2001a), Fursikov

(2001b)). These basises are biorthogonal, i.e. they satisfy: (ej , dm)L2(G) =

δjm, where δjm is Kronecker symbol. Therefore v ∈ V+ if and only if

v =

K∑

j=1

vjej(x), where vj = (v, dj)L2(Ω) (1.62)

We define desired operator E by formulas (1.40), (1.41) explained in the

proof of the Theorem 1.3.2. Compeering (1.41), (1.62) we see that in
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fact

u(t, ·) = ΛEv(t, ·) = ΛEP+v(t, ·) (1.63)

where P+ is the projector defined in (1.51). After substitution (1.63)

into (1.59) and applying to obtained equation projector P+, P− we get

using notation

v+(t, ·) = P+v(t, ·), v−(t, ·) = P−v(t, ·)

that problem (1.59), (1.63) is equivalent to the following one:

dv+(t, ·)

dt
+Av+ = ΛP+Ev+(t, ·), v+|t=0 = v0+ ≡ P+v0 (1.64)

dv−(t, ·)

dt
+Av− = ΛP−Ev+(t, ·), v−|t=0 = v0− ≡ P−v0 (1.65)

Using the notations: c̄ = (c1, . . . , cK), v̄ = (v1, . . . , vK),

Fkj =
∫

G

dk(x)(−π̂∆)−1
ω1
dj(x)dx =

∫
ω1

∇(−π̂∆)−1
ω1
dk(x) · ∇(−π̂∆)−1

ω1
dj(x)dx,

F = (Fkj)
K
k,j=1

we can rewrite (1.41) in the form F c̄ = −v̄, and (1.40) as follows:

Ev(x) = −
K∑

j=1

(F−1v̄)j(−π̂∆)−1
ω1
dj(x), where (F−1v̄)j = cj (1.66)

Applying to (1.66) operator P+ we get

P+Ev(x) = −
K∑

k,j=1

(F−1v̄)jFkjek(x) = −
K∑

k=1

(FF−1v̄)kek(x) = −P+v(x)

Therefore (1.64) is equivalent to the problem:

dv+(t, ·)

dt
+ (A|V+ + ΛE)v+(t, ·) = 0, v+|t=0 = v0+ (1.67)

where A|V+ is restriction of operator A on V+ (recall that V+ is invariant

with respect of A), and E is identity operator. We choose now Λ > 0

such that

Re λj + Λ > σ + ε (1.68)

for each eigenvalue λj of operator A|V+ where ε > 0 is fixed. Then

(1.67), (1.68) implies:

‖v+(t, ·)‖V+ 6 C‖P+v0‖v+e
−(σ+ε)t (1.69)
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where C = Cσ+ε does not depend on v0, and solution v− is defined by

the formula:

v−(t, ·) = e−AtP−v0 +

∫ t

0

e−A(t−τ)(P−Ev+(τ, ·))dτ (1.70)

where e−At is operator (1.36). In Fursikov (2001a), Fursikov (2001b)

the following estimate for operator e−At had been proved

‖e−AtP−v0‖V− 6 Ce−σt‖P−v0‖V− (1.71)

with constant C = Cσ independent from ‖P−v0‖V− .

Applying (1.69), (1.71) to (1.70) we obtain

‖v−(t, ·)‖V− 6 C1e
−σt‖P−v0‖V−

+C2

∫ t

0
e−σ(t−τ)e−(σ+ε)τdτ‖P+v0‖V+

6 e−σt(C1‖P−v0‖V− + C2
1−e−τ

ε ‖P+v0‖V+) 6 C‖v0‖V e
−σt

(1.72)

Bounds (1.69), (1.72) imply (1.60).

1.5.3 Real processes

General theory of real processes had been work out in Fursikov (2002b),

Fursikov (2002c) for stabilization problems with boundary control. Here

we recall the main ideas of this theory in the case of impulse control.

Note that in this case the theory of real processes is more transparent

than for boundary control. Let consider stabilization problem (1.26),

(1.27) with control in initial condition. If initial condition y0 from (1.27)

satisfies the bound ‖y0‖V 1
0 (G) < ε with small enough ε, then by Theorem

1.4.2 we can take in (1.27) feedback control u = F (y0) and obtain y0 +

u = y0+F (y0) ∈ W− where W− is stable invariant manifold (1.45). This

solves problem from pure mathematical point of view. Our aim now is

to justify numerical solution of this problem. Suppose that we calculate

problem (1.26), (1.27) with initial condition y0 + F (y0) in discrete time

instants tk = kτ where k = 0, 1, 2, . . . and τ > 0 is fixed. Denote

S(y0) = S(τ, y0) where S(t, y0) is solution operator (1.43) of problem

(1.26), (1.29). Let wk be the result of our calculation at time instant tk.

Since numerical calculation can not be exact, we have

wk = S(wk−1) + τϕk (1.73)

where ϕk is an error of calculation which is unknown for us before time tk
(i.e. ϕk is unpredictable fluctuation; we introduce multiplier τ in (1.73)
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for convenience of normalization). The sequence {wk} defined in (1.73)

is called uncontrolled real process. We suppose that we can estimate the

error of our calculation a priori:

‖ϕk‖V 1
0 (G) 6 ε̃� ε, ∀k > 0. (1.74)

where ε > 0 is magnitude from Theorem 1.4.2. It follows from (1.73)

that wk /∈ W− begining from k = 1. Therefore in virtue of wellknown

structure of phase flow in a neighborhood of steady-state solution, wk

moves away origin as k → ∞ and our stabilization construction collapses.

