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TRACE THEOREMS FOR THREE-DIMENSIONAL,
TIME-DEPENDENT SOLENOIDAL VECTOR FIELDS
AND THEIR APPLICATIONS

A. FURSIKOV, M. GUNZBURGER, AND L. HOU

ABSTRACT. We study trace theorems for three-dimensional, time-dependent
solenoidal vector fields. The interior function spaces we consider are natural
for solving unsteady boundary value problems for the Navier-Stokes system
and other systems of partial differential equations. We describe the space of
restrictions of such vector fields to the boundary of the space-time cylinder
and construct extension operators from this space of restrictions defined on
the boundary into the interior. Only for two exceptional, but useful, values
of the spatial smoothness index, the spaces for which we construct extension
operators is narrower than the spaces in which we seek restrictions. The trace
spaces are characterized by vector fields having different smoothnesses in di-
rections tangential and normal to the boundary; this is a consequence of the
solenoidal nature of the fields. These results are fundamental in the study
of inhomogeneous boundary value problems for systems involving solenoidal
vector fields. In particular, we use the trace theorems in a study of inho-
mogeneous boundary value problems for the Navier-Stokes system of viscous
incompressible flows.

1. INTRODUCTION

Solenoidal vector fields appear in numerous applications, including fluid mechan-
ics, electromagnetics, superconductivity, etc. Solenoidal fields usually result from
a conservation law (e.g., conservation of mass for incompressible flows), or gauge
choices (e.g., for the vector magnetic potential in electromagnetics and supercon-
ductivity), or compatibility conditions (e.g., the vorticity field is, by its definition
as the curl of the velocity, solenoidal). In this paper, we study the properties of
traces of three-dimensional, time-dependent solenoidal vector fields. The results we
derive are of use in the study of inhomogeneous boundary value problems for sys-
tems of partial differential equations which involve solenoidal vector fields. In fact,
we apply them to inhomogeneous boundary value problems for the Navier-Stokes
system for unsteady, viscous, incompressible flows.

Our own motivation arises from our investigations of drag reduction for a body
immersed in a viscous, incompressible flow by controlling the velocity of the fluid
on the boundary of the body; see [5], where the two-dimensional analog of this
problem was studied. The derivation of an optimality system for this optimal
control problem was reduced in [5] to proving the existence of a solution w € W
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for the following boundary value problem:
(1 1) NS,(V)(tv X)W(ta X) = f(ta X) ’ (ta X) € QTv
' Wi, =g, Wli=0 = Vo .

Here, NS'(V) is the derivative of the Navier-Stokes operator evaluated at an opti-
mizer vV, Qr = (0,T) x € is a time-space cylinder on which (1.1) is posed, where
Q) C R? is the spatial domain with boundary 9Q, and 7 = (0,7) x 0 is the
lateral surface of the cylinder Q7. The solvability of the problem (1.1) should be
proved for each f € F, g € G, and vg € Wy, where F, G, and W, are appropriate
function spaces. The correct choice of W, F, and G is very important because it
is closely connected to the correct mathematical formulation of the original drag
reduction problem.

In the two-dimensional case, the space W is generated naturally (see [5]) by the
drag functional and is the “energy space”

W =V(Qr) = {v e L*0,T;H Q) :dv € L*(0,T;H (), divv =0},

where H*(Q), k = 1,—1, are the usual Sobolev spaces with smoothness index k
and H*(Q) = [H*(Q)]¢, with d denoting the space dimension. Evidently, F = {f €
L2(0,T; H~1(Q)) : divf =0} and

(1.2) G = the trace space on X7 of VI (Qr).

The trace space (1.2) was characterized in [5].

To formulate the optimal control problem correctly in three dimensions, we use
an approach parallel to that used in two dimensions: we consider (1.1) defined
for x € Q € R3. Since it is mathematically inappropriate to use V1 (Qr) in the
three-dimensional case, we look for the desired space W in the class of “energy-type
spaces”

Ve (Qr) = {verL*0,T;H*Q)) : v e L*0,T;H*()), divv =0}.

It is well known (see [4]) that the boundary value problem (1.1) with the homoge-
neous boundary condition g = 0 is well posed with w € V) (Qr) and ¥ € V) (Qr)
for s > 3/2. In the inhomogeneous case, i.e., g # 0, the well-posedness of (1.1)
is still desired. Therefore, to set up a well-posed formulation of the optimal drag
reduction problem in the three-dimensional case, we have to solve the following
problem:

characterize the space of Dirichlet traces

1.3
(13) onto X7 for the spaceV(s)(QT) .

This paper is devoted to solving problem (1.3) for s > 1/2 in three dimensions
(d = 3). We point out that the case V(*)(Q7) with s = 3/2 is the most appropriate
for the drag reduction problem in the three-dimensional case. Nevertheless, we
are forced to study problem (1.3) for all s > 1/2. The main reason for this is
that the cases s = 3/2 and s = 5/2 are singular. Below, we prove that when
s > 1/2, s # 3/2, and s # 5/2, the trace space G*(Xr) exists for the space
V) (Qr), and we give the precise description of G*(27). In particular, we have
the exact formula for || - ||gs(x,); see (2.10)—(2.12) below. In the cases s = 3/2 and

s = 5/2, the spaces G?II/Q(ET) and an/Q(ET) where we seek restrictions to Xr of
functions belonging to V©3/2(Qr) and V(*/2)(Qr), respectively, are wider than the
spaces G%/2(2r) and G®/%(S7) for which we can construct continuous extension
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operators R : G%/%(Xr) — VB/2(Qr) and R : G°/2(2r) — VO/2)(Qr). Note that
the norms of the spaces G*(3r) and G} (Er) for s = 3/2 and s = 5/2 differ in
their Fourier representations by a certain logarithmic multiplier; compare (2.4) and
(2.7) below.

The study of the optimal control problem mentioned earlier is a motivation as
well as an application of the trace theorems obtained in this paper (however, optimal
control problems will not be addressed in this paper). Obviously, there are many
other applications of these trace results simply because, as was already mentioned,
many physical problems involve divergence-free vector fields on domains with a
boundary. As an illustration of an application of the trace theorems to be obtained
in this paper, boundary value problems for the Stokes and Navier-Stokes equations
will be considered in the last section.

The methods which were used in [5] to solve the problem (1.3) for s = 1 in
the two-dimensional case applied the theory of interpolation (see [9]). However,
this approach is possible only for s = 1; it cannot be generalized to the three-
dimensional case for s > 1/2. Roughly speaking, the method worked out below
consists of two parts. The first part is the proof of the trace theorem for scalar
functions belonging to the space

H(Qr) = {4 € L*(0,T; H*(Q)) : dip € L*(0,T; H* ()} .

With the help of the method of localization, this task is reduced to the derivation of
some estimates for Fourier representations. Of course, this approach is well known;
see, e.g., [9]. Moreover, the proof of these estimates is also well known for s > 5/2.
However, the cases of most interest in applications are 1/2 < s < 5/2.

The second part is to work out the localization and rectification method for
solenoidal vector fields. To establish the restriction theorem when the smoothness
index s of V*)(Qr) is small, we increase the smoothness by transition from a
solenoidal vector field u to a field v such that curlv = u, and then we express
the traces of u in terms of of the traces of v. To realize this approach, we develop
further some results of [3] on the solvability of the system

curlv=u, divv=0 forxeQ, