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Abstract. This paper is devoted to the proof of analyticity of the stable in-

variant manifold in a neighborhood of the zero steady-state solution of a semi-

linear parabolic equation under the assumption that this steady-state solution
is unstable. This investigation may have possible applications in stabilization

theory for semilinear parabolic equation.

Introduction

In this paper we prove analyticity of the stable invariant manifold M− near the
zero steady-state solution of a semilinear parabolic equation. We need this result
in order to develop a stabilization theory for semilinear parabolic PDE defined in
a bounded domain Ω with feedback Dirichlet control given on the boundary ∂Ω or
on its open part Γ.

This theory was built in [F1], [F2], [F3], [F4], [F5] for general quasilinear
parabolic equations and for Navier-Stokes system. The main idea of the proposed
method was to extend the stabilized boundary value problem (BVP) from Ω to a
BVP on a longer domain G doing extension through that part Γ of ∂Ω where the
control is defined and taking away Γ with boundary condition on it that defines
this control. Simultaneously, the initial condition y0(x) is extended to the initial
condition z0(x) that has to belong to the stable invariant manifold M− of the
extended BVP. If we stabilize the BVP near the origin, the manifold M− has to
be defined in a neighborhood of origin. By the definition of the stable invariant
manifold, the solution z(t, x) of the extended BVP starting from z0 ∈ M− tends
to 0 as t → ∞. Therefore the restriction of z(t, x) on Ω and Γ gives the desired
solution of the initial stabilization problem.

In order to prove in [F1]-[F5] the existence of the extension operator acting
on the stable invariant manifold M− it was enough to use the well-known existence
theorems for stable invariant manifolds from [H], [BV].
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We have to emphasize that the main reason for developing a stabilization the-
ory is to provide reliable stable algorithms for numerical stabilization. 1 To con-
struct such algorithms it is desirable to have a simple description for the infinite-
dimensional invariant manifold M− which would allow one to calculate it easily at
an arbitrary point. A functional-analytic decomposition of M− gives such a de-
scription. In this paper we investigate the possibility of such a description for M−
in the case of one-dimensional semilinear parabolic equation.

Using the classical description of M− by means of a map F (y−) we look for
this map as a series

F (y−) =
∞∑

k=2

Fk(y−)

where the maps Fk(y−) are homogeneous in y− with power k. We obtain recurrence
relations for Fk using special differential equation in variational derivatives for the
map F . These recurrence relations allow us to prove convergence of the series for
F (y−).

We note that when these recurrence relations for Fk have been obtained, we
passed them right away to specialists in numerical calculations. Up to now these
relations have already been used for numerical calculations of stable invariant man-
ifolds and for applications to numerical stabilization of semilinear parabolic equa-
tion. Moreover, the numerical results thus obtained seem to us quite satisfactory
(see [K]).

In the case of ordinary differential equations the analyticity of the stable and
unstable invariant manifolds in a neighborhood of a hyperbolic singular point are
proved in the classical Hadamard-Perron Theorem (see [IL] Chapter 1, Theorem
1.2). On the other hand the Poincare theory of normal forms (see [A], Chapter 5)
shows that not every invariant manifold is analytic because sometimes the so called
resonance condition can appear.

In this paper we restrict ourselves to considering the case of stable invariant
manifold near the hyperbolic singular point ẑ ≡ 0. Note however that the analyt-
icity of the unstable invariant manifold in a neighborhood of a hyperbolic singular
point can be proved similarly. Besides, in the Remark 3.10 below we explain how to
get examples of invariant manifolds which are not analytic because of the resonance
condition. In Remark 3.11 below we discuss possible generalizations.

To establish analyticity in the case of semilinear parabolic equations considered
here one has to overcome certain difficulties specific for PDE. To do this we were
forced to develop essentially the technique of [VF1], [VF2].

Essential part of the results expouned in this paper were obtained during my
long-term visit in Heidelberg University in connection with granting me Humboldt
Research Award. I express my deep gratitude to Alexander von Humbolt Founda-
tion for this award and to Professor R.Rannaher and his group for hospitality and
for very good conditions created for my work.

I cordially thank Professor R.Triggiani for editing this paper and improving
English.

1Indeed, the existence theorems for exact controllability problem (see, for instance, [FI]) are

stronger than existence rezultes for corresponding stabilization problem. Another point is that

the exact controllability problems are ill-posed in the case of parabolic equations or Navier-Stokes
system and therefore they can not be solved numerically by adequate way.
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1. Stable invariant manifolds

In this section we recall the definition of a stable invariant manifold near a
steady-state solution (fixed point) of a semilinear parabolic equation and derive
the equation that determines the invariant manifold.

1.1. Semilinear parabolic equation. We consider the following boundary
value problem for a semilinear parabolic equation:

(1.1)
∂y(t, x)

∂t
− ∂2y(t, x)

∂2x
− κy(t, x) + f(y(t, x)) = 0, t > 0, x ∈ (0, π)

(1.2) y(t, x)|x=0 = y(t, x)|x=π = 0

(1.3) y(t, x)|t=0 = y0(x)

where κ > 0 is a parameter, and f(y) is an analytic function that admits the
decomposition

(1.4) f(y) =
∞∑

k=2

fkyk

with coefficients fk satisfying

(1.5) |fk| ≤ γρk

with some γ > 0, ρ > 0. We assume that

(1.6) κ > 1 and
√

κ is not integer.

Note that

(1.7) ek(x) =
√

2/π sin kx, λk = k2 − κ

are the eigenfunctions and the eigenvalues of the spectral problem

(1.8) Ae ≡ −∂2e(x)
∂x2

− κe(x) = λe(x), e(0) = e(π) = 0.

Therefore by virtue of (1.6), the solutions e−λktek(x) of the linear equation

(1.9)
∂y

∂t
− ∂2y

∂x2
− κy = 0, y|x=0 = y|x=π = 0

tend to infinity as t →∞ for

(1.10) k = 1, . . . , N, N = [
√

κ]

where [
√

κ] is the integer part of
√

κ, and tend to zero as t →∞ for k > N .
We take the Sobolev space

(1.11)

H = H1
0 (0, π) = {y(x) ∈ L2(0, π) : ‖y‖2H1

0
=
∫ π

0

|∂y/∂x|2dx, y(0) = y(π) = 0}

as the phase space of the dynamical system generated by boundary value problem
(1.1)- (1.3). We introduce the subspaces

(1.12) H+ = [e1, . . . , eN ], H− = [eN+1, eN+2 . . . ], N = [
√

κ]

of unstable and stable modes for equation (1.9).
Let Br(H1

0 (0, π)) = {y0(x) ∈ H1
0 (0, π) : ‖y0‖H1

0 (0,π) < r}. It is well-known,
that there exists r = r(ρ) < 1/ρ such that for each y0(x) ∈ Br(H1

0 (0, π)) there
exists a unique solution y(t, x) ∈ C(0, T ;H1

0 (0, π)) of problem (1.1)-(1.3), where T
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depends on initial condition y0 (see, for instance, Theorem 3.3.3 in [Hen]). We
denote by S(t, y0) the solution operator of the boundary value problem (1.1)-(1.3):

(1.13) S(t, y0) = y(t, ·)

where y(t, x) is the solution of (1.1)-(1.3).

1.2. Stable invariant manifold. In this subsection we recall some commonly
used definitions (see Chapter V in [BV]) adopted for our case.

The origin of the phase space H = H1
0 (0, π), i.e. the function y(x) ≡ 0, is,

evidently, a steady-state solution of problem (1.1)-(1.3). The set M− ⊂ H defined
in a neighborhood of the origin is called the stable invariant manifold if for each
y0 ∈ M− the solution S(t, y0) is well-defined and belongs to M− for each t > 0, and

(1.14) ‖S(t, y0)‖H1
0
≤ ce−rt as t →∞

where 0 < r < λN+1.
The stable invariant manifold can be defined as a graph in the phase space

H = H+ ⊕H− by the formula

(1.15) M− = {y− + F (y−), y− ∈ O(H−)}

where O(H−) is a neighborhood of the origin in the subspace H−, and

(1.16) F : O(H−) → H+

is a certain map satisfying

(1.17) ‖F (y−)‖H+/‖y−‖H− → 0 as ‖y−‖H− → 0.

So, in order to construct the invariant manifold M− we have to calculate the
map (1.16), (1.17).

1.3. Equation for F . Here we recall the derivation of the well-known equa-
tion for the map (1.16) that determines the invariant manifold M−.

First of all we introduce some notation. We rewrite equations (1.1),(1.2), using
definition (1.8) of the operator A, as follows:

(1.18) ∂ty(t) + Ay(t) + f(y(t)) = 0

We define the orthoprojectors

(1.19) P+ : H → H+, P− : H → H−

and introduce the notation

(1.20) P+y = y+, P−y = y−, P+S(t, y0) = S+(t, y0), P−S(t, y0) = S−(t, y0)

Taking into account that the spaces H+,H− are invariant with respect to e−At and
using notation (1.20) we can rewrite (1.18) as follows:

∂ty+(t) + Ay+(t) + P+f(y+(t) + y−(t)) = 0

∂ty−(t) + Ay−(t) + P−f(y+(t) + y−(t)) = 0
(1.21)

Let y0 ∈ M−. Then by (1.15) it has the form y0 = y− + F (y−). By definition of an
invariant manifold for each t ∈ R+ S(t, y0) ∈ M− or, what is equivalent,

S+(t, y− + F (y−)) = F (S−(t, y− + F (y−)))
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We differentiate this equation with respect to t and express the t-derivatives with
the help of equations (1.21). As a result we get:

AS+(t, y− + F (y−)) + P+f(S(t, y− + F (y−)))

=〈F ′(S−(t, y− + F (y−))), AS−(t, y− + F (y−))

+P−f(S+(t, y− + F (y−)) + S−(t, y− + F (y−)))〉
(1.22)

where by 〈F ′(z), h〉 we denote the value of derivative F ′(z) on vector h. Passing to
the limit in (1.22) as t → 0 we get the desired equation for F :

(1.23) AF (y−) + P+f(y− + F (y−)) = 〈F ′(y−), Ay− + P−f(y− + F (y−))〉

1.4. Equation for F in the basis {ek}. First of all we write equation (1.18)
in the basis {ek =

√
2/π sin kx}. Let

(1.24) y(t, x) =
∞∑

k=1

ŷ(t, k)ek(x)

be the Fourier decomposition of a solution y(t, x). After the substitution of (1.24)
into (1.18) and using the orthogonality of ek, ej for k 6= j in H1

0 (0, π) we get:
(1.25)

∂tŷ(t, ξ) + λkŷ(t, ξ) +
∞∑

k=2

fk

∞∑
η1=1

· · ·
∞∑

ηk=1

bk(ξ; η1, . . . , ηk)ŷ(t, η1) . . . ŷ(t, ηk) = 0

where

(1.26) bk(ξ; η1, . . . , ηk) = (2/π)
k+1
2

∫ π

0

sin ξx sin η1x . . . sin ηkx dx.

Below it will be important for us to distinguish the coordinates of vectors
belonging to H+ and to H−. To this end we denote the coordinates of vectors
from H+ by first letters of the Greek alphabet i.e. by α, β, . . . . The coordinates
of vectors from H− we denote by letters ξ, η, ζ, . . . that belong to the last part of
Greek alphabet. So

(1.27) H− 3 y− =
∞∑

η=N+1

ŷ(η)eη(x), H+ 3 F (y−) =
N∑

α=1

Fα(y−)eα(x)

Besides, we use the notation:

(1.28) (η1, . . . , ηj) = ηj ;
∑
ηj

=
∞∑

η1=N+1

· · ·
∞∑

ηj=N+1

;
∑
αj

=
N∑

α1=1

· · ·
N∑

αj=1

(1.29) ŷ(η1)ŷ(η2) . . . ŷ(ηj) = y(ηj), Fα1 · · · · · Fαj = Fαj

(To simplify notation we omit the sign ”hat” over y in the product y(ηj)). Using
notation (1.26),(1.28),(1.29), and (1.4) we get∫ π

0

sinαxf(y− + F (y−))dx =
∞∑

k=2

fk

k∑
j=0

Cj
k

∫ π

0

sinαx F j(y−) yk−j
− dx

=
∞∑

k=2

fk

k∑
j=0

Cj
k

∑
βj

∑
ηk−j

bk(α;βj , ηk−j)F βj
(y−) y(ηk−j)

(1.30)
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where Cj
k = k!

j!(k−j)! are the binomial coefficients. Equations (1.23), (1.27), (1.30)
yield:

(1.31) λαFα(y−) +
∞∑

k=2

fk

k∑
j=0

Cj
k

∑
βj

∑
ηk−j

bk(α;βj , ηk−j)F βj
(y−)y(ηk−j)

=
∞∑

ξ=N+1

∂Fα(y−)
∂ŷ(ξ)

λξ ŷ(ξ) +
∞∑

k=2

fk

k∑
j=0

Cj
k

∑
βj

∑
ηk−j

bk(ξ;βj , ηk−j)F βj
(y−)y(ηk−j)


where α = 1, . . . , N . Note that the term with j = 0 in the sums

∑k
j=0 from (1.31)

does not contain summation over βj , and F βj (y−) = 1 there.
Equation (1.31) is the equation (1.23) written in the basis {ej}.

2. Formal construction of the map F

In this section we look for the map F that defines the stable invariant man-
ifold M− in the class of analytical maps. We derive recurrence relations for the
coefficients of the map F in terms of power series.

2.1. Analytic maps. Let Hi be Hilbert spaces with scalar products (·, ·)i

and norms ‖ · ‖i where i = 1, 2. We denote by (H1)k = H1 × · · · × H1 (k times)
the direct product of k copies of H1 and by Fk : (H1)k → H2 a k-linear operator
Fk(h1, . . . , hk), i.e. the operator that is linear with respect to each variable hi, i =
1, . . . , k. Then

(2.1) ‖Fk‖ = sup
‖hi‖1=1,i=1,...,k

‖Fk(h1, . . . , hk)‖2

The restriction of k-linear operator Fk(h1, . . . , hk) to the diagonal h1 = · · · = hk =
h is called the power operator of order k:

(2.2) Fk(h) = Fk(h, . . . , h)

A k-linear operator Fk(h1, . . . , hk) is called symmetric if for each permutation
(j1, . . . , jk) of (1, 2, . . . , k)

Fk(hj1 , . . . , hjk
) = Fk(h1, . . . , hk)

Using derivatives one can restore the symmetric k-linear operator Fk(h1, . . . , hk)
from the power operator Fk(h).

We denote by O(H1) a neighborhood of the origin in the space H1. The map

(2.3) F : O(H1) → H2

is called analytic if it can be decomposed in the series

(2.4) F (h) = F0 +
∞∑

k=1

Fk(h)

where F0 ∈ H2 and Fk(h) are power operators of order k. The series (2.4) converges
if the numerical series ‖F0‖2 +

∑∞
k=1 ‖Fk(h)‖2 converges.
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Proposition 2.1. Let norms (2.1) of the power operator Fk(h) from (2.4)
satisfy

(2.5) ‖Fk‖ ≤ γρ−k

where γ > 0, ρ > 0 do not depend on k. 2 Then series (2.4) converges for each
h ∈ Bρ(H1) = {h ∈ H1 : ‖h‖1 < ρ}.

Proof. There exists ε > 0 such that ‖h‖1 ≤ ρ− ε. Then using (2.1), (2.5) we
get

‖F (h)‖2 ≤ ‖F0‖2 +
∞∑

k=1

‖Fk‖‖h‖k
1 ≤ γ

∞∑
k=1

(
ρ− ε

ρ
)k < ∞

�

Let us consider the special case when H1 = H−,H2 = H+ with Hilbert spaces
H−,H+ defined in (1.12). In this case the analytic map (2.3), (2.4) can be rewritten
as follows:

(2.6) F : O(H−) → H+, F (h−) =
∞∑

k=2

Fk(h−)

It is convenient to restrict ourselves to the case where F0 = 0, F1 = 0 because by
(1.17) the map F defining stable invariant manifold M− has precisely this form.

We decompose the vectors in H+ in the basis [e1, . . . eN ] and the vectors in H−
in the basis [eN+1, eN+2, . . . ] using notation (1.28), (1.29). We have

(2.7) F (h−) =
N∑

α=1

Fα(h−)eα =
N∑

α=1

∞∑
k=2

Fα
k (h−)eα

Using the decomposition

h− =
∞∑

η=N+1

h(η)eη

we get
Fα

k (h−) = Fα
k (h−, . . . , h−)

=
∞∑

η1=N+1

· · ·
∞∑

ηk=N+1

Fα
k (eη1 , . . . , eηk

)h(η1) . . . h(ηk)
(2.8)

Using the notation

(2.9) Fα
k (η1, . . . ηk) = Fα

k (eη1 , . . . , eηk
)

as well as the notation (1.28), (1.29) we can rewrite (2.8) as follows:

(2.10) Fα
k (h−) =

∑
ηk

Fα
k (ηk)h(ηk)

and the serie Fα(h−) from (2.7) in the following way:

(2.11) Fα(h−) =
∞∑

k=2

∑
ηk

Fα
k (ηk)h(ηk)

2For brevity we use for the power operator Fk(h) the norm (2.1) although an alternative
definition is possible (see details in Chapter 1 of [VF2])
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Let ZN+1 = {k ∈ Z : k ≥ N + 1}, Zr
N+1 = ZN+1 × · · · × ZN+1 (r times). For

each function K(η1, . . . , ηr) defined on Zr
N+1 we define the function σηrK(η1, . . . , ηr)

which is symmetric with respect to an arbitrary permutation (ηj1 , . . . , ηjr ) of vari-
ables (η1, . . . , ηr) by the formula:

(2.12) σηrK(η1, . . . ηr) =
1
r!

∑
(j1,...,jr)

K(ηj1 , . . . , ηjr
)

where the sum on the r.h.s. of (2.12) is over all permutations (j1, . . . , jr) of the set
(1, . . . , r).

Lemma 2.2. Let K(η1, . . . , ηr) be defined on Zr
N+1. Then

(a) The following equality is true:∑
ηr

K(η1, . . . , ηr)h(η1) . . . h(ηr) = σηr

∑
ηr

K(η1, . . . , ηr)h(η1) . . . h(ηr)

for any h(ηr) such that the series on the l.h.s. converges,
(b) For any function G(η1, . . . , ηr) which is symmetric in its arguments

(2.13) G(ηr)σηrK(ηr) = σηr [G(ηr)K(ηr)]

Furthermore

(2.14) sup
ηr

|σηrK(ηr)| ≤ sup
ηr

|K(ηr)|

(c) If all functions Fα
k (ηk) from (2.11) are symmetric in their arguments then

these functions are defined uniquely by values of the analytic functions
Fα(h−) from (2.11).

The proof of this Lemma is evident.

2.2. Calculation of Fα
2 (η2). We look for a solution Fα(y−), α = 1, . . . , N

of system (1.31) in the form (2.11). The aim of this section is to find recurrence
relations for the coefficients Fα

k (ηk) from (2.11). We rewrite (1.31) as follows:

λαFα(y−) +
∞∑

k=2

fk

∑
ηk

bk(α; ηk)y(ηk)

+
∞∑

k=2

fk

k∑
j=1

Cj
k

∑
βj

∑
ηk−j

bk(α;βj , ηk−j)F βj
(y−)y(ηk−j)

=
∞∑

ξ=N+1

∂Fα(y−)
∂ŷ(ξ)

λξ ŷ(ξ) +
∞∑

k=2

fk

∑
ηk

bk(ξ; ηk)y(ηk)

+
∞∑

k=2

fk

k∑
j=1

Cj
k

∑
βj

∑
ηk−j

bk(ξ;βj , ηk−j)F βj
(y−)y(ηk−j)



(2.15)
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and substitute (2.11) into (2.15). Then we get

λα

∞∑
p=2

∑
ηp

Fα
p (ηp)y(ηp) +

∞∑
k=2

fk

∑
ηk

bk(α; ηk)y(ηk)

+
∞∑

k=2

fk

k∑
j=1

Cj
k

∑
βj

∑
ηk−j

bk(α;βj , ηk−j)y(ηk−j)

×
∞∑

m1=2

∑
ζm1

F β1
m1

(ζm1)y(ζm1) · · ·
∞∑

mj=2

∑
ζm1

F βj
mj

(ζmj )y(ζmj )

=
∞∑

ξ=N+1

 ∂

∂ŷ(ξ)

∞∑
p=2

∑
ηp

Fα
p (ηp)y(ηp)

λξy(ξ) +
∞∑

k=2

fk

∑
ηk

bk(ξ; ηk)y(ηk)

+
∞∑

k=2

fk

k∑
j=1

Cj
k

∑
βj

∑
ηk−j

bk(ξ;βj , ηk−j)y(ηk−j)

×
∞∑

m1=2

∑
ζm1

F β1
m1

(ζm1)y(ζm1) · · ·
∞∑

mj=2

∑
ζm1

F βj
mj

(ζmj )y(ζmj )



(2.16)

In order to get recurrence relations for Fα
p (ηp) we have to equate the coefficients

of the monomials y(ηk) on left and right sides of (2.16). To do this in the general
case we first have to make essential transformations of (2.16). But in order to find
Fα

2 (η2) we do not need any serious preparation . Let us find it.
Note that the terms of the second order in y are contained only in the first and

second summands on the left side and in the first summand on the right side of
(2.16). They are as follows:

λα

∑
η2

Fα
2 (η2)y(η2) + f2

∑
η2

b2(α; η2)y(η2)

=
∞∑

ξ=N+1

 ∂

∂ŷ(ξ)

∑
η2

Fα
2 (η2)y(η2)

λξ ŷ(ξ)
(2.17)

Denote by I the right side of (2.17). Then

I =
∑
ξ,η2

Fα
2 (ξ, η2)λξy(ξ)y(η2) +

∑
η1,ξ

Fα
2 (η1, ξ)λξy(η2)y(ξ)

