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TRACE THEOREMS FOR THREE-DIMENSIONAL,
TIME-DEPENDENT SOLENOIDAL VECTOR FIELDS

AND THEIR APPLICATIONS

A. FURSIKOV, M. GUNZBURGER, AND L. HOU

Abstract. We study trace theorems for three-dimensional, time-dependent
solenoidal vector fields. The interior function spaces we consider are natural
for solving unsteady boundary value problems for the Navier-Stokes system
and other systems of partial differential equations. We describe the space of
restrictions of such vector fields to the boundary of the space-time cylinder
and construct extension operators from this space of restrictions defined on
the boundary into the interior. Only for two exceptional, but useful, values
of the spatial smoothness index, the spaces for which we construct extension
operators is narrower than the spaces in which we seek restrictions. The trace
spaces are characterized by vector fields having different smoothnesses in di-
rections tangential and normal to the boundary; this is a consequence of the
solenoidal nature of the fields. These results are fundamental in the study
of inhomogeneous boundary value problems for systems involving solenoidal
vector fields. In particular, we use the trace theorems in a study of inho-
mogeneous boundary value problems for the Navier-Stokes system of viscous
incompressible flows.

1. Introduction

Solenoidal vector fields appear in numerous applications, including fluid mechan-
ics, electromagnetics, superconductivity, etc. Solenoidal fields usually result from
a conservation law (e.g., conservation of mass for incompressible flows), or gauge
choices (e.g., for the vector magnetic potential in electromagnetics and supercon-
ductivity), or compatibility conditions (e.g., the vorticity field is, by its definition
as the curl of the velocity, solenoidal). In this paper, we study the properties of
traces of three-dimensional, time-dependent solenoidal vector fields. The results we
derive are of use in the study of inhomogeneous boundary value problems for sys-
tems of partial differential equations which involve solenoidal vector fields. In fact,
we apply them to inhomogeneous boundary value problems for the Navier-Stokes
system for unsteady, viscous, incompressible flows.

Our own motivation arises from our investigations of drag reduction for a body
immersed in a viscous, incompressible flow by controlling the velocity of the fluid
on the boundary of the body; see [5], where the two-dimensional analog of this
problem was studied. The derivation of an optimality system for this optimal
control problem was reduced in [5] to proving the existence of a solution w ∈ W
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for the following boundary value problem:

NS′(v̂)(t,x)w(t,x) = f(t,x) , (t,x) ∈ QT ,
w|ΣT = g , w|t=0 = v0 .

(1.1)

Here, NS′(v̂) is the derivative of the Navier-Stokes operator evaluated at an opti-
mizer v̂, QT = (0, T ) × Ω is a time-space cylinder on which (1.1) is posed, where
Ω ⊂ R2 is the spatial domain with boundary ∂Ω, and ΣT = (0, T ) × ∂Ω is the
lateral surface of the cylinder QT . The solvability of the problem (1.1) should be
proved for each f ∈ F, g ∈ G, and v0 ∈W0, where F, G, and W0 are appropriate
function spaces. The correct choice of W, F, and G is very important because it
is closely connected to the correct mathematical formulation of the original drag
reduction problem.

In the two-dimensional case, the space W is generated naturally (see [5]) by the
drag functional and is the “energy space”

W = V(1)(QT ) ≡
{
v ∈ L2(0, T ; H1(Ω) : ∂tv ∈ L2(0, T ; H−1(Ω)), div v = 0

}
,

where Hk(Ω), k = 1,−1, are the usual Sobolev spaces with smoothness index k
and Hk(Ω) = [Hk(Ω)]d, with d denoting the space dimension. Evidently, F = {f ∈
L2(0, T ; H−1(Ω)) : div f = 0} and

G = the trace space on ΣT of V(1)(QT ) .(1.2)

The trace space (1.2) was characterized in [5].
To formulate the optimal control problem correctly in three dimensions, we use

an approach parallel to that used in two dimensions: we consider (1.1) defined
for x ∈ Ω ⊂ R3. Since it is mathematically inappropriate to use V(1)(QT ) in the
three-dimensional case, we look for the desired space W in the class of “energy-type
spaces”

V(s)(QT ) ≡
{
v ∈ L2(0, T ; Hs(Ω)) : ∂tv ∈ L2(0, T ; Hs−2(Ω)), div v = 0

}
.

It is well known (see [4]) that the boundary value problem (1.1) with the homoge-
neous boundary condition g = 0 is well posed with w ∈ V(s)(QT ) and v̂ ∈ V(s)(QT )
for s ≥ 3/2. In the inhomogeneous case, i.e., g 6= 0, the well-posedness of (1.1)
is still desired. Therefore, to set up a well-posed formulation of the optimal drag
reduction problem in the three-dimensional case, we have to solve the following
problem:

characterize the space of Dirichlet traces

onto ΣT for the spaceV(s)(QT ) .
(1.3)

This paper is devoted to solving problem (1.3) for s > 1/2 in three dimensions
(d = 3). We point out that the case V(s)(QT ) with s = 3/2 is the most appropriate
for the drag reduction problem in the three-dimensional case. Nevertheless, we
are forced to study problem (1.3) for all s > 1/2. The main reason for this is
that the cases s = 3/2 and s = 5/2 are singular. Below, we prove that when
s > 1/2, s 6= 3/2, and s 6= 5/2, the trace space Gs(ΣT ) exists for the space
V(s)(QT ), and we give the precise description of Gs(ΣT ). In particular, we have
the exact formula for ‖ · ‖Gs(ΣT ); see (2.10)–(2.12) below. In the cases s = 3/2 and
s = 5/2, the spaces G3/2

ln (ΣT ) and G
5/2
ln (ΣT ) where we seek restrictions to ΣT of

functions belonging to V(3/2)(QT ) and V(5/2)(QT ), respectively, are wider than the
spaces G3/2(ΣT ) and G5/2(ΣT ) for which we can construct continuous extension
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operators R : G3/2(ΣT )→ V(3/2)(QT ) and R : G5/2(ΣT )→ V(5/2)(QT ). Note that
the norms of the spaces Gs(ΣT ) and Gsln(ΣT ) for s = 3/2 and s = 5/2 differ in
their Fourier representations by a certain logarithmic multiplier; compare (2.4) and
(2.7) below.

The study of the optimal control problem mentioned earlier is a motivation as
well as an application of the trace theorems obtained in this paper (however, optimal
control problems will not be addressed in this paper). Obviously, there are many
other applications of these trace results simply because, as was already mentioned,
many physical problems involve divergence-free vector fields on domains with a
boundary. As an illustration of an application of the trace theorems to be obtained
in this paper, boundary value problems for the Stokes and Navier-Stokes equations
will be considered in the last section.

The methods which were used in [5] to solve the problem (1.3) for s = 1 in
the two-dimensional case applied the theory of interpolation (see [9]). However,
this approach is possible only for s = 1; it cannot be generalized to the three-
dimensional case for s > 1/2. Roughly speaking, the method worked out below
consists of two parts. The first part is the proof of the trace theorem for scalar
functions belonging to the space

H(s)(QT ) = {φ ∈ L2(0, T ;Hs(Ω)) : ∂tφ ∈ L2(0, T ;Hs−2(Ω))} .

With the help of the method of localization, this task is reduced to the derivation of
some estimates for Fourier representations. Of course, this approach is well known;
see, e.g., [9]. Moreover, the proof of these estimates is also well known for s > 5/2.
However, the cases of most interest in applications are 1/2 < s ≤ 5/2.

The second part is to work out the localization and rectification method for
solenoidal vector fields. To establish the restriction theorem when the smoothness
index s of V(s)(QT ) is small, we increase the smoothness by transition from a
solenoidal vector field u to a field v such that curl v = u, and then we express
the traces of u in terms of of the traces of v. To realize this approach, we develop
further some results of [3] on the solvability of the system

curl v = u , div v = 0 for x ∈ Ω , vn
∣∣
∂Ω

= 0 ,

where vn is the projection of the vector field v onto the unit outward-pointing
normal n.

To obtain the extension result we need to solve the following problem posed on
the manifold ∂Ω:

(curl v)
∣∣
∂Ω

= u
∣∣
∂Ω
,(1.4)

where u
∣∣
∂Ω

is a given vector field defined on ∂Ω. Since (curl v)
∣∣
∂Ω

can be easily
expressed in terms of v

∣∣
∂Ω

and (∂v/∂n)
∣∣
∂Ω

, we can understand (1.4) as an equation
for the unknowns v

∣∣
∂Ω

and (∂v/∂n)
∣∣
∂Ω

. We can rewrite (1.4) as an equation on the
manifold ∂Ω in an invariant form using exterior differential forms. With the help
of this curl problem, it is very convenient for us to transform the trace problem for
solenoidal vector fields to the analogous problem for exterior differential forms. To
make this transformation in a simple way, we are compelled to use only a special
kind of local coordinates, the “orthogonal local coordinates.” To solve (1.4), we
may use well-known results on the solvability of the Laplace operator in the classes
of differential forms defined on the manifold ∂Ω; see [1] and [10].
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Some notations are in order. Throughout, Ω is a bounded domain in Rd, ∂Ω is
the boundary of Ω, and ∂Ω is a compact and closed C∞ manifold consisting of J
connected components {Γj},

∂Ω =
J⋃
j=1

Γj and Γi ∩ Γj = φ whenever i 6= j .(1.5)

QT = (0, T )× Ω denotes a space-time cylinder and ΣT = (0, T )× ∂Ω is its lateral
boundary. n denotes the unit outward-pointing normal vector on ∂Ω or on ΣT .

2. Formulation of the trace theorem

In this section, we first recall some definitions of the function spaces which will
be used in the sequel; then, we formulate the trace theorem.

2.1. Function spaces. We introduce the space

S = S(Rd) = {u : xαDβu ∈ L2(Rd), ∀α, ∀β} ,

where x = (x1, · · · , xd) ∈ Rd, α = (α1, · · · , αd) and β = (β1, · · · , βd) are multi-
indices with nonnegative components, xα = xα1

1 · · ·x
αd
d , and

Dβ = ∂|β|/(∂xβ1
1 · · · ∂x

βd
d ).

For u ∈ S, we define the Fourier transform

û(ξ) = Fu(ξ) = (2π)−d/2
∫
Rd
e−ix·ξu(x) dx ,

where x · ξ = x1ξ1 + · · ·+ xdξd. Then, the inverse Fourier transform gives

u(x) = F û(x) = (2π)−d/2
∫
Rd
eix·ξû(ξ) dξ .

Recall that the Schwartz space S′(Rd) of slowly growing distributions is defined
as the dual space of S(Rd); for details see [6] and [9, Chap. I, 1.2]. The Fourier
transform of u ∈ S′ is defined by the formula

〈Fu, φ〉 = 〈u,Fφ〉 ∀φ ∈ S(Rd) ,

where 〈·, ·〉 is the duality between S′ and S which is generated by the scalar product
in the space L2(Rd) of complex-valued functions.

For s ∈ R, the Sobolev space Hs(Rd) is defined as follows:

Hs(Rd) = {u ∈ S′(Rd) : (1 + |ξ|2)s/2û ∈ L2(Rd)}
with the norm defined by

‖u‖2Hs(Rd) =
∫
Rd

(1 + |ξ|2)s|û(ξ)|2 dξ .

On the closure G of a domain G, we introduce the following subspace of Hs(Rd):

Hs
G

(Rd) = {u ∈ Hs(Rd) : suppu ⊂ G} ,
where suppu is the support of the function u. For a domain Ω, we denote Ω′ =
Rd\Ω. For s ∈ R, the Sobolev space Hs(Ω) of functions defined on Ω is determined
as follows (see [7] and [13]):

Hs(Ω) = Hs(Rd)/Hs
Ω′(Rd) .(2.1)
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General definitions of quotient spaces of Banach spaces and (2.1) imply that there
exists an extension operator E : Hs(Ω)→ Hs(Rd) and

‖u‖Hs(Ω) = inf
E
‖Eu‖Hs(Rd) ,(2.2)

where the infimum is taken over all extension operators E.
We suppose that the boundary ∂Ω of a domain Ω ⊂ Rd is a closed manifold of

dimension d− 1. Then, by the definition of a manifold, there exist a finite covering
{Uj} of ∂Ω and diffeomorphisms δj : Uj → B = {x ∈ Rd : |x| < 1} such that, on
Ui ∩ Uj(6= ∅), δi ◦ δ−1

j is a C∞ map. Let {φj} be a partition of unity subordinate
to {Uj}. Then, the norm ‖ · ‖Hs(∂Ω) is defined by the formula

‖u‖2Hs(∂Ω) =
∑
j

‖φju ◦ δ−1
j ‖2Hs(Rd−1)(2.3)

and the Sobolev space Hs(∂Ω) is determined as the space of distributions defined
on ∂Ω which possess the finite norm (2.3); for details, see [9].

We will use the space Vs(Ω) of solenoidal vector fields which is defined as follows:

Vs(Ω) = {v = (v1, · · · , vd) ∈ [Hs(Ω)]d : div v = 0} .
The main object of our investigation will be spaces of functions that depend on both
x and the time t. If (t,x) ∈ Rd+1, then the Fourier transform û(τ, ξ) is defined as
follows:

û(τ, ξ) = Fu(τ, ξ) = (2π)−(d+1)/2

∫
Rd+1

e−i(tτ+x·ξ)u(t,x) dx dt .

We introduce the Schwartz space S′(Rd+1) and define

H(s)(Rd+1) = {u(t,x) ∈ S′(Rd+1) : ‖u‖H(s)(Rd+1) <∞} ,
where

‖u‖2H(s)(Rd+1)

≡
∫
Rd+1

[(1 + |ξ|2)s + (1 + |τ |2)(1 + |ξ|2)s−2] |û(τ, ξ)|2 dξ dτ .
(2.4)

On the finite time space-time cylinder QT , analogously to (2.1)–(2.2), we can define

H(s)(QT ) = H(s)(Rd+1)/H(s)
Q′T

(Rd+1)

and

‖u‖H(s)(QT ) = inf
E
‖Eu‖H(s)(Rd+1) .

