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INPUT DATA AND UNBOUNDEDNESS OF STABLE
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Abstract. Local existence theorem of smooth solution v(t, ·), t ∈ R+ for 3D

Navier-Stokes equations is proved, when initial data belongs to a certain un-

bounded ellipsoid of suitable function space. Unboundedness of stable invari-
ant manifolds for 3D Navier-Stokes equations is proved as well.

Introduction

One of the main aim of this paper is to establish unboundedness of stable in-
variant manifold for dissipative evolution PDE. This property can help to weaken
assumption of closeness to a steady-state mode v̂(x) for a solution v(t, x) when
v(t, x) is stabilized near v̂. Unboundedness of stable invariant manifold M− was
first observed by analyzing recurrence relations obtained in [F1], [F2] for coefficients
of decomposition in a series of a map determining manifold M−.

Subsequent investigations found out that real reasons of this phenomenon are not
connected with analyticity property. Moreover, it turned out that smooth solutions
of these equations determined for times t ∈ R+ as usual exist not only for initial
data belonging to a ball of sufficiently small radius, but also for initial conditions
belonging to a certain unbounded set of the corresponding function space. This
existence theorem is true for a wide class of dissipative evolution PDE.

In this paper aforementioned fact is established for 3D evolution Navier-Stokes
equations defined in a bounded domain Ω with a smooth boundary. In section 1
it is proved that in the space V 1 of initial data, that consists of divergence free
vector fields square integrable together with their first derivatives, there exists such
unbounded ellipsoid El

1/2
ρ that for each initial datum v0 ∈ El1/2ρ smooth solution

v(t, x), t ∈ R+, x ∈ Ω of Navier-Stokes system exists, and

‖v(t, ·)‖V 1 ≤ c‖v0‖V 1e−σt, t ∈ R+

where constants σ > 0, c > 0 do not depend on v0 ∈ El1/2ρ .
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After some preliminaries given in section 2, unboundedness of stable invariant
manifolds for Navier-stokes equations has been proved in Section 3, and these man-
ifolds are defined with help of ellipsoid El

1/2
ρ . In sections 4, 5 some auxiliary

assertions are proved, that are used in the main part of the paper.
It is my pleasure to thank Professor A.V.Babin for useful discussions.

1. Unique Solvability of 3D Navier-Stokes System with Initial Data
from an Unbounded Ellipsoid

In these section we prove existence and uniqueness of a smooth solution for the
3D Navier-Stokes boundary value problem with zero right side and initial datum
belonging to certain unbounded ellipsoid. In addition we prove that this solution
decays exponentially with increasing time.

1.1. Setting of the problem. Let Ω ⊂ R3 be a bounded domain with C∞-
boundary ∂Ω, Q = R+×Ω, S = R+×∂Ω. We consider in Q the following boundary
value problem for 3D Navier-Stokes equations:

∂tv(t, x)−∆v(t, x) + (v,∇v) +∇p(t, x) = 0, (t, x) ∈ Q, (1.1)

div v(t, x) = 0, (t, x) ∈ Q (1.2)

v(t, x) = 0, (t, x) ∈ S (1.3)

v(t, x)|t=0 = v0(x), x ∈ Ω (1.4)

Here ∂tv = ∂v/∂t, v(t, x) = (v1(t, x), v2(t, x), v3(t, x)) is unknown velocity vector
field, ∇p(t, x) is a pressure gradient , (v,∇v) =

∑3
j=1 vj∂v/∂xj , v

0(x) is a given
initial datum for v.

Recall definition of function spaces where problem (1.1)-(1.4) is considered. We
set

V 0(Ω) = {v(x) ∈ (L2(Ω))3 : div v = 0, v · ν|∂Ω = 0}; ‖v‖V 0(Ω) = ‖v‖L2(Ω) (1.5)

where ν = ν(x), x ∈ ∂Ω is the vector field of outer normals to ∂Ω; relations div v =
0, v · ν|∂Ω = 0 are understood in the sense of distributions theory (see [T] for
details). Introduce also the spaces

V 1(Ω) = {v(x) ∈ (H1(Ω))3 : div v = 0, v|∂Ω = 0}; ‖v‖V 1(Ω) = ‖∇v‖L2(Ω) (1.6)

V 2(Ω) = V 1(Ω) ∩ (H2(Ω))3; ‖v‖V 2(Ω) = ‖∆v‖L2(Ω) (1.7)

where Hk(G) is the Sobolev space of functions belonging to L2(G) together with
all their derivatives up to the order k, the norm in Hk(Ω) is defined as follows:

‖ϕ‖Hk(Ω) =

∑
|α|≤k

∫
Ω

|Dαϕ(x)|2dx

1/2

where α = (α1, α2, α3), αj are nonnegative integer, |α| = α1 + α2 + α3, D
α =

∂|α|/∂xα1
1 . . . ∂xα3

3 . As well-known, ‖ · ‖V k(Ω) is equivalent on V k(Ω) to ‖ · ‖Hk(Ω)

for k = 0, 1, 2.
Let {ej(x), λj , j = 1, 2, . . . } be eigenfunctions and eigenvalues of the following

spectral problem for the Stokes operator:

−∆e(x) +∇p(x) = λe(x), div e = 0, x ∈ Ω; e|∂Ω = 0 (1.8)
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As well-known, 0 < λ1 ≤ λ2 ≤ . . . , λj → ∞ as j → ∞, and {ej(x)} forms
orthonormal basis in V 0(Ω):

∀v ∈ V v(x) =
∞∑
j=1

vjej(x), where vj = (v, ej)V 0(Ω), ‖v‖2V 0(Ω) =
∞∑
j=1

|vj |2

For each s ∈ R we introduce the space V s by the formula

V s =

v(x) =
∞∑
j=1

vjej(x), vj ∈ R : ‖v‖2s =
∞∑
j=1

λsj |vj |2 <∞

 (1.9)

It is well-known (see, for instance [F3], Ch.3,Sect.4) that

V s = V s(Ω), and ‖v‖s = ‖v‖V s(Ω) for s = 0, 1, 2 (1.10)

where V s is defined in (1.9), and V 0(Ω), V 1(Ω), V 2(Ω) are spaces (1.5), (1.6), (1.7).
We will look for solution v(t, x) of problem (1.1)-(1.4) in certain spaces from the

following family:

V 1,2(s) = {v(t, ·) ∈ L2(R+;V s+2) : ∂tv(t, ·) ∈ L2(R+;V s)} (1.11)

Note that the following inequality holds (see [F3]):

‖v‖L∞(R+;V 1+s) ≤ 2‖v‖V 1,2(s) (1.12)

Assuming that initial condition (1.4) satisfies v0 ∈ V 1(Ω), we look for component
v(t, x) of solution (v,∇p) for (1.1)-(1.4) in he space V 1,2(Q) = V 1,2(0). To get rid
of component ∇p of solution (v,∇p) we introduce the orthoprojector

π : (L2(Ω))3 −→ V 0(Ω) (1.13)

Applying operator π to both parts of equation (1.1) one can reduce problem (1.1)-
(1.4) to the following one:

∂tv(t, ·) +Av +B(v, v) = 0, v|t=0 = v0 ∈ V 1(Ω) (1.14)

where

A = −π∆, B(v, w) = π

 3∑
j=1

vj
∂w

∂xj

 (1.15)

Details of this reduction see, for instance, in [F3], Ch. 3, Sect, 4. Just there one
can also find the proof of the following assertion:

Lemma 1.1. Operator B(v, w) defined in (1.15) is continuous in the following
spaces:

B : V s1 × V s2+1 −→ V −s3 , B : V s1 × V s3 −→ V −s2−1 (1.16)

where sj ≥ 0, j = 1, 2, 3 and

either
3∑
j=1

sj >
3
2
, or

3∑
j=1

sj ≥
3
2
, and si + sj > 0 ∀i 6= j (1.17)