=
∑
η2

Fα
2 (η2)(λη1 + λη2)y(η1)y(η2)

(2.18)

Equalities (2.17), (2.18) imply:

(2.19) f2

∑
η2

b2(α; η2)y(η2) =
∑
η2

Fα
2 (η2)(λη1 + λη2 − λα)y(η1)y(η2)

By definition (1.26), b2(α, η1, η2) is symmetric with respect to η1, η2. Since by
definition Fα

2 (η1, η2) is symmetric in η1, η2, the function Fα
2 (η1, η2)(λη1 +λη2 −λα)
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is symmetric as well. Therefore by Lemma 2.2 equation (2.19) implies

(2.20) Fα
2 (η2) =

f2b2(α, η2)
λη1 + λη2 − λα

Note that since ηj ≥ N + 1 and α ≤ N, we have ληj
> 0, λα < 0 and therefore

(2.21) λη1 + λη2 − λα = |λη1 |+ |λη2 |+ |λα| > 0

2.3. Recurrence relation for Fα
q (ηq). First of all analogously to (2.17)-

(2.19) we transform the first terms of the right and left sides of (2.16):

∑
ξ

 ∂

∂y(ξ)

∞∑
p=2

∑
ηp

Fα
p (ηp)y(ηp)

λξ ŷ(ξ)− λα

∞∑
p=2

∑
ηp

Fα
p (ηp)y(ηp)

=
∞∑

p=2

∑
ηp

Fα
p (η1, . . . , ηp)(λη1 + · · ·+ ληp

− λα)y(ηp)

(2.22)

Let us now transform the third term on the left side of (2.16)

I3 ≡
∞∑

k=2

fk

k∑
j=1

Cj
k

∑
βj

∑
ηk−j

bk(α;βj , ηk−j)y(ηk−j)

×
∞∑

m1=2

∑
ζm1

F β1
m1

(ζm1)y(ζm1) · · ·
∞∑

mj=2

∑
ζm1

F βj
mj

(ζmj )y(ζmj )

=
∞∑

k=2

fk

k∑
j=1

Cj
k

∑
βj

∑
ηk−j

bk(α;βj , ηk−j)y(ηk−j)

×
∞∑

p=2j

∑
ζp

∑
m1+···+mj=p,

ml≥2

(F β1
m1

. . . F βj
mj

)(ζp)y(ζp)

(2.23)

We make on the right side of (2.23) the change of variables (k, j, p) → (q, j, p) with
q = k − j + p (q is a full power of y(ηk−j)y(ζp)). To do this we introduce the set
Qq of pairs (j, p) writing it in several forms:

Qq = {(j, p) ∈ Z2
+ : q + j − p ≥ 2, 1 ≤ j ≤ q + j − p, p ≥ 2j}

= {(j, p) ∈ Z2
+ : 2 ≤ 2j ≤ p ≤ q + j − 2, p ≤ q}

= {(j, p) ∈ Z2
+ : 1 ≤ j ≤ q − 2, 2j ≤ p ≤ min(q, q + j − 2)}.

(2.24)
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Now after applying aforementioned change of variables the r.s. of (2.23) can be
rewritten as follows:

I3 ≡
∞∑

q=3

∑
(j,p)∈Qq

Cj
q+j−pfq+j−p

∑
βj

∑
ηq−p,ζp

bq+j−p(α;βj , ηq−p)y(ηq−p)

×
∑

m1+···+mj=p,
mi≥2

F β1
m1

. . . F βj
mj

(ζp)y(ζp)

=
∞∑

q=3

∑
ηq

σηq

 ∑
(j,p)∈Qq

fq+j−pC
j
q+j−p

×
∑
βj

∑
m1+···+mj=p,

mi≥2

(bq+j−p(α;βj , ·)F β1
m1

. . . F βj
mj

)(ηq))y(ηq)



(2.25)

We now transform the second summand on r.s. of (2.16) analogously to (2.22):

J2 ≡
∑

ξ

 ∂

∂y(ξ)

∞∑
p=2

∑
ηp

Fα
p (ηp)y(ηp)

 ∞∑
k=2

fk

∑
ζk

bk(ξ; ζk)y(ζk)

=
∞∑

p=2

∞∑
k=2

fk

∑
ηp−1,ζk

p∑
l=1

∑
ξ

Fα
p (η1, . . . , ηl−1, ξ, ηl, . . . , ηp−1)

× bk(ξ; ζk)y(ηp−1)y(ζk)

=
∞∑

q=3

∑
p+k=q+1,

p,k≥2

fk

∑
ηq,ξ

p∑
l=1

Fα
p (η1, . . . , ηl−1, ξ, ηl+k, . . . , ηq)

× bk(ξ; ηl, ηl+1, . . . , ηl+k−1)y(ηq)

(2.26)
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Finally we transform the last summand on r.s. of (2.16):

J3 ≡
∑

ξ

 ∂

∂y(ξ)

∞∑
m=2

∑
ηm

Fα
m(ηm)y(ηm)


×

∞∑
k=2

fk

k∑
j=1

Cj
k

∑
βj

∑
ηk−j

bk(ξ;βj , ηk−j)y(ηk−j)

×
∞∑

m1=2

∑
ζm1

F β1
m1

(ζm1)y(ζm1) · · ·
∞∑

mj=2

∑
ζm1

F βj
mj

(ζmj )y(ζmj )

=
∞∑

k=2

fk

k∑
j=1

Cj
k

j + 1

∑
βj ,ξ

∂

∂y(ξ)

 ∞∑
p=2(j+1)

∑
ζp

y(ζp)

×
∑

m1+···+mj+1=p

(F β1
m1

. . . F βj
mj

Fα
mj+1

)(ζp)

∑
ηk−j

bk(ξ;βj , ηk−j)y(ηk−j)

=
∞∑

k=2

fk

k∑
j=1

Cj
k

j + 1

∑
βj

∞∑
p=2(j+1)

∑
ζp−1,ηk−j

∑
m1+···+mj+1=p

y(ηk−j)y(ζp−1)

×
p∑

l=1

∑
ξ

(F β1
m1

. . . Fα
mj+1

)(ζ1, . . . , ζl−1, ξ, ζl, . . . , ζp−1)bk(ξ;βj , ηk−j)

=
∞∑

k=2

fk

k∑
j=1

Cj
k

j + 1

∑
βj

∞∑
p=2(j+1)

∑
ζp+k−j−1

∑
m1+···+mj+1=p

×
p∑

l=1

∑
ξ

(F β1
m1

. . . Fα
mj+1

)(ζ1, . . . , ζl−1, ξ, ζl+k−j , . . . , ζp+k−j−1)

× bk(ξ;βj , ζl, . . . , ζl+k−j−1)y(ζp+k−j−1)

(2.27)

We now make the change of variables (k, j, p) → (q, j, p) where q = k−j+p−1,
i.e. q is the number of variables y : y(ζp+k−j−1) = y(ζq). Then

∞∑
k=2

k∑
j=1

∞∑
p=2(j+1)

=
∞∑

q=4

∑
(j,p)∈ bQq

where

Q̂q = {(j, p) ∈ Z2
+ : 1 ≤ j ≤ q + j − p + 1, q + j − p + 1 ≥ 2, p ≥ 2(j + 1)}

= {(j, p) ∈ Z2
+ : 4 ≤ 2(j + 1) ≤ p ≤ min(q + j − 1, q + 1)}

= {(j, p) ∈ Z2
+ : 1 ≤ j ≤ q − 3, 2(j + 1) ≤ p ≤ min(q + 1, q + j − 3)}.