The space V(s)(QT ) of solenoidal vector fields is defined as follows:

V(s)(QT ) = {v = (v1, · · · , vd) ∈ [H(s)(QT )]d : div v = 0} .(2.5)

The traces of functions u ∈ V(s)(QT ) on the lateral surface ΣT = (0, T )×∂Ω will be
sought in certain spaces of the type Hs(0, T ; Hr(∂Ω)); their norms are constructed
from the norms of Hs(R; Hr(∂Ω)) by a formula analogous to (2.2). The norm of
Hs(R; Hr(∂Ω)) is defined as follows:

‖u‖2Hs(R;Hr(∂Ω)) =
∫
R

(1 + |τ |2)s‖û(τ, ·)‖2Hr(∂Ω) dτ .(2.6)
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Here,

û(τ, ·) = (2π)−1/2

∫
R
e−iτtu(t, ·) dt

is the Fourier transform of the function u(t, ·) defined for t ∈ R with values belong-
ing to the space Hr(∂Ω). If s = 0 or r = 0, we will write

H0(0, T ; Hr(∂Ω)) = L2(0, T ; Hr(∂Ω))

and

Hs(0, T ; H0(∂Ω)) = Hs(0, T ; L2(∂Ω)) .

Finally, we introduce special logarithmic spaces. Let B(Rd) be a space of func-
tions u(t,x′) for (t,x′) ∈ R × Rd−1 with the norm

‖u‖2B(Rd) =
∫
Rd
b(τ, ξ′)|û(τ, ξ′)|2 dτ dξ′ ,

where b(τ, ξ′) ≥ 1 is a weight and û(τ, ξ′) is the Fourier transform of u. Then, by
Bln(Q), where Q = R × Rd−1, we denote the function space

Bln(Q) = the completion of B(Rd) under the norm ‖u‖Bln(Q) ,

where the norm is defined by

‖u‖2Bln(Q) =
∫
Rd

b(τ, ξ′)

ln
[
2 + (1+|τ |2)

(1+|ξ′|2)2

] |û(τ, ξ′)|2 dτ dξ′ .

For example, H(s)
ln (Rd) has the norm

‖u‖2H(s)
ln (Rd)

=
∫
Rd

(1 + |ξ′|2)s + (1 + |τ |2)(1 + |ξ′|2)s−2

ln[2 + (1 + |τ |2)/(1 + |ξ′|2)2]
|û(τ, ξ′)|2 dξ′ dτ

(2.7)

as H(s)(Rd) has the norm (2.4). The space Hs
ln(R;Hr(Rd−1)) has the norm

‖u‖2Hsln(R;Hr(Rd−1))

=
∫
Rd

(1 + |ξ′|2)r(1 + |τ |2)s

ln[2 + (1 + |τ |2)/(1 + |ξ′|2)2]
|û(τ, ξ′)|2 dξ′ dτ .

(2.8)

IfB(Σ) is a function space defined on Σ = R×∂Ω, then the logarithmic spaceBln(Σ)
is constructed from Bln(Rd) in the usual manner just as B(Σ) is constructed from
B(Rd); see above.

2.2. Formulation of the trace theorem. As is well known, a trace theorem
consists of two parts: a restriction theorem and an extension theorem. Thus,
below, we formulate the desired trace theorem as two separate assertions.

Let v(x), defined for x ∈ Ω, be a solenoidal vector field of class C∞, and γv its
restriction on the boundary ∂Ω:

γv = v
∣∣
∂Ω
.

We can decompose the vector field γv into the tangential component γτv and the
normal component (γnv)n:

γv = γτv + (γnv)n .(2.9)
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Here, γnv is the orthogonal projection of γv onto the normal vector field n, and
γτv is the orthogonal projection of γv into the tangent space Tx∂Ω to the manifold
∂Ω at the point x. We will also use the decomposition (2.9) for the restriction
γv to the lateral boundary ΣT when v(t,x) is defined on QT ; the meaning of the
decomposition in this case is evident.

The case d ≡ dim Ω = 3 is the most important case for applications, and we will
consider only this case in the sequel.

To formulate the restriction and extension theorems in a compact form, we
introduce the space of traces. Specifically we introduce the function spaces on
ΣT :

Gsτ (ΣT ) =



[H(s−1/2)(ΣT )]2, s ≥ 5/2,
[L2(0, T ;Hs−1/2(∂Ω))
∩H(2s−1)/4(0, T ;L2(∂Ω))]2,

2 ≤ s ≤ 5/2,

[L2(0, T ;Hs−1/2(∂Ω))
∩H 2s−1

2s (0, T ;H(1−2
s )(s− 1

2 )(∂Ω))]2,
1/2 < s ≤ 2,

(2.10)

and

Gsn(ΣT ) =



H(s−1/2)(ΣT ) ∩ L2(0, T ; H̃1(∂Ω)), s ≥ 3/2,
L2(0, T ; H̃s−1/2(∂Ω))

∩H(2s+1)/4(0, T ; H̃−1(∂Ω)),
1 ≤ s ≤ 3/2,

L2(0, T ; H̃s−1/2(∂Ω))

∩H
2s+1
2s+2 (0, T ; H̃

2s2−3s−3
2s+2 (∂Ω)),

for 1/2 < s ≤ 1,

(2.11)

where H̃α(∂Ω) = {v ∈ Hα(∂Ω) :
∫
∂Ω
v dx = 0} and, for α < 0, the integral is

understood in the sense of distributions. We set

Gs(ΣT ) = Gsτ (ΣT )×Gsn(ΣT ) .(2.12)

Theorem 2.1 (The restriction theorem). Let Ω ⊂ R3. Then, the operator (2.9)
can be extended by continuity into the following continuous operator:

γ : V(s)(QT )→ Gs(ΣT ) for s > 1/2, s 6= 3/2, s 6= 5/2 .(2.13)

If s = 5/2, then the restriction operator

γ = (γτ , γn) : V(5/2)(QT )→ [H(2)
ln (ΣT )]2 ×H(2)(ΣT )(2.14)

is continuous. For s = 3/2, the restriction operator γ = (γτ , γn) as a mapping

γ : V(3/2)(QT )→ [L2(0, T ;H1(∂Ω)) ∩H2/3(0, T ;H−1/3(∂Ω))]2

× [L2(0, T ; H̃1(∂Ω)) ∩H1
ln(0, T ; H̃−1(∂Ω)) ∩H2/3(0, T ;H−1/3(∂Ω))]

(2.15)

is bounded, where the logarithmic spaces are defined in (2.7) and (2.8).

Theorem 2.2 (The extension theorem). Let Ω ⊂ R3. Then for s > 1/2 there
exists a continuous extension operator

R : Gs(ΣT )→ V(s)(QT ) ,

i.e., the operator R is such that γ ◦ R = I, where I : Gs(ΣT ) → Gs(ΣT ) is the
identity operator.
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Remark 2.1. Theorems 2.1 and 2.2 imply that the restriction operator (2.13) is
surjective for s > 1/2, s 6= 3/2 and s 6= 5/2. If s = 3/2, then G3/2(ΣT ) ⊂ =(γ),
where =(γ) is the image of the operator (2.15). Analogously, if s = 5/2, then
G5/2(ΣT ) ⊂ =(γ), where =(γ) is the image of the operator (2.14).

Sections 3, 4, and 5 are devoted to the proofs of Theorems 2.1 and 2.2, which
are the main results of this paper. We also prove some other extension results.

3. Trace theorems for the Sobolev spaces H(s)(Rd+1)

3.1. Restriction results. For a scalar function u(t,x) ∈ C∞(Rd+1)∩H(s)(Rd+1),
we introduce the following restriction operators:

(γ0u)(t,x′) = u(t,x)
∣∣
xd=0

and (γku)(t,x′) =
∂ku(t,x)
∂xkd

∣∣∣
xd=0

,(3.1)

where k = 1, 2, . . . , x = (x1, . . . , xd), and x′ = (x1, . . . , xd−1). Our aim is to
determine the spaces of restrictions γku (k = 0, 1, 2, . . . ) when u ∈ H(s)(Rd+1). We
will assume that

s− k > 1/2 .

First of all, we consider the case

1/2 < s− k < 5/2 .(3.2)

Lemma 3.1. Let k ≥ 0 be an integer and assume that the inequality (3.2) holds.
Then, the operator γk defined in (3.1) can be extended by continuity into the con-
tinuous operator

γk : H(s)(Rd+1)→ L2(R;Hs−k−1/2(Rd−1))

∩H(2s−2k−1)/4(R;L2(Rd−1)), if s ≥ 2,
(3.3)

and

γk : H(s)(Rd+1)→ L2(R;Hs−k−1/2(Rd−1))

∩H(2s−2k−1)/(2s)(R;H(1−2/s)(s−k−1/2)(Rd−1)), if s ∈ (1/2, 2).
(3.4)

Proof. Let û(τ, ξ) denote the Fourier transform of u(t,x); then

γ̂ku(τ, ξ′) = (2π)−1/2 ∂
k

∂xkd

∫
R
eixdξd û(τ, ξ′, ξd) dξd

∣∣∣
xd=0

= (2π)−1/2

∫
R

(iξd)kû(τ, ξ′, ξd) dξd .
(3.5)

Let

a(ξ′) = 1 + |ξ′|2 , b(τ) = 1 + |τ |2,(3.6)

and

Λs(τ, ξ) = as(ξ′) + |ξd|2s + b(τ)[as−2(ξ′) + |ξd|2(s−2)] .(3.7)
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Applying the Plancherel theorem and the Cauchy-Schwarz-Bunyakovsky inequality
to (3.5), we obtain, with a function R(τ, ξ′) > 0,∫

Rd
R(τ, ξ′)|γ̂ku(τ, ξ′)|2 dτdξ′

=
∫
Rd
R(τ, ξ′)

∣∣∣∣∣
∫
R

ξkd

Λ1/2
s (τ, ξ)

û(τ, ξ′, ξd)Λ1/2
s (τ, ξ) dξd

∣∣∣∣∣
2

dτdξ′

≤ C
∫
Rd

(
R(τ, ξ′)

∫
R

η2k

Λs(τ, ξ′, η)
dη

)
·
∫
R

Λs(τ, ξ)|û(τ, ξ′, ξd)|2 dξd dτdξ′ .

(3.8)

If we could find R(τ, ξ′) such that

0 < C1 ≤
∣∣∣∣R(τ, ξ′)

∫
R

η2k

Λs(τ, ξ′, η)
dη

∣∣∣∣ ≤ C2 ,(3.9)

where the constants C1 and C2 do not depend on τ and ξ′, then (3.8) would imply∫
Rd
R(τ, ξ′)|γ̂ku(τ, ξ′)|2 dτdξ′ ≤ C‖u‖2H(s)(Rd+1) ,

so that the function R would define a norm on the space for γku, u ∈ H(s)(Rd+1).
Let us determine an R satisfying (3.9). Set

β = as + bas−2 .

Using this last relation and (3.6)–(3.7), we obtain, by making some simple trans-
formations,∫

R

η2k

Λs(τ, ξ′, η)
dη = 2

∫ ∞
0

η2k

as + bas−2 + η2s + bη2(s−2)
dη

=
2

β1−(2k+1)/(2s)

·
∫ ∞

0

(η/β1/(2s))2k

1 + (η/β1/(2s))2s + (b/β2/s)(η/β1/(2s))2(s−2)
dη/β1/(2s)

= 2(as + bas−2)(2k+1−2s)/(2s)

∫ ∞
0

y2k

1 + y2s + b
β2/s y2(s−2)

dy .

(3.10)

Thus, we have to estimate the integral

I(r) =
∫ ∞

0

y2k

1 + y2s + ry2(s−2)
dy ,(3.11)

where

r =
b

β2/s
=

b

(as + bas−2)2/s
.(3.12)
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Through the change of variable z = y2k+1 we obtain, when s− k satisfies (3.2),

I(r) =
1

2k + 1

∫ ∞
0

dz

1 + z2s/(2k+1) + rz2(s−2)/(2k+1)

≤ 1
2k + 1

∫ ∞
0

dz

z2(s−2)/(2k+1)(z4/(2k+1) + r)

=
1

2k + 1

(
1− 2(s− 2)

2k + 1

)−1 ∫ ∞
0

dz(2k+5−2s)/(2k+1)

z4/(2k+1) + r

=
1

2k + 5− 2s

∫ ∞
0

dy

y4/(2k+5−2s) + r

= Cr(2k+1−2s)/4

∫ ∞
0

dy/r(2k+5−2s)/4

(y/r(2k+5−2s)/4)4/(2k+5−2s) + 1

= Cr(2k+1−2s)/4 .

(3.13)

On the other hand, analogously to (3.13), we have

(2k + 1)I(r) >
∫ ∞

1

dz

2z2(s−2)/(2k+1)(z4/(2k+1) + r)

= Cr(2k+1−2s)/4

∫ ∞
1

dy/r(2k+5−2s)/4

(y/r(2k+5−2s)/4)4/(2k+5−2s) + 1

≥ C1r
(2k+1−2s)/4 as r →∞ .