It is well-known (see, for instance, [VF]) that if v0 ∈ Bρ(V 1) = {w ∈ V 1 :
‖w‖V 1 < ρ}, and ρ is small enough then there exists unique solution v(t, ·) ∈ V 1,2(0)

of problem (1.14). Our goal is to show that similar result is true even if v0 belongs
to a certain unbounded set Elγ(1/2) ⊂ V 1.
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1.2. Formulation of the result. Let us consider the set

Elαρ = {v =
∞∑
j=1

vjej(x) ∈ V 1 :
∞∑
j=1

λ1−α
j v2

j < ρ} (1.18)

where ρ > 0, α ∈ [0, 1]. This set is unbounded ellipsoid in V 1. Indeed, by definition
(1.9) of V s, ‖vjej‖2V 1 = λjv

2
j , anf therefore (1.18) can be rewritten as follows

Elαρ = {v ∈ V 1 :
∞∑
j=1

‖vjej‖2V 1/(λαj ρ) < 1} (1.19)

This formula means that Elαρ is ellipsoid in V 1 with axises of length
√
λαj ρ directed

along ej . Since
√
λαρ→∞ as j →∞, Elαρ is an unbounded set.

The following theorem holds:

Theorem 1.1. If ρ is sufficiently small, then for each v0 ∈ El
1/2
ρ there exists

unique solution v(t, ·) ∈ V 1,2(0) of problem (1.14). Moreover,

‖v(t, ·)‖V 1 ≤ c‖v0‖V 1e−σt as t→∞ (1.20)

with constants σ ∈ (0, λ1), c > 0 independent of time t > 0 and datum v0 ∈ El1/2ρ .
Here λ1 > 0 is the first eigenvalue in spectral problem (1.8).

The rest of this section is devoted to the proof of this theorem.

1.3. Transformation of equation and choice of the functions space. In
order to prove estimate (1.20) we make the following change in (1.14):

y(t, x) = eσtv(t, x) with σ ∈ (0, λ1). (1.21)

Note that in virtue of definition (1.15) of operator A

Aej = λjej ∀j ∈ N (1.22)

where {ej(x), λj} are eigenfunctions and eigenvalues of problem (1.8). Substitution
of (1.21) into (1.14) yields

∂ty(t, ·) +A1y(t, ·) + e−σtB(y(t, ·), y(t, ·)) = 0, y|t=0 = v0, (1.23)

where A1 = A− σE, and E is identity operator. In virtue of (1.22)

A1ej = (λj − σ)ej ∀j ∈ N, (1.24)

and since σ ∈ (0, λ1), λj − σ > 0. Thus A1 is a positively defined operator as well
as A.

Local existence theorems are proved usually with help of the Inverse Map The-
orem (which is a corollary of Implicit Function Theorem). In order to apply the
Inverse Map Theorem to solve problem (1.23), we have to choose function spaces
for (1.23) by such a way that nonlinear operator B̂(y) ≡ e−σtB(y, y) becomes sub-
ordinated to the linear part (∂ty +A1y, γ0y) of (1.23) where γ0y = y|t=0.

As well-known, operator

(∂t +A1, γ0) : V 1,2(s) → L2(R+;V s)× V 1+s (1.25)

realizes isomorphism of the spaces for each s ∈ R (see [S], [VF], [F3]). From the
other side, operator

B̂(·) : V 1,2(s) → L2(R+;V s)× V 1+s
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is continuous for each s ≥ −1/2 (see [F4], [F3]). The last fact follows easily from
Lemma 1.1. So to apply Inverse Map Theorem for solution of problem (1.23) we
should consider operator generated by (1.23) in the following spaces:

(∂t +A1 + B̂, γ0) : V 1,2(s) → L2(R+;V s)× V 1+s, s ≥ −1/2 (1.26)

1.4. Application of Inverse Map Theorem. Here and everywhere below for
Banach space X and quantity ρ > 0 we denote by Θρ(X) = {x ∈ X : ‖x‖X < ρ}
the ball in X of radius ρ with center in origin.

Let Y,Z be Banach spaces, Ψ : Y → Z be a map of class C2. To solve equation

Ψ(y) = z (1.27)

one can use the Inverse Map Theorem (see, for instance, [ATF]):

Theorem 1.2. If Ψ(0) = 0, and derivative Ψ′(0) : Y → Z realizes isomorphism,
then for sufficiently small ρ > 0 there exists a C2-map Φ : Θρ(Z) → Y that is
inverse to Ψ i.e. Ψ(y) = z ⇔ Φ(z) = y for each z ∈ Θρ(Z).

Note that Theorem 1.2 proof contains the proof of the following assertion:

∃δ(ρ)→ 0 as ρ→ 0 such that Φ(Θρ(Z)) ⊂ Θδ(ρ)(Y ) (1.28)

To prove existence of solution for (1.23) we apply Theorem 1.2 as follows: We
take Y = V 1,2(−1/2), Z = L2(R+;V −1/2)×V 1/2,Ψ(y) = (∂ty+A1y+B̂(y), γ0y). As
was shown in the very end of previous subsection this map satisfies all conditions of
aforementioned theorem and therefore for each v0 ∈ Θρ(V 1/2) there exists unique
solution y ∈ V 1,2(−1/2) of problem (1.23). Moreover, by (1.28)

‖y‖V 1,2(−1/2) ≤ δ(ρ)→ 0 as ρ→ 0. (1.29)

Note that by definition (1.9) of V s ellipsoid (1.19) with α = 1/2 can be rewritten
as follows:

El1/2ρ = {v0 ∈ V 1 : ‖v‖1/2 < ρ} = Θρ(V 1/2) ∩ V 1 (1.30)

and therefore we have proved that for each v0 ∈ El1/2ρ there exists unique solution
y ∈ V 1,2(1/2) of problem (1.23). To finish the proof of Theorem 1.1 we have to show
that y ∈ V 1,2(0) and v linked with y by relation (1.21) satisfies inequality (1.20).

1.5. The main estimate. First of all we note that Lemma 1.1 implies the inequal-
ity

‖B(y, z)‖0 ≤ c‖y‖1‖z‖3/2 (1.31)

Bound (1.31), (1.12) imply estimate

‖B(y, y)‖L2(R+;V 0) ≤ c‖y‖L∞(R+;V 1)‖y‖L2(R+;V 3/2)) ≤ c‖y‖V 1,2(0))‖y‖V 1,2(−1/2)).

(1.32)
Inverting operator (1.25) in problem (1.23) we get that solution y of (1.23) sat-

isfies the equality

y(t, ·) = e−A1tv0 −
∫ t

0

e−A1(t−τ)e−στB(y(τ, ·), y(τ, ·)) dτ (1.33)

Using boundedness of operator (1.25) and inequalities (1.32),(1.29) we estimate y
by right side of (1.33):

‖y‖2V 1,2(0) ≤ c1(‖v0‖V 1 +‖B(y, y)‖L2(R+;V 0)) ≤ c1(‖v0‖V 1 +cδ(ρ)‖y‖V 1,2(0)). (1.34)
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At last assuming that ρ is so small that 1− c1cδ(ρ) > 0 we get from (1.34) the final
estimate for each t > 0:

‖y(t, ·)‖V 1 ≤ c2‖y‖V 1,2(0) ≤
c1c2

1− cc1δ(ρ)
‖v0‖V 1 (1.35)

After substitution into (1.35) expression (1.21) of y by v we obtain desired estimate
(1.20).

2. Stable Invariant Manifold

In this section we recall certain notion connected with stable invariant manifolds
for Navier-Stokes equations.