To keep our stabilization construction we have to pass from control in

initial condition to impulse feedback control. In other words we have to

change recurrence relation (1.73) on the following one (we assume that

calculation of initial condition w̃0 is absolutely exact:

w̃0 = y0 +F (y0), w̃
k = S(w̃k−1 +F (w̃k−1))+τϕk, k = 1, 1, . . . (1.75)

It follows from (1.75) that for each instant tk = τk real process w̃k does

not belong to invariant manifolds W− and that is why we apply at each

tk = τk impulse feedback control w̃k → w̃k + F (w̃k) to return on W−.

The following theorem is true:

Theorem 1.5.4 Let F be feedback map constructed in Theorem 1.4.2,

unpredictable fluctuations ϕk satisfy (1.74), and ‖y0‖V < ε with ε de-

fined in Theorem 1.4.2. Then real process w̃k constructed by recurrence

relation (1.75) satisfies the following estimate:

‖w̃k‖V 6 Ĉ(e−σkτ‖w̃0‖V + (1 + σ−1)ε̂), k → ∞ (1.76)

where constant Ĉ is constructed by constants estimating operator F from

(1.46), (1.50).

This Theorem is proved similarly to analogous assertion obtained in Fur-

sikov (2002b). Note that in contrast to estimates (1.48), (1.60) proved

for feedback initial control in Theorems 1.4.2, 1.4.1 and for feedback

control in right-hand side in Theorem 1.5.3, the right side of bounds

(1.76) does not tend to zero as k → ∞. This is quite natural because by

definition of real process unpredictable fluctuation arise at tk = kτ for

each k ∈ N .

It is necessary to mention that if we assume that inpredictable fluc-

tuations {ϕi, i ∈ N} in (1.75) is independently identically distributed

sequence of random vector fields ϕi ∈ V 1
0 (G) then under additional

natural assumptions on random sequence {ϕi}, the random dynamical
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system w̃k defined in (1.75) is ergodic (i.e. it has unique stationary

measure µ̃), and it possesses the property of exponential mixing (i.e.

probability distribution of wk tends exponentially to µ̃ in some natural

meaning). This fact has been established in Duan & Fursikov (2005) in

the case of stabilization problem for Ozeen system.

We will not discuss here theory of real processes in the case of bound-

ary control because this theory is exposed in details in Fursikov (2002b),

Fursikov (2002c).

1.6 Description of numerical algorithms

The second part of the paper is devoted to description of numerical

schemes of the stabilization construction. The most difficult part of this

construction is connected with calculations of stable invariant manifolds

(see (1.45)) and with calculation of projection operators on these sets.

Since the axiomatic presentation is used below, explain that operator

S(·) used there is abstract analog of the operator S(T, ·) with big enough

T > 0 where S(t, ·), t > 0 is the solution operator of the boundary value

problem (1.26),(1.29). Besides, Sn+1(·) = S(Sn(·)), n = 1, 2, . . . . Below

we study stable invariant manifold (1.45) and local stable manifold as

well. Emphasize that the local stable manifold studied below is much

more general object than stable invariant manifold (1.45), because the

last one is connected with a fixed point, and local stable manifolds are

connected with time-dependent trajectory.

1.6.1 General definitions

We describe numerical algorithms construction in terms of (semi)dyna-

mical systems with discrete time. Let V be a Banach space with the

norm ‖ · ‖, S(·) : V → V be a smooth map that, evidently, satisfy the

following semigroup property:

Si1(Si2(u)) = Si1+i2(u), ∀i1, i2 ∈ N, ∀u ∈ V.

Then {V, Si(·), i = 0, 1, 2, . . .} is called (semi)dynamical system with the

state space V , resolving operator S and discrete time i = 0, 1, 2, . . ..

The set Γ+(z0) = {zi = Si(z0), i = 0, 1, . . . , n, . . .} is called trajectory

of the point z0 ∈ V . We suppose that the map S is smooth enough, so

one can construct the linearization of S: S(zi + u) = S(zi) + L(zi)u +

R(zi)[u] in a neighborhood Ozi
of each point zi ∈ Γ+(z0). Moreover,

for the bounded linear operator L(zi) : V → V and for continuous map
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R(zi)[u] = S(zi + u) − S(zi) − L(zi)u there exist projection operators

P±(zi) and magnitudes µ
(i)
− , µ

(i)
+ , r(i), C

(i)
± > 0, such that the following

hyperbolicity conditions (Anosov (1967), Pesin (1977)) take place in a

neighborhood Ozi
= {u : ‖P±(zi)(zi − u)‖ 6 r(i)}:

Conditions (A)

A1) P+(zi) + P−(zi) = I, ‖P±(zi)‖ 6 C
(i)
± ;

A2) L(zi)
(
P+(zi)V

)
= P+(zi+1)V, L(zi)

(
P−(zi)V

)
⊂ P−(zi+1)V ;

A3) ‖L(zi)w‖ 6 µ
(i)
− ‖w‖ ∀w ∈ P−(zi)V, µ

(i)
− < µ;

A4) ‖L(zi)v‖ > µ
(i)
+ ‖v‖ ∀v ∈ P+(zi)V, µ

(i)
+ > µ;

A5) ‖P±(zi+1){R(zi)[u1] −R(zi)[u2]}‖ 6

θ
(i)
±

(
max{‖u1‖, ‖u2‖}

)
‖u1 − u2‖, ∀u1,2 : zi + u1,2 ∈ Ozi

where θ
(i)
± (γ) are continuous positive nondecreasing functions of γ >

0, θ
(i)
± (0) = 0 and µ

(i)
± , r(i), C

(i)
± are certain parameters. We suppose

also that µ 6 1.

These conditions (A) mean that in a neighborhood of each point zi

there exist subspaces P+(zi)V and P−(zi)V that are expanded and

are contracted, correspondingly, by acting of the linear part L(zi) of

map S. The phase space V is decomposed in their direct sum: V =

P+(zi)V + P−(zi)V . Applying to this decomposition operator L(zi) we

get analogous decomposition at point zi+1. Assume that dimension of

the subspace P+(zi)V is finite, the stable subsapce P−(zi)V has finite

codimension. These properties are typical for problem of mathematical

physics.

Generalized Hadamard-Perron theorem claims that if parameters and

functions from condition (A) satisfy certain relations (i.e. for so called

trajectories of hyperbolic type Anosov (1967), or for partially nonuni-

formly hyperbolic trajectories Pesin (1977)), then there exists a stable

invariant manifold

W−(S,O) = {m : m ∈ Ozi
, ‖Sn(m) − Sn(zi)‖ 6 Cµn, n, i > 0}

in the neighborhood O = ∪∞
i=0Ozi

. Moreover, in a neighborhood of each

point zi this manifold can be defined by a map f (i):

W−(S,O)
∣∣
Ozi

= W−(zi, f
(i))

(as in formula (1.44), (1.45),(1.47) above; here we take µ = e−σT ).

Our goal is to realize approximate construction of local stable man-

ifold W−(z0, f
(0)), i.e. of the map f (0) that determines this manifold.

Note again that W−(z0, f
(0)) contains all points belonging to Oz0 whose
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trajectories tend to trajectory of z0 with prescribed rate Cµn. Since

numerical stabilization problem are considered on finite time interval,

we assume below that conditions (A) are realized only for finite segment

of trajectory Γn
+(z0) = {zi = Si(z), i = 0, 1, . . . , n}. (Although schemes

considered below admit uniform closure (at least formally) on the case

of infinite n and can give constructive proof for existence of local stable

manifold W−(z0, f
(0)).

Remark 1.6.1 When numerical solving of stabilization problems on

V , evolution operator Sτ (·) with ”slow” discrete time usually is given.

In this situation one has to do a formal change S(u) := SN0
τ (u) with

some ”typical” N0 ∈ N. Here and below we write Si(u) = S(Si−1(u)),

i = 1, 2, . . .. For operator S(t, u) with continuous time t ∈ [0,∞[ corre-

sponding, for instance, to problem (1.26),(1.29) the passage to discrete

teme is realized by the change S(u) := SN0
τ (u) := S(N0τ, u) with some

not necessary small τ > 0. This change helps to realize implementation

of conditions (A3,4) in the case nontrivial Jordan boxes and increases

effectiveness of proposed schemes.

1.6.2 Stable invariant manifold for a fixed point

Let consider the problem of approximate construction of a stable invari-

ant manifold in a neighborhood of a fixed point z0 = S(z0). Assume

for simplicity that z0 = 0. In this case all operators, functions, and

constants from conditions (A) do not depend on index (i), and we will

use the following notations: S(u) = Lu + R(u), P±, µ±, r, C±. Note

also that subspace P+V is a union of root subspaces and that is why

subspaces P±V can be constructed solving the problem of spectrum di-

chotomy for operator L by circumference of sertain radius (taking into

account nontriviality of Jordan boxes).

In virtue of conditions (A) the operator S(u) = Lu + R(u) with u =

v + w, v ∈ P+O, w ∈ P−O, can be written in the form S(u) = S+(u) +

S−(u), where S±(u) = P±S(u). Here

S+(v + w) = L+v +R+(v + w);

S−(v + w) = L−w +R−(v + w);

L±u = P±Lu, R±(u) = P±R(u).

Let consider the class Bγ (O) of all Holder maps f(w) : P−O → P+O,

whereO = {u : ‖P±(u)‖ 6 r}, that satisfy conditions f(0) = 0, ‖f(w1)−

f(w2)‖ 6 γ‖w1 − w2‖ with fixed Holder constant γ. For this class of



Feedback stabilization 25

elements Bγ (O) we define the norm |f | = supw∈P−O|f(w)|. We look for

a manifold in the form

W−(O) = {w + f(w), w ∈ P−[O]}

with a certain map f(w) ∈ Bγ(O). The following invariance condition

for manifold W− with respect to the map S is true:

P+S
(
f(w) + w

)
= f

(
P−S(f(w) + w)

)
,

that can be rewritten in a form

L+(f(w) + w) +R+(f(w) + w) = f
(
L−(f(w) + w) +R−(f(w) + w)

)
.

In virtue of conditions (A) this equality is equivalent to the following

one:

L+f(w) +R+(f(w) + w) = f
(
L−w +R−(f(w) + w)

)
. (1.77)

Obtained equation (1.77) with respect to unknown map f is the basic

for construction of numerical algorithms.