(3.14)

Relations (3.13)–(3.14) and the evident relation I(r)→ constant as r → 0 yield

I(r) ∼ (r + 1)(2k+1−2s)/4 for r ≥ 0 ,(3.15)

i.e., c1(r+ 1)(2k+1−2s)/4 ≤ I(r) ≤ c2(r+ 1)(2k+1−2s)/4. Substituting the expression
for r defined in (3.12) into (3.15) and taking into account (3.9) and (3.10), we obtain

R(τ, ξ′) ∼ (as + bas−2)−
2k+1−2s

2s

·
(

1 +
b

(as + bas−2)2/s

)−(2k+1−2s)/4

∼ (as + bas−2)−
2k+1−2s

2s + 2k+1−2s
2s

· (a2 + b2/sa2(s−2)/s + b)−(2k+1−2s)/4

∼ (a2 + b)(2s−2k−1)/4, if s ≥ 2 ,

(3.16)

where the condition s ≥ 2 was used only in the last step of (3.16). By the def-
inition (3.6) of the functions a(ξ′) and b(τ) and the definition (2.6) of the space
Hs(R;Hr(Rd−1)), we see that R(τ, ξ′) in (3.16) defines a norm for the space

L2(R;Hs−k−1/2(Rd−1)) ∩H(2s−2k−1)/4(R;L2(Rd−1)), s ≥ 2 .
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Analogously, when 1/2 < s ≤ 2 we obtain

R(τ, ξ′) ∼
(
a2 + b2/sa2(s−2)/s + b

)(2s−2k−1)/4

∼
(
a2(s−2)/s(a4/s + b2/s + ba2(2−s)/s)

)(2s−2k−1)/4

∼
(
a2(s−2)/s(a4/s + b2/s)

)(2s−2k−1)/4

∼ as−k−1/2 + b(s−k−1/2)/sa(s−2)(s−k−1/2)/s ,

and we see that R(τ, ξ′) defines a norm for the space

L2(R;Hs−k−1/2(Rd−1)) ∩H(2s−2k−1)/(2s)(R;H(1−2/s)(s−k−1/2)(Rd−1))

for 1/2 < s ≤ 2.

Next we consider the case

s− k = 5/2 .(3.17)

Lemma 3.2. Let k ≥ 0 be an integer and assume (3.17) holds. Then, the operator
γk defined in (3.1) can be extended by continuity into the continuous operator

γk : H(5/2)(Rd+1)→ H(2)
ln (Rd) .(3.18)

Proof. As in the previous lemma, we have to estimate the integral I(r) from (3.11)
when s− k satisfies (3.17). By the first equality in (3.13), we have

(2k + 1)I(r) =
∫ 1

0

dz

1 + z
2k+5
2k+1 + rz

+
∫ ∞

1

dz

1 + z
2k+5
2k+1 + rz

.

Through a change of variables, we have∫ 1

0

dz

1 + z
2k+5
2k+1 + rz

≤
∫ 1

0

dz

1 + rz
=

1
r

∫ r

0

dy

1 + y
=

ln(1 + r)
r

and ∫ 1

0

dz

1 + z
2k+5
2k+1 + rz

≥
∫ 1

0

dz

2 + rz
=

1
r

∫ r

0

dy

2 + y
=

ln(2 + r) − ln 2
r

.

On the other hand,∫ ∞
1

dz

1 + z
2k+5
2k+1 + rz

≤
∫ ∞

1

dz

z
2k+5
2k+1 (1 + rz1− 2k+5

2k+1 )

=
(

1− 2k + 5
2k + 1

)−1 ∫ ∞
1

dz−4/(2k+1)

1 + rz−4/(2k+1)
=

2k + 1
4

∫ 1

0

dy

1 + ry

=
2k + 1

4
ln(1 + r)

r
.

If r ≥ 1, then ∫ ∞
1

dz

1 + z
2k+5
2k+1 + rz

≥
∫ ∞

1

dz

z
2k+5
2k+1 (1 + 2rz1− 2k+5

2k+1 )

=
2k + 1

4

∫ 1

0

dy

1 + 2ry
=

2k + 1
4

ln(1 + 2r)
2r

.
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Also, as r → 0, we have ∫ ∞
0

dz

1 + z
2k+5
2k+1 + rz

∼ 1 .

These relations imply

I(r) ∼ ln(r + 2)
1 + r

for r ∈ (0,∞) .(3.19)

With the help of (3.19), and denoting β = (ak+5/2 + bak+1/2)4/(2k+5) (analogously
to (3.16)), we may deduce

R(τ, ξ′) ∼ β
(

1 +
b

β

)/
ln
(

2 +
b

β

)
∼ (β + b)

/
ln
(

2 +
b

β

)
∼
(
a2 + b4/(2k+5)a2(2k+1)/(2k+5) + b

)/
ln
(

2(a2 + b4/(2k+5)a2(2k+1)/(2k+5)) + b

a2 + b4/(2k+5)a2(2k+1)/(2k+5)

)
∼ (a2 + b)

/
ln
(

a2 + b

a2(2k+1)/(2k+5)(a8/(2k+5) + b4/(2k+5))

)
∼ a2 + b

ln
(
a2+b
a2

)(2k+1)/(2k+5)
∼ a2 + b

ln(1 + b
a2 )

.

This relation and (3.8) yield (3.18).

Finally, we consider the case

s− k > 5/2 .(3.20)

Lemma 3.3. Let k ≥ 0 be an integer and assume that (3.20) holds. Then, the op-
erator γk defined in (3.1) can be extended by continuity into the continuous operator

γk : H(s)(Rd+1)→ H(s−k−1/2)(Rd) .(3.21)

Proof. We have to estimate I(r) from (3.11) under condition (3.20), which is equiv-
alent to the inequality 2(s− 2)/(2k + 1) > 1. Using the first equality from (3.13),
we obtain

(2k + 1)I(r) ≤
∫ ∞

0

dz

1 + rz2(s−2)/(2k+1)

= r−
2k+1

2(s−2)

∫ ∞
0

dzr
2k+1

2(s−2)

1 + (zr
2k+1

2(s−2) )2(s−2)/(2k+1)
= Cr−

2k+1
2(s−2) .

(3.22)

Since z2s/(2k+1) < rz2(s−2)/(2k+1) when z < r(2k+1)/4, we have

(2k + 1)I(r) ≥
∫ r(2k+1)/4

0

dz

1 + 2rz2(s−2)/(2k+1)

= r−
2k+1

2(s−2)

∫ r(2k+1)/4

0

dzr
2k+1

2(s−2)

1 + 2(zr
2k+1

2(s−2) )2(s−2)/(2k+1)

= r−
2k+1

2(s−2)

∫ r(2k+1)/4+(2k+1)/2(s−2)

0

dy

1 + 2y
2(s−2)
2k+1

≥ Cr−
2k+1

2(s−2) as r →∞ .

(3.23)
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The first equality in (3.13) yields that

I(r) ∼ constant as r → 0 .

Hence, by (3.22)–(3.23), we obtain

I(r) ∼ (1 + r)−
2k+1

2(s−2) for r ≥ 0 .

Using this relation we obtain, similarly to (3.16),

R(τ, ξ′) ∼ (as + bas−2)−
2k+1−2s

2s

·
(

1 +
b

(as + bas−2)2/s

) 2k+1
2(s−2)

∼ (as + bas−2)1− 2k+1
2s −

2k+1
s(s−2)

· (a2 + b2/sa2(s−2)/s + b)
2k+1

2(s−2)

∼ a(s−2)(1− 2k+1
2(s−2) )(a2 + b) ∼ as−k−5/2(a2 + b) .

(3.24)

Taking into account (3.6) and (2.4), we see that R(τ, ξ′) in (3.24) defines a norm
of the space H(s−k−1/2)(Rd).

Consider now the finite time case QT = (0, T )×Ω and ΣT = (0, T )× ∂Ω. For a
scalar function u(t,x) ∈ C∞(QT )∩H(s)(QT ), define the restriction operator γk by
the formula

γ0u = u
∣∣
ΣT
, γku = γ

∂ku

∂nk
≡ ∂ku

∂nk

∣∣
ΣT
, k = 1, 2, . . . ,(3.25)

where ∂k

∂nk is the k-th normal derivative. Lemmas 3.1, 3.2, and 3.3 imply the
following restriction result for functions defined on QT .

Theorem 3.1. Let k ≥ 0 be an integer and let s > 0. Assume s− k > 1/2. Then,
the restriction operator γk defined in (3.25) can be extended by continuity into the
bounded operators

γk : H(s)(QT )→ H(s−k−1/2)(ΣT ) for s− k > 5/2 ,(3.26)

γk : H(s)(QT )→ L2(0, T ;Hs−k−1/2(∂Ω))

∩H(2s−2k−1)/4(0, T ;L2(∂Ω)) for 1/2 < s− k < 5/2 , s ≥ 2,
(3.27)

γk : H(s)(QT )→ L2(0, T ;Hs−k−1/2(∂Ω))

∩H(2s−2k−1)/(2s)(0, T ;H(1−2/s)(s−k−1/2)(∂Ω))

for 1/2 < s− k < 5/2 , 1/2 < s < 2,

(3.28)

and

γk : H(5/2)(QT )→ H(2)
ln (ΣT ) for s− k = 5/2 ,(3.29)

where H(2)
ln (ΣT ) is constructed in the usual manner from the space H(2)

ln (Rd) defined
through (2.7).

Theorem 3.1 can be deduced from Lemmas 3.1–3.3 by standard methods that
involve the extension of u ∈ H(s)(QT ) to u ∈ H(s)(Rd+1), the introduction of a
partition of unity in a neighborhood of ΣT , and the rectification of ΣT .
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3.2. Extension results. We begin with the construction of the extension opera-
tors which correspond to the restriction operator (3.21).

Lemma 3.4. Let k ≥ 0 be an integer and s ∈ R. Then, there exists a continuous
operator

βk : H(s−k−1/2)(Rd)→ H(s)(Rd+1)(3.30)

such that γk ◦βku = u and γj ◦βku = 0, j 6= k, for each u ∈ H(s−k−1/2)(Rd), where
γk is the operator (3.21).

Proof. Let φk(t) ∈ C∞(R) with suppφk ⊂ [−1, 1] and φk(t) = tk/k! for |t| < 1/2.
For u(t,x) ∈ H(s)(Rd+1) we denote by

ũ(τ, ξ′, xd) ≡ ũ(τ, ξ1, · · · , ξd−1, xd)

the Fourier transform with respect to the variables (t,x′) = (t, x1, · · · , xd−1),
i.e., we use ũ(τ, ξ′, xd) to denote the partial Fourier transform (to distinguish it
from the total Fourier transform û with respect to all variables). Let v(t,x′) ∈
H(s−k−1/2)(Rd), and let v̂(τ, ξ′) be the Fourier transform of v. We define the oper-
ator βk by the formula

(β̃kv)(τ, ξ′, xd) = φk(a1/2(ξ′)xd)û(τ, ξ′)a−k/2(ξ′) ,(3.31)

where the function a(ξ′) was defined in (3.6). Taking the Fourier transform with
respect to xd in (3.31), we obtain the complete Fourier transform of βkv:

β̂kv(τ, ξ) =
û(τ, ξ′)

a(1+k)/2(ξ′)
φ̂k(ξda−1/2(ξ′)) .(3.32)

Taking into account the definition (2.4) of the norm of the space H(s)(Rd+1) and
(3.32), we obtain

‖βkv‖2H(s)(Rd+1)

=
∫ (

[a(ξ′) + ξ2
d]s + b(τ)[a(ξ′) + ξ2

d ]s−2
)

· |û(τ, ξ′)|2
a(1+k)(ξ′)

|φ̂k(ξda−1/2(ξ′))|2 dτ dξ′ dξd

=
∫

(a+ ay2)(s−2)[(a+ ay2)2 + b]

· |û(τ, ξ′)|2
a(k+1/2)(ξ′)

|φ̂k(y)|2 dτ dξ′ dy

≤ c
∫
as−k−5/2(a2 + b)(1 + y2)s−2[1 + y4a2/(a2 + b)]

· |û(τ, ξ′)|2|φ̂k(y)|2 dy dτ dξ′

≤ c1
∫

(as−k−1/2 + bas−k−5/2)|û(τ, ξ′)|2 dτ dξ′ .

These equalities imply (3.30). The equalities γk ◦ βk = I and γj ◦ βk = 0, j 6= k,
follow from the definitions (3.1) and (3.31) for γk and βk, respectively.

Remark 3.1. Note that for 1/2 < s− k < 5/2, we have

H(s−k−1/2)(Rd)
⊂
6= L2(R;Hs−k−1/2(Rd−1)) ∩H

2s−2k−1
4 (R;L2(Rd−1))
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and

H(s−k−1/2)(Rd)
⊂
6= L2(R;Hs−k−1/2(Rd−1))

∩H
2s−2k−1

2s (R;H(1−2/s)(s−k−1/2)(Rd−1))

(in other words, the space of restrictions obtained in Lemma 3.1 is wider than the
domain of the extension operator in Lemma 3.4). Indeed, the proof of the first
inclusion amounts to that of the inequality

as−k−1/2 + b(2s−2k−1)/4 ≤ C[as−k−1/2 + bas−k−5/2] ,

which, upon absorbing the term as−k−1/2 on the left side by that on the right side,
can be rewritten as

[bas−k−5/2](2s−2k−1)/4a(5/2−s+k)(2s−2k−1)/4 ≤ C[as−k−1/2 + bas−k−5/2] .

Since (2s−2k−1)/4 < 1, the last inequality is valid by virtue of Young’s inequality.
Similarly, the proof of the second inclusion amounts to that of the inequality

as−k−1/2 + b(s−k−1/2)/sa(1−2/s)(s−k−1/2) ≤ C[as−k−1/2 + bas−k−5/2] .

Upon absorbing the term as−k−1/2 on the left side by that on the right side and then
dividing the inequality by as−k−5/2, we see that the last inequality is equivalent to

b(s−k−1/2)/sa(2k+1)/s ≤ C[a2 + b] ,

which again is valid by virtue of Young’s inequality.

Let a(ξ′) and b(τ) be defined as in (3.6) and let û(τ, ξ′) denote the Fourier
transform of u(t,x′). We introduce the following function spaces:

Bs(Rd) =
{
u(t,x′), (t,x′) ∈ R × Rd−1 : ‖u‖Bs(Rd) <∞

}
,

where

‖u‖2Bs(Rd) =
∫
Rd

(a2(ξ′) + b(τ))s/2|û(τ, ξ′)|2 dτdξ′ ,

and

Bs,k(Rd) =
{
u(t,x′) ∈ L2(R × Rd−1) : ‖u‖Bs,k(Rd) <∞

}
,

where

‖u‖Bs,k(Rd) =
∫
Rd

(
a2(ξ′) + b

2
s (τ)a

2(s−2)
s (ξ′)

) 2s−2k−1
4 |û(τ, ξ′)|2 dτ dξ′.

Lemma 3.5. Let k ≥ 0 be an integer and s ∈ R. Assume s−k ≤ 5/2. Then, there
exists a continuous operator

βk : Bs−k−1/2(Rd)→ H(s)(Rd+1) if s ≥ 2(3.33)

and

βk : Bs,k(Rd)→ H(s)(Rd+1) if 1/2 < s < 2(3.34)

such that γk ◦ βku = u and γj ◦ βku = 0, j 6= k, where γk is the operator (3.1).
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Proof. Let s ≥ 2. We define the operator βk by formulae similar to (3.31)–(3.32):

β̃ku(τ, ξ′, xd) = (a2 + b)−k/4φk((a2 + b)1/4xd)û(τ, ξ′)(3.35)

and

β̂ku(τ, ξ) = (a2 + b)−(k+1)/4û(τ, ξ′)φ̂k((a2 + b)−1/4ξd) .(3.36)

By the definition (2.4) of the norm of H(s)(Rd+1) and by (3.36),

‖βku‖2H(s)(Rd+1) =
∫
Rd
A(τ, ξ′)(a2 + b)−(k+1)/2|û(τ, ξ′)|2 dτdξ′ ,

where

A(τ, ξ′) =
∫
R

[(a+ ξ2
d)s + b(a+ ξ2

d)s−2]|φ̂k((a2 + b)−1/4ξd)|2 dξd .(3.37)

Making the change of variable y = (a2 + b)−1/4ξd in (3.37) and taking into account
the fact that, for an arbitrary N > 0,

|φ̂k(y)|2 ≤ CN (1 + y)−N ,

we obtain

A(τ, ξ′) ≤ C(a2 + b)1/4

∫
R

(a+ (a2 + b)1/2y2)s−2(a2 + b+ (a2 + b)y4)
(1 + y2)N

dy

≤ C(a2 + b)(2s+1)/4

∫ ∞
0

[y2 + a/(a2 + b)1/2]s−2(1 + y4)/(1 + y2)N dy

≤ C(a2 + b)(2s+1)/4 .

This inequality proves the continuity of the operator (3.33).
Consider now the case 1/2 < s < 2. We define the operator βk as follows:

β̃ku(τ, ξ′, xd) = M−k/4φk(Λxd)û(τ, ξ′)

and

β̂ku(τ, ξ) = M−k/4Λ−1φ̂k(Λ−1ξd)û(τ, ξ′) ,

where

M = a2(ξ′) + b2/s(τ)a2(s−2)/s(ξ′) ,

Λ = a(s−2)/(2s)(ξ′)[a2(ξ′) + b(τ)]1/(2s).
(3.39)

Then we obtain, as above,

‖βku‖2H(s)(Rd+1) =
∫
Rd+1

A(τ, ξ′)M−k/2|û(τ, ξ′)|2 dτ dξ′(3.40)

with

A(τ, ξ′) =
∫
R

(
(a+ ξ2

d)s + b(a+ ξ2
d)s−2

)
Λ−2|φ̂k(Λ−1ξd)|2 dξd

=
∫
R

(
(a+ Λ2y2)s + b(a+ Λ2y2)s−2

)
Λ−1|φ̂k(y)|2 dy

=
∫
R

[
Λ2s−1

( a

Λ2
+ y2

)s
+ bΛ2s−5

( a

Λ2
+ y2

)]
|φ̂k(y)|2 dy

∼ Λ2s−1 + bΛ2s−5 .
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Substituting (3.39) into the last relation, we obtain

A(τ, ξ′) ∼ a
(2s−1)(s−2)

2s (a2 + b)
2s−1

2s + ba
(2s−5)(s−2)

2s (a2 + b)
2s−5

2s

∼ as− 1
2 + b1−

1
2s a(s−2)(1− 1

2s ) + b(as + bas−2)
2s−5

2s .

This last result obviously will lead us to the desired relation

A(τ, ξ′) ∼ as− 1
2 + b1−

1
2s a(s−2)(1− 1

2s ) ∼
(
a2 + b

2
s a(s−2) 2

s

) 2s−1
4

(3.41)

if we can show that

b(as + bas−2)
2s−5

2s ≤ C
(
as−

1
2 + b1−

1
2s a(s−2)(1− 1

2s )
)
.(3.42)

The estimate (3.42) is equivalent to the inequality

b ≤ C
(
as−

1
2 + b1−

1
2s a(s−2)(1− 1

2s )
)(
a

5
2−s + b

5−2s
2s a

(s−2)(5−2s)
2s

)
= C

(
a2 + b2/sa2(s−2)/s + two other nonnegative terms

)
.

(3.43)

Using Young’s inequality, we have ba2(2−s)/s ≤ C(a4/s+b2/s), which, upon dividing
by a2(2−s)/s on both sides, implies (3.43), or equivalently, (3.42).

From relations (3.40), (3.41), and (3.39), we deduce (3.34).

Remark 3.2. For 1/2 < s−k < 5/2 the spaces of restrictions in (3.3)–(3.4) coincide
with the spaces in (3.33)–(3.34) on which the extension operators βk are defined.
Note that the spaces in (3.33)–(3.34) and the extension operators βk are also well
defined for s− k ≤ 1/2.

With the help of standard partition of unity techniques, we obtain from Lemmas
3.4 and 3.5 extension results for functions defined on Σ = R × ∂Ω (extension into
functions defined on Q = R × Ω).

The spaces Bs(Σ) and Bs,k(Σ) are defined from Bs(Rd) and Bs,k(Rd), respec-
tively, with the help of standard partition of unity techniques.

Theorem 3.2. Let k ≥ 0 be an integer and s ∈ R. Then, there exist continuous
extension operators

βk : H(s−k−1/2)(Σ)→ H(s)(Q)(3.44)

and

βk : Bs−k−1/2(Σ)→ H(s)(Q), if s ≥ 2 ,(3.45)

and

βk : Bs,k(Σ)→ H(s)(Q), if 3/2 < s < 2 ,(3.46)

such that γk ◦ βkv = v, γj ◦ βkv = 0, j 6= k, where γk is the restriction operator
which maps a function u(t,x) defined for (t,x) ∈ R × Ω to the function γku ≡
∂ku(t,x)
∂nk

∣∣∣
x∈Σ≡R×∂Ω

; here ∂k

∂nk is the derivative of order k with respect to the unit

outward normal on ∂Ω.

Theorem 3.2 can be proved from Lemmas 3.4 and 3.5 by standard partition of
unity techniques.
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4. Restriction results for solenoidal vector fields

4.1. Some results concerning a curl elliptic problem. Our aim is to obtain
restriction results for vector fields u ∈ V(s)(QT ) (see the definition in (2.5)) on the
lateral surface ΣT of the cylinder QT . Roughly speaking, we do the following: we
make the decomposition u = uτ +unn in a neighborhood of ΣT , where n is the unit
outward-pointing normal vector field to ΣT and uτ is the tangential component of
u. We recall that

curl u =
(∂u2

∂x3
− ∂u3

∂x2
,
∂u2

∂x3
− ∂u3

∂x2
,
∂u2

∂x3
− ∂u3

∂x2

)
.

To obtain restriction results for uτ , we simply apply the results of Section 3 above.
To obtain precise restriction results for un, we first apply to u the operator curl−1

(which has to be defined) and obtain the vector field curl−1u ∈ H(s+1)(QT ). Then,
using results from Section 3, we can characterize the restriction γτ (curl−1u), where
γτ is the composition of the restriction operator and the tangential projection.
Then, we apply the operator dτ which in local coordinates (t, x1, x2) on ΣT can
be written as dτv = ∂v2/∂x1 − ∂v1/∂x2, where v = (v1(t, x1, x2), v2(t, x1, x2)) is a
tangential vector field to ΣT . One can see that, for smooth u, dτγτcurl−1u = γnu,
where γn is the composition of the restriction operator and the projection onto the
vector field of outer normals to ΣT . This construction gives the precise restriction
results.

The operator (curl )−1 is not defined on the whole space

Vs(Ω) = {u ∈ [Hs(Ω)]3 : div u = 0} .(4.1)

First, we study the restriction problem for a certain subspace of Vs(Ω); the general
case will be considered later in Subsection 4.4.

It is well known (see, for example, [12]) that for any u ∈ Vs(Ω), s ≥ 0, the trace
γnu (see the definition of γn in (2.9)) is well defined and γnu ∈ Hs−1/2(∂Ω). We
set for s ≥ 0

V̂s(Ω) =
{

u ∈ Vs(Ω) :
∫

Γj

γnu dx′ = 0, j = 1, · · · , J
}
.(4.2)

Let us consider the boundary value problem

curl v = u , x ∈ Ω ,(4.3)

div v = 0 , x ∈ Ω ,(4.4)

and

γnv = 0 , x ∈ ∂Ω .(4.5)

We consider (4.2) as spaces for the right-hand side of problem (4.3)–(4.5). We need
to introduce the space for solutions of problem (4.3)–(4.5). Define

Hs
0(Ω) = closure of C∞0 under the Hs(Ω) norm, s > 0 ,

and

V0
0(Ω) = {v ∈ V0(Ω) : γnv = 0} .

We have the following well-known Weyl decomposition (see, e.g., [8] and [12]):

L2(Ω) = V0
0(Ω)⊕∇H1(Ω) ,
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where ∇H1(Ω) = {∇p : p ∈ H1(Ω)}. Evidently, ∇H1(Ω) ⊂ ker curl . Note that,
generally speaking, V0

0(Ω) ∩ ker curl 6= {0}. Indeed, the following orthogonal
decomposition in L2(Ω) holds (see [3] and [12, Appendix 1, pp. 458-471]):

V0
0(Ω) = W0(Ω)⊕Hc ,(4.6)

where Hc = V0
0 ∩ ker curl is a finite-dimensional subspace of H1(Ω). Hc consists

of vector fields ∇p(x), where p(x) are multi-valued functions satisfying ∆p = 0 and
(∂p/∂n)

∣∣
∂Ω

= 0; for details see [12, Appendix 1]). We have the following relations
for the div and curl operators.

Lemma 4.1. The following relations hold:

curl H1(Ω) = V̂0(Ω)a)

and
Hm(Ω) = {u ∈ L2(Ω) : curl u ∈ Hm−1(Ω),

div u ∈ Hm−1(Ω), γnu ∈ Hm−1/2(∂Ω)} ∀m ≥ 1
b)

(m is an integer).

Proof. See [3] and [12, Appendix 1].

Using the space W0 defined in (4.6), we introduce the following spaces:

Ws(Ω) =W0(Ω) ∩Hs(Ω)

for s ≥ 0 equipped with the Hs(Ω) norm
(4.7)

and the following subspaces of H−s(Ω):

W−s(Ω) = the closure of W0(Ω) under the H−s(Ω) norm ,

‖u‖−s = sup
v∈Hs

0(Ω)

〈u,v〉
‖v‖Hs

0(Ω)
for 0 < s < 1/2 ,

where the duality pairing 〈·, ·〉 is generated by the scalar product in L2(Ω).
Finally, for s ∈ (0, 3/2) we define

V̂−s(Ω) = the closure of V̂0(Ω) under the H−s(Ω) norm.

Lemma 4.2. The following inclusion is true:

curl H1
0(Ω) ≡ {u : u = curl v, v ∈ H1

0(Ω)} ⊂ V0
0(Ω) .

Lemma 4.3. Assume that u ∈W1(Ω) and curl u ∈W0(Ω). Then there exists a
p̃ ∈ H2(Ω) such that u−∇p̃ ∈ H1

0(Ω).

These lemmas will be proved later, in Subsection 4.2.
We now prove the existence and uniqueness of solutions for problem (4.3)–(4.5).

Theorem 4.1. Let s > −3/2 and s 6= −1/2. Then, the operator

curl : Ws+1(Ω)→ V̂s(Ω)(4.8)

is an isomorphism. Moreover, the operator

curl : V̂s+1(Ω)→ V̂s(Ω)(4.9)

is surjective.
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Proof. Assertion a) of Lemma 4.1 and the definition (4.6)–(4.7) of the spaces Ws

imply that the operator curl : W1(Ω) → V̂0(Ω) is surjective and ker curl ∩
W1(Ω) = {0}. Hence, by the Banach theorem, the inverse operator curl−1 :
V̂0(Ω) → W1(Ω) is defined and is continuous. Therefore, the operator curl :
W1(Ω) → V̂0(Ω) is an isomorphism. Assertion b) of Lemma 4.1 implies that if a
right-hand side u ∈ V̂0(Ω) for problem (4.3)–(4.5) belongs to Hm−1(Ω), then the
solution v ∈ W1(Ω) belongs to Hm(Ω). Thus, the restriction to Wm(Ω) of the
operator curl : W1(Ω)→ V̂0(Ω) yields the operator curl : Wm(Ω)→ V̂m−1(Ω),
which is an isomorphism. Applying the interpolation theorems from [9] to the
operators curl : W1(Ω) → V̂0(Ω) and curl : Wm(Ω) → V̂m−1(Ω), we see that
the operator (4.8) is an isomorphism for every s ≥ 0.

Next, we prove that H1
0(Ω) ∩Hc = {0}, where Hc is the space defined in (4.6).

If ∇q ∈ H1
0(Ω) ∩ Hc, then ∆q = 0 and (∇q)|∂Ω = 0. By the theorem on the

uniqueness of solutions of the Cauchy problem for the Laplacian operator (i.e., the
problem ∆q = 0 in Ω, q

∣∣
Γj

= const.j for j = 1, · · · , J , and ∂q
∂n

∣∣∣
∂Ω

= 0), we see

that q ≡ constant for x ∈ Ω. Hence ∇q = 0. Note that, for any v ∈ H1
0(Ω) and

∇q ∈ Hc (recalling that Hc ⊂H1(Ω)),∫
Ω

curl v · ∇q dx =
∫

Ω

v · curl∇q dx = 0 .