2.1. Input system. Instead of (1.1)-(1.4) we consider the problem for 3D Navier-
Stokes system with right side f(x) ∈ V 0(Ω):

∂tv(t, x)−∆v(t, x) + (v,∇v) +∇p(t, x) = f(x), div v(t, x) = 0, (2.1)

v(t, x)|x∈∂Ω = 0, v(t, x)|t=0 = v0(x) (2.2)
Similarly to reduction of problem (1.1)-(1.4) to (1.14) we reduce problem (2.1) to
the following one applying to both sides of the first equation in (2.1) operator π
from (1.13):

∂tv(t, ·) +Av +B(v, v) = f(·), v(t, ·)|t=0 = v0 (2.3)
where A,B are operators (1.15). To solve this problem we introduce the space
similar to (1.11) but composed from vector fields defined on cylinderQT = (0, T )×Ω
bounded in time:

V 1,2(s)(QT ) = {v(t, ·) ∈ L2(0, T ;V s+2) : ∂tv(t, ·) ∈ L2(0, T ;V s} (2.4)

Since f ∈ V 0(Ω), v0 ∈ V 1(Ω), natural space for solutions of problem (2.1), (2.2) is
V 1,2(0)(QT ) and natural phase space for corresponding dynamical system is V 1(Ω).

Let steady-state solution v̂(x) ∈ V 2(Ω) of (2.1), i.e. solution of problem

Av̂ +B(v̂, v̂) = f (2.5)

be given.
To study the structure of the dynamical system (2.3) in a neighborhood of v̂(x)

we make the change of unknown functions in (2.3):

v(t, x) = v̂(x) + y(t, x) (2.6)

After substitution (2.6) into (2.3) and taking into account (2.5) we get:

∂ty(t, x) + Ây(t, x) +B(y(t, x), y(t, x)) = 0, (2.7)

y(t, x)|t=0 = y0(x) = v0(x)− v̂(x), (2.8)
where

Ây = Ay +B(v̂, y) +B(y, v̂). (2.9)

Let us consider operator Â : V 0(Ω) → V 0(Ω) and its adjoint operator Â∗. These
operators are closed and and their domains of definition are D(Â) = D(Â∗) = V 2

(see (1.7)). The spectrum Σ(Â),Σ(Â∗) of operators Â, Â∗ are discrete subsets of C
consisting of eigenvalues only, that belong to a sector symmetric with respect to R
and containing R+. Moreover Σ(Â) = Σ(Â∗) (see [F5]).

The linearization of problem (2.7), (2.8) at zero has the form

∂ty(t, x) + Ây(t, x) = 0, y(t, x)|t=0 = y0(x) (2.10)
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For each y0 ∈ V 0 the solution y(t, ·) of (2.10) is defined by equality y(t, ·) = e−Âty0

where e−Ât is the resolving semigroup of problem (2.10).
Let σ > 0 satisfy:

Σ(Â) ∩ {λ ∈ C : 0 < Reλ ≤ σ} = ∅ (2.11)

The case when there are certain points of Σ(Â) which are located in the left side
of the set {0 < Reλ ≤ σ} will be interesting for us because the contrary case is
similar to the situation considered in previous section.

Denote by V 0
+(Â) the subspace of V 0(Ω) generated by all eigenfunctions and

associated functions of operator Â corresponding to all eigenvalues of Â placed in
the set {λ ∈ C : Reλ ≤ 0}. By V 0

+(Â∗) we denote analogous subspace corresponding
to operator Â∗. We denote the orthogonal complement to V 0

+(Â∗) in V 0(Ω) by
V 0
−(Â) ≡ V 0

−:
V 0
− = V 0(Ω)	 V 0

+(Â∗) (2.12)
For each s ∈ R we set

V s− = V 0
− ∩ V s if s ≥ 0; V s− = closure of V 0

− in V s(Ω) for s < 0 (2.13)

Let V s+ = V 0
+(Â), s ∈ R, i.e. finite-dimensional space V s+ as set does not depend on

s. It is convenient for us to set on each V s+ a norm ‖ · ‖+ common for every s ∈ R.
We can do it because on finite-dimensional space all norms are equivalent. (Norm
‖ · ‖+ will be chosen by more concrete way in Appendix II (see (5.11)). Thus

V s+ = V 0
+(Â), s ∈ R supplied with ‖ · ‖+ (2.14)

One can show (see [F5]) that subspaces V s+, V
s
− are invariant with respect to the

action of semigroup e−Ât and

V s(Ω) = V s− + V s+ ∀ s ∈ R (2.15)

We change definition (1.9) assuming now that norm in V s, s ∈ R is defined as
follows:

‖v‖V s = ‖v−‖V s− + ‖v‖+, where v = v− + v+, v− ∈ V s−, v+ ∈ V s+ (2.16)

and ‖ · ‖V s− = ‖ · ‖s where ‖ · ‖s is defined in (1.9).

2.2. Definition of stable invariant manifold. As we note in previous subsec-
tion, natural space for solution of problem (2.7), (2.8) is V 1,2(0)(QT ) (see (2.4)),
and in virtue of (1.12) natural phase space for corresponding dynamical system is

V = V 1(Ω) (2.17)

It is well-known (see [LS], [BV]), that for each y0 ∈ V there exists a unique solution
y(t, x) ∈ V 1,2(0)(QT‖v0‖) of problem (2.7),(2.8), where 0 < T‖v0‖ → ∞ as ‖v0‖ ≡
‖v0‖V → 0. We denote by S(t, y0) the solution operator of the boundary value
problem (2.7),(2.8):

S(t, y0) = y(t, ·) (2.18)
where y(t, x) is the solution of (2.7),(2.8).

Recall now some commonly used definitions of stable invariant manifold (see
Chapter V in [BV]) adopted for our case.

The origin of the phase space V , i.e. the function y(x) ≡ 0, is, evidently, a
steady-state solution of problem (2.7),(2.8).
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Definition 2.1. The set M− ⊂ V defined in a neighborhood of the origin is called
the stable invariant manifold if for each y0 ∈M− the solution S(t, y0) is well-defined
and belongs to M− for each t > 0, and

‖S(t, y0)‖V ≤ c‖y0‖V e−σt as t→∞ (2.19)

where quantities c > 0, σ > 0 does not depend on y0 ∈M−.

In accordance with (2.15), (2.16), (2.17) the following decomposition is true:

V = V− + V+ where V− = V 1
−, V+ = V 1

+ (2.20)

The stable invariant manifold can be defined as a graph in the phase space
V = V+ + V− by the formula

M− = {y ∈ V : y = y− + g(y−), y− ∈ O(V−)} (2.21)

where O(V−) is a neighborhood of the origin in the subspace V−, and

g : O(V−)→ V+ (2.22)

is a certain map satisfying

‖g(y−)‖+/‖y−‖V− → 0 as ‖y−‖V− → 0. (2.23)

2.3. Existence of invariant manifold M−. Let us define the metric space where
we look for the map g that defines stable invariant manifold M− by formula (2.21).
We assume that g(y−) is defined on the ball

Θρ(V−) = {y− ∈ V− : ‖y−‖V− ≤ ρ} (2.24)

Definition 2.2. The metric space Gµ,ρ ≡ Gµ(Θρ(V−)) is the space of maps g :
Θρ(V−)→ V+ that are Frechet differentiable for each y− ∈ Θρ(V−) and their deriva-
tives g′(y−) satisfy Lipschitz condition

‖g′(y1)− g′(y2)‖ ≤ µ‖y1 − y2‖V− ∀y1, y2 ∈ Θρ(V−). (2.25)

where Lipschitz constant µ is unique for all g ∈ Gρ,µ. Moreover, g ∈ Gρ,µ satisfy
conditions

g(0) = 0, g′(0) = 0. (2.26)
The metric d(g1, g2) in Gµ,ρ is defined as follows:

d(g1, g2) = sup
y∈Θρ(V−)\{0}

‖g1(y)− g2(y)‖+
‖y‖V−

(2.27)

Theorem 2.1. The metric space Gµ,ρ is complete with respect to metric (2.27).

This theorem has been proved in Appendix II below.
Now we are in position to formulate existence theorem for invariant manifold

M−:

Theorem 2.2. There exists unique map g ∈ Gρ,µ where µ > 0 is sufficiently large
and ρ > 0 is sufficiently small 1 such that the set M− defined by formula (2.21) is
stable invariant manifold for family of maps S(t, ·) defined in (2.18). Moreover,

‖S(t, y0)‖V ≤ ce−σt‖y0‖V as t→∞ (2.28)

where constants c > 0, σ > 0 do not depend on y0 ∈M−
1Precise conditions imposed on µ and ρ are written below, in Theorem 5.2 formulation (see

(5.19))
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This theorem as well as method of its proof is well-known (see [LS], [MM], [Hen],
[BV] and references there in). It is proved below in Appendix II (see Theorem 5.2
and Remark 5.1) in a form more convenient for our aims than known for us proofs
in literature.

3. Unboundedness of stable invariant manifold M−

We extend domain Θρ(V−) of functions belonging to metric space Gµ,ρ up to the
following set:

El1/2ρ (V−) = El1/2ρ ∩ V− (3.1)

where El
1/2
ρ is ellipsoid (1.18) with α = 1/2 and V− = V 1

− is the space (2.13)
with s = 1. Now we determine the space Gµ(El1/2ρ (V−)) of functions defined on
El

1/2
ρ (V−) similarly to Gµ,ρ ≡ Gµ(Θρ(V−)): new metric space differs from Gµ,ρ only

with domain of definition of composing functions. Theorem 2.2 can be strengthen
by the following way.

Theorem 3.1. There exists unique map g ∈ Gµ(El1/2ρ (V−)) where µ > 0 is suffi-
ciently large, ρ > 0 is sufficiently small, and µρ ≤ 1 2 such that the set M− defined
by formula (2.21) is stable invariant manifold for family of maps S(t, ·) defined in
(2.17). Moreover

‖S(t, y0)‖V ≤ ce−σt‖y0‖V as t→∞ (3.2)

where constants c > 0, σ > 0 do not depend on y0 ∈M−.

Proof. Theorem 2.2 is formulated in the case when phase space of family S(t, ·) is
V = V 1. Opportunity to prove Theorem 2.2 with such choice of phase space is based
on the fact that the the corresponding space V 1,2(0)(Qt) of solutions for (2.7),(2.8)
satisfies the property: the nonlinear part B of equation (2.7) is continuous in the
spaces where its linear part establishes isomorphism:

(B, 0) : V 1,2(0)(QT )→ L2(0, T ;V 0)× V 1

(∂t + Â, γ0) : V 1,2(0)(QT )→ L2(0, T ;V 0)× V 1

This allows to prove local existence theorem for (2.7),(2.8) in V 1,2(0)(QT ) and after
that to prove Theorem 2.2 (see [LS], [BV], and Appendix II below). But as was
mentioned in (1.26) not only the space V 1,2(0)(QT ) but also spaces V 1,2(−s)(QT ),
for each s ∈ [0, 1/2] possess this property. That is why Theorem 2.2 can be proved
when phase space for S(t, ·) is V = V 1/2 which is connected with solutions space
V 1,2(−1/2)(QT ) (see Appendix II below).

So invariant manifold can be defined with a certain map g ∈ Gµ(Θρ(V
1/2
− )). But

in virtue of (1.18),(3.1)

El1/2ρ (V−) = Θρ(V
1/2
− ) ∩ V 1 (3.3)

Therefore a map g ∈ Gµ(El1/2ρ (V−)) that defines the stable invariant manifold M−
by formula (2.21) has been constructed. Moreover by Theorem 2.2 with phase space
V = V 1/2 the inequality

‖S(t, y0)‖V 1/2 ≤ ce−σt‖y0‖V 1/2 as t→∞ (3.4)

2Bound ρµ ≤ 1 follows from condition (5.19) that actually are imposed on µ, ρ in Theorems
2.2 and 3.1
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for each y0 ∈ M− is also established. To finish the proof of Theorem 3.1 we have
to prove bound (3.2) where V = V 1.

Let introduce the projection operators

Π− : V s → V s−, Π+ : V s → V s+, s ∈ R (3.5)

Definition of V s−, V
s
+ (see (2.12)–(2.16) and few lines around these relations) implies

that Π−,Π+ does not depend on s. 3 Let denote

Π±y0 = y±, Π±S(t, ·) = S±(t, ·), Π±Â = Â±, Π±B = B± (3.6)

Using definition (2.14)-(2.16) of V s+, V
s and inclusion S+(t, y0) ∈ V s+, s = 1, 1/2 for

all t > 0 we have taking into account (3.4) that

‖S+(t, y0)‖V 1 = ‖S+(t, y0)‖V 1/2 ≤ ‖S(t, y0)‖V 1/2 ≤ ce−σt‖y0‖V 1/2 (3.7)

That is why in virtue of inequality

‖S(t, y0)‖V 1 ≤ ‖S+(t, y0)‖V 1 + ‖S−(t, y0)‖V 1

in order to prove (3.2) it is enough to estimate ‖S−(t, y0)‖V 1 .
We can rewrite (2.7) as follows:

∂ty−(t) + Â−y−(t) +B−(y−(t) + y+(t), y−(t) + y+(t)) = 0,

∂ty+(t) + Â+y+(t) +B+(y−(t) + y+(t), y−(t) + y+(t)) = 0,
(3.8)

where y±(t) = Π±y(t) = S±(t, y0). Invariance of manifold (2.21) means that

y+(t) = g(y−(t)) ∀ t > 0 if y+ = g(y−) at t = 0 (3.9)

Relations (3.8),(3.9) give closed equation for y−(t) that describes solution y(t) be-
longing to M− of problem (2.7), (2.8):

∂ty−(t) + Â−y−(t) +B−(y−(t) + g(y−(t)), y−(t) + g(y−(t))) = 0, (3.10)

y−(t)|t=0 = y− ∈ El1/2ρ (V−) (3.11)

We make change in equation (3.10) (compare with (1.21)):

z(t) = eσ1ty−(t) with σ1 ∈ (0, σ) (3.12)

Then problem (3.10), (3.11) transforms to the following one:

∂tz(t) + Â1z(t) + e−σ1tB−(w(t), w(t)) = 0, w(t) = z(t) + eσ1tg(e−σ1tz(t)) (3.13)

z(t)|t=0 = y− (3.14)

where
Â1z = Â−z − σ1z (3.15)

Let
V

1,2(s)
− = Π−V 1,2(s) (3.16)

where Π−, V 1,2(s) are defined in (3.5), (1.11) correspondingly. Recall that the
space V s− is defined in (2.13). The following theorem holds.