Note that numerical solution of this equation for a concrete map S(·)

can be nontrivial problem. Moreover, even construction of projection

operators P±, for example, in the case of 3D Navier-Stokes equations

needs high-performance computers and effective mathematical schemes.

Nevertheless, we assume below that all necessary algorithms have been

realized numerically.

The simplest approximate method for solution of equation (1.77) is

Zero-Approximation Method: f(w) ≈ 0 for w ∈ P−[O]. In fact,

taking in (1.77) R(u) ≡ 0 (i.e. assuming that S = L) we get L+f(w) =

f(L−w), and therefore:

f(w) = L−k
+ f(Lk

−w), ‖f(w)‖ 6

(
µ−

µ+

)k

γ‖w‖.

Since this bound holds for all k > 0, the equality f ≡ 0 holds. Thus,

in linear case W−(V, f) = P−V , that follows also from definitions of

manifold W− and subspace P−V . This method was used in Chizhonkov

(2003), Chizhonkov (2004) for solution of stabilization to 1D Chafee-

Infanta equation by boundary control. Later the stabilization problem

for Couette flow had been solved in Chizhonkov & Ivanchikov (2004),

Ivanchikov (2006) by this method and it was marked there that this

method is applicable only for small Reynolds numbers, i.e. f(w) ≈ 0

only on a small neighborhood of a fixed point.
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For more proximate solution of nonlinear equation (1.77) relative to

f(w) ∈ Bγ(O) one can apply either

Linear Contraction Mapping Method:

L+fk+1(w) +R+(fk(w) + w) = fk

(
L−w +R−(fk(w) + w)

)
,

f0(w) ≡ 0
(1.78)

or

Nonlinear Contraction Mapping Method:

L+fk+1(w) +R+(fk+1(w) + w) = fk

(
L−w +R−(fk(w) + w)

)
,

f0(w) ≡ 0.
(1.79)

These schemes require not only calculation of operators P±, but inver-

sion of operator L on subspace P+V as well. Linear method in indicated

form was proposed in Ladyzhenskaya & Solonnikov (1973) to prove ex-

istence theorem for stable manifold in a neighborhood of a fixed point

in the case of magnetohydrodynamic equations. Nonlinear method (see

Kornev (2004)) has more high calculation’s complexity but it is more

effective for applications, since it converges in a wider neighborhood.

Let consider the first step of nonlinear contraction mapping method

for operator S(u) := SN0
τ (u) and increase N0 sequentially. In this case

we get

Method of Nonlinear Equation:

P+[SN0
τ

(
f1,N0(w) + w

)
] = 0, N0 = 0, 1, 2, . . . . (1.80)

For numerical simulations this method was proposed in Kornev (2005).

This method is highly technological since it reduces equation (1.77)

with respect of f(·) to the standard nonlinear equation relatively to

f1,N0(w) ∈ P+O. Note that it is not easy to solve this equation with

large N0. That is why from our point of view the most effective applied

method of solution to equation (1.77) is the nonlinear contraction map-

ping method with sufficiently large N0. The following assertion holds.

Theorem 1.6.2 Let S(0) = 0 and conditions (A) be true. Then in some

neighborhood O iteration processes (1.78), (1.79), (1.80) are solvable on

each step, and they converges in Bγ(O) with rate Cqn, q < 1, to a

function f tangent to P−V at zero that defines stable invariant manifold

W−(O, f).

In this case q ∼ µ−/µ+, and the map S(·) is subordinated to L in

the neighborhood O in the meaning of conditions A3,4. Convergence
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of methods (1.78),(1.79) had been proved correspondingly in Ladyzhen-

skaya & Solonnikov (1973) and Kornev (2004), Kornev (2006). One can

prove convergence of nonlinear equation method (1.80) and to generalize

aforementioned results on the case of trajectory {Si(z0)} (see Kornev

(2005), Kornev (2006)) with help of the following

Inverse Iteration Method

S+

(
fk+1(w) + w

)
= fk

(
S−(fk+1(w) + w)

)
, k = 0, 1, 2, . . . (1.81)

with initial function f0 ∈ Bγ(O).

In this case recurrence relations of iteration process mean that points

of calculated manifold

W−(O, fk+1) = {w + fk+1(w), w ∈ P−[O]}

pass to points of manifold W−(O, fk) under acting of the map S(·). This

implies that Sn(W−(O, fn)) ⊂ W−(O, f0). Note that the method (1.81)

is similar to the Graph Transformation Method, Anosov (1959)

1.6.3 Projection on stable invariant manifold

Since stable manifold W−(O, f) contains all points of the neighborhood

O whose trajectories converge to zero, one can set the stabilization prob-

lem by initial data for trajectory Γ+(a0) = {Si(a0)} as the problem to

project initial conditions a0 to W−(O, f) along a certain given subspace

L = {e1, . . . , ei0}. Formally this means construction of u = a0 + l, l ∈ L

such that u ∈ W−(O, f). From here one can find the desired correction

l. Using inclusion S(a0 + l) ∈ W−(O, f), one can construct more effec-

tive method that is formally equivalent to original one. This condition

approximately takes the following operator form

P+

[
S(a0 + l)

]
= fn

(
P−

[
S(a0 + l)

])
(1.82)

for suffisiently large n. To solve obtained problem let consider the iter-

ation process:

P+

[
L(b0 + lk+1) +R(b0 + lk)

]
=

fn

(
P−

[
L(0)(b0 + lk) +R(0)(b0 + lk)

])
,

(1.83)

where lk =
∑i0

i=1 c
k
i ei , b0 = a0 − z0.