Therefore, taking into account (4.6) and Lemma 4.2, we deduce that curl H1
0(Ω) ⊂

W0(Ω). By virtue of (4.8) with s = 0 we have that for each v ∈W0(Ω) ⊂ V̂0(Ω)
there exists a u ∈ W1(Ω) such that curl u = v. By Lemma 4.3 there exists a
p ∈ H2(Ω) such that u −∇p ∈ H1

0(Ω). Since curl (u − ∇p) = v, we have proved
the equality curl H1

0(Ω) = W0(Ω).
Consider the operator

curl : H1
0(Ω)→ L2(Ω)(4.10)

and its adjoint operator

curl ∗ : L2(Ω)→ H−1(Ω) .(4.11)

Note that, using integration by parts, we see that∫
Ω

(curl v) ·w dx =
∫

Ω

v · (curl w) dx ∀v,w ∈ H1
0(Ω),

i.e., the operator curl is formally self-adjoint. Thus we define curl as an operator
from L2(Ω) to H−1(Ω) by curl ≡ curl ∗, where curl ∗ is the operator (4.11). Let
us prove that

curl∗ L2(Ω) = curl L2(Ω) = V̂−1(Ω).(4.12)

For each u ∈ L2(Ω) there exists a sequence {uk} ⊂ H1
0(Ω) which converges to u in

L2(Ω) as k→∞. Then curl uk → curl u in H−1(Ω). Since {curl uk} ⊂W0(Ω) ⊂
V̂0(Ω), we deduce from the definition of V̂−1(Ω) that curl u ∈ V̂−1(Ω). Thus

curl L2(Ω) ⊂ V̂−1(Ω).(4.13)

Since H1
0(Ω) ∩Hc(Ω) = {0} (see above), ker curl in the space H1

0(Ω) equals {∇p :
p ∈ L2(Ω),∇p ∈ H1

0(Ω)}. If ∇p
∣∣
∂Ω

= 0, then on each component Γi of ∂Ω the
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equality p
∣∣
Γi

= Ci holds, where each Ci is a constant. Thus,

kerH1
0(Ω)curl = {∇p : p ∈ H2(Ω), ∂np

∣∣
∂Ω

= 0, p
∣∣
Γi

= Ci}.

Let ∇p ∈ kerH1
0(Ω)curl and u ∈ V̂−1(Ω). Note that V̂1(Ω) is dense in V̂0(Ω).

To see this, for a given u ∈ V̂0(Ω), we first use Lemma 4.1a) to solve problem
(4.3)–(4.5) to obtain a solution v ∈ H1(Ω). Then, we choose a sequence {wn} ⊂
H2(Ω) that converges to v in H1(Ω). Clearly, {curl wn} ⊂ V̂1(Ω) and {curl wn}
converges to u in L2(Ω). By the definition of V̂−1(Ω) and the density of V̂1(Ω)
in V̂0(Ω), there exists a sequence {uk} ⊂ V̂1(Ω) ⊂ V̂0(Ω) such that uk → u in
H−1(Ω) as k→∞. Integration by parts yields

〈u,∇p〉 = lim
k→∞

∫
Ω

uk · ∇p dx

= − lim
k→∞

∫
Ω

p div uk dx +
∑
i

lim
k→∞

∫
Γj

Cjuk · n ds = 0 .

Hence, V̂−1(Ω) ⊥ kerH1
0(Ω)curl. This relation, together with the well-known fact

curl L2(Ω) = [kerH1
0(Ω)curl]⊥ and (4.13), implies (4.12).

Equalities (4.12) and (4.6) and Weyl’s decomposition yield the assertion of The-
orem 4.1 for the case s = −1. We obtain the same assertion for s ∈ (−1,−1/2) ∪
(−1/2, 0) with the help of the interpolation theorem.

For s ∈ (1, 3/2), the operator curl : Hs
0(Ω)→ Hs−1(Ω) has the adjoint curl∗ =

curl : H1−s(Ω)→ H−s(Ω) thanks to the well-known fact Hs−1(Ω) = Hs−1
0 (Ω) for

s ∈ (1, 3/2). Since Hs
0(Ω) = H1

0(Ω) ∩Hs(Ω) for 1 < s < 3/2,

curl Hs
0(Ω) = curl [H1

0(Ω) ∩Hs(Ω)] = Ws−1(Ω) ≡W0(Ω) ∩Hs−1(Ω) ,

and therefore, curl Hs
0(Ω) is closed in Hs−1(Ω). Hence by a well-known theorem,

curl H1−s(Ω) = [kerHs
0(Ω)curl ]⊥. Then, analogously to the proof for the case of

s = 1, we complete the proof.

To prove an analog of Theorem 4.1 in the case of s = −1/2 we need to introduce
new function spaces involving H1/2

00 (Ω). Let ρ(x) ∈ C∞(Ω) be such that ρ(x) > 0
for all x ∈ Ω and ρ(x) = dist(x, ∂Ω) for x sufficiently close to ∂Ω, where dist(x, ∂Ω)
is the Euclidean distance from x to ∂Ω. We recall from [9] that

H
1/2
00 (Ω) = {u ∈ H1/2(Ω) : ρ−1/2u ∈ L2(Ω)}

with the norm defined by

‖u‖2
H

1/2
00 (Ω)

= ‖u‖2H1/2(Ω) + ‖ρ−1/2u‖2L2(Ω) ,

and H−1/2
00 (Ω) is the dual space of H1/2

00 (Ω), i.e., it is the completion of L2(Ω) under
the norm

‖u‖
H
−1/2
00 (Ω)

= inf
06=φ∈H1/2

00 (Ω)

〈u, φ〉
‖φ‖

H
1/2
00 (Ω)

.

We denote by H1/2
00 (Ω) and H−1/2

00 (Ω) the vector counterparts of H1/2
00 (Ω) and

H
−1/2
00 (Ω), respectively. Now, we define

V̂−1/2
00 (Ω) = the closure of V̂0(Ω) under the H−1/2

00 (Ω) norm.
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Clearly V̂−1/2
00 (Ω) is a subspace of H−1/2

00 (Ω) equipped with the H−1/2
00 (Ω) norm.

Proposition 4.1. The operator curl : W1/2(Ω)→ V̂−1/2
00 (Ω) is an isomorphism.

Moreover, the operator curl : V̂1/2(Ω)→ V̂−1/2
00 (Ω) is surjective.

Proof. As is well known, H−1/2
00 (Ω) is the intermediate space of order 1/2 between

H−1(Ω) and L2(Ω): i.e., H−1/2
00 (Ω) = [H−1(Ω), L2(Ω)]1/2. (For a proof of this

fact and for the definition of intermediate spaces, see [9, Ch.1, §2.1, §12.2].) This
implies that V−1/2

00 (Ω) = [V−1(Ω),V0(Ω)]1/2. Thus, the desired results follow from
interpolation theorems (see [9, Ch.1, §5.1]) and the assertions of Theorem 4.1 for
the cases s = 0 and s = −1.

We introduce the spaces

V̂(s)(QT ) = {u ∈ L2(0, T ; V̂s(Ω)) : ∂tu ∈ L2(0, T ; V̂s−2(Ω))}(4.14)

and

Ŵ(s)(QT ) = {u ∈ L2(0, T ; Ws(Ω)) : ∂tu ∈ L2(0, T ; Ws−2(Ω)} .(4.15)

Theorem 4.2. Let s > 1/2. Then, for an arbitrary u ∈ V̂(s)(QT ), there exists a
unique solution v ∈ Ŵ(s+1)(QT ) for the problem (4.3)–(4.5) (where t is a parame-
ter), and the following estimate holds:

‖v‖Ŵ(s+1)(QT )
≤ C‖u‖V̂(s)(QT ) ,

where C does not depend on u.

Proof. If s − 2 6= −1/2, then the desired assertion follows easily from Theorem
4.1 and the definitions (4.14)–(4.15). If s − 2 = −1/2, then since H

1/2
00 (Ω) ⊂

H1/2(Ω) ⊂ L2(Ω) ⊂ H−1/2(Ω) ⊂ H
−1/2
00 (Ω), where all embeddings are continuous,

we deduce that V̂−1/2(Ω) ⊂ V̂−1/2
00 (Ω) with a continuous embedding. Using the

last embedding, Proposition 4.1, and (4.14)–(4.15), we again obtain the desired
assertion.

4.2. Special local coordinates. Let Γ = Γi be a connected component of ∂Ω;
see (1.5). We consider the bounded domain

Θ ≡ Θi = {x ∈ Ω : dist(x,Γ) < δ} (Γ = Γi) ,(4.16)

where δ > 0 is small enough. We introduce in Θ special local coordinates.

Lemma 4.4. Define

y3(x) = dist(x,Γ), x ∈ Θ .(4.17)

There exists a finite covering {Uj} of Θ such that in each Uj there exists a local
coordinate system (y1(x), y2(x), y3(x)), y3 being defined by (4.17), which is oriented
as (x1, x2, x3) and satisfies the condition

∇yj(x) · ∇yk(x) = δjk, j, k = 1, 2, 3 ,(4.18)

where δjk is the Kronecker symbol.



TRACE THEOREMS FOR SOLENOIDAL FIELDS 1101

Proof. We choose δ in (4.16) so small that Θi∩Γj = ∅ for i 6= j, the function (4.17)
is infinitely differentiable for x ∈ Θi, and for any x ∈ Θ the distance from x to
Γ = Γi is achieved at a unique point x0 ∈ Γ = Γi. Let x0 ∈ Γ, and let (e1, e2, e3)
be the orthonormal basis with the origin at x0, which is oriented the same way as
the orthogonal basis corresponding to initial global coordinates (x1, x2, x3) in Ω;
ej ∈ Tx0Γ, j = 1, 2, are vectors tangent to Γ and e3 is orthogonal to Γ directed
towards the interior of Ω. Shifting the initial origin to the point x0 and rotating the
basis corresponding to the global coordinates, we can suppose that (x1, x2, x3) are
the coordinates associated with the basis (e1, e2, e3). It is sufficient to construct
the local coordinates y1(x) and y2(x) in a small neighborhood of the interval {ce3 :
c > 0} ∩Θ = {ce3 : 0 < c < δ}.

Let Ĉk be the geodesic on the manifold Γ going out from x0 in the directions
ek and −ek, k = 1, 2. There exists a unique Ĉk, k = 1, 2, which is defined in a
neighborhood of x0 and satisfies this condition. Let C3(t, z) be a curve going out
from a point z ∈ Γ which is the solution of the problem

∂tC3(t, z) = ∇y3(C3(t, z)), C3(0, z) = z .

This solution is well defined for C3 ∈ Θ. Moreover, the curve t→ C3(t, z) coincides
with the normal to Γ going out from z ∈ Γ. Denote

Ξk3 = {x ∈Θ : there exist t ∈ (0, δ) and

z ∈ Ĉk such that x = C3(t, z)}, k = 1, 2 .

The surface Ξ13 divides Θ into two parts: Θ2+ (e2 ∈ Θ2+) and Θ2− (−e2 ∈ Θ2−).
Analogously, Ξ23 divides Θ into Θ1+ (e1 ∈ Θ1+) and Θ1− (−e1 ∈ Θ1−). For
x ∈ Θ2+ close to the set {c e3 : c > 0}∩Θ, we define y2(x) as the geodesic distance
on the manifold

Γy3(x) = {z ∈ Θ : y3(z) = y3(x)}(4.19)

from x to the surface Ξ13. (The metric on Γy3(x) is generated by the metric of the
enveloping Euclidean space.) In other words, among all geodesics on the manifold
(4.19) starting from x and terminating on Ξ13 we choose the geodesic C2(x) having
the minimum length. This minimum length is y2(x), by definition. If x ∈ Θ2−,
then y2(x) is the same geodesic distance with the minus sign. Note that the vector
∇y2(x) is tangent to the curve C2(x) ⊂ Γy3(x), and therefore

∇y3(x) ⊥ ∇y2(x) .(4.20)

Define the curve

C̃1(x) = Γy3(x) ∩ {z ∈ Θ : y2(z) = y2(x)} .(4.21)

Let C1(x) denote the part of C̃1(x) which goes out of x and ends on Ξ23. We define
y1(x) as the length of C1(x) if x ∈ Θ1+ and as the negative of the length of C1(x)
if x ∈ Θ1−. Evidently, ∇y1(x) is tangent to C1(x). Thus, by (4.21),

∇y1(x) ⊥ ∇y2(x) and ∇y1(x) ⊥ ∇y3(x) .(4.22)

By the definition of yi(x), i = 1, 2, 3 (these were all defined by means of some
distance functions), the following equalities hold:

|∇yi(x)| = 1, i = 1, 2, 3 .

These equalities, together with (4.20) and (4.22), yield (4.18). Thus, we have that
(y1(x), y2(x), y3(x)) is the desired local coordinate system defined in a neighborhood
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Ux0 of the curve C3(t,x0). Using the closedness of the set Γ = Γi, we may choose
a finite covering satisfying the desired properties.

Let us calculate the metric tensor gij(y) in the local coordinates y(x) constructed
in Lemma 4.4. Relation (4.18) implies that the map y(x) = (y1(x), y2(x), y3(x))
has the inverse x(y) and ∂xk

∂yl
= ∂yl

∂xk
. Since gkl(y) can be found from the relation

ds2 =
3∑
i=1

dx2
i =

∂xi
∂yk

∂xi
∂yl

dykdyl ,

we have

gkl(y) =
∂xi
∂yk

∂xi
∂yl

= ∇yk(x) · ∇yl(x) = δkl .(4.23)

Proof of Lemma 4.2. As is well known (see, e.g., [11, Ch. VI, §4]), the operator
curl : H1

0(Ω)→ L2(Ω) depends on the Euclidean structure and orientation. Hence,
in the local coordinates (y1(x), y2(x), y3(x)) constructed in Lemma 4.4, the operator
curl on any Ui has the usual form:

curl w(y) =
(
∂w2

∂y3
− ∂w3

∂y2
,
∂w3

∂y1
− ∂w1

∂y3
,
∂w1

∂y2
− ∂w2

∂y1

)
,(4.24)

where w(y) is the expression in local coordinates y(x) of a vector field u(x) ∈
H1

0(Ω). Evidently, w(y) ∈ [H1(Ω ∩ Ui)]3,

w(y)
∣∣
Γ
≡ w(y)

∣∣
y3=0

= 0 ,(4.25)

and (y1, y2, 0) are the local coordinates on Γ = Γi. Hence, (4.25) yields

∂w1

∂y2
− ∂w2

∂y1

∣∣∣∣
y3=0

= 0 ,

which implies that

(curl w,n)
∣∣
Γ

= 0,(4.26)

where we recall that n = e3 is the orthogonal vector field to Γ. Since div curl u = 0,
(4.26) implies that curl u ∈ V0

0(Ω).

Proof of Lemma 4.3. As above, we consider u(x) in local coordinates (y1(x), y2(x),
y3(x)) constructed in the proof of Lemma 4.4 on an element Ui of a finite covering
{Ui} for a component Γj of ∂Ω. We denote by w(y) the expression of u(x) in the
local coordinates. Since u ∈ W1(Ω) and curl u ∈ W0(Ω), by virtue of (4.24) we
have

w3(y1, y2, y3)
∣∣
y3=0

= 0(4.27)

and (∂w1(y1, y2, y3)
∂y2

− ∂w2(y1, y2, y3)
∂y1

)∣∣∣
y3=0

= 0.(4.28)

Set

p0(y1, y2) =
∫ (y1,y2)

(y0
1.y

0
2)

w1(z1, z2, 0) dz1 + w2(z1, z2, 0) dz2 ,

where (y0
1 .y

0
2) is a fixed point on Γj and the integration is taken over a curve con-

necting the points (y0
1 .y

0
2) and (y1.y2) – thanks to (4.28) the integral is independent
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of the choice of the connecting curve. Evidently, the definition of p0 can be ex-
tended onto all of Γj . Since w ∈ W1(Ω) ⊂ H1(Ω), we have p0 ∈ H3/2(Γj). Let
p(y1, y2, y3) be a function defined on the set Θj as defined in (4.16) that satisfies

p ∈ H2(Θ), p
∣∣
Γ

= p0 and
∂p

∂y3

∣∣∣
Γ

= 0.

We choose a ϕ(y3) ∈ C∞(0, δ) satisfying ϕ(y3) = 1 for 0 < y3 < δ/3 and ϕ(y3) = 0
for 2δ/3 < y3 < δ. We define pj(y) = ϕ(y3)p(y) (with j being the index of Γj).
We extend pj from Θj into Ω with pj(x) = 0 for x ∈ Ω \Θj. Set P̂ (x) =

∑
j pj(x).

Evidently, v(x) = u(x) −∇p̂(x) ∈ H1
0(Ω).

4.3. Restriction theorems. Recall that γ, γτ , γn are the restriction operators
defined in (2.9) and above.

Theorem 4.3. Let Ω ⊂ R3. Then, the operator

γ = (γτ , γn) : V̂(s)(QT )→ Gsτ (ΣT )×Gsn(ΣT )

for s > 1/2, s 6= 3/2, s 6= 5/2
(4.29)

is continuous, where Gsτ (ΣT ), Gsn(ΣT ), and V̂s(QT ) are the spaces defined in (2.10)–
(2.11) and (4.14).

Proof. The trace operator γu = (γτu, γnu) in the local coordinates introduced in
the proof of Lemma 4.4 can be rewritten as follows:

γu = (w1|y3=0, w2|y3=0, w3|y3=0), i.e., γτu = (w1, w2)|y3=0 .

To estimate the component γτu of the trace operator we note that

wi ∈ H(s)((0, T )×Θi), i = 1, 2.

We can extend wi up to functions belonging toH(s)(Rd+1). Then, we apply Lemmas
3.1 and 3.3 to deduce the continuity of the γτ component of the operator (4.29).

To estimate the γn component of (4.29), we return to the original global coordi-
nates. We define by curl−1u = v the solution v ∈ Ŵ(s+1)(QT ) ⊂ [H(s+1)(QT )]3

of the problem (4.3)–(4.5), with u being the right-hand side. The tangential com-
ponent of v on ΣT in the local coordinates introduced in the proof of Lemma 4.4
can be written as γτv = (v1(y1, y2, 0), v2(y1, y2, 0)). Applying the operator dτ , we
have dτv = ∂2v1(y1, y2, 0)− ∂1v2(y1, y2, 0)). Simple transformations yield

γnu = u3(y1, y2, 0) = γncurl ◦ curl−1u

= ∂2v1(y1, y2, 0)− ∂1v2(y1, y2, 0) .
(4.30)

Let us consider the case 1 ≤ s < 3/2 (other cases can be treated similarly). Apply-
ing to (4.30) Definition (2.11), assertion (3.27), and Theorem 4.2, we obtain

‖γnu‖Gsn(ΣT ) = ‖(∂2v1 − ∂1v2)
∣∣
ΣT
‖
L2(0,T ;Hs−1/2(∂Ω))∩H

2s+1
4 (0,T ;H−1(∂Ω))

≤ C‖v
∣∣
ΣT
‖
L2(0,T ;Hs+1/2(∂Ω))∩H

2s+1
4 (0,T ;L2(∂Ω))

≤ C‖v‖H(s+1)(QT ) = C‖v‖Ŵ(s+1)(QT ) ≤ C‖u‖V̂(s)(QT ) .
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Theorem 4.4. Let Ω ⊂ R3. Then, the following restriction operators are bounded:

γ = (γτ , γn) : V̂(5/2)(QT )→ [H(2)
ln (ΣT )]2 ×H(2)(ΣT )(4.31)

and
γ = (γτ , γn) : V̂(3/2)(QT )

→ [L2(0, T ;H1(∂Ω)) ∩H2/3(0, T ;H−1/3(∂Ω))]2

× [L2(0, T ;H1(∂Ω)) ∩H1
ln(0, T ;H−1(∂Ω)) ∩H2/3(0, T ;H−1/3(∂Ω))] ,

(4.32)

where the logarithmic spaces in (4.31)–(4.32) were defined in (2.7)–(2.8).

Proof. We begin from (4.31). Since V̂(5/2)(QT ) ⊂ [H(5/2)(QT )]3, by Theorem 3.1
(see (3.29)) we have

γ = (γτ , γn) : V̂(5/2)(QT ) ⊂ [H(5/2)(QT )]3 → [H(2)
ln (ΣT )]3 .(4.33)

On the other hand, as in Theorem 4.3, we reduce the study of γn to the investigation
of the operator

(w1, w2) 7→
(
∂w1

∂y2
− ∂w2

∂y1

)∣∣∣∣
y3=0

≡
(

∂

∂y2
w1

∣∣
y3=0

− ∂

∂y1
w2

∣∣
y3=0

)
defined on [H(7/2)(QT )]2. By Theorem 3.1 (see (3.26)) this operator acts continu-
ously from [H(7/2)(QT )]2 to H(2)(ΣT ). This last result and (4.33) yield (4.31).

To prove (4.32), we note that by (3.28) the operator

γ = (γτ , γn) : V̂(3/2)(QT ) ⊂ [H(3/2)(QT )]3

→ [L2(0, T ;H1(∂Ω)) ∩H2/3(0, T ;H−1/3(∂Ω))]3
(4.34)

is bounded. Moreover, as above, the operator γn can be represented as the following
composition: γn = dτ ◦ γ ◦ curl−1. That is why, by Theorem 4.2 and (3.29), the
operator

γn : V̂(3/2)(QT ) curl−1

−→ Ŵ(5/2)(QT ) ⊂ [H(5/2)(QT )]3

γτ−→ H(2)
ln (ΣT ) dτ−→ [L2(0, T ;H1(∂Ω))]ln ∩H1

ln(0, T ;H−1(∂Ω))

is continuous. This and (4.34) imply (4.32).

4.4. The proof of Theorem 2.1.

Proof of Theorem 2.1. Let v ∈ V(s)(QT ), s > 1/2. Denote∫
Γj

v · n ds = qj(t), j = 1, · · · , J,

where Γi is a connected component of ∂Ω (see (1.5)). Since div v = 0,
J∑
i=1

qi(t) = 0 .(4.35)

At each t ∈ [0, T ], we consider the Neumann problem

−∆p(t,x) = 0,
∂p

∂n

∣∣∣∣
Γj

= qj(t), j = 1, · · · , J .(4.36)

By virtue of (4.35) the problem (4.36) has a solution p(t,x), and ∇p(t,x) is defined
unambiguously. By the regularity theorem for solutions of problem (4.36), ∇p ∈
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H1(0, T ; [C∞(Ω)]3) ⊂ H(s)(Q). Since div∇p = ∆p = 0, we have that ∇p ∈
V(s)(Q), so that

v −∇p ∈ V̂(s)(Q) .

To obtain the restriction result for v − ∇p, we can apply Theorems 4.3 and 4.4.
Thus, we only need to obtain estimates for ∇p|Γi = qi(t). Since qi(t) is constant
with respect to x′ ∈ Γi, we have that for any s1 6= s2,

‖qi(t, ·)‖Hs1 (Γi) ≤ C1‖qi(t, ·)‖Hs2 (Γi) ≤ ‖qi(t, ·)‖Hs1 (Γi) ,

where C1 = ‖1‖Hs1(Γi)/‖1‖Hs2(Γi) does not depend on qi. Therefore, Theorems 4.3
and 4.4 and relations (4.31)–(4.32) yield the assertion of Theorem 2.1.

5. Extension results for solenoidal vector fields

The plan for the proof of the extension theorem will be as follows. In the first
step, for a given trace u ∈ Ĝs(ΣT ) (see (2.16)–(2.17)), we solve the system of
equations

(curl w)
∣∣
∂Ω

= u(5.1)

and as a result we obtain the trace data w
∣∣
∂Ω

for the vector field w. Then, in the
second step, using the extension results from Section 3, we construct w and define
the desired extension v for u satisfying v = curl w.

5.1. On a certain system of equations defined on ∂Ω. To simplify notations,
we assume in this subsection that the manifold ∂Ω is connected. In the case when
∂Ω is not connected, all arguments of this subsection should be applied to each
connected component Γi of ∂Ω =

⋃
Γi. Below, we will use, on the manifold ∂Ω, the

local coordinates (y1, y2) which are the restriction to y3 = 0 of the local coordinates
(y1, y2, y3) constructed in Lemma 4.4. By virtue of (4.22), ∇y1(x) ⊥ ∇y2(x) for
x = (x1, x2, x3) ∈ ∂Ω ∩ Ui. Thus, by (4.23), the metric tensor on ∂Ω generated by
the Euclidean metric of the enveloping space R3 has the form

gkl(y) = δkl, k, l = 1, 2 ,

where δkl is the Kronecker symbol. In the bounded subdomain Θ of the domain
Ω as defined in (4.16), we will use the local coordinates (y1, y2, y3) constructed in
Lemma 4.4.

Let

u =
3∑
i=1

ui
∂

∂yi
= (uτ , un) ∈ Gsτ (ΣT )×Gsn(ΣT ) = Gs(ΣT )(5.2)

be a given vector field defined on ∂Ω, where uτ = u1
∂
∂y1

+ u2
∂
∂y2

and un = u3
∂
∂y3

.
By virtue of (4.23), applying to (5.2) the operation of lowering indices (see [2, p.
170]) and then applying the operation ∗ (see [2, p. 175]), we can express the vector
field (5.2) in the exterior differential form:

ǔ = u3dy1 ∧ dy2 − u2dy1 ∧ dy3 + u1dy2 ∧ dy3 .(5.3)

By the operation of lowering indices we express w defined in (5.1) as a differential
form w̌ on Θ which in local coordinates (y1, y2, y3) takes the form

w̌ = w1(y1, y2, y3)dy1 + w2(y1, y2, y3)dy2 + w3(y1, y2, y3)dy3 .
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We also introduce a differential form ŵ on ∂Ω depending on y3 as a parameter
which in local coordinates (y1, y2) takes the form

ŵ = w1(y1, y2, y3)dy1 + w2(y1, y2, y3)dy2 .(5.4)

Of course, the forms w̌ and ŵ are related. We rewrite equation (5.1) for vector
fields as the equation dw̌ = ǔ for differential forms, which in local coordinates
(y1, y2, y3) is written as follows:

(∂y1w2 − ∂y2w1)dy1 ∧ dy2 = u3dy1 ∧ dy2 for y3 = 0 ,(5.5)

(∂y2w3 − ∂y3w2)dy2 ∧ dy3 = u1dy2 ∧ dy3 for y3 = 0 ,(5.6)

and

(∂y1w3 − ∂y3w1)dy1 ∧ dy3 = −u2dy1 ∧ dy3 for y3 = 0 .(5.7)

Our first goal is to find the restrictions wi
∣∣
y3=0

, i = 1, 2, 3, from (5.5)–(5.7). To
this end, we set

w3

∣∣
y3=0

= 0 .(5.8)

Equations (5.6)–(5.8) imply

−∂y3w2 = u1 and ∂y3w1 = u2 for y3 = 0.(5.9)

Thus, to find the traces for w1 and w2 at y3 = 0, we have to solve (5.5) defined on
the manifold ∂Ω. This equation can be rewritten in the following invariant form:

dω = ũ ,(5.10)

where ũ ∈ Λ2(∂Ω) is the given differential form, which in local coordinates has the
expression

ũ = u3dy1 ∧ dy2

and ω ∈ Λ1(∂Ω) is an unknown differential form of the first order, which in local
coordinates can be written as follows:

ω = ω1dy1 + ω2dy2 = ŵ
∣∣
y3=0

.(5.11)

The operator d : Λ1(∂Ω)→ Λ2(∂Ω) in (5.10) is the usual operator of taking differ-
entials (see [1] and [10]). Equation (5.10) has a large kernel. For this reason, we
supplement (5.10) with the following equation:

d ∗ ω = 0 ,(5.12)

where ∗ : Λ1(∂Ω)→ Λ1(∂Ω) is the conjugation operator, which in local coordinates
can be written as follows (see [1] and [10]):

∗ω = −ω2dy1 + ω1dy2 for ω = ω1dy1 + ω2dy2 .

In local coordinates, (5.12) takes the form

(∂y1ω1 + ∂y2ω2)dy1 ∧ dy2 = 0 .

Note that (5.9) can be written in the following invariant form:

(∗∂y3ŵ)
∣∣
y3=0

= û, where û = u1dy1 + u2dy2(5.13)
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and ŵ is the exterior form defined in (5.4). Recall (see [1] and [10]) that the
conjugate operators

∗ : Λ2(∂Ω)→ Λ0(∂Ω) and ∗ : Λ0(∂Ω)→ Λ2(∂Ω)

in local coordinates are defined as follows:
∗ f = fdy1 ∧ dy2 if f ∈ Λ0(∂Ω) ,

∗ (fdy1 ∧ dy2) = f if fdy1 ∧ dy2 ∈ Λ2(∂Ω) .

Then, the Laplace operator

∆ : Λi(∂Ω)→ Λi(∂Ω), i = 0, 1, 2 ,

is defined as follows (see [1] and [10]):

∆f = − ∗ d ∗ df − d ∗ d ∗ f for f ∈ Λi(∂Ω), i = 0, 1, 2 .(5.14)

By L2(Λi), i = 0, 1, 2, we denote the set of ω ∈ Λi(∂Ω) with the finite norm

‖ω‖2L2(Λi) =
∫
∂Ω

ω ∧ ∗ω .

(Note that the scalar product in L2(Λi) is defined by (ω1, ω2) =
∫
∂Ω
ω1 ∧ ∗ω2.) In

L2(Λ1) we introduce the following subspaces (see [10]):

E = E(∂Ω) = the closure of {df : f ∈ C1(∂Ω)} in L2(Λ1) ,

E∗ = E∗(∂Ω) = the closure of {∗df : f ∈ C1(∂Ω)} in L2(Λ1) ,

and

H = H(∂Ω) = {ω ∈ L2(Λ1) : ω = df, where f ∈ Λ0(∂Ω) and ∆f = 0} .
These spaces have the following relations (see [10, pp. 196-200]):

Lemma 5.1. a) The spaces E, E∗ and H are mutually orthogonal, and L2(Λ1) =
E ⊕ E∗ ⊕H.

b) dω = 0 iff ω ∈ (E∗)⊥, and d ∗ ω = 0 iff ω ∈ E⊥, where E⊥ (or (E∗)⊥) is
the orthogonal complement of E (or E∗) in L2(Λ1).

c) dω = 0 and d ∗ ω = 0 iff ω ∈ H.

We now solve the system formed by (5.10) and (5.12).

Lemma 5.2. a) There exists a solution ω ∈ H ⊕ E∗ of (5.10) and (5.12) if and
only if the right side ũ ∈ L2(Λ2) satisfies the condition∫

∂Ω

ũ = 0 .(5.15)

b) Any solution ω of (5.10) and (5.12) admits the representation

ω = h+ ∗dg ,(5.16)

where h is an arbitrary element of H and g ∈ L2(Λ0) is the unique solution of the
equation

∆g = − ∗ ũ(5.17)

in the class g ∈ L2(Λ0) satisfying ∫
∂Ω

∗g = 0 .(5.18)
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Proof. Let

D(d) = {ω ∈ L2(Λ1) : dω ∈ L2(Λ2)}
be the domain of the operator d : L2(Λ1) → L2(Λ2). The Stokes formula implies
that each ũ ∈ dD(d) satisfies (5.15). Let φ ∈ (D(d))⊥ ≡ {φ ∈ Λ2(∂Ω) :

∫
dω∧∗φ =

0 ∀ω ∈ D(d)}. Then, for any ω = p1dy1 + p2dy2 ∈ L2(Λ1) with C∞0 -coefficients
concentrated in a parametric circle Ui, we have

0 =
∫
∂Ω

dω ∧ ∗φ =
∫
∂Ω

(∂y1p2 − ∂y2p1)φdy1 ∧ dy2

=
∫
∂Ω

[∂y1(p2φ)− ∂y2(p1φ)]dy1 ∧ dy2 −
∫
∂Ω

(p2∂y1φ− p1∂y2φ)dy1 ∧ dy2

= −
∫
∂Ω

(p2∂y1φ− p1∂y2φ)dy1 ∧ dy2 ,

where in the last equality we used the following formula, which is a consequence of
the Stokes theorem and the assumption that pk

∣∣
∂Ui

= 0, k = 1, 2:∫
Ui

[∂y1(p2φ)− ∂y2(p1φ)]dy1 ∧ dy2 =
∫
∂Ui

p1φdy1 + p2φdy2 = 0 .

Hence, ∂y1φ = 0 and ∂y2φ = 0 in any parametric circle, and thus ∗φ = constant.
Let ũ ∈ dD(d) be given. Then, by definition there exists ω ∈ L2(Λ1) such that

dω = ũ .(5.19)

By virtue of Lemma 5.1 we can decompose ω as follows:

ω = h+ ∗dg + dg1 ,(5.20)

where h ∈ H , ∗dg ∈ E∗, and dg1 ∈ E. Substituting (5.20) into (5.19) and taking
into account that ddg1 = 0 and dh = 0 (see Lemma 5.1 c)), we have

d ∗ dg = ũ .(5.21)

By virtue of (5.14) we have that if f ∈ Λ0(∂Ω), then ∆f = −∗d∗df . Hence, (5.21)
yields (5.17).

Multiplying the corresponding sides of (5.21) and (5.17), we see that in any
parametric circle Ui, ∫

Ui

|∆g|2dy1 ∧ dy2 =
∫
Ui

|ũ|2dy1 ∧ dy2 .

Using this last equation, one can deduce the closedness of the set dD(d) in L2(Λ2)
as follows. As is well known, to establish this closedness we need the following
inequality in addition to the equality above:

‖g‖L2(∂Ω) ≤ C1‖∗dg‖L2(Λ1) ≤ C2‖ũ‖L2(Λ2).

The first of these inequalities is the well-known Poincaré inequality, which is valid
because of (5.18). To prove the second inequality we multiply (5.21) by g and
perform integration by parts. Then, by applying the Cauchy-Schwarz and Poincaré
inequalities, we obtain

‖∗dg‖2L2(Λ1) =
∫
∂Ω

gũ ≤ ‖ũ‖L2(Λ2)‖g‖L2(∂Ω) ≤ C1‖ũ‖L2(Λ2)‖∗dg‖L2(Λ1).

Since dD(d) is closed in L2(Λ2) and its orthogonal complement in L2(Λ2) equals
∗C, where ∗C is the *-image of all constant functions, we have that [dD(d)]⊕∗C =
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L2(Λ2). This implies the solvability of (5.19) for each ũ satisfying (5.15). The
equalities ddg1 = 0 and (5.20) yield that there exists a solution ω of (5.19) in the
form of (5.16), where h ∈ H and ∗dg ∈ E∗. Since ω = h + ∗dg ∈ H ⊕ E∗ = E⊥,
we conclude from Lemma 5.1 b) that ω satisfies (5.12). It was shown earlier that
(5.21) implies (5.17).

Suppose that g1 ∈ L2(Λ0) satisfies ∆g1 = − ∗ ũ. Then, g0 ≡ g − g1 satisfies the
equation

∆g0 = 0 .

By virtue of (5.14)

0 =
∫
∂Ω

g0 ∧ ∗∆g0 =
∫
∂Ω

g0 ∧ d ∗ dg0

=
∫
∂Ω

d(g0 ∗ dg0)−
∫
∂Ω

dg0 ∧ ∗dg0 = −‖dg0‖2L2(Λ1) .

Hence, dg0 = 0 or g0 = constant. But, as a result of (5.18), we see that g0 = 0.

5.2. Solvability of system (5.10) and (5.12) in Hr(0, T ;Hs(Λ1)). Recall that
the definition of Sobolev spaces Hs(∂Ω) = Hs(Λ0) of functions determined on ∂Ω
was given in Section 2. The Sobolev space Hs(Λ2) is the set of exterior forms
u ∈ Λ2(∂Ω) such that ∗u ∈ Hs(Λ0). The Sobolev space Hs(Λ1) is the set of
exterior forms u ∈ Λ1(∂Ω) which in each parametric circle Ui have the form u =
p1(y)dy1 + p2(y)dy2, where the coefficients pj(y), j = 1, 2, belong to the Sobolev
space Hs(Ui).

Lemma 5.3. Let s ∈ R, and assume that ũ ∈ Hs(Λ2) satisfies the condition (5.15),
which is understood in the sense of distributions if s < 0. Then, there exists a
solution ω ∈ Hs+1(Λ1) for (5.10) and (5.12) satisfying the estimate

‖ω‖Hs+1(Λ1) ≤ C‖ũ‖Hs(Λ2) .(5.22)

Proof. As is well known, for ũ ∈ Hs(Λ2) satisfying (5.15), there exists a unique
solution g ∈ Hs+2(Λ0) of (5.17), and the following estimate holds:

‖g‖Hs+2(Λ0) ≤ C‖ũ‖Hs(Λ2) .(5.23)

Set ω = ∗dg. Then, as in the proof of Lemma 5.2, one can establish that the exterior
form ω ∈ Hs+1(Λ1) and satisfies (5.10) and (5.12). Inequality (5.22) follows from
(5.23).

Lemma 5.3 yields the following assertion.

Lemma 5.4. Let r ≥ 0 and s ∈ R. Assume that ũ ∈ Hr(0, T ;Hs(Λ2)) satisfies
(5.15) for almost every t ∈ [0, T ]. Then, there exists an element

ω ∈ Hr(0, T ;Hs+1(Λ1))

which satisfies (5.10) and (5.12) for almost every t ∈ [0, T ].

Proof. By the definition of Hr(0, T ;Hs(Λ2)), we can suppose that ũ is extended
into ũ ∈ Hr(R;Hs(Λ2)) (we still denote the extended exterior form by ũ). Let
û(τ, ·) denote the Fourier transform of ũ with respect to t. The assumption ũ ∈
Hr(R;Hs(Λ2)) implies the inequality∫

R
(1 + |τ |2)τ‖û(τ, ·)‖2Hs(Λ2) dτ <∞ .(5.24)
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Then, we substitute û(τ, ·) into the right hand side of (5.10) and apply Lemma 5.3
to the system (5.10) and (5.12) to obtain the solution ω̂(τ, ·) of this system. Let
ω(t, ·) be the inverse Fourier transform of ω̂(τ, ·):

ω(t, ·) = (F−1
τ→tω̂)(t, ·) .

By virtue of (5.22) and (5.24), ω ∈ Hr(R;Hs+2(Λ1)), and we simply need to restrict
this function to the interval (0, T ) to complete the proof.

5.3. Final extension result. We introduce a new function space. We set

Ĝs(ΣT ) = Gsτ (ΣT )× Ĝsn(ΣT ) .

Here, Gsτ (ΣT ) is the space (2.10), and

Ĝsn(ΣT ) =
{
un(t, x) ∈ Gsn(ΣT ) :∫

Γj

un(t, x′) dx′ = 0 a.e. t ∈ [0, T ], j = 1, . . . , J
}
,

where Gsn(ΣT ) is the space (2.11), and the Γi’s are the connected components of
∂Ω; see (1.5).

Theorem 5.1. Let Ω ⊂ R3. Then for s > 1/2 there exists a continuous extension
operator

R : Ĝs(ΣT )→ V(s)(QT ) ,

i.e., the operator R is such that γ ◦ R = I, where I : Ĝs(ΣT ) → Ĝs(ΣT ) is the
identity operator.

Proof. Let u be the trace data (5.2). We consider the system of equations (5.5)–
(5.7) for the corresponding exterior differential forms. This system can be reduced
to the system (5.5), (5.8), and (5.9). Finding a solution ω of (5.5) is reduced to
solving the system (5.10) and (5.12) written in their invariant form. Lemma 5.4
implies that there exists a solution ω of system (5.10) and (5.12), and

ω ∈



[L2(0, T ;Hs+1/2(Λ1))
∩H1(0, T ;Hs−3/2(Λ1))]2

for s ≥ 3/2,

[L2(0, T ;Hs+1/2(Λ1))
∩H(2s+1)/4(0, T ;L2(Λ1))]2

for 1 ≤ s ≤ 3/2 ,

[L2(0, T ;Hs+1/2(Λ1))

∩H
2s+1
2s+2 (0, T ;H

(s−1)(2s+1)
2(s+1) (Λ1))]2

for 1/2 < s ≤ 1 .

(5.25)

By virtue of (5.13),

û ∈



[L2(0, T ;Hs−1/2(Λ1))
∩H1(0, T ;Hs−5/2(Λ1))]2 ,

s ≥ 5/2,

[L2(0, T ;Hs−1/2(Λ1))
∩H(2s−1)/4(0, T ;L2(Λ1))]2 ,

2 ≤ s ≤ 5
2 ,

[L2(0, T ;Hs−1/2(Λ1))
∩H 2s−1

2s (0, T ;H(1−2
s )(s− 1

2 )(Λ1))]2 ,
1
2 < s ≤ 2.

(5.26)

Now we want to solve the problem of extending a differential form given on ΣT =
(0, T )× ∂Ω into a differential form defined in a neighborhood [0, T ]×Θ of ΣT (see
(4.16)). Let {Ui} be a finite covering of ∂Ω that was introduced previously, and
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suppose that {φi} is a partition of unity subordinate to {Ui}. By means of the
exterior forms (5.25)–(5.26), we construct the following exterior forms:

ω(i) = φiω and û(i) = φiû .

Evidently, ∑
i

ω(i) = ω and
∑
i

û(i) = û .

In the local coordinates (y1, y2) which we constructed in Ui, we consider the fol-
lowing extension problem:

w
(i)
j (t,y)

∣∣
y3=0

= φiωj(t, y1, y2) , j = 1, 2,

∂y3w
(i)
1 (t,y)

∣∣
y3=0

= φ1u2(t, y1, y2) ,

∂y3w
(i)
2 (t,y)

∣∣
y3=0

= −φ2u1(t, y1, y2) ,

(5.27)

where φiω1dy1 + φiω2dy2 = ω(i) = φiω and

φiu1dy1 + φiu2dy2 = û(i) = φiû .

Note that the spaces (5.25) are included into the corresponding domains of the
operators β0 from (3.44), (3.45), (3,46) in which s is replaced by s + 1. Also,
the domain of the operator β1 from (3.44), (3.45), (3.46) with s changed to s + 1
contains the corresponding spaces from (5.26). All these assertions are proved by
straightforward verifications except for the space in (5.26) when 1/2 < s ≤ 2. In
the case of 1/2 < s ≤ 2, we must prove the inclusion

L2(0, T ;Hs−1/2(∂Ω)) ∩H
2s−1

2s (0, T ;H(1−2/s)(s−1/2)(∂Ω)) ⊂ Bs+1,1(ΣT ) ,

which reduces to the proof of the following estimate for the weights defining the
indicated spaces:(

a2(ξ′) + b
2
s+1 (τ)a

2(s−1)
s+1 (ξ′)

) 2s−1
4

≤ C
(
as−1/2(ξ′) + b

2s−1
2s (τ)a(1−2/s)(s−1/2)(ξ′)

)
,

where 1/2 < s ≤ 2. This inequality is equivalent to the following:

a2 + b
2
s+1 a

2(s−1)
s+1 ≤ C(a2 + b

2
s a

2(s−2)
s ).

But the last inequality is true thanks to an estimate by Hölder’s inequality:

b
2
s+1 a

2(s−1)
s+1 =

(
b

2
s+1a

2(s−2)
s+1

)(
a

2
s+1

)
≤ C

(
b

2
s a

2(s−2)
s + a2

)
.

By Theorem 3.2, there exist vj(t,y) ∈ H(s+1)((0, T ) × Ui), j = 1, 2, satisfying
(5.27). Let ψi ∈ C∞0 (Ui) be functions satisfying

ψiφi ≡ φi , i = 1, · · · ,K ,(5.28)

χ̂(y3) ∈ C∞(0, δ), χ̂(y3) = 1 for y belonging to a neighborhood of 0, and χ̂(y3) = 0
for y belonging to a neighborhood of δ, where δ is the magnitude found in (4.16).
Equalities (5.27)–(5.28) yield

χ̂ψiw
(i)
j (t,y)

∣∣
y3=0

= φiωj(t, y1, y2) , j = 1, 2,(5.29)
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χ̂ψi∂y3w
(i)
1 (t,y)

∣∣
y3=0

= φiu2(t, y1, y2) ,

χ̂ψi∂y3w
(i)
2 (t,y)

∣∣
y3=0

= −φiu1(t, y1, y2) .
(5.30)

Evidently, the extension problem w3(t,y)
∣∣
y3=0

= 0 has the solution

w
(i)
3 (τ,y) = χ̂(y3)ψi0 ≡ 0 ∈ H(s+1)((0, T )× Ui) .(5.31)

From the left-hand sides of (5.29), (5.30), and (5.31), we construct the differential
form

w̌(i) =
2∑
j=1

χ̂ψiw
(i)
j (t,y)dyj + w

(i)
3 (t,y)dy3

that is written in local coordinates defined in [0, T ] × Ui × (0, δ). But it can be
extended into the whole cylinder QT by zero outside that local region. Define
the differential form θ =

∑K
i=1 dw̌

(i) . This form is defined on QT with coefficients
belonging to H(s)(QT ). Moreover, previous constructions yield that θ

∣∣
ΣT

= ǔ ,
where ǔ is the external form (5.3). This proves Theorem 5.1 a).

We are now in a position to prove the main extension result.

Proof of Theorem 2.2. Let u ∈ Gs(ΣT ) be given, which we decompose into u =
uτ + unn with uτ ∈ Gsτ (ΣT ) and un ∈ Gsn(ΣT ). On each connected component Γj
of ∂Ω (see (1.5)), we set

qj(t) ≡
∫

Γj

un(t,x′) dx′, j = 1, · · · , J .(5.32)

un ∈ Gsn(ΣT ) implies that qj(t) ∈ Hσ(0, T ) for each j, where

σ =


1, s ≥ 3/2;
(2s+ 1)/4, 1 ≤ s ≤ 3/2;
(2s+ 1)/(2s+ 2), 1/2 < s ≤ 1.

According to (2.1)-(2.2) the space Hσ(0, T ) is defined as

Hσ(0, T ) = Hσ(R)
/
Hσ

(0,T )′(R)

with the norm

‖q‖Hσ(0,T ) = inf
E
‖Eq‖Hσ(R) ∀ q ∈ Hσ(0, T ).

Thus for each q ∈ Hσ(0, T ) there exists an extension E such that

‖q‖Hσ(0,T ) ≤ ‖Eq‖Hσ(R) ≤ C‖q‖Hσ(0,T ) ,(5.33)

where C > 0 does not depend on q and

‖Eq‖Hσ(R) =
∫
R

(1 + |τ |2)σ|Êq(τ)|2 dτ

(Êq is the Fourier transform of Eq). For qj defined in (5.32) we denote by Ejqj
the extension of qj satisfying (5.33). From the definition (2.11) of Gsn(ΣT ) and the
inclusion un ∈ Gsn(ΣT ) we have

∑J
j=1 qj(t) = 0 for every t ∈ (0, T ). Without loss

of generality we may suppose that
∑J

j=1Ejqj(t) = 0 for every t ∈ R, for otherwise
we can define EJqJ (t) = −

∑J−1
q=1 Ejqj(t), and evidently (5.33) is still true for this
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newly defined EJ with C replaced by (J − 1)C. For each t ∈ R, we consider the
Neumann problem

∆p(t,x) = 0, x ∈ Ω ,(5.34)

and
∂p

∂n

∣∣∣
Γj

= Ejqj(t), j = 1, · · · , J .(5.35)

Since
∑J
j=1 Ejqj(t) ≡ 0 for every t ∈ R, problem (5.34)–(5.35) has a solution p(t,x)

such that ∇p(t,x) is defined unambiguously and the following inequality holds:

‖∇p(t, ·)‖2Hs(Ω) ≤ Cs
J∑
j=1

|Ejqj(t)|2 ∀ s ∈ R .(5.36)

Let Êjqj(τ) be the Fourier transform of Ejqj(t) and p̂(τ,x) be the Fourier transform
in t of p(t,x). Evidently, p̂(τ,x) and Êjqj(τ) satisfy (5.34)–(5.35) for every τ ∈ R.
Thus, analogously to (5.36), we have

‖∇p̂(τ, ·)‖2Hs(Ω) ≤ Cs
J∑
j=1

|Êjqj(τ)|2 ∀ s ∈ R .(5.37)

Inequalities (5.33) and (5.37) imply

‖∇p(τ, ·)‖2Hσ(0,T ;Hs(Ω)) ≤ C
J∑
j=1

‖qj‖2Hσ(0,T ) .(5.38)

Evidently the vector field ∇p(t,x) is solenoidal. Let us consider the restriction of
∇p(t,x) on Σ:

∇p(t,x)|Σ = (∇p)τ + (∇p)nn ,

where (∇p)n = ∂p
∂n

∣∣
Σ

= {qj} is the normal component of ∇p on Σ and (∇p)τ =
(∇p)|Σ−qjn is the tangential component of ∇p on Σ. Inequalities (5.36) and (5.38)
imply that for each γ ∈ R

(∇p)τ ∈ H1(0, T ; Hγ(∂Ω)) and (∇p)n ∈ H1(0, T : Hγ(∂Ω)) .(5.39)

We define the extension operator R for (∇p)|Σ by the formula

R
(

(∇p)|Σ
)

= ∇p(t,x) .(5.40)

If u ∈ Gs(ΣT ), then by (5.39) we have (u − ∇p)|Σ ∈ Gs(ΣT ). Moreover, taking
into account (5.32) and (5.35), we see that (u − ∇p)|Σ ∈ Ĝs(ΣT ). Therefore, the
extension operator for (u−∇p)|Σ can be defined by Theorem 5.1. This and (5.40)
prove the theorem.

6. Inhomogeneous boundary value problem

for the 3D Stokes and Navier-Stokes equations

Let Ω ⊂ R3 be a bounded domain with C∞-boundary ∂Ω. On the cylinder QT ,
we consider the nonhomogeneous boundary value problem for the Stokes equations:

∂tv −∆v +∇p = f , div v = 0, on QT ,(6.1)

v
∣∣
ΣT

= g ,(6.2)
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and

v
∣∣
t=0

= v0 ,(6.3)

where v is the velocity vector field of a fluid flow, ∇p is the pressure gradient, f is a
given vector field (the body force per unit volume), v0 is a given initial vector, and
g is a given Dirichlet boundary condition. Because of the divergence free condition
we require that ∫

∂Ω

u(t,x′) · n(x′) dx′ = 0 a.e. t ∈ [0, T ].(6.4)

We assume that div v0 = 0 and that the following compatibility condition holds for
the boundary condition g and initial condition v0:

(v0 · n)
∣∣
∂Ω

= (g · n)
∣∣
t=0

.(6.5)

We suppose that

f ∈ L2(0, T ; Vs−2(Ω)), v0 ∈ Vs−1(Ω),

g ∈ Gs(ΣT ) for some s ≥ 1 .
(6.6)

(Recall that the spaces Vs(Ω) and Gs(ΣT ) were introduced in Section 2.) As is
well known (see [12]),

if v0 ∈ Vs−1(Ω) for s ≥ 1, then (v0 · n)
∣∣
∂Ω
∈ Hs−3/2(∂Ω) .(6.7)

On the other hand, the following assertion holds:

Lemma 6.1. Let γ0φ = φ
∣∣
t=0

for φ ∈ Gsn(ΣT ). Then, for s > 1/2 the operator

γ0 : Gsn(ΣT )→ Hs−3/2(∂Ω)(6.8)

is well defined and continuous.

One can prove Lemma 6.1 by the techniques of Section 3. We omit the details.
By (6.7)–(6.8), the relation (6.5) is well defined for data satisfying (6.6).
For s > 3/2, we impose the additional compatibility condition

v0

∣∣
∂Ω

= g
∣∣
t=0

.(6.9)

This equality is well defined because

if v0 ∈ Vs−1(Ω) for s > 3/2, then v0

∣∣
∂Ω
∈ Hs−3/2(∂Ω)

and because the following assertion is valid:

Lemma 6.2. Let γ0φ = φ
∣∣
t=0

for φ ∈ Gs(ΣT ). Then, for s > 3/2, the operator

γ0 : Gs(ΣT )→ Hs−3/2(∂Ω)

is well defined and continuous.

Again, this lemma can be proved by the techniques of Section 3, and we omit
the details.

Theorem 6.1. Let s ∈ [1, 2], s 6= 3/2, and assume that the data f , v0, and g
satisfy (6.4)–(6.6) and that if s > 3/2, (6.9) also holds. Then, there exists a unique
solution (v,∇p) ∈ V(s)(QT )× L2(0, T ; Hs−2(Ω)) for the problem (6.1)–(6.3).
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Proof. By virtue of Theorem 2.2, for a given Dirichlet boundary condition g ∈
Gs(ΣT ), one can construct its extension v1 ∈ V(s)(QT ) defined on QT with its
support in a neighborhood of ΣT . We seek a solution v for (6.1)–(6.3) of the form

v = v1 + w .(6.10)

By substituting (6.10) into (6.1)–(6.3), we see that w satisfies the problem

∂tw −∆w +∇p = f1, div w = 0, on QT ,

w
∣∣
ΣT

= 0, w
∣∣
t=0

= v0 − v1

∣∣
t=0

,
(6.11)

where f1 = f − ∂tv1 + ∆v1 ∈ L2(0, T ; Hs−2(Ω)). As is well known (see [4], [8],
and [12]), the problem (6.11) with a homogeneous boundary condition has a unique
solution (w,∇p) ∈ V(s)(QT )× L2(0, T ; Hs−2(Ω)).

Let us consider now the inhomogeneous Dirichlet boundary value problem for
the Navier-Stokes equations:

∂tv −∆v + (v,∇)v +∇p = f , div v = 0, on QT ,(6.12)

v
∣∣
ΣT

= g, and v
∣∣
t=0

= v0.(6.13)

Theorem 6.2. Let s ∈ (3/2, 2] and assume that the data f , v0, and g satisfy (6.4)–
(6.6) and (6.9). Suppose also that ‖f‖L2(0,T ;Hs−2(Ω)) + ‖v0‖V s−1(Ω) + ‖g‖Gs(ΣT )

is sufficiently small. Then, there exists a unique solution (v,∇p) ∈ V(s)(QT ) ×
L2(0, T ; Hs−2(Ω)) for the problem (6.12)–(6.13).

Proof. As in the proof of Theorem 6.1, we construct an extension v1 ∈ V(s)(QT )
for the boundary data g. Then, we look for a solution v in the form of (6.10). We
easily see that the proof of this theorem is reduced to the proof of the existence and
uniqueness of the solution (w,∇p) ∈ V(s)(QT )×L2(0, T ; Hs−2(Ω)) to the problem

∂tw −∆w + [(v1 + w) · ∇]w + (w · ∇)v1 −∇p = f2,

div w = 0, on QT ,
(6.14)

w
∣∣
ΣT

= 0, w
∣∣
t=0

= v0 − va
∣∣
t=0

,(6.15)

where f2 = f − ∂tv1 + ∆v1 − (v1 · ∇)v1 ∈ L2(0, T ; Hs−2(Ω)). The proof of the
existence of a unique solution (w,∇p) ∈ V(s)(QT ) × L2(0, T ; Hs−2(Ω)) for (6.14)–
(6.15) can be realized as in [4], [8], and [12].

Remark 6.1. Theorems 6.1 and 6.2 for s > 2 are also true under suitable compati-
bility conditions.
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