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Abstract. This paper is devoted to prove analyticity of stable invariant man-

ifold in a neighbourhood of an unstable steady-state solution for Ginzburg-

Landau equation defined in a bounded domain of dimension not more than
three. This investigation is made for possible applications in stabilization the-

ory for semilinear parabolic equation.

Introduction

In this paper we prove analyticity of stable invariant manifold M− near unstable
steady-state solution of Ginzburg-Landau equation. This result can be used in
stabilization theory for semilinear parabolic PDE defined in a bounded domain Ω
with feedback Dirichlet control given on the boundary ∂Ω or on its open part.

This theory for general quasilinear parabolic equation and for Navier-Stokes sys-
tem was built in [F1], [F2], [F3]. We have to emphasize that the main reason to
develop stabilization theory is to provide reliable stable algorithms for numerical
stabilization. To construct such algorithms it is very desirable to have a simple
description for infinite-dimensional invariant manifold M− allowing to calculate it
easily in arbitrary point. Just such description gives functional-analytic decompo-
sition of M−.

Using classical description of M− by means of a map F (y−) (see [BV], [Hen]),
one can look for this map as a serie

F (y−) =
∞∑

k=2

Fk(y−)

where Fk(y−) are maps k-linear in y−. Using special differential equation in vari-
ational derivatives for map F it is possible to obtain recurrent formulae for Fk.
These recurrent formulae allow us to prove convergence of serie for F (y−).

First step in realization of this plan has been made in [F4] where analyticity of
stable invariant manifold in a neghborhood of zero steady state solution was proven
in the case of one-dimensional semilinear parabolic equation. Moreover, obtained
recourrence relations were succesfully used in [K] for numerical calculations.
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Note that under assumptions of [F4] the linearization near steady state solution
of the space part of semilinear equation is ordinary differential equation with con-
stant coefficients. Therefore its eigenfunctions are sin kx. This circumstance were
used essentially in [F4]. The methods of present paper do not use explicit form
of eigenfunctions and therefore can be applied to situation when aforementioned
linearization is an elliptic operator with variable coefficients defined in arbitrary
bounded domain.

1. Stable Invariant Manifold

In these section we recall certain notions connected with stable invariant mani-
folds for Ginzburg-Landau equation.

1.1. Ginzburg-Landau equation. Let G ⊂ Rn, n = 1, 2, 3 be a bounded domain
with C∞-boundary ∂G. We consider Ginzburg-Landau equation

∂tv(t, x)− ν∆v(t, x)− v(t, x) + v3(t, x) = f(x), x ∈ G, t > 0 (1.1)

with boundary and initial conditions

v(t, ·)|x∈∂G = 0, (1.2)

v(t, x)|t=0 = v0(x), x ∈ G, (1.3)
where ∂tv = ∂v/∂t, ν > 0 is a parameter, f(x) ∈ L2(G), v0(x) ∈ H2(G) ∩H1

0 (G)
are given functions. Recall that Hk(G) is the Sobolev space of functions belonging
to L2(G) together with all their derivaties up to the order k, H1

0 (G) = {u(x) ∈
H1(G) : u|∂G = 0}

As a phase space of the dynamical system generated by (1.1), (1.2) we take the
functional space

V ≡ V (G) = H2(G) ∩H1
0 (G) (1.4)

Let v̂(x) ∈ V be a steady-state solution of (1.1), (1.2), i.e. a solution of the
problem

−ν∆v̂(t, x)− v̂(t, x) + v̂3(t, x) = f(x), x ∈ G, v̂|∂G = 0 (1.5)

To study the structure of the dynamical system (1.1), (1.2) in a neighborhood of
v̂(x) we make the change of unknown functions in (1.1), (1.2):

v(t, x) = v̂(x) + y(t, x) (1.6)

After substitution (1.6) into (1.1)–(1.3) and taking into account (1.5) we get:

∂ty(t, x)− ν∆y(t, x)− q(x)y(t, x) +B(x, y(t, x)) = 0, x ∈ G, t > 0 (1.7)

y(t, ·)|x∈∂G = 0, (1.8)
y(t, x)|t=0 = y0(x) = v0(x)− v̂(x), x ∈ G, (1.9)

where
q(x) = 3v̂2(x)− 1, B(x, y) = y3 + 3v̂(x)y2 (1.10)

Let
{ek(x), λk}, λ1 ≤ λ2 ≤ · · · ≤ λk →∞ as k →∞ (1.11)

be the eigenfunctions and the eigenvalues of the spectral problem

Ae ≡ −ν∆e(x) + q(x)e(x) = λe(x), x ∈ G e|∂G = 0. (1.12)

We assume that eigenvalues λk of the spectral problem (1.12) satisfy the condition:

λ1 ≤ · · · ≤ λN < 0 < λN+1 ≤ · · · ≤ λk (1.13)
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Since operator A is symmetric in L2(G), the set (1.11) of its eigenfunctions {ek}
forms orthogonal basis in L2(G). We can assume (have done normalization) that
{ek} is orthonormal basis in L2(G). It is well-known that usual Sobolev H2-norm
in V = H2(G) ∩H1

0 (G) is equivalent to the norm

‖v‖2
V =

∞∑
j=1

λ2
j |vj |2, where vj =

∫
G

v(x)ej(x)dx, andv(x) =
∞∑

j=1

vjej(x) (1.14)

Evidently, {ej} forms orthogonal basis in V with respect to scalar product defined
by norm (1.14). Below we suppose that the phase space V is supplied with the
norm (1.14).