(2.28)
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Therefore

J3 ≡
∞∑

q=4

∑
(j,p)∈ bQq

∑
ηq,ξ,βj

∑
m1+···+mj+1=p

fq+j−p+1

Cj
q+j−p+1

j + 1

×
p∑

l=1

(F β1
m1

. . . F βj
mj

Fα
mj+1

)(η1, . . . , ηl−1, ξ, ηl+q−p+1, . . . , ηq)

× bq+j−p+1(ξ;βj , ηl, . . . , ηl+q−p)y(ηq)

(2.29)

We substitute (2.22), (2.25), (2.26), (2.29) into (2.16). Then using the notation

(2.30) λη1 + · · ·+ ληq = ληq

we obtain:

(2.31)
∞∑

q=2

∑
ηq

Fα
q (ηq)(ληq − λα)y(ηq) = I3 − J2 − J3 +

∞∑
q=2

fq

∑
ηq

bq(α; ηq)y(ηq)

where I3, J2, J3 are equal to the right hand sides of (2.25), (2.26), (2.29) respectively.
By Lemma 2.2 setting equal in (2.31) the terms of the same order with respect to
y(ηq), we get the recurrence relations for the coefficients Fα

q (ηq):

Fα
3 (η3) = (λη3 − λα)−1{f3b3(α; η3) + f2ση3 [2

∑
β

b2(α;β, η1)F
β
2 (η2, η3)

−
∑

ξ

(Fα
2 (ξ, η3)b2(ξ; η1, η2) + Fα

2 (η1, ξ)b2(ξ; η2, η3))]}
(2.32)

and for q ≥ 4:

(2.33) Fα
q (ηq) = Aα

q (ηq) + Bα
q (ηq) + Cα

q (ηq) + Dα
q (ηq)

where (using the r.s. of (2.31))

(2.34) Aα
q (ηq) = (ληq − λα)−1fqbq(α; ηq),

(using the r.s. of (2.31) and (2.25))

Bα
q (ηq) = (ληq − λα)−1σηq [

∑
(j,p)∈Qq

fq+j−pC
j
q+j−p

×
∑
βj

∑
m1+···+mj=p,

ml≥2

bq+j−p(α;βj , ηq−p)(F β1
m1

. . . F βj
mj

)(ηp)]
(2.35)

where the set Qq is defined in (2.24). Using the r.s. of (2.31) and (2.26) we get:

Cα
q (ηq) = σηq

 ∑
p+k=q+1,

p,k≥2

p∑
l=1

∑
ξ

Fα
p (η1, . . . ηl−1, ξ, ηl+k, . . . , ηq)

× fkbk(ξ; ηl, . . . , ηl+k−1)
ληq − λα

]
(2.36)
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At last, using the r.s. of (2.31) and (2.29) we obtain:

Dα
q (ηq) =− σηq

 ∑
(j,p)∈ bQq

∑
ξ,βj

∑
m1+···+mj+1=p

fq+j−p+1C
j
q+j−p+1

(ληq − λα)(j + 1)

×
p∑

l=1

(F β1
m1

. . . F βj
mj

Fα
mj+1

)(η1, . . . ηl−1, ξ, ηl+q−p+1, . . . , ηq)

× bq+j−p+1(ξ;βj , ηl, . . . , ηl+q−p)
]

(2.37)

where the set Q̂q is defined in (2.28).

3. Analyticity of the map F

In this section we prove the convergence of the series (2.11) that defines the α-
coordinate of the map F (y−) = (F 1, . . . , FN ).

3.1. Norms for series. Here we define some norms which are used to prove
the convergence of series (2.11). Although they are not directly connected with
the Sobolev space H1

0 (0, π), they will help us prove the convergence of (2.11) in
H1

0 (0, π) as well. For Fk = (F 1
k (η1), . . . , FN

k (η1)) we set

(3.1) ‖Fk(ηk)‖ =
N∑

j=1

|Fα
k (ηk)|

and

(3.2) ‖Fk‖ = sup
ηk∈Zk

N+1

‖Fk(ηk)‖

where

(3.3) ZN+1 = {j ∈ Z+ : j ≥ N + 1}, Zk
N+1 = ZN+1 × · · · × ZN+1(k times).

The norms for functions bk(ξ;βj , ηk−j), bk(α;βj , ηk−j) defined in (1.26) are intro-
duced similarly:

(3.4) ‖bk‖(j) = sup
βj∈Zj

[1,N]

sup
ηk−j∈Zk−j

N+1

∞∑
ξ=N+1

|bk(ξ;βj , ηk−j)|, ‖bk‖ = max
1≤j≤k

‖bk‖(j)

(3.5) ‖|bk‖|(j) = sup
βj∈Zj

[1,N]

sup
ηk−j∈Zk−j

N+1

N∑
α=1

|bk(α;βj , ηk−j)|, ‖|bk‖| = max
1≤j≤k

‖|bk‖|(j)

where

(3.6) Z[1,N ] = {1, 2, . . . , N}, Zj
[1,N ] = Z[1,N ] × · · · × Z[1,N ] (j times)

In the case j = 0 the variable βj is absent in (3.4), (3.5) as well as if j = k, then
ηk−j is absent.

The goal of this section is to prove that the coefficients Fα
q (ηq) that are defined

by the recurrence relations (2.20), (2.32)-(2.37) satisfy the inequality

(3.7) ‖Fk‖ ≤ γ1ρ
−k
1

with some numbers γ1 > 0, ρ1 > 0 independent of k.
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The following Proposition shows that condition (3.7) is sufficient for the con-
vergence of the series

(3.8) F (y−) =
∞∑

k=2

∑
ηk

Fk(ηk)y(ηk)

in the ball

(3.9) Bρ1/rN
(H−) ≡ {y− ∈ H− : ‖y−‖H1

0 (0,π) < ρ1/rN}

of the space H− ⊂ H1
0 (0, π) defined in (1.12). Here

(3.10) rN =

 ∞∑
ξ=N+1

ξ−2

1/2

Proposition 3.1. Let the coefficients Fk(ηk) = F 1
k (ηk)e1 + · · ·+FN

k (ηk)eN of
series (3.8) satisfy (3.7) with γ1 > 0, ρ1 > 0 independent of k. Then series (3.8)
converges in the ball Bρ1/rN

where rN is the number that is defined in (3.10).

Proof. By the Cauchy- Bunyakovskii inequality

(3.11)
∞∑

ξ=N+1

|y(ξ)| ≤

 ∞∑
ξ=N+1

1
ξ2

1/2 ∞∑
ξ=N+1

ξ2|y(ξ)|2
1/2

Therefore if y− ∈ Bρ1/rN
(H−) then

∞∑
ξ=N+1

|y(ξ)| ≤ ρ1 − ε

with some ε > 0, and (3.7), (3.8) imply

‖F (y−)‖H+ ≤ c

∞∑
k=2

∑
ηk

‖Fk(ηk)‖|y(η1)| . . . |y(ηk)|

≤ c
∞∑

k=2

‖Fk‖

 ∞∑
ξ=N+1

|y(ξ)|

k

≤ cγ1

∞∑
k=2

(
ρ1 − ε

ρ1

)k

< ∞

�

3.2. Estimates for functions (1.26). Recall that
(3.12)

bk(α;βj , ηk−j) = (2/π)
k+1
2

∫ π

0

sinαx sinβ1x . . . sinβjx sin η1x . . . sin ηk−jx dx

(3.13)

bk(ξ;βj , ηk−j) = (2/π)
k+1
2

∫ π

0

sin ξx sinβ1x . . . sinβjx sin η1x . . . sin ηk−jx dx

where α, β1, . . . , βj ∈ Z[1,N ], ξ, η1, . . . , ηk−j ∈ ZN+1 and Z[1,N ], ZN+1 are defined
in (3.3), (3.6). In the case when j = 0 the sinβ1x . . . sinβjx are absent in (3.12),
(3.13). When j = k the terms sin η1x . . . sin ηk−jx are absent from these formulas.
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Lemma 3.2. Let bk(α, βj , ηk−j) be the function (3.12) and let ‖|bk‖| be defined
in (3.5). Then

(3.14) ‖|bk‖| ≤ (2/π)
k+1
2 πN

Proof. By definitions (3.12), (3.5), taking into account that ∀t ∈ R | sin t| ≤ 1
we get

‖|bk‖| =

= max
1≤j≤k

sup
βj

sup
ηk−j

N∑
α=1

(2/π)
k+1
2

∣∣∣∣∫ π

0

sinαx sinβ1x . . . sinβjx sin η1x . . . sin ηk−jx dx

∣∣∣∣
≤ (2/π)

k+1
2 πN

�

For the function (3.13) we define

(3.15) ‖bk(ξ;βj , ηk−j)‖ =
∞∑

ξ=N+1

|bk(ξ;βj , ηk−j)|

Lemma 3.3. For the function (3.15) the following inequality holds:

(3.16) ‖bk(·;βj , ηk−j)‖ ≤ (2/π)
k+1
2

π(k + 1)
2N

 ∑
1≤l≤j

β2
l +

k−j∑
m=1

η2
m


Proof. We rename (βj , ηk−j) as follows:

(3.17) (βj , ηk−j) = (β1, . . . , βj , η1, . . . , ηk−j) = (θ1, . . . , θj , θj+1, . . . , θk) = (θk)

Then by (3.13), (3.15), (3.17), after integrating by parts and simple estimates we
have

‖bk(·;βj , ηk−j)‖ = ‖bk(·; θk)‖

≤
∞∑

ξ=N+1

(2/π)
k+1
2

∣∣∣∣∫ π

0

sin ξx (sin θ1x . . . sin θkx) dx

∣∣∣∣
=

∞∑
ξ=N+1

(2/π)
k+1
2

1
ξ

∣∣∣∣∫ π

0

cos ξx
d

dx
(sin θ1x . . . sin θkx) dx

∣∣∣∣
=

∞∑
ξ=N+1

(2/π)
k+1
2

1
ξ2

∣∣∣∣∫ π

0

sin ξx
d2

dx2
(sin θ1x . . . sin θkx) dx

∣∣∣∣
≤

∞∑
ξ=N+1

(2/π)
k+1
2

π

ξ2

k∑
i,j=1

θiθj ≤ π (2/π)
k+1
2

k + 1
2N

k∑
i=1

θ2
i

(3.18)

Note that we used here that k ≥ 2. Now (3.16) follows from (3.18) (3.17). �
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3.3. Estimates of coefficients Fα
q (ηq). To get the desired estimates we use

the recurrence relations (2.33)-(2.37). Recall that by our notations ξ, ηj ≥ N + 1
and 1 ≤ α, βj ≤ N where N is defined in (1.10). Therefore by the definition (1.7)
of λk we get:

(3.19) λ
ηj − λα =

q∑
j=1

ληj
+ |λα| =

q∑
j=1

(η2
j − κ) + (κ− α2) ≥ (q + 1)λ̂

where λ̂ = min((N + 1)2 − κ, κ−N2) > 0.
By virtue of (1.5) (3.19), and (3.14), the coefficients Aα

q (ηq) from (2.34) can be
bounded as follows:

‖Aq‖ = sup
ηq

N∑
α=1

|Aα
q (ηq)| ≤ ((q + 1)λ̂)−1γρq (2/π)

q+1
2 πN

=
√

2πγN

(q + 1)λ̂

(
ρ
√

2/π
)q

(3.20)

To estimate Bα
q (ηq) from (2.35) we use (3.19), (2.14), and Lemma 3.2:

‖Bq‖ ≤ ((q + 1)λ̂)−1 sup
ηq

σηq

∑
(j,p)∈Qq

fq+j−pC
j
q+j−p

×
∑

m1+···+mj=p,
ml≥2

sup
βj

N∑
α

|bq+j−p(α;βj , ηq−p)|

×
∑
β1

|F β1
m1
| · · ·

∑
βj

|F βj
mj
|(ηq−p+1, . . . , ηq)

≤
√

2πγN

((q + 1)λ̂)

∑
(j,p)∈Qq

Cj
q+j−p

(
ρ
√

2/π
)q+j−p

×
∑

m1+···+mj=p,
ml≥2

‖Fm1‖ . . . ‖Fmj
‖

(3.21)

Using (2.13) and (3.16) with j = 0 we estimate Cα
q (ηq) from (2.36)

‖Cq‖ ≤ sup
ηq

σηq

∑
p+k=q+1,

p,k≥2

γρk

×
p∑

l=1

supξ ‖Fp(ηl−1, ξ, ηl+k, . . . , ηq)‖‖bk(·; ηl, . . . ηl+k−1)‖
(ληq − λα)

≤ sup
ηq

∑
p+k=q+1,

p,k≥2

γρk‖Fp‖
π(2/π)

k+1
2 (k + 1)

2N(ληq − λα)

p∑
l=1

k−1∑
m=0

|ηl+m|

(3.22)

Recall that by (1.10) N = [
√

κ] and set θ =
√

κ−N . Note that 0 < θ < 1 because
of (1.6). Then by virtue of (1.7)

(3.23) sup
η>N

η

λη
=

(N + 1)2

(N + 1)2 − (N + θ)2
=

(N + 1)2

(1− θ)(2N + 1 + θ))
≤ 2(N + 1)

3(1− θ)
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and therefore since p + k = q + 1

sup
ηq

∑p
l=1

∑k−1
m=0 |ηl+m|2

ληq − λα
≤ sup

ηq

k
∑q

l=1 |ηl|2

ληq − λα

≤ 2k(N + 1)
3(1− θ)

sup
ηq

ληq

ληq + |λα|
≤ 2k(N + 1)

3(1− θ)

(3.24)

Estimates (3.22), (3.24) imply the bound

(3.25) ‖Cq‖ ≤
√

2π(N + 1)γ
3N(1− θ)

∑
p+k=q+1,

p,k≥2

‖Fp‖k(k + 1)(ρ
√

2/π)k

At last, let us estimate Dα
q (ηq) defined in (2.37). Using (2.13), (1.5) we obtain

‖Dq‖ ≤ sup
ηq

σηq

∑
(j,p)∈ bQq

γρq+j−p+1Cj
q+j−p+1

×
∑

m1+···+mj+1=p

‖Fm1‖ . . . ‖Fmj+1‖

×
p∑

l=1

sup
βj

‖bq+j−p+1(·;βj , ηl, . . . ηl+q−p)‖
(j + 1)(ληq − λα)

(3.26)

Let us estimate the last factor of the r.s. in (3.26). Using (3.16), (3.24), (3.19) we
get:

sup
ηq

σηq

p∑
l=1

sup
βj

‖bq+j−p+1(·;βj , ηl, . . . ηl+q−p)‖
(j + 1)(ληq − λα)

≤
√

π/2(
√

2/π)q+j−p+1 q + j − p + 2
N

sup
ηq

σηq

jN2p +
∑p

l=1

∑q−p
m=0 |ηl+m|

(j + 1)(ληq − λα)

≤
√

2π(N + 1)(
√

2/π)q+j−p+1(q + j − p + 1)

×

(
jp

(j + 1)(q + 1)λ̂
+

2(q − p + 1)
3(1− θ)(j + 1)

)

≤ C1(
√

2/π)q+j−p+1(q + j − p + 1)
(

1 +
q − p + 1

j + 1

)
(3.27)

where C1 depends only on κ (see (1.10)) i.e. on the data of the problem.
Equalities (3.26), (3.27) imply:

‖Dq‖ ≤ C2

∑
(j,p)∈ bQq

(ρ
√

2/π)q+j−p+1Cj
q+j−p+1(q + j − p + 1)

×
(

1 +
q − p + 1

j + 1

) ∑
m1+···+mj+1=p

‖Fm1‖ . . . ‖Fmj+1‖
(3.28)

where C2 depends on the data of the problem only.
As a result we have proved the following theorem.
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Theorem 3.4. The coefficients Fα
q (ηq) defined by recurrence relations (2.33)-

(2.37) satisfy the estimate:

‖Fq‖ ≤ Ĉ

σq +
∑

(j,p)∈Qq

Cj
q+j−p+1σ

q+j−p
∑

m1+···+mj+1=p,
ml≥2

‖Fm1‖ . . . ‖Fmj+1‖

+
∑

p+k=q+1,
p,k≥2

k(k + 1)σk‖Fp‖

+
∑

(j,p)∈ bQq

(q + j − p + 1)
(

1 +
q − p + 1

j + 1

)
σq+j−p+1Cj

q+j−p+1

×
∑

m1+···+mj+1=p

‖Fm1‖ . . . ‖Fmj+1‖



(3.29)

where q ≥ 4, σ = ρ
√

2/π, the constant Ĉ depends on κ, γ only (see (1.5), (1.10)),
and the sets Qq, Q̂

q are defined in (2.24), (2.28).

Inequality (3.29) follows directly from (2.33), (3.20), (3.21), (3.25), (3.28).

Remark 3.5. Inequality (3.29) should be complemented with the analogous
bound for q = 2 that follows immediately from (2.20), (1.5), (3.14), (3.19):

(3.30) ‖F2‖ ≤ Ĉσ2.

Moreover, formulae (2.32), (1.5), (3.14), (3.19) imply the estimate for Fα
3 :

(3.31) ‖F3‖ ≤ Ĉ(σ3 + 9σ2‖F2‖).

where Ĉ and σ are the same as in (3.29).

3.4. Convergence of serie (2.6). We now are in a position to prove the
convergence of the serie (2.6) for the map F (y−) that determines the stable invariant
manifold. For this purpose we define the majorants ϕq for the coefficients Fα

q (ηq)
using recurrence relations (3.29)-(3.31):

(3.32) ϕ2 = Ĉσ2, ϕ3 = Ĉ(σ3 + 9σ2ϕ2)

ϕq = Ĉ

σq +
∑

(j,p)∈Qq

Cj
q+j−p+1σ

q+j−p
∑

m1+···+mj+1=p,
ml≥2

ϕm1 . . . ϕmj

+
∑

p+k=q+1,
p,k≥2

k(k + 1)σkϕp

+
∑

(j,p)∈ bQq

(q + j − p + 1)
(

1 +
q − p + 1

j + 1

)
σq+j−p+1Cj

q+j−p+1

×
∑

m1+···+mj+1=p

ϕm1 . . . ϕmj+1

 , q ≥ 4

(3.33)
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where the constants Ĉ, σ and sets Qq, Q̂
q are as in (3.29).

Formulas (3.29)-(3.33) imply that

(3.34) ‖Fq‖ ≤ ϕq ∀q ≥ 2.

Thus to prove convergence of the series (2.6) in a neighborhood of the origin, it is
enough to prove the inequalities

(3.35) ϕq ≤ γ1ρ
−q
1 ∀q ≥ 2.

with some positive constants γ1, ρ1 independent of q.

Theorem 3.6. There exist constants γ1 > 0, ρ1 > 0 such that for each q ≥ 2
inequality (3.35) holds.

Proof. As in Theorem 1.1 of Chapter I in [VF2] we introduce the formal
series

(3.36) ϕ(t) =
∞∑

q=2

ϕqt
q

and prove that it defines an analytic function for t belonging to a neighborhood of
origin in C. To prove this we plan to derive en equation for ϕ(t) and after that
apply to this equation the Implicit Function Theorem.

We multiply both parts of equations (3.32), (3.33) by tq and sum the obtained
equalities over q ≥ 2. Then we get

∞∑
q=2

ϕqt
q = Ĉ

 ∞∑
q=2

σqtq +
∞∑

q=3

tq
∑

(j,p)∈Qq

Cj
q+j−p+1σ

q+j−p

×
∑

m1+···+mj+1=p

ϕm1 . . . ϕmj

+
∞∑

q=3

tq
q−1∑
p=2

(q − p + 1)(q − p + 2)σq−p+1ϕp

+
∞∑

q=4

tq
∑

(j,p)∈ bQq

(q + j − p + 1)(q + j − p + 2)
j + 1

× σq+j−p+1Cj
q+j−p+1

∑
m1+···+mj+1=p

ϕm1 . . . ϕmj+1

 .

(3.37)

Making the change of variables (q, j, p) → (k, j, p), q = k − j + p and using
the definition of Qq in (2.24), we do the following transformation with the first and
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second sums on the right side of (3.37):

∞∑
q=2

σqtq +
∞∑

q=3

tq
∑

(j,p)∈Qq

Cj
q+j−pσ

q+j−p
∑

m1+···+mj+1=p

ϕm1 . . . ϕmj

=
∞∑

q=2

σktk +
∞∑

k=2

tk
k∑

j=1

Cj
kσkt−j

∞∑
p=2j+2

tp
∑

m1+···+mj+1=p

ϕm1 . . . ϕmj

=
∞∑

q=2

(σt)k +
∞∑

k=2

(σt)k
k∑

j=1

Cj
kt−j

( ∞∑
m=2

ϕmtm

)j

=
∞∑

q=2

(σt)k +
∞∑

k=2

(σt)k[(1 + ϕ(t)/t)k − 1]

=
∞∑

k=2

(σt)k(1 + ϕ(t)/t)k =
(σt)2(1 + ϕ(t)/t)2

1− σt(1 + ϕ(t)/t)

(3.38)

Changing the order of summation and after that changing variables (q, p) → (q, k)
with k = q − p + 1 we transform the third sum on the r.s. of (3.37) as follows:

∞∑
q=3

tq
q−1∑
p=2

(q − p + 1)(q − p + 2)σq−p+1ϕp

=
∞∑

p=2

∞∑
q=p+1

tq(q − p + 1)(q − p + 2)σq−p+1ϕp

=
∞∑

p=2

ϕp

∞∑
k=2

tk+p−1k(k + 1)σk =
ϕ(t)

t

∞∑
k=2

k(k + 1)(σt)k

(3.39)

At last, using definition (2.28) of Q̂q we make transformation of the forth sum
from r.s. in (3.37) by changing the variables (q, j, p) → (k, j, p), q = k − j + p− 1:

∞∑
q=4

tq
∑

(j,p)∈ bQq

(q + j − p + 1)(q + j − p + 2)
j + 1

Cj
q+j−p+1σ

q+j−p+1

×
∑

m1+···+mj+1=p

ϕm1 . . . ϕmj+1

=
∞∑

k=2

k∑
j=1

tk−j−1 k(k + 1)
j + 1

k!
j!(k − j)!

σk

×
∞∑

p=2j+2

tp
∑

m1+···+mj+1=p

ϕm1 . . . ϕmj+1

=
∞∑

k=2

k(σt)k
k∑

j=1

Ck+1
j+1 (ϕ(t)/t)j+1

=
∞∑

k=2

k(σt)k[(1 + (ϕ(t)/t))k+1 − (k + 1)ϕ(t)/t− 1]

(3.40)
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Substitution of the right sides of (3.38), (3.39) (3.40) into (3.37) yields the
equality
(3.41)

ϕ(t) = Ĉ

(
(σt)2(1 + ϕ(t)/t)2

1− σt(1 + ϕ(t)/t)
+

∞∑
k=2

k(σt)k(1 + (ϕ(t)/t))k+1 −
∞∑

k=2

k(σt)k

)
Applying the equality

∞∑
k=2

kαk = α∂γ

∞∑
k=2

αk = α∂γ
α2

1− α
=

α2(2− α)
(1− α)2

to the second and third sums from right side of (3.41) we get

ϕ(t) = Ĉ

(
(σt)2(1 + ϕ(t)/t)2

1− σt(1 + ϕ(t)/t)

+ (1 + ϕ(t)/t)3
(σt)2(2− σt(1 + ϕ(t)/t))

(1− σt(1 + ϕ(t)/t))2
− (σt)2(2− σt)

(1− σt)2

)(3.42)

Making the change of variable µ(t) = ϕ(t)/t in (3.42) we obtain the equality

(3.43) G(µ(t), t) = 0

where
(3.44)

G(µ, t) = µ− Ĉσ2t

(
(1 + µ)2

1− σt(1 + µ)
+

(1 + µ)3(2− σt(1 + µ))
(1− σt(1 + µ))2

− (2− σt)
(1− σt)2

)
Since G(0, 0) = 0, ∂G(µ,t)

∂µ |(µ,t)=(0,0) = 1 we can apply to (3.43) the Implicit Func-
tion Theorem and claim that there exists a unique solution µ(t) of equation (3.43),
defined for small t. Moreover, since function (3.44) is analytic in a neighborhood
of origin in C2, this solution µ(t) is analytic in a neighborhood of origin in C. This
implies analyticity of ϕ(t) = tµ(t) that proves (3.35). �

Now we are in a position to prove the main theorem of this section.

Theorem 3.7. Let the coefficient κ and the function f in problem (1.1)-(1.3)
satisfy (1.6) and (1.4), (1.5) respectively. Then the map (2.6) that defines the stable
invariant manifold (1.15) is analytic in a neighborhood O(H−) of the origin in the
space H−.

Proof. We have to prove that the serie (2.6) converges for each

(3.45) h− ∈ Bρ0(H−) = {h− ∈ H− : ‖h‖H1(0,π) < ρ0}

with certain ρ0 > 0. By virtue of Proposition 3.1 this can be reduced to establishing
inequalities (3.7) for norms (3.1), (3.2) of the coefficients Fk(ηk) from (3.8). By (3.9)
the number ρ1 from (3.7) is related with ρ0 from (3.45) by the equality ρ1 = ρ0rN

where rN =
∑∞

ξ=N+1 ξ−2 and N is defined in (1.10). By virtue of Theorem 3.4
these norms ‖Fk‖ satisfy inequality (3.34) with ϕk defined in (3.32), (3.33). Finaly,
inequalities (3.35) proved in Theorem 3.6 and bounds (3.34) imply (3.7). �

Remark 3.8. One of the essential conditions allowing to prove Theorem 3.7,
i.e. to prove analyticity of invariant manifold (1.15)-(1.17) is the condition

(3.46) ληq − λα 6= 0
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called the absence of a resonance. Indeed each term on right sides of the recurrence
relations (2.33)-(2.37) determining the coefficients Fq(ηq) of series (2.11) contains
the factor (ληq − λα)−1 . In the case considered in this paper condition (3.46) is
true because λα < 0 and each summand ληj

of ληq = λη1 + · · ·+ ληq
is positive.

Remark 3.9. The unstable invariant manifold is defined by the following for-
mulas analogous to (1.15)-(1.17):

(3.47) M+ = {y+ + G(y+), y+ ∈ O(H+)}

where O(H+) is a neighborhood of the origin in the subspace H+, and

(3.48) G : O(H+) → H−

is a certain map satisfying

(3.49) ‖G(y+)‖H−/‖y+‖H+ → 0 as ‖y+‖H+ → 0.

To prove the analyticity of G we use a differential equation for G analogous to
(1.23) by means of this we derive recurrence relations for the coefficients Gq(αq) of
series

G(y+) =
∞∑

k=2

∑
αk

Gk(αk)y(αk)

(Recall that we use notation (1.28), (1.29) here.) These recurrence relations contain
the factor (λαq − λη)−1. Since λαq = λα1 + · · ·+ λαq

with λαj
< 0 for j = 1, . . . , q

and λη > 0, we have λαq − λη 6= 0. In other words in this case the resonances are
absent, and therefore using the technique of this paper one can prove the analyticity
of G(y+).

Remark 3.10. Let change the definition (1.12) of the subspaces H+,H− as
follows:

(3.50) H+ = [e1, . . . , eN+k0 ], H− = [eN+k0+1, eN+k0+2 . . . ], N = [
√

κ]

Using (3.50) we define M− similarly to (1.15)-(1.17). Then the corresponding map
F will be analytic. Indeed, in this case condition (3.46) for the absence of resonance
holds because each summand ληj

of ληq = λη1 + · · ·+ ληq
is greater than λα, and

to prove the analyticity of F one simply has to repeat arguments of this paper.
From the other hand it is impossible to guarantee that the invariant manifold

(3.47)-(3.49) corresponding to (3.50) is analytic because in this case the resonance
condition

(3.51) λλq − λη = 0

can take place since summands λαj
of λαq = λα1 + · · ·+λαq

can be positive as well
as negative.

Remark 3.11. Note that methods of this paper essentially use special form
of eigenfunctions of operator (1.8). Therefore results of this paper can be auto-
matically generalized on the case when problem (1.1)-(1.3) is defined on rectangle
{x ∈ (0, π)n} and ∂2y/∂x2 is changaed on ∆y. Besides, straightforward generaliza-
tion on the case of a BVP with periodic boundary conditions is possible. Moreover,
this BVP can be more general, than the BVP considered in this paper.

In fact a natural generalization on the many-dimensional case of the problem
considered here is when the problem (1.1)-(1.3) is defined on arbitrary bounded
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domain Ω ⊂ Rn with a smooth boundary. This generalization as well as general-
ization from singular point ẑ ≡ 0 to the case of arbitrary singular point ẑ can be
made but for this additional tools should be used. These generalizations will be
made elsewhere.
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