3More precisely, Π−,Π+ can be expressed by explicit formulas constructed only with help of

duality between V s and V −s generated by scalar product in L2(Ω) and using fixed basis functions

of spaces V 0
+(Â) and V 0

+(Â∗)
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Theorem 3.2. Let s ∈ [−1/2, 0]. Operator

(∂t + Â1, γ0) : V 1,2(s)
− → L2(R+;V s−)× V 1+s

− (3.17)

is reversible, and its inverse operator is defined by the formula

(∂t + Â1, γ0)−1(y−, f) = e−Â1ty− +
∫ t

0

e−Â1(t−τ)f(τ, ·) dτ (3.18)

The proof of this theorem is given below, in Appendix I.
Inverting operator (3.17) in problem (3.13), (3.14)we get

z(t) = e−Â1ty− −
∫ t

0

e−Â1(t−τ)e−σ1τB−(w(τ), w(τ)) dτ, (3.19)

where
w(t) = z(t) + eσ1tg(e−σ1tz(t)) (3.20)

We will use

Lemma 3.1. Let f : X → Y be differentiable map in Banach spaces X,Y with
derivative f ′(x) satisfying Lipschitz condition

‖f ′(x)− f ′(y)‖ ≤ γ‖x− y‖X (3.21)

with Lipschitz constant γ independent on x ∈ X. Suppose that f(0) = 0, f ′(0) = 0.
Then

‖f ′(x)‖ ≤ γ‖x‖X , ‖f(x)‖ ≤ γ

2
‖x‖2X (3.22)

Proof. The first inequality in (3.22) follows from (3.21) with y = 0 and relation
f ′(0) = 0. It is easy to see that

f(x) =
∫ 1

0

f ′(λx)[x] dλ = lim
N→∞

N∑
k=1

1
N
f ′
(
k

N
x

)
[x]

= lim
N→∞

N∑
k=1

1
N

k−1∑
j=0

(
f ′
(
k − j
N

x

)
[x]− f ′

(
k − j − 1

N
x

)
[x]
)

Therefore in virtue of (3.21) we get

‖f(x)‖Y ≤ lim
N→∞

N∑
k=1

1
N

k−1∑
j=0

∥∥∥∥f ′(k − jN
x

)
− f ′

(
k − j − 1

N
x

)∥∥∥∥ ‖x‖X
≤ lim
N→∞

N∑
k=1

1
N

k−1∑
j=0

γ

N
‖x‖2X = γ lim

N→∞

N(N + 1)
2N2

‖x‖2X =
γ

2
‖x‖2X

�

Let us show that if g ∈ Gµ(Θρ(V
1/2
− )), ‖z(t)‖

V
1/2
−
≤ ρ ∀t > 0 then the function

w(t) defined in (3.20) can be estimated as follows

‖w(t)‖s ≤ (1 +
1
2
λ

1−2s
4

1 )‖z(t)‖s with s =
1
2
, 1,

3
2

(3.23)
11



where λ1 is the first eigenvalue from problem (1.8). Indeed, using Lemma 3.1,
inclusion g ∈ Gµ(Θρ(V

1/2
− )), and relation µρ ≤ 1 we get

‖w(t)‖1 ≤ ‖z‖1+
e−σ1tµ

2
‖z(t)‖21/2 ≤ ‖z(t)‖1

(
1 +

µρλ
−1/4
1

2

)
≤ (1+

1
2
λ
−1/4
1 )‖z(t)‖1

Bounds (3.23) with s = 1/2 and s = 3/2 are proved similarly.
Using boundedness of inverse operator for (3.17), Lemma 1.1, and relations (3.4),

(3.12), (3.23) with s = 1/2, s = 3/2 we get for z(t) from (3.19)

‖z‖V 1,2(−1/2) ≤ c(‖y−‖1/2 + ‖B(w,w)‖L2(R+;V −1/2))

≤ c(ρ+ c1‖w‖L∞(R+;V 1/2)‖w‖L2(R+;V 3/2))

≤ c(ρ+
3c1
4

(2 + λ
−1/2
1 )‖z‖L∞(R+;V 1/2)‖z‖L2(R+;V 3/2))

≤ c(ρ+ c2 sup
t≥0

e(σ1−σ)t‖y−‖1/2‖z‖V 1,2(−1/2)) ≤ c(ρ+ c2ρ‖z‖V 1,2(−1/2))

(3.24)

Assuming that ρ is so small that 1− cc2ρ > 0 we obtain from (3.24)

‖z‖V 1,2(−1/2) ≤
cρ

1− cc2ρ
(3.25)

Similarly to (3.24) using (1.31), (3.23) with s = 1 and s = 3/2 we get

‖z‖V 1,2(0) ≤ c(‖y−‖1 + ‖B(w,w)‖L2(R+;V 0))

≤ c(‖y−‖1 + c1‖w‖L∞(R+;V 1)‖w‖L2(R+;V 3/2))

≤ c(‖y−‖1 +
c1
4

(2 + λ
−1/4
1 )(2 + λ

−1/2
1 )‖z‖L∞(R+;V 1)‖z‖L2(R+;V 3/2))

≤ c(‖y−‖1 + c2‖z‖V 1,2(0)‖z‖V 1,2(−1/2)) ≤ c‖y−‖1 +
c2c2ρ

1− cc2ρ
‖z‖V 1,2(−1/2)

(3.26)

Assuming that ρ is so small that c2c2ρ < (1− cc2ρ) we obtain from (3.26)

‖z(t)‖V 1 ≤ c3‖z‖V 1,2(0) ≤ cc3
(

1− c2c2ρ

1− cc2ρ

)−1

‖y−‖V 1 (3.27)

Relations (3.27), (3.12), (3.7) imply (3.2). �

4. Appendix I. Proof of Theorem 3.2

The proof of operator (3.17) reversibility is, evidently, reduced to establishing of
operator (3.18) boundedness. We first estimate the second term in the right side of
(3.18).

4.1. Estimate of the last term in (3.18). First of all we bound resolvent for
operator −Â1.

Lemma 4.1. Let s ∈ [−1/2, 0]. 4 There exists a constant c > 0 such that for each
ξ ∈ R

‖(iξI + Â1)−1f‖V s+2
−

+ ξ2‖(iξI + Â1)−1f‖V s− ≤ c‖f‖
2
V s−

(4.1)

where Â1 is operator (3.15), and I is identity operator.

4Restriction on s in this Lemma is connected with smoothness condition imposed on v̂(x) from

definition (3.15),(2.9) of operator Â1. In fact for v̂ ∈ V 2 assertion of Lemma 4.1 holds for less
restriction on s than s ∈ [−1/2, 0].

12



Proof. Instead of Â1 we consider first the operator A = −π∆. Since ‖ · ‖V s− = ‖ · ‖s,
by definition (1.9) of the norm ‖ · ‖s of the space V s we get:

‖(iξI +A)y‖2s =
∞∑
j=1

|iξ + λj |2λsj |yj |2 = ‖y‖2s+2 + ξ2‖y‖2s (4.2)

In virtue of (3.15), (2.9), (1.15)

Â1y −Ay = B(v̂, y) +B(y, v̂)− σ1y. (4.3)

Applying Lemma 1.1 we get

‖Â1y −Ay‖s = ‖B(v̂, y) +B(y, v̂)− σ1y‖s ≤ c‖y‖s+3/2 (4.4)

with c > 0 independent of y. Then (4.4) implies

‖(iξ+A)y‖2s ≤ (‖(iξ+Â1)y‖s+‖Â1y−Ay‖s)2 ≤ 2‖(iξ+Â1)y‖2s+2c2‖y‖2s+3/2. (4.5)

Since by definition (1.9) of ‖ · ‖s

c2‖y‖2s+3/2 ≤ c
2‖y‖1/2s ‖y‖

3/2
s+2 ≤

27c8

4
‖y‖2s +

1
4
‖y‖2s+2

we obtain from (4.5), (4.2) that

‖(iξ + Â1)y‖2s ≥
1
2
‖(iξ +A)y‖2s − c2‖y‖2s+3/2 ≥

1
4
‖y‖2s+2 +

(
ξ2

2
− 27c8

4

)
‖y‖2s

≥ 1
4

(‖y‖2s+2 + ξ2‖y‖2s) if |ξ| >
√

27c4

(4.6)

Since by definition of operator Â1 the set {λ ∈ C : λ = iξ, ξ ∈ [−
√

27c4,
√

27c4]}
belongs to resolvent set of −Â1 there exists a constant c1 > 0 such that

‖(iξ + Â1)y‖2s ≥ c1‖y‖2s+2 if |ξ| ≤
√

27c4. (4.7)

By definition (1.9) ‖v‖s+2 ≥ λ1‖v‖s where λ1 is the minimal eigenvalue of problem
(1.8). That is why

‖y‖2s+2 ≥
1
2

(‖y‖2s+2+
λ2

1

27c8
ξ2‖y‖2s) ≥ min {1

2
,
λ2

1

54c8
}(‖y‖2s+2+ξ2‖y‖2s) if |ξ| ≤

√
27c4

(4.8)
Inequalities (4.6), (4.7), (4.8) imply (4.1) �

Lemma 4.2. For operator

(Rf)(t) =
∫ t

0

e−Â1(t−τ)f(τ) dτ (4.9)

the following estimate holds:

‖Rf‖
V

1,2(s)
−

≤ c‖f‖L2(R+;V s−), s ∈ [−1/2, 0] (4.10)

where c > 0 does not depend on f .

Proof. Let

F (t) =

{
f(t), t ≥ 0
0, t < 0

; E(t) =

{
e−Â1t, t ≥ 0
0, t < 0

Then by (4.9)
Rf(t) = (E ∗ F )(t) (4.11)

13



Applying to both parts of (4.11) Fourier transform ĝ(ξ) =
∫

R e
−itξg(t) dt we get:

(R̂f)(ξ) = (Ê ∗ F )(ξ) = Ê(ξ)F̂ (ξ) = (iξI + Â1)−1F̂ (ξ), (4.12)

since Ê(ξ) = (iξI + Â1)−1. 5 Then in virtue of (4.11), (4.12), Parseval equality,
and Lemma 4.1 we get

‖Rf‖
V

1,2(s)
−

=
∫ ∞
−∞

(
‖(iξI + Â1)−1F̂ (ξ)‖2s+2 + ξ2‖(iξI + Â1)−1F̂ (ξ)‖2s+2

)
dξ

≤ c1
∫ ∞
−∞
‖F̂ (ξ)‖2s dξ ≤ c‖f‖2L2(R+;V s−)

�

4.2. Estimate of the first term in r.s.of (3.18). Operator e−Â1t can be deter-
mined by the formula (see [Hen], [F5], p. 275):

e−Â1t = (2πi)−1

∫
γ

(λI + Â1)−1eλt dλ (4.13)

where γ is a contour belonging to resolvent set ρ(−Â1) of −Â1 : V s− → V s−, s ∈
[−1/2, 0] such that arg λ = ±θ for λ ∈ γ, |λ| > N for certain θ ∈ (π/2, π) and for
sufficiently large N . Moreover, γ ⊂ {λ ∈ C : Re λ < 0} and γ surrounds spectrum
Σ(−Â1) of −Â1 : V s− → V s− from the right.

Lemma 4.3. Let s ∈ [−1, 0]. For resolvent of operator −Â1 : V s− → V s− the
following estimate holds:

‖(λI + Â1)−1f‖V s+2
−
≤ c

|λ|+ 1
‖f‖V 1+s

−
, λ ∈ γ (4.14)

where γ is the contour from (4.13), and constant c > 0 does not depend on f ∈ V s+1
−

and on λ ∈ γ.

For s = −1 this lemma has been proved in [F5], p.289-290. This proof can be
easily generalized on the case s ∈ [−1, 0] with help of arguments of Lemma 4.1.

Lemma 4.4. Let Â1 : V 0
− → V 0

− be operator defined in (3.15), (2.9), (1.15). Then
for s ∈ [−1/2, 0]

‖e−Â1tv0‖V 1,2(s)
−

≤ c‖v0‖V 1+s
−

(4.15)

where c does not depend on v0 ∈ V s+1
−

Proof. Let γ be the contour from (4.13) defined before Lemma 4.3 formulation.
Then γ = γ1 ∪ γ2 ∪ γ3 where

γ1 = {λ = −µ(1 + iν) : µ > N}, γ2 = {λ = −µ(1− iν) : µ > N},
γ3 = γ ∩ {|λ| ≤ N |1 + iν|}

(4.16)

where ν ∈ (0, 1) is a fixed number as well as sufficiently large N > 0. Then

e−Â1t =
3∑
j=1

Ij(t), where Ij(t) = (2πi)−1

∫
γj

(λI + Â1)−1eλt dλ, j = 1, 2, 3 (4.17)

5Derivation of this formula is based on equality d
dt
e−Â1t = −Â1e−Â1t and the property that

spectrum of operator Â1 : V 0
− → V 0

− belongs to the set {λ ∈ C : Re λ > 0}.
14



Using (4.17), (4.14) we get∫ ∞
0

‖I1(t)v0‖2s+2 dt ≤ c
∫ ∞

0

(∫ ∞
N

‖(−µ(1 + iν)I + Â1)−1v0‖s+2e
−µt dµ

)2

dt

≤ c1‖v0‖2s+1

∫ ∞
0

(∫ ∞
N

e−µt

1 + µ
dµ

)2

dt

≤ c1‖v0‖2s+1

∫ ∞
N

dµ

(1 + µ)3/2

∫ ∞
N

∫ ∞
0

e−2µt dt
dµ

(1 + µ)1/2
≤ c2‖v0‖2s+2

(4.18)

Similarly we obtain ∫ ∞
0

‖I2(t)v0‖2s+2 dt ≤ c‖v0‖2s+1 (4.19)

Since contour γ3 is compact and we can choose λ0 > 0 such that Re λ ≤ −λ0 for
each λ ∈ γ3, the following bound is true by (4.14):∫ ∞

0

‖I3(t)v0‖2s+2 dt ≤ c
∫ ∞

0

e−λ0t

(∫
γ3

‖(λI + Â1)−1v0‖s+2 |dλ|
)2

dt ≤ c‖v0‖2s+1

(4.20)
Relations (4.18)-(4.20) imply∫ ∞

0

‖e−Â1tv0‖2s+2 dt ≤ c‖v0‖2s+1 (4.21)

Since d
dte
−Â1tv0 = −Â1e

−Â1tv0, we get by (4.3),(4.21):∫ ∞
0

‖ d
dt
e−Â1tv0‖2s dt ≤ c

∫ ∞
0

(‖Ae−Â1tv0‖2s + ‖e−Â1tv0‖2s+1) dt

≤ c
∫ ∞

0

‖e−Â1tv0‖2s+2 dt ≤ c‖v0‖2s+1

(4.22)

The bound (4.15) follows from (4.21), (4.22). �

Now Theorem 3.2 follows from Lemmas 4.2, 4.4.

5. Appendix II. Existence of stable invariant manifold

Here we prove existence of stable invariant manifold in such phase spaces that are
more convenient for proof of the main Theorem 3.1 than spaces used in literature,
for instance in [BV].

5.1. Completeness of metric space Gµ,ρ. Recall that spaces V s−, V
s
+, V

s are
defined in (2.13) - (2.16) correspondingly. We suppose that V = V s+1, V− =
V s+1
− , V+ = V s+1

+ with arbitrary fixed s ∈ [−1/2, 0], and in particular Gµ,ρ ≡
Gµ(Θρ(V−)), where V− = V s+1

− (See Definition 2.2)

Lemma 5.1. For each g ∈ Gµ,ρ

‖g(u+ h)− g(u)− g′(u)[h]‖+ ≤
µ

2
‖h‖2V− ∀u, u+ h ∈ Θρ(V−) (5.1)
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Proof. Evidently

g(u+ h)− g(u)− g′(u)[h] =
∫ 1

0

(
d

dλ
g(u+ λh)− g′(u)[h]

)
dλ

=
∫ 1

0

(g′(u+ λh))[h]− g′(u)[h]) dλ

(5.2)

Estimate of (5.2) with help of (2.25) yields (5.1) �

Proof. of Theorem 2.1. Suppose that {gk} is a Cauchy sequence in Gµ,ρ with
respect of metric (2.27). Then there exists unique g ∈ C(Θρ(V−);V+) satisfying

‖g − gk‖C(Θρ(V−);V+) = sup
v∈Θρ(V−)