In virtue of (1.13) the solutions e−λktek(x) of the linear equation

∂y

∂t
+Ay = 0 (1.15)

tend to infinity as t→∞ for k = 1, . . . , N , and tend to zero as t→∞ for k > N .
We introduce the subspaces

V+ ≡ V+(G) = [e1, . . . , eN ], V− ≡ V−(G) = [eN+1, eN+2 . . . ] (1.16)

of unstable and stable modes for equation (1.15). Since eigenfunctions (1.11) form
orthogonal basis in the phase space (1.4), the following relation is true:

V+(G)⊕ V−(G) = V (G) (1.17)

1.2. Stable invariant manifold. It is well-known, that for each y0 ∈ V there
exists a unique solution y(t, x) ∈ C(0, T ;V (G)) of problem (1.7)-(1.10), where T >
0 is arbitrary fixed number. We denote by S(t, y0) the solution operator of the
boundary value problem (1.7)-(1.10):

S(t, y0) = y(t, ·) (1.18)

where y(t, x) is the solution of (1.7)-(1.10).
Recall now some commonly used definitions of stable invariant manifold (see

Chapter V in [BV]) adopted for our case.
The origin of the phase space V , i.e. the function y(x) ≡ 0, is, evidently, a

steady-state solution of problem (1.7)-(1.10).

Definition 1.1. The set M− ⊂ H defined in a neighborhood of the origin is called
the stable invariant manifold if for each y0 ∈M− the solution S(t, y0) is well-defined
and belongs to M− for each t > 0, and

‖S(t, y0)‖V ≤ ce−rt as t→∞ (1.19)

where 0 < r < λN+1.

The stable invariant manifold can be defined as a graph in the phase space
V = V+ ⊕ V− by the formula

M− = {y− + F (y−), y− ∈ O(V−)} (1.20)

where O(V−) is a neighborhood of the origin in the subspace V−, and

F : O(V−) → V+ (1.21)

is a certain map satisfying

‖F (y−)‖V+/‖y−‖V− → 0 as ‖y−‖V− → 0. (1.22)
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So, in order to construct the invariant manifold M− we have to calculate the
map (1.21), (1.22).

2. Preliminaries

To get functional-analytic decompozition of the map F that defines stable in-
variant manifold, we have to derive differential equation for F

2.1. Equation for F . First of all we recall derivation of well-known equation for
map (1.21) that determines invariant manifold M−. After that we recall definitions
of certain notions that we use later.

Let us introduce several notations. We rewrite equations (1.7),(1.10) using defi-
nition (1.12) of operator A as follows:

∂ty(t) +Ay(t) +B(·, y(t)) = 0 (2.1)

Define the orthoprojectors

P+ : V → V+, P− : V → V− (2.2)

and introduce notations

P+y = y+, P−y = y−, P+S(t, y0) = S+(t, y0), P−S(t, y0) = S−(t, y0) (2.3)

Taking into account that the spaces V+, V− are invariant with respect to acting of
operator A and using notations (2.3) we can rewrite (2.1) as follows:

∂ty+(t) +Ay+(t) + P+B(·, y+(t) + y−(t)) = 0

∂ty−(t) +Ay−(t) + P−B(·, y+(t) + y−(t)) = 0
(2.4)

Let y0 ∈M−. Then by (1.20) it has the form y0 = y− +F (y−). By definition of an
invariant manifold for each t ∈ R+ S(t, y0) ∈M− or, what is equivalent

S+(t, y− + F (y−)) = F (S−(t, y− + F (y−)))

We differentiate this equation with respect to t and express t-derivatives with help
of equations (2.4). As a result we get:

AS+(t, y− + F (y−)) + P+B(·, S(t, y− + F (y−)))

=〈F ′(S−(t, y− + F (y−))), AS−(t, y− + F (y−))

+P−B(·, S+(t, y− + F (y−)) + S−(t, y− + F (y−)))〉
(2.5)

where by 〈F ′(z), h〉 we denote the value of derivative F ′(z) on vector h. Passing to
limit in (2.5) as t→ 0 we get the desired equation for F :

AF (y−) + P+B(·, y− + F (y−)) = 〈F ′(y−), Ay− + P−B(·, y− + F (y−))〉 (2.6)

2.2. Analytic maps. Let Hi be Hilbert spaces with the scalar products (·, ·)i

and the norms ‖ · ‖i where i = 1, 2. We denote by (H1)k = H1 × · · · × H1 (k
times) the direct product of k copies of H1 and define by Fk : (H1)k → H2 a k-
linear operator Fk(h1, . . . , hk), i.e. the operator that is linear with respect to each
variable hi, i = 1, . . . , k. Then

‖Fk‖ = sup
‖hi‖1=1,i=1,...,k

‖Fk(h1, . . . , hk)‖2 (2.7)

Restriction of k-linear operator Fk(h1, . . . , hk) to diagonal h1 = · · · = hk = h is
called power operator of order k:

Fk(h) = Fk(h, . . . , h) (2.8)
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Using derivatives one can restore k-linear operator Fk(h1, . . . , hk) by power operator
Fk(h).