Theorem 1.6.3 Let S(0) = 0 and conditions (A) be true. Let a function

fn ∈ Bγ(O) be tangent to subspace P−V at zero, dimP+V = i0, and

system of vectors {P+[ei]}
i0
1 form basis in P+V . Then there exists r > 0
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such that for b0 ∈ O the problem (1.82) possesses the unique solution.

For an arbitrary initial approximation u0 = a0 + l0, u0 ∈ O, the method

(1.83) converges to un ∈ W−(O, fn) with a geometric progression rate.

1.6.4 Stable manifold corresponding to a trajectory

Let consider the problem of approximate construction of stable manifold

corresponding to a trajectory. Below we use the following notations for

operators from conditions (A):

L(zi) = L(i), R(zi)[u] = R(i)(u), P±(zi) = P
(i)
±

Assuming that S(z0) 6= z0 fix natural n > 0 and take a segment of

trajectory

Γ+
n (z0) = {zi = Si(z), i = 0, 1, . . . , n}.

For each i = 0, . . . , n we consider a class Bγ(i)

(
O(i)

)
of all continuous

maps

f(w) : P
(i)
− O(i) → P

(i)
+ O(i), with O(i) = {u : ‖P

(i)
± (u)‖ 6 r(i)}

such that

f(0) = 0, ‖f(w1) − f(w2)‖ 6 γ(i)‖w1 − w2‖, 0 6 γ(i)
6 1.

Define the norm

|f |i = sup
w∈P

(i)
− O(i) |f(w)|, ∀f ∈ Bγ(i)

(
O(i)

)
.

Let f (n) ∈ Bγ(n)

(
O(n)

)
be a map that defines in a neighborhood Ozn

of zn a local manifold

W−(zn, f
(n)) =

{
m = zn + v + w : m ∈ Ozn

,

w = P
(n)
− (m− zn), v = f (n)(w)

}
.

Let consider the following

Problem (ff): Given point z0 find a map f (0) ∈ Bγ(0)

(
O(0)

)
such

that the set {z0+w+f (0)(w), w ∈ P
(0)
− O(0)} is transformed by the map

Sn(·) into the manifold W−(zn, f
(n)):

Sn(z0 + w + f (0)(w)) ⊂ W−(zn, f
(n)). (1.84)

Describe the method of solution the problem (1.84).

For given function f (n) we sequentially, in n steps, construct f (0) using

conditions of enclosure

S
(
W−(zi, f

(i))
)
⊂ W−

(
zi+1, f

(i+1)
)

(1.85)
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for i = n − 1, . . . , 0. We wrote condition (1.85) in operator form as

equation for function f (i):

L
(i)
+ f (i)(w) +R

(i)
+ (f (i)(w) + w) =

f (i+1)
(
L

(i)
− w +R

(i)
− (f (i)(w) + w)

)
,

(1.86)

where L
(i)
± = P

(i+1)
± L(i), R

(i)
± = P

(i+1)
± R(i). To solve problem (1.86) let

consider the following iteration process:

L
(i)
+ f

(i)
k+1(w) +R

(i)
+ (f

(i)
k (w) + w) =

f (i+1)
(
L

(i)
− w +R

(i)
− (f

(i)
k (w) + w)

)
.

(1.87)

Results of Kornev (2006) imply

Theorem 1.6.4 Let conditions (A) take place. Then there exist {r(i), γ(i),

i = 0, 1, . . . , n} such that problems (1.86) − (1.87) possess unique so-

lution for an arbitrary function f (n) ∈ Bγ(n)

(
O(n)

)
. This solution

f (0) ∈ Bγ(0)

(
O(0)

)
satisfies the following conditions

Sn
(
W−(z0, f

(0))
)
⊂ W−(zn, f

(n)),

‖Sn
(
z0 + f (0)(w) + w

)
− Sn

(
z0

)
‖ 6 Cpn.

In this case p ∼ µ
(i)
− , and the method (1.87) converges with the rate

of geometric progression with denominator q ∼ µ
(i)
− /µ

(i)
+ . If theorem ad-

mits uniform closure as n→ ∞, then there exists a local stable manifold

W−(S,O), and the function f (0) determined by such a way approximates

f (0) in a neighborhood Oz0 . For numerical simulations we take zero as

initial function: f (n)(w) ≡ 0. Since f (n) is tangent for subspace P
(n)
− V ,

this approximation has an error O
(
(r(n))2

)
.

1.6.5 Projection on stable manifold

Let consider

Problem (lf): Project initial conditions a0 to manifold W−(z0, f
(0))

along a given subspace L = span < e1, . . . , ei0 >.

By definition this means to construct u = a0 + l, l ∈ L such that

u ∈ W−(z0, f
(0)). In other words we have to construct u = a0 + l that

satisfies condition S(u) ∈ W−(z1, f
(1)). The corresponding equation is

written as follows:

P
(1)
+

[
S(a0 + l) − S(z0)

]
= f (1)

(
P

(1)
−

[
S(a0 + l) − S(z0)

])
. (1.88)
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To solve problem (1.88) we consider the following iteration process:

P
(1)
+

[
L(0)(b0 + lk+1) +R(0)(b0 + lk)

]
=

= f (1)
(
P

(1)
−

[
L(0)(b0 + lk) +R(0)(b0 + lk)

])
,

(1.89)

where lk =
∑i0

i=1 c
k
i ei , b0 = a0−z0. Convergence of the obtained scheme

had been proved in Kornev (2006).