‖g − gk‖+ → 0 as k →∞, (5.3)

and g(0) = 0 since gk(0) = 0 for each k. Let UJ be a countable dense subset of
Θρ(V−). Since by Lemma 3.1 ‖g′k(u)‖L(V−;V+) ≤ µ‖u‖V− ≤ µρ for u ∈ Θρ(V−) one
can choose subsequence {n} ⊂ {k} such that

g′n(uj)[h] −→ ĝ(uj)[h] in V+ as n→∞ ∀ uj ∈ UJ, ∀ h ∈ V− k →∞, (5.4)

where ĝ(uj) : V− → V+ is bounded linear operator satisfying by (2.25) Lipschitz
condition for each ui, uj ∈ UJ :

‖ĝ(ui)− ĝ(uj)‖L(V−;V+) ≤ µ‖ui − uj‖V− (5.5)

By (5.5) ĝ can be uniquely extended in to continuous operator-function ĝ(u) ∈
C(Θρ(V−);L(V−;V+)) that satisfies (5.5) for every ui, uj ∈ Θρ(V−). Relations
(5.4) and g′n(0) = 0 imply ĝ(0) = 0. By (5.3), (5.4), (5.5), and Lemma 5.1 for each
u, u+ h ∈ Θρ(V−) and for arbitrary small δ > 0

‖g(u+ h)− g(u)− ĝ(u)[h]‖+ ≤ ‖g(u+ h)− gn(u+ h)‖+ + ‖g(u)− gn(u)‖+

+‖ĝ(u)[h]− g′n(u)[h]‖+ + ‖gn(u+ h)− gn(u)− g′(u)n[h]‖+ ≤ δ +
µ

2
‖h‖2V− .

if n is sufficiently large. Hence g(u) is differentiable and g′(u) = ĝ(u). In virtue of
(2.27), (5.3), and Lemma 3.1 for arbitrary 0 < δ < ρ

d(g, gk) ≤ sup
0<‖u‖≤δ

(
‖g‖
‖u‖

+
‖gk(u)‖
‖u‖

)
+ sup
δ<‖u‖<ρ

‖g(u)− gk(u)‖
‖u‖

≤ µδ + δ−1‖g − gk‖C(Θρ(V−);V+) −→ µδ as k →∞
Hence limk→∞ d(g, gk) = 0. �

5.2. Preliminaries. We begin with formulation of the following existence theorem
for problem (2.7)-(2.9).

Theorem 5.1. Let s ∈ [−1/2, 0]. For any T > 0 there exists ρ0 such that for
each y0 ∈ Θρ0(V s+1) there exists unique solution y(t, x) ∈ V 1,2(s)(QT ) of problem
(2.7)-(2.9).

The proof of this (local) theorem consists of reduction to Inverse Map Theorem
(see, for example [LS]).

The shift operator corresponding to problem (2.7)-(2.9) we denote as follows:

S(t, y0) = y(t, ·) (5.6)

where y(t, x) is solution of (2.7)-(2.9).
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Let V = V s+1 with fixed s ∈ [−1/2, 0] be the phase space for S(t, ·) : Θρ0(V )→
V . Inverse Map Theorem implies that for each t ∈ (0, T ), y0 ∈ Θρ0(V ) operator
S(t, y0) possesses differential Frchet with respect to y0 (moreover, S(t, y0) is analytic
in y0). Let

S(t, y0) = e−Âty0 +N(t, y0) (5.7)

where e−Âty0 is solution of (2.10), and N(t, y0) is defined by (5.7). Recall that
subspaces V+ and V− are invariant with respect of Â, and by (3.15) (4.15)

‖e−Âtu‖V− ≤ ce−σ1t‖u‖V− (5.8)

with c > 0 independent of u ∈ V−. Therefore for each α ∈ (0, 1) there exists T > 0
such that

‖e−ÂTu‖V− ≤ α‖u‖V− . (5.9)

Thus, for a given α ∈ (0, 1) we choose T satisfying (5.9), and after that we choose
ρ0 satisfying conditions of Theorem 5.1. We set

e−ÂT |V− = L−, e−ÂT |V+ = L+, e−ÂT ≡ L = L− + L+ (5.10)

Note that dimV+ <∞ and finite-dimensional operator L+ : V+ → V+ is invertible.
In virtue of Theorem1 in Section 2 of Chapter IV in [BV] we can choose in V+ such
norm ‖ · ‖+ that

‖L−1
+ v+‖+ ≤ 2‖v+‖+ (5.11)

Everywhere below we use only this norm ‖ · ‖+ on V+ which is concrete definition
of the norm (2.14). By (2.12)-(2.16) on V = V 1+s the following norm is defined:

‖v‖V = ‖v−‖V− + ‖v+‖+, where V 3 v = v−+ v+, v− ∈ V−, v+ ∈ V+ (5.12)

Then norms of projection operators (3.5) satisfy relations

‖Π−‖ ≤ 1, ‖Π+‖ ≤ 1. (5.13)

Recall that (5.9), (5.10) imply

‖L−y0‖V− ≤ α‖y0‖V− . (5.14)

We set
S(y0) = S(T, y0), N(y0) = N(T, y0) (5.15)

where S(T, y0), N(T, y0) are defined in (5.6), (5.7). Then (5.15) implies

N(0) = 0, N ′(0) = 0 (5.16)

At last, denote by b > 0 the Lipschitz constant for N ′(v):

‖N ′(v1)−N ′(v2)‖ ≤ b‖v1 − v2‖ ∀ v1, v2 ∈ Θρ0(V ). (5.17)

5.3. The main result. Remind that a set M− containing {0} is called stable
invariant manifold for the map S : O(V )→ V if inclusion y0 ∈M− implies S(y0) ∈
M− and

‖Sj(y0)‖ ≤ cγj‖y0‖ as j →∞ with γ < 1 ∀ y0 ∈M− (5.18)

We construct stable invariant manifold for map S in a form (2.21)-(2.23) where
g(u) ∈ Gµ,ρ = Gµ(Θρ(V−))
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Theorem 5.2. Suppose that constant α from (5.14) and indexes µ, ρ of Gµ,ρ satisfy
conditions

α ≤ 1/3, µ ≥ 10b, µρ ≤ 1/5, ρ ≤ ρ0 (5.19)

where b is the constant from (5.17), and ρ0 is determined in Theorem 5.1 formu-
lation. Then there exists unique g(u) ∈ Gµ,ρ such that the set (2.21) is stable
invariant manifold for the map S. Moreover, estimate (5.18) holds with c = 1, γ <
3α/2 + 1/100 under additional assumption ‖L+‖µρ ≤ α.

First of all we derive equation for the map g forming M− with help of invariance
assumption for M−. We will use notations:

S− = Π−S, S+ = Π+S, N− = Π−N, N+ = Π+N (5.20)

Relations (5.7), (5.10), (5.15), (5.20) imply

S = L+N, S = S+ + S−, S− = L− +N−, S+ = L+ +N+ (5.21)

Invariance of M− from (2.21) with respect to S means that

if M− 3 v = u+ g(u) then M− 3 S(v) = S−(v) + g(S−(v)) (5.22)

where u ∈ Θρ(V−). In virtue of (5.21), (5.10)

S−(u+g(u)) = L−u+N−(u+g(u)); S+(u+g(u)) = L+g(u)+N+(u+g(u)) (5.23)

By (5.21), (5.22) S+(v) = g(S−(v)). After substitution into this equation relations
(5.22), (5.23) and applying to obtained equality operator L−1

+ we get the desired
equation for g:

g(u) = L−1
+ g(L−u+N−(u+ g(u)))− L−1

+ N+(u+ g(u)) ≡ F (g(u)) (5.24)

where the last equality is definition of the map F .

Lemma 5.2. Let parameters α, µ, b, ρ satisfy conditions (5.19). Then for each
g ∈ Gµ,ρ inclusion u ∈ Θρ(V−) implies L−u+N−(u+ g(u)) ∈ Θρ(V−).