Denote by O(H1) a neighbourhood of origin in the space H1. The map

F : O(H1) → H2 (2.9)

is called analytic if it can be decomposed in the serie

F (h) = F0 +
∞∑

k=1

Fk(h) (2.10)

where F0 ∈ H2 and Fk(h) are power operators of order k. Serie (2.10) converges if
the numerical serie ‖F0‖2 +

∑∞
k=1 ‖Fk(h)‖2 converges.

Proposition 2.1. Let norms (2.7) of power operator Fk(h) from (2.10) satisfy

‖Fk‖ ≤ γρ−k (2.11)

where γ > 0, ρ > 0 do not depend on k. Then serie (2.10) converges for each h
belonging to the ball Bρ(H1) = {h ∈ H1 : ‖h‖1 < ρ}.

Proof. There exists ε > 0 such that ‖h‖1 ≤ ρ− ε. Then using (2.7), (2.11) we get

‖F (h)‖2 ≤ ‖F0‖2 +
∞∑

k=1

‖Fk‖‖h‖k
1 ≤ γ

∞∑
k=1

(
ρ− ε

ρ
)k <∞

�

2.3. Operators from equation for F and their kernels. We consider here
operators from equation (2.6).

2.3.1. Subspapces V± and projectors P±. Subcpaces V+, V− of V are defined in
(1.16), and projectors P± are defined in (2.2). Orthogonality of decomposition
(1.16) as well as orthogonality of projectors (2.2) take place with respect to the
scalar product corresponding to norm (1.14).Therefore

‖P+‖ ≤ 1, ‖P−‖ ≤ 1 (2.12)

Kernels P̂± of operators P±, i.e. distributions on G×G such that

(P±v)(x) =
∫

G

P̂±(x, ξ)v(ξ)dξ ∀v(ξ) ∈ V (2.13)

are defined as follows:

P̂+(x, ξ) =
N∑

k=1

ek(x)ek(ξ), P̂−(x, ξ) = δ(x− ξ)−
N∑

k=1

ek(x)ek(ξ), (2.14)

where δ(x− ξ) is Dirac δ-function. Note that integral in (2.13) in the case P̂−(x, ξ)
is understood (at each fixed x) as value of distribution δ(x− ξ)−

∑N
k=1 ek(x)ek(ξ)

on the test function v(x). Such notation for values of distributions will be often
used below without additional expleinations.
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2.3.2. Analyticity of the map B(·, y). We intend to decompose operator B(·, y)
defined in (1.10) in series (2.10). For this we use that the phase space V is the
algebra, i.e. in this space the operation of multiplcation of functions is well-defined.

Define the operator of multiplcation Γk as follows:

Γk : V k −→ V, Γk(v1, . . . , vk)(x) = v1(x) · · · · · vk(x) (2.15)

where V k = V × · · · × V (k times),

Lemma 2.1. Let V = H2(G) ∩ H1
0 (G), G ⊂ Rn, n = 1, 2, 3. Then operator Γk

defined in (2.15) is k-linear bounded operator. Moreover, there exists a constatnt
γ > 0 such that for each k

‖Γk(v1, . . . , vk)‖V ≤ γk−1‖v1‖V · · · · · ‖vk‖V (2.16)

Proof. Since norm (1.14) is equivalent to the norm of Sobolev space H2(G), we can
use H2-norm. Taking into account that embeddings H2(G) ⊂ C(G) and H2(G) ⊂
W 1

4 (G) are continious we get:

‖v1 · v2‖H2(G) = (
∑
‖α|≤2

∫
|Dα(v1(x)v2(x))|2dx)1/2

≤ ‖v1‖H2‖v2‖C + ‖v1‖C‖v2‖H2 + 2‖v1‖W !
4
‖v2‖W 1

4
≤ γ‖v1‖H2‖v2‖H2

Using this inequality we obtain (2.15) by induction in k �

It follows from Lemma 2.1 and (1.10) that for y ∈ V
B(x, y(x)) = Γ3(y, y, y)(x) + 3v̂(x)Γ2(y, y)(x) (2.17)

Therefore operator B is analytic, and relation (2.17) is its decomposition in series
(2.10). The kernels of operators from (2.17) are as follows:

Γ̂3(x; ξ1, ξ2, xi3) = δ(x− ξ1)δ(x− ξ2)δ(x− ξ3) (2.18)

3v̂(x)Γ̂2(x; ξ1, ξ2) = 3v̂(x)δ(x− ξ1)δ(x− ξ2) (2.19)

2.4. Series for operator F . Let us consider the special case when H1 = V−,H2 =
V+ with Hilbert spaces V−, V+ defined in(1.16). In this case analytic map (2.9),
(2.10) can be rewritten as follows:

F : O(V−) → V+, F (y−) =
∞∑

k=2

Fk(y−) (2.20)

We asume that F0 = 0, F1 = 0 because by (1.22) the map F defining stable
invariant manifold M− has just this form.

Since F (y−) ∈ V+, it is a function depending on argument x:

F (y−) ≡ F (x; y−)

Now we define kernels F̂k(x; ξ1, . . . , ξk) of k-linear operator Fk(·; y1, . . . , yk), yj ∈
V−, j = 1, . . . , k. Let

V ⊂ L2(G) ⊂ V ′ (2.21)
where V ′ is the space dual to V with respect to duality generated by scalar product
in L2(G). Define

V ′
− = {u(x) ∈ V ′ :

∫
u(x)ϕ(x)dx = 0 ∀ϕ ∈ V+} = V ⊥

+ (2.22)
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Below we use the following notation:

ξk = (ξ1, . . . , ξk), dξk = dξ1 . . . dξk, where ξj ∈ G, j = 1, . . . , k (2.23)

y−(ξk) = y−(ξ1) · · · · · y−(ξk), y(jk; ξk) = yj1(ξ1) · · · · · yjk
(ξk) (2.24)

The kernel F̂k(x; ξk), x ∈ G, ξk ∈ Gk ≡ G× · · · ×G (k times) belongs to the space

V+ ⊗ (
k
⊗ V ′

−) where
k
⊗ V ′

− = V ′ ⊗ · · · ⊗ V ′ (k times), i.e. F̂k(x; ξk) is a distribution
on Gk with values in V+, such that for each yj ∈ V, j = 1, . . . , k the value

Fk(x; y1, . . . , yk) =
∫
F̂k(x; ξk)y(jk; ξk) dξk (2.25)

of distribution F̂k(x; ξk) on test function y(ξ1) · · · · · y(ξk) is well-defined. More-
over, if yj ∈ V+ at least for one j ∈ {1, . . . , k} then right hand side of equal-
ity (2.25) equals zero. Moreover, since Fk(·, y1, . . . , yk) is symmetric with re-
spect to (y1, . . . , yk), i.e. Fk(·, y1, . . . , yk) = Fk(·, yj1 , . . . , yjk

) for each permutation
(j1, . . . , jk) of (1, . . . , k), we can assume that the distribution F̂k(x; ξk) is symmetric
with respect to (ξ1, . . . , ξk)

Now using (2.25) and (2.24) we can rewrite the series from (2.20) in the form:

F (x, y−) =
∞∑

k=2

∫
F̂k(x; ξk)y−(ξk)dξk (2.26)

In accordance with (2.7) we define the norm ‖Fk‖ of F̂k(x; ξk) ∈ V+ ⊗ (
k
⊗ V ′

−)
by the following way:

‖Fk‖ = sup
‖yj‖V−=1

j=1,...,k

‖Fk(·, y1, . . . , yk)‖V+

= sup
‖y+‖V+=1

sup
‖yj‖V−=1

j=1,...,k

∫
y+(x)F̂k(x; ξk)y(jk; ξk) dx dξk

(2.27)

For each function or distribution K(η1, . . . , ηr) defined on Gr we determine the
function σηrK(η1, . . . , ηr) which is simmetric with respect to arbitrary permutation
(ηj1 , . . . , ηjr ) of variables (η1, . . . , ηr) by the formula:

σηrK(η1, . . . ηr) =
1
r!

∑
(j1,...,jr)

K(ηj1 , . . . , ηjr ) (2.28)

where the sum in the r.h.s. of (2.28) performs over all permutations (j1, . . . , jr) of
the set (1, . . . , r).

Lemma 2.2. Let K(η1, . . . , ηr) be defined on Gr. Then
(a) The following equality is true:∫

K(ηr)h(jr; ηr) dηr =
∫ (

σηrK(ηr)
)
h(jr; ηr) dηr (2.29)

for any h(jr; ηr) such that the serie in the l.h.s. converges,
(b) For any function G(η1, . . . , ηr) simmetric in its arguments

G(ηr)σηrK(ηr) = σηr [G(ηr)K(ηr)] (2.30)
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(c) If all distributions Fk(x; ηk) ∈ V+ ⊗ (
k
⊗ V ′

−) from (2.26) are symmetric in
their arguments ηk then these distributions are defined uniquely by values
of analytic functions F (y−), y ∈ V− from (2.26).

The proof of this Lemma is evident.

3. Formal construction of the map F

We look for the map defining stable invariant manifold in the form of a series
(2.26).In this section we find recurrence relations for kernals F̂k(x; ξk).