It reasonable to choose starting approximation u0 = a0 + l0 using

condition u0 ∈ P
(0)
− O(0). Science the function f (1) is tangent to subspace

P
(1)
− V , and f (0) is tangent to P

(0)
− V , this approximation has an error

O
(
(r(0))2

)
.

The problem of approximate projection to a stable manifold along

subspace L can be reduced to solution of the following equation:

P
(n)
+ [Sn(a0 + ln) − Sn(z0)] = 0, ln =

i0∑

i=1

cni ei, (1.90)

relatively unknown coefficients cni . Note that this equation corresponds

to equations for problems (ff) and (lf) with f (n) ≡ 0.

The following theorem holds:

Theorem 1.6.5 Let conditions of Theorem 1.6.4 be fulfilled, function

f (1) ∈ Bγ(1)(O(1)) be tangent to subspace P
(1)
− V at zero, vectors system

{P
(0)
+ [ei]}

i0
1 , dimP

(0)
+ V = i0 form basis in P

(0)
+ V . Then there exists

r(0) > 0 such that for b0 ∈ O(0) problem (1.88) possesses unique solution

u ∈ W−(z0, f
(0)). For arbitrary starting approximation u0 = a0 + l0,

u0 ∈ Oz0 , method (1.89) converges to u with a geometric progression

rate. Moreover u = a0 + l, l =
∑i0

i=1 cili and the following bound from

Theorem 1.6.4 holds:

‖Sn
(
a0 + l

)
− Sn

(
z0

)
‖ 6 Cpn.

Note that as it was mentioned above in subsection 1.2.2 control in ini-

tial conditions is equivalent to impulse control, i.e. it is ”instantaneous

control” . That is why in problems from applied sciences this kind of con-

trol requires some modifications. Such modification from the point of

view of Partial Differential Equations is stabilization method by bound-

ary control in the form proposed in Fursikov (2001a)-Fursikov (2004)

and used for calculations in Chizhonkov (2003), Chizhonkov (2004),

Chizhonkov & Ivanchikov (2004), Ivanchikov (2006), Ivanchikov, Ko-

rnev, & Ozeritskii (2009). Connection between initial and boundary

controls was explained above, in subsection 1.2.4



Feedback stabilization 31

1.6.6 Calculations with control in right side

Some other kind of control that can be used in applications is stabiliza-

tion by control in right-hand sides. Describe one method connected with

stabilization by this kind of control that differs from one stated above

in, subsection 1.5.2. We formulate stabilization problem by control in

right side in the following form (see Kornev (2008)).

Let

SF (zi + u) = S(zi) + L(i)u+ R(i)(u) + Ŝ(i)(u, F )

where F is desired control function and operator Ŝ(i)(·, ·) prescribes the

rule of applying this control. The case of zero function F ≡ 0 corre-

sponds to resolving operator for problem without control, i.e. S0(·) ≡

S(·). Given initial conditions z0, a0 ∈ V and qF > 0, find F ∈ F such

that





‖P
(n)
+ [Sn

F (a0) − Sn(z0)]‖ 6 Q,

‖F‖ → inf, Q = qF ‖P
(0)
+ [a0 − z0]‖,

F ∈ F , ‖ · ‖ = (·, ·)1/2

(1.91)

In this case F gives the subspace of admissible right-hand sides, and

magnitude 0 6 qF < 1 defines stabilization rate along subspace P
(n)
+ V .

Note that since operator S(·) of initial problem is nonlinear, stabiliza-

tion along subspace P
(n)
+ V does not guarantees stabilization on the

whole space V . In the case Q = 0 equation (1.91) takes the form

‖P
(n)
+ [Sn

F (a0) − Sn(z0)]‖ = 0 and considered method is the method of

nonlinear equation with respect to F .

We construct approximate solution for problem (1.91) by the follow-

ing way. Write linearization of relation (1.91), taking R(i)(u) ≡ 0,

Ŝ(i)(u, F ) ≈ J (i)F . Then we get:






‖P
(n)
+ [Laa0 + LFF ]‖ 6 qF ‖P

(0)
+ [a0 − z0]‖,

‖F‖ → inf, F ∈ F ,

La = L(n−1)L(n−2) . . . L(0),

LF = L(n−1)L(n−2) . . . L(1)J (0) + . . .

+L(n−1)L(n−2)J (n−1) + L(n−1)J (n−2) + J (n−1).

(1.92)

We denote solution of problem (1.92) with FLn,Q. If one knows finite

bases in subspaces P
(n)
+ V , P

(n),⊥
− V , F then (1.92) is reduced to gener-

alized least squares problem and it can be solved by standard methods.

Let one has found function FLn,Q. Then calculate h = Laa0 +LFFLn,Q



32 A.V.Fursikov & A.A.Kornev

and consider the following nonlinear equation with respect to F :
{
P

(n)
+ [Sn

F (a0) − Sn(z0)] = P
(n)
+ [h],

h = Laa0 + LFFLn,Q.
(1.93)

Apply the obtained solution FSn,Q of (1.93) for stabilization of initial

nonlinear problem. In this case control FSn,Q provides stabilization of

nonlinear problem (1.91) in subspace P
(n)
+ V by the same way as optimal

control FLn,Q stabilizes linear problem (1.92). Optimality condition

‖FSn,Q‖ → inf takes place only approximately.