Proof. Using (5.13), (5.14), (5.17), (5.19) and Lemma 3.1 we get

‖L−u+N−(u+ g(u))‖V− ≤ αρ+
b

2
‖u+ g(u)‖2 ≤ ρ

(
α+

bρ

2

(
1 +

µρ

2

)2
)
≤ ρ

�

Lemma 5.3. Let parameters α, µ, b, ρ satisfy (5.19). Then inclusion g ∈ Gµ,ρ
implies F (g) ∈ Gµ,ρ where F is map (5.24).

Proof. If g ∈ Gµ,ρ, u ∈ Θρ(V−) then by Lemma 5.2 g(L−u + N−(u + g(u))) is
well-defined and hence F (g(u)) is also well-defined. We intend to calculate Holder
constant for derivative F (g(u))′u[h]. By (5.24) we have

F (g(u))′[h] = I(u)[h] + J(u)[h] where J(u)[h] = L−1
+ N ′+(u+ g(u))[h+ g′(u)[h]]

(5.25)
and

I(u)[h] = L−1
+ g′(L−u+N−(u+ g(u)))[L−h+N ′−(u+ g(u))[h+ g′(u)[h]]] (5.26)

The following equality is true:

I(u1)[h]− I(u2)[h] = I1(u1, u2)[h] + I2(u1, u2)[h] + I3(u1, u2)[h] (5.27)
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where

I1(u1, u2)[h] = L−1
+ g′(L−u1 +N−(u1 + g(u1)))[L−h]

− L−1
+ g′(L−u2 +N−(u2 + g(u2)))[L−h]

(5.28)

I2(u1, u2)[h] = I1(u1, u2)[N ′−(u1 + g(u1))[h]]

+L−1
+ g′(L−u2 +N−(u2 + g(u2)))[N ′−(u1 + g(u1))[h]−N ′−(u2 + g(u2))[h]]

(5.29)

I3(u1, u2)[h] = I2(u1, u2)[g′(u1)[h]]

+L−1
+ g′(L−u2 +N−(u2 + g(u2)))[N ′−(u2 + g(u2))[g′(u1)[h]− g′(u2)[h]]]

(5.30)

All estimates of this lemma obtained below are based on Lemmas 5.2, 3.1, and
on Lagrange Theorem.6 We begin from calculation of Holder constant for map J
defined in (5.25). We get using (5.11), (5.20), (5.13) and inclusion g ∈ Gµ,ρ:

‖J(u1)− J(u2)‖ ≤ 2b(‖u1 − u1‖+ ‖g(u1)− g(u2)‖)(1 + ‖g′(u1)‖))
+ 2‖N ′+(u2 + g(u2))‖‖g′(u1)− g′(u2)‖ ≤ 2b‖u1 − u2‖(1 + µρ(1 + µρ))

+ 2b(ρ+ µρ2/2)µ‖u1 − u2‖ ≤ µ‖u1 − u2‖β
(5.31)

where

β =
2b(1 + µρ)2

µ
+ 2bρ

(
1 +

µρ

2

)
(5.32)

Using similar reasons as above and Lemma 5.2 we get from (5.28):

‖I1(u1, u2)‖ ≤ 2αµ(α‖u1−u2‖+b(ρ+
µρ2

2
)(‖u1−u2‖+µρ‖u1−u2‖)) ≤ µ‖u1−u2‖β1

(5.33)
where

β1 = 2α(α+ bρ(1 + µρ/2)(1 + µρ)) (5.34)

Using (5.33), (5.31) we obtain as above from (5.29):

‖I2(u1, u2)‖ ≤ ‖I1(u1, u2)‖b(ρ+
µρ2

2
) + 2µρb(1 + µρ)‖u1 − u2‖ ≤ µ‖u1 − u2‖β2

(5.35)
where

β2 = β1bρ(1 + µρ/2) + 2ρb(1 + µρ) (5.36)

At last using (5.35) we get from (5.30)

‖I3(u1, u2)‖ ≤ ‖I2(u1, u2)‖µρ+ 2µρb(ρ+
µρ2

2
)µ‖u1 − u2‖ ≤ µ‖u1 − u2‖β3 (5.37)

where
β3 = β2µρ+ 2µρbρ(1 + µρ/2) (5.38)

The map F (g(u)) belongs to Gµ,ρ if Holder constant for F (g(u))′u is not more than
µ. This condition satisfies if

β + β1 + β2 + β3 ≤ 1 (5.39)

where β, β1, β2, β3 are constants (5.32), (5.34), (5.36), (5.38). Condition (5.39)
follows from (5.19). �

6I.e. on the following estimate: ‖f(u1)− f(u2)‖ ≤ supw∈[u1,u2] ‖f ′(w)‖‖u1 − u2‖.
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Lemma 5.4. Let α, µ, b, ρ satisfy (5.19). Then operator F defined in (5.24) satis-
fies inequality

d(F (g1), F (g1)) ≤ cd(g1, g2) (5.40)

with c < 1 where metric d is defined in (2.27).

Proof. Using definition (5.24) of map F , Lagrange Theorem, and Lemmas 3.1, 5.2
we get:

‖F (g1(u))− F (g2(u))‖+
2‖u‖V−

≤ ‖g1(L−u+N−(u+ g1(u)))− g1(L−u+N−(u+ g2(u)))‖+
‖u‖V−

+
‖g1(L−u+N−(u+ g2(u)))− g2(L−u+N−(u+ g2(u)))‖+

‖L−u+N−(u+ g2(u))‖V−

×
‖L−u+N−(u+ g2(u))‖V−

‖u‖V−

+
‖N+(u+ g1(u))−N+(u+ g2(u))‖V−

‖u‖V−
≤ µρb

(
ρ+

µρ2

2

)
‖g1(u)− g2(u)‖+

‖u‖V−

+ d(g1, g2)
(
α+

bρ

2

(
1 +

µρ

2

)2
)

+ b

(
ρ+

µρ2

2

)
‖g1(u)− g2(u)‖+

‖u‖V−
(5.41)

Taking supremum in (5.41) over u ∈ Θρ(V−)\{0} we get inequality (5.40) with the
following constant c:

c = 2µρb
(
ρ+

µρ2

2

)
+ 2

(
α+

bρ

2

(
1 +

µρ

2

)2
)

+ 2b
(
ρ+

µρ2

2

)
Conditions (5.19) imply inequality c < 1 �

Proof. of Theorem 5.2. In virtue of Lemma 5.3 operator F defined in (5.24) maps
Gµ,ρ into Gµ,ρ. Lemma 5.4 implies that the map F : Gµ,ρ → Gµ,ρ is contraction.
By Contraction Mapping Principle there exists unique g ∈ Gµ,ρ satisfying equation
(5.24). Hence, the set M− defined in (2.21) by this g is invariant with respect of
the map S defined in (5.15), (5.6).

Note that by Lemma 3.1 and (5.19)

‖v + g(v)‖ ≥ ‖g‖(1− µρ/2) ≥ 9
10
‖v‖

If u ∈M− then u = v + g(v) with v ∈ V−, and using (5.14), (5.17), Lemma 3.1,
(5.19), and assumption ‖L+‖µρ ≤ α we get

‖S(u)‖ = ‖L−v + L+g(v) +N(v + g(v))‖

≤ (α+ ‖L+‖µρ/2)‖v‖+ b(ρ+ µρ2/2)‖v + g(v)‖ ≤ (5α/3 + 11/500)‖v + g(v)‖
Several iterations of this inequality imply bound (5.18) with c = 1, γ ≤ 5α/3 +
11/500 < 1. �

Remark 5.1. Theorem 2.2 follows from Theorem 5.2 with help of simple repeating
the proof of Theorem 4 from Section 2 in Chapter V of [BV].
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