3.1. Calculation of F̂2(x; ξ2). Below using k-linear operators Fk(x; y, . . . , y) =
Fk(x; y) (k times) we omitt sometimes variable x writing Fk(y). After substitution
(2.26) into (2.6) we get taking into account (1.10) that for each y = y− ∈ V−

∞∑
q=2

AFq(y) + P+

 3∑
k=2

ak

k∑
j=0

Cj
kF

j(y)yk−j


=

∞∑
q=2

qFq

y, . . . , y, Ay + P−

 3∑
k=2

ak

k∑
j=0

Cj
kF

j(y)yk−j

 (3.1)

where Cj
k = k!/(j!(k − j)!) and

a3 ≡ a3(x) ≡ 1, a2 ≡ a2(x) = 3v̂(x) (3.2)

Let us equate the terms from (3.1) of the second order with respect to y:

AF2(y, y) + 3P+(v̂y2) = 2F2(y,Ay)

Using kernels of bilinear operator F2(y, y) we can rewrite this relation as follows:∫
[F̂2(x; ξ2)(Aξ1 +Aξ2)y(ξ2))−AxF̂2(x; ξ2)y(ξ2)]dξ2 = 3P+(v̂y2)(x) (3.3)

where subscript of operator A indicates independent variable of a function to that
this operator A is applied. We will use notation:

A
ξk =

k∑
j=1

Aξj
(3.4)

Carrying operator Aξ2 from y(ξ2) to F̂2(x; ξ2) and using operator (2.15) in right
side of (3.3) we get:∫

(A
ξk −Ax)F̂2(x; ξ2)y(ξ2)dξ2 = 3

∫
P̂+(x, η)v̂(η)Γ̂2(η; ξ2)y(ξ2)dηdξ2 (3.5)

Since y ∈ V− and subspaces V+, V
′
− are invariant with respect of operator A, we

obtain from (3.5) the relation determining F̂2:

F̂2(x; ξ2) = 3(A
ξk −Ax)−1

∫
P̂+(x, η)v̂(η)Γ̂2(η; ζ2)P̂−(ζ2; ξ2)dζ2 (3.6)

Note that operator (A
ξk −Ax)−1 is well-defined. Moreover, the following asser-

tion hold (recall that we define the norm of the space V+ ⊗ (
k
⊗ V ′

−) by (2.27)):
8



Lemma 3.1. Operator

(A
ξk −Ax)−1 : V+ ⊗ (

k
⊗ V ′

−) −→ V+ ⊗ (
k
⊗ V ′

−) (3.7)

is well-defined and bounded, and for its norm the following estimate holds:

‖(A
ξk −Ax)−1‖ ≤ b(k + 1) (3.8)

with certain constant b > 0

The proof of this Lemma will be presented in some other place.
At last we write down the recurrence relation for the kernel F̂ (x; ξ3) that can be

obtained similarly to the formula (3.6)

F̂3(x; ξ3) = (A
ξk −Ax)−1Sξ3

[∫
P̂+(x, η)Γ̂3(η; ζ3)P̂−(ζ3; ξ3)dηdζ3

+ 6
∫
P̂+(x, η)v̂(η)F̂2(η; ζ2)δ(η − ζ3)P̂−(ζ3; ξ3)dηdζ3

−2
∫
F̂2(x; η2)P̂−(η1, ξ3)P̂−(η2, s)v̂(s)Γ̂2(s; ζ2)P̂−(ζ2; ξ2)dη2dsdζ2

] (3.9)

3.2. Calculation of F̂q(x; ξq). Let us rewrite equality (3.1) as follows:

∞∑
q=2

AFq(y) + P+

[
3∑

k=2

aky
k

]
+ I1

=
∞∑

q=2

qFq

(
y, . . . , y, Ay + P−

[
3∑

k=2

aky
k

])
+ I2

(3.10)

where

I1 =P+

 3∑
k=2

ak

k∑
j=1

Cj
ky

k−j
∞∑

m1=2

Fm1(y) · · ·
∞∑

mj=2

Fmj
(y)


I2 =

∞∑
q=2

qFq

y, . . . , y, P−
 3∑

k=2

ak

k∑
j=1

Cj
ky

k−j
∞∑

m1=2

Fm1(y) · · ·
∞∑

mj=2

Fmj
(y)


(3.11)

Writing operators with help of their kernels we get(
P+

3∑
k=2

aky
k

)
(x) =

3∑
k=2

∫
P̂+(x, s)ak(s)Γ̂k(s; ξk)y(ξk) ds dξk (3.12)
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where, recall, we use notations (2.23), (2.24). Similarly we obtain:

I1 ≡ I1(x) =
3∑

k=2

k∑
j=1

∞∑
p=2j

∑
m1+···+mj=p

Cj
k

×
∫
P̂+(x, s)ak(s)(F̂m1(s; ·) . . . F̂mj

(s; ·)Γ̂k−j(s; ·))(ξp+k−j)y(ξp+k−j) ds dξp+k−j

(doing change of variables (k, j, p) −→ (q, j, p) : q = k − j + p)