Process of stabilization is realized here for i = 0, 1, . . . , n − 1 with

constant on i function FSn,Q. If additional stabilization is needed for

i = n, n+1, . . . , 2n−1, then control function is calculated over again with

help of the same algorithm for next time segment i = n, n+1, . . . , 2n−1,

and so on. To solve problem (1.93) the following method of the simple

iteration type was applied:

P
(n)
+ [LFFk+1 +RF (Fk)] = P

(n)
+ [v], F0 = FLn,Q. (1.94)

1.7 Results of numerical calculations

1.7.1 Physical Model and Mathematical Setting

Using Zero-Approximation Method E.V.Chizhonkov and A.A.Ivanchikov

solved numerically (Chizhonkov & Ivanchikov (2004), Ivanchikov (2006))

the stabilization problem with boundary control for Couette flow. As

far as we know this is the first successful attempt to stabilize by bound-

ary control unstable solution of Navier-Stokes equations in variables

”velocity-pressure” that describes real physical experiment.

In this paper we consider the problem of numerical stabilization for

unstable flow of four-vortex structure. Experimental plant is rectangular

horizontal container of small deepness filled with electrolyte (a water

solution of CuSO4). On both opposite inner sides of container cupric

electrodes are placed and under container the system of direct magnets

are rigged up. Electrical current going through water provokes deflecting

Lorentz force. This leads to appearance of the flow consisting of four-

vortex that becomes unstable for high force of current.

It is known (see Dolzhanskii, Dovzenko, & Krymov (1996) and ref-

erences therein) that for the certain diapason of plant’s parameters the

movement of liquid is described with high level of accuracy by quasi-two-

dimensional Navier-Stokes system. In dimensionless variables ”stream
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function-vortisity” this system is written as follows:

∂ω

∂t
= ν̄∆ω − ω − [ψ, ω] + ∆h+ ∆u,

∆ψ = ω, [ψ, ω] = ψxωy − ψyωx.
(1.95)

Here ψ(t, x, y) is unknown stream function, h(x, y) describes magnetic

field, u(t, x, y) is additional controlling field or is equal to zero. The

bottom influence is reduced in this case to damping of horizontal flows

by linear law. We add the system with the following initial-boundary

conditions:

ψ|∂Ω = 0, ∆ψ|∂Ω = 0; ψ|t=0 = ψ0,

Ω = [0, l1] × [0, l2].
(1.96)

In this case Dirichlet conditions are prescribed on the boundary for func-

tions ψ, ω. Let ν̄ ≈ 2.83 · 10−4, l1 = 1, l2 = 0.5,

∆h(x, y) =
∑
m,n

cmn sin(πmx
l1

) sin(πny
l2

),

c22 ≈ −37.75, c13 = c31 = 0.01c22, and cmn = 0 for other m,n.

These simplifications have an influence on fluid quantitative character-

istics, but does not change qualitative picture (cf. Danilov et al. (1996),

Kornev & Ozeritskii (2010)). In this case the harmonic {m = 2, n = 2}

of right side forms structure of flow that is close to experimental one

and two other harmonics realize additional instability.

1.7.2 The structure of phase portrait

For numerical solution of considered system (1.95), (1.96) we apply Krank-

Nikolson finite-difference scheme for approximation in time; operator

∆ we approximate by ∆h on ”cross” five-points stencil, and for ap-

proximation of operator [·, ·] we use Arakawa scheme. Unknown grid

functions ψn
ij , ω

n
ij approximate at nods (nτ, ihx, jhy) the desired func-

tions ψ(t, x, y), ω(t, x, y) correspondingly. Let ψn+1 = Sτ (ψn) with

ψn = {ψn
ij}, i.e. Sτ (·) be solving operator of constructed differences

scheme. We define operator S for corresponding dynamical system as

the difference scheme operator for N0 steps, i.e. S(·) = SN0
τ (·). All

calculation indicated below were done for hx, hy ∼ 0.015, τ ∼ 0.001.

For chosen parameters the difference equation has unstable steady-

state solution z̄ij = S(z̄ij) of four-vortex structure (similar Fig. 1), and

in its neighborhood there are stable quasiperiodic oscillations. Taking
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into account relative smallness of c13, c31 we have that z̄ij ≈ zij where

zij satisfies the equation

(ν̄∆h∆h − ∆h)zij = −c22 sin(2πihx) sin(4πjhy).

During oscillations there is periodical confluence of two vortex placed

on diagonal (that possess identically directed rotation) to one vortex

directed along diagonal (similar to Fig. 2). After that this vortex dis-

integrates on two vortexes of primary structure and the second pair of

vortexes flows together to one vortex directed along the second diagonal

of container. This process repeats with high precision of periodicity.

The trajectory with initial condition ψ0
ij = zij is close to stationary

one on small time segment but later it also goes to indicated oscillating

behavior.