=
∞∑

q=3

∑
(j,q)∈Qq

∑
m1+···+mj=p

Cj
q−p+j

×
∫
P̂+(x, s)aq−p+j(s)(F̂m1(s; ·) . . . F̂mj

(s; ·)Γ̂q−p(s; ·))(ξq)y(ξq) ds dξq

(3.13)

where

Qq = {(j, p) ∈ N2 : 2 ≤ q − p+ j ≤ 3, 1 ≤ j ≤ q − p+ j, p ≥ 2j}
= (if q ≥ 4) {(j, p) ∈ N2 : (1, q − 2), (1, q − 1), (2, q − 1), (2, q), (3, q), (3, q + 1)},
Q3 = {(j, p) ∈ N2 : (1, 2), (2, 2), (2, 3), (3, 3), (3, 4)}

(3.14)

Besides, we get

∞∑
q=2

qFq (x; y, . . . , y, Ay) =
∞∑

q=2

∫
F̂q(x; ξq)Aξqy(ξq) dξq

=
∞∑

q=2

∫
Aξq F̂q(x; ξq)y(ξq) dξq

(3.15)

Using notation

F̂qP−(x; s, ζq−1) =
∫
F̂q−1(x; η, ζq−2)P̂−(η, s)dη

we can write

∞∑
q=2

qFq

(
x; y, . . . , y, P−

3∑
k=2

aky
k

)

=
∞∑

n=2

3∑
m=2

∫
nF̂nP−(x; s, ζn−1)am(s)Γ̂(s; ηm)y(ζn−1)y(ηm) ds dζn−1 dηm

=
∞∑

q=3

∑
n+m=q+1
n≥2,m=2,3

∫
nam(s)(F̂nP−(x; s, ·)Γ̂m(s; ·))(ξq)y(ξq) ds dξq

(3.16)
10



At last

I2(x) =
∞∑

r=2

3∑
k=2

k∑
j=1

Cj
k

∞∑
p=2j

∑
m1+···+mj=p

∫
rF̂rP−(x; s, ζr−1)ak(s)

(F̂m1(s; ·) . . . F̂mj
(s; ·)Γ̂k−j(s; ·))(ξp+k−j)y(ζr−1)y(ξp+k−j) ds dζr−1 dξp+k−j

(changing variables (k, r, j, p) −→ (q, r, j, p) : q = p+ r + k − j − 1)

=
∞∑

q=4

∑
(r,p,j)∈Rq

∑
m1+···+mj=p

Cj
q−p−r+j+1

∫
aq−p−r+j+1(s)

× r(F̂rP−(x; s, ·)F̂m1(s; ·) . . . F̂mj
(s; ·)Γ̂q−p−r+1(s; ·))(ξq)y(ξq) ds dξq

(3.17)

where

Rq = {(r, p, j) ∈ N3 : 1 ≤ q− p− r+ j ≤ 2, 1 ≤ j ≤ q− p− r+ j + 1, p ≥ 2j, r ≥ 2}
(3.18)

After substitution (3.12),(3.15)(3.16) into (3.10) and doing some simple transfor-
mation we get

∞∑
q=2

∫
(Aξq −Ax)F̂q(x; ξq)y(ξq) dξq =

3∑
k=2

∫
P̂+(x, s)ak(s)Γ̂k(s; ξk)y(ξk)dsdξk

−
∞∑

q=3

∑
n+m=q+1
n≥2,m=2,3

∫
nam(s)(F̂nP−(x; s, ·)Γ̂m(s; ·))(ξq)y(ξq) ds dξq + I1(x)− I2(x)

(3.19)

where I1(x), I2(x) are defined in (3.13),(3.17). In order to derive from (3.19) re-
currence relation for F̂q(x; ξq) we i) make the change y(ξq) = P̂−(ξq; ζq)z(ζq) with
arbitrary z(ζ) ∈ V where we use the notation

P̂−(ζk; ξk) = P̂−(ζ1, ξ1) · · · · · P̂−(ζk, ξk) (3.20)

for kernel of tensor product P− ⊗ · · · ⊗ P− (k times) for projection operator P−;
ii) apply symmetrization operator σζq and avoid z(ζq); and iii) using Lemma 3.1
invert operator Aξq −Ax. As a result (renaming coordinates) we get the recurrence
relation for F̂q(x; ξq) with q ≥ 4:

F̂q(x; ξq) = (Aξq −Ax)−1σξq (J1(x; ξq)− J2(x; ξq)− J3(x; ξq)) (3.21)

where

J1(x; ξq) =
∑

(j,q)∈Qq

∑
m1+···+mj=p

Cj
q−p+j×∫

P̂+(x, s)aq−p+j(s)(F̂m1(s; ·) . . . F̂mj (s; ·)Γ̂q−p(s; ·))(ζq)P̂−(ζq; ξq) ds dζq

(3.22)

J2(x; ξq) =
∑

n+m=q+1
n≥2,m=2,3

∫
nam(s)(F̂nP−(x; s, ·)Γ̂m(s; ·))(ζq)P̂−(ζq; ξq) ds dζq (3.23)
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J3(x; ξq) =
∑

(r,p,j)∈Rq

∑
m1+···+mj=p

Cj
q−p−r+j+1

∫
aq−p−r+j+1(s)

× r(F̂rP−(x; s, ·)F̂m1(s; ·) . . . F̂mj (s; ·)Γ̂q−p−r+1(s; ·))(ζq)P̂−(ζq; ξq) ds dζq

(3.24)

Thus we have proven the following Theorem:

Theorem 3.1. The kernels F̂q(x; ξq) from decopmposition (2.26) of the map F (x; y)
defining stable invariant manifold are defined in (3.6) (for q = 2), in recurrence
relation (3.9) (for q=3) and in (3.21)-(3.24) (for q ≥ 4).