Let a := Sn0
τ (z), n0 = 6100, i.e. trajectory of point a = {aij} advances

beyond the trajectory of point {zij} on n0 steps. Functions zij , aij are

depicted on Fig. 1,2 correspondingly.
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Fig. 1. Function z Fig. 2. Function a

Using described algorithms we solve numerically the problem of stabi-

lization for trajectory of point a to trajectory of point z or to steady-state

point z̄. For this we have to construct linearization L = L(n−1) . . . L(0)

of operator S along trajectory of point z and then to calculate subspaces

P
(i)
+ V . It is convenient to define unstable subspace P

(i)
− V by its orthog-

onal complement P
(i),⊥
− V that similarly can be constructed by means of

operator L∗. In the considered parameters and N0 = 610, n = 1 we have

two-dimensional subspaces P
(0)
+ V = {ξ

(0)
1 , ξ

(0)
2 }, P

(0),⊥
− V .

If we suppose that the point z is fixed it is allows to construct P
(0)
+ V

using linearization A(z) of right side for equation (1.95) only in z. The

subspace P
(0),⊥
− V can be constructed by means of operator A∗(z).
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1.7.3 Stabilization by the initial control

Describe result of stabilization by initial data with help of algorithm

(1.88) (details of algorithms realization see in Kornev (2006), Kornev

& Ozeritskii (2010)). Let the basis {e1, e2} in the space of admissible

displacements L have the form

ek ≡ ξ
(0)
k for (ihx, jhy) ∈ Ω̄ := [0.5, 1]× [0, 0.5];

ek ≡ 0 for (ihx, jhy) 6∈ Ω̄; k = 1, 2.

In this case initial function a changes only in subdomain Ω̄. Note that the

choice of the space of admissible displacements is an important problem

(see Chizhonkov (2004), Ivanchikov (2006)). In some sense the subspaces

P
(0)
+ V and P

(0),⊥
− V (or their ortogonal projections on the preassigned

L) are optimal. The function l for parameters of iteration process n = 2,

N0 = 1220 is depicted on Fig.3. The obtained trajectory Sk
τ (a+ l) tends

monotonously to trajectory Sk
τ (z) as k increasing to N, N ≈ 7400. The

accuracy function δN := SN
τ (z) − SN

τ (a + l) is depicted on Fig.4. Note

that stabilization gives 17-times decreasing of initial error, i.e. δN/δ0 ∼

0.06. For k > N the trajectory of point a does not tend to the trajectory

of point z.
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1.7.4 Stabilization by the control in right side

Describe solution of stabilization problem for trajectory {Si
F (a), i =

0, 1, . . .} to the steady-state solution z̄ij by right side F with help of

algorithm (1.93) as stabilization to the segment of trajectory {Si(z), i =

0, 1, . . . , n} for a small n. In our opinion the current problem is impor-

tant from practical point of view. Details of algorithms realization see

in Kornev (2008), Kornev & Ozeritskii (2010).
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Let N0 = 1, i.e S(·) = Sτ (·). The domain of control Ω̄ and form of

control function we keep as above:

F = span < ek; k = 1, 2 >

ek ≡ ξ
(0)
k for (ihx, jhy) ∈ Ω̄; ek ≡ 0 for (xi, yj) 6∈ Ω̄.

However now the correction F we are looking for is added in a form

uk(F ) = c1(k)e1 + c2(k)e2 to the right-hand side of (1.95) and it is a

time-piecewise constant function on the each segment of stabilization:

nm 6 k < n(m+ 1), m = 0, 1, . . ..
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Let qF = 0.5, n = 61. On Fig.5 the form of control function uk of

operator SF (·) on the first segment 0 6 k < n is depicted. On Fig.

6,7,8 are depicted the typical forms of control function uk, function

Sk
F (a) and accuracy function δk for k > N,N ≈ 3000. Note that in the

numerical experiment accuracy function decrease from δ0 ≈ 0.04 to 0.01

as k 6 6000.
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1.7.5 Stabilization by the boundary control

Show results of stabilization for trajectory {Si(a), i = 0, 1, . . .} to the

segment of trajectory {Si(z), i = 0, 1, . . . , N0} by boundary control men-

tioned in subsections 1.2.3, 1.2.4 (see details in Chizhonkov (2003),

Ivanchikov (2006), Ivanchikov et al. (2009)). Assume that one can choose

control functions for ω, ψ on the whole boundary ∂Ω. On Fig.9, 10 the

graphs of boundary control depending on time ti = iτ are depicted when

G = [−0.5, 1.5]× [−0.25, 0.75] is taken as extended domain.
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Fig. 9. Function ψn|∂Ω Fig. 10. Function ωn|∂Ω

Here segments [AB], [BC], [CD], [DA] correspond to the sides of

rectangle ∂Ω. Note that in the considered parameters ν̄, G and N0 =

610, n = 1 we have ten-dimensional subspaces P
(0)
+ V , P

(0),⊥
− V . Func-

tions Sk
τ,∂Ω(a) with boundary control for k > 4500 have ”easily de-

formed” four-vortex stucture and accuracy function δN fluctuated near

0.0017.

1.7.6 Conclusions

In this paper we do not discuss the question on closeness of stable mani-

folds in initial differential problem and in chosen finite-difference scheme.

We have to mark only that assertions of such kind can be proved in some

situations by known methods. However if one assume that on consid-

ered times theorem on convergence of solutions for problem in finite

differences to solution of differential equation is true, then it is possi-

ble to claim that controls obtained by such methods solves stabilization

problem for initial system of differential equations. Note that to get

approximation for the operators L
(i)
+ , P

(n)
+ La, P

(n)
+ LF in numerical im-

plementation of the considered algorithms one has to take numerical
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linearizations of operators S and SF . This is especially important for

complicate S and SF .
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