4. Analyticity of the map F

In this section we prove convergence of serie (2.26) for map F (x; y) defining
stable invariant manifold.

4.1. Estimate of norm for F̂q(x; ξq). First of all we have to recall that the norm

of the space V+ ⊗ (
k
⊗ V ′

−) is defined by relation (2.27)) In virtue of (3.21) and
Lemmas 2.2, 3.1

‖Fq‖ ≡ ‖F̂q‖ ≤ b(q + 1)−1(‖J1‖+ ‖J2‖+ ‖J3‖) for q ≥ 4 (4.1)

where kernels J1, J2, J3 are defined in (3.22), (3.23), (3.24). Let us estimate now
these kernels. Using that P+y+ = y+, for y+ ∈ V+, P−y− = y−, for y− ∈ V−, and
taking into accout Lemmas 2.1, 2.2 we get from (3.22)

‖J1‖ = sup
‖y+‖V+=1

sup
‖yr‖V−=1

r=1,...,q

∑
(j,q)∈Qq

∑
m1+···+mj=p

Cj
q−p+j×

∫
y+(x)aq−p+j(x)Fm1(x; y1, . . . ) . . . Fmj

(x; . . . , yp)yp+1(x) . . . yq(x) dx

≤
∑

(j,q)∈Qq

∑
m1+···+mj=p

Cj
q−p+j‖aq−p+j‖V ‖Fm1‖ . . . ‖Fmj

‖γq−p+j

(4.2)

Similarly, we get from (3.23)

‖J2‖ = sup
‖y+‖V+=1

‖yr‖V−=1

r=1,...,q

∑
n+m=q+1
n≥2,m=2,3

∫
y+(x)nFn(x; y1, . . . , yn−1, P−(amyn . . . yq)) dx

≤
∑

n+m=q+1
n≥2,m=2,3

n‖Fn‖‖am‖V γ
m

(4.3)

At last we obtain from (3.24)

‖J3‖ = sup
‖y‖V+=1

‖yr‖V−=1

r=1,...,q

∑
(r,p,j)∈Rq

∑
m1+···+mj=p

Cj
q−p−r+j+1

∫
rFr(x;P−(y1 . . . yq−p−r+1

× aq−p−r+j+1Fm1(·; yq−p−r+2, . . . ) . . . Fmj (·; . . . , yq−r+1)), yq−r+2, . . . , yq)y(x)dx

≤
∑

(r,p,j)∈Rq

m1+···+mj=p

Cj
q−p−r+j+1r‖aq−p−r+j+1‖V ‖Fr‖‖Fm1‖ . . . ‖Fmj

‖γq−p−r+j+1

(4.4)
12



Let
‖ak‖V ≤ b0/b k = 2, 3

Then summarizing (4.1)–(4.4) we obtain the following estimate for ‖Fq‖ for q ≥ 4:

‖Fq‖ ≤
b0

q + 1

 ∑
(j,q)∈Qq

∑
m1+···+mj=p

Cj
q−p+j‖Fm1‖ . . . ‖Fmj

‖γq−p+j

+
∑

n+m=q+1
n≥2,m=2,3

n‖Fn‖γm +
∑

(r,p,j)∈Rq

∑
m1+···+mj=p

Cj
κr‖Fr‖‖Fm1‖ . . . ‖Fmj‖γκ


(4.5)

where κ = q − p− r + j + 1. Similarly we get from (3.6), (3.9):

‖F2‖ ≤ b0γ
2/3 ‖F3‖ ≤ b0(γ3 + 4γ2‖F2‖)/4 (4.6)

Thus, we have proven the following Lemma

Lemma 4.1. The norms ‖F2‖, ‖F3‖ satisfy inequality (4.6), and the norms ‖Fq‖
for q ≥ 4 satisfy estimate (4.5)

4.2. Convergence of series for F (x, y). Define coefficients ϕq of the series

ϕ(λ) =
∞∑

q=2

ϕqλ
q (4.7)

by the relations
ϕ2 = b0γ

2/3 ϕ3 = b0(γ3 + 4γ2ϕ2)/4, (4.8)

and for q ≥ 4

ϕq = b0(q + 1)−1

 ∑
(j,q)∈Qq

∑
m1+···+mj=p

Cj
q−p+jϕm1 . . . ϕmj

γq−p+j

+
∑

n+m=q+1
n≥2,m=2,3

nϕnγ
m +

∑
(r,p,j)∈Rq

∑
m1+···+mj=p

Cj
κrϕrϕm1 . . . ϕmjγ

κ


(4.9)

with κ = q − p− r + j + 1. Evidently,

‖Fq‖ ≤ ϕq for each q ≥ 2 (4.10)

and therefore to prove convergence of series (2.26) we have to prove convergence of
series (4.7).

Theorem 4.1. The series (4.7) with coefficients ϕq defined in (4.8), (4.9) con-
verges for sufficiently small |λ|.

Proof. Multiplying both parts of equality (4.9) on (q+1)λq, and both parts of equal-
ities (4.8) on the same multiplier with q = 2, 3, and summing obtained equalities
over q from 2 to ∞ we get the equality:

∂

∂λ
(λϕ(λ) = b0(S1(λ) + S2(λ) + S3(λ)) (4.11)
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where

S1(λ) =
3∑

k=2

(γλ)k +
∞∑

q=3

λq
∑

(j,q)∈Qq

∑
m1+···+mj=p

Cj
q−p+jϕm1 . . . ϕmj

γq−p+j , (4.12)

S2(λ) =
∞∑

q=3

λq
∑

n+m=q+1
n≥2,m=2,3

nϕnγ
m (4.13)

S3(λ) =
∞∑

q=4

λq
∑

(r,p,j)∈Rq

∑
m1+···+mj=p

Cj
q−p−r+j+1rϕrϕm1 . . . ϕmjγ

q−r+1 (4.14)

Taking into account definition (3.14) of the set Qq and doing change of variables
(q, j, p) → (k, j, p) : k = q + j − p in (4.12) we get:

S1(λ) =
3∑

k=2

(γλ)k +
3∑

k=2

(γλ)k
k∑

j=1

Cj
k

∞∑
p=2j

∑
m1+···+mj=p

ϕm1 . . . ϕmjλ
p−j

=
3∑

k=2

(γλ)k +
3∑

k=2

(γλ)k
k∑

j=1

Cj
k

(
ϕ(λ)
λ

)j

=
3∑

k=2

(γλ)k

(
1 +

ϕ(λ)
λ

)k

=
3∑

k=2

γk(λ+ ϕ(λ))k

(4.15)

Changing order of summation in (4.13) we obtain:

S2(λ) =
∞∑

n=2

3∑
m=2

nϕnγ
mλn+m−1 = ϕ′(λ)

3∑
m=2

(γλ)m (4.16)

Changing variables (k, r, j, p) → (q, r, j, p) : k = q − p − r + j + 1 in (4.14) with
help of definition (3.18) of the set Rq we get:

S3(λ) =
∞∑

r=2

3∑
k=2

k∑
j=1

Cj
k

∞∑
p=2j

∑
m1+···+mj=p

λp+r+k−j−1rϕrϕm1 . . . ϕmj
γk

=
∞∑

r=2

rϕrλ
r−1

3∑
k=2

(γλ)k
k∑

j=1

Cj
k

( ∞∑
m=1

ϕmλ
m

)j

/λj

= ϕ′(λ)
3∑

k=2

(γλ)k
k∑

j=1

Cj
k

(
ϕ(λ)
λ

)j

(4.17)

Relations (4.16), (4.17) imply:

S2(λ) + S3(λ) = ϕ′(λ)
3∑

k=2

(γλ)k

(
1 +

ϕ(λ)
λ

)k

= ϕ′(λ)
3∑

k=2

γk (λ+ ϕ(λ))k (4.18)

Therefore we get from (4.11), (4.15), (4.18):

∂

∂λ
(λϕ(λ) = b0

(
(1 + ϕ′(λ))

3∑
k=2

γk (λ+ ϕ(λ))k

)
(4.19)
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Doing in (4.19) change of functions

ψ(λ) = λ+ ϕ(λ) (4.20)

we obtain the equality

∂

∂λ
(λψ(λ)− λ2) = b0

∂

∂λ

(
3∑

k=2

γk

k + 1
(ψ(λ))k+1

)
(4.21)

Since in (4.21) both expressions under sign of derivative equal zero at λ = 0, we
derive that

λψ(λ)− λ2 = b0

(
3∑

k=2

γk

k + 1
(ψ(λ))k+1

)
(4.22)

Doing in (4.22) change
ψ(λ) = λz(λ) (4.23)

we obtain the relation

F (z(λ), λ) ≡ z(λ)− 1− b0

(
3∑

k=2

γkλk−1

k + 1
z(λ)k+1

)
= 0 (4.24)

where the first equality is definition of the function F (z, λ). Since (4.20), (4.23)
imply that z(0) = 1, we get from definition (4.24) that function F (z, λ) satisfies:

F (z, λ)|z=1
λ=0

= 0, F ′z(z, λ)|z=1
λ=0

= 1

Therefore by Implicite Function Theorem there exists a function z(λ) analytic in
a neighborhood of origin such that z(0) = 1 and F (z(λ), λ) ≡ 0. Hence, by (4.20),
(4.23) the function ϕ(λ) = λ(z(λ)− 1) defined in (4.7) is also analytic. �

Theorem 4.1 and inequalities (4.10) imply

Theorem 4.2. Let F (·, y−) be the map (1.21), (1.22) that defines the stable in-
variant manifold (1.20). Then decomposition of this map in series (2.25) converges
in a neighborhood of origin of the space V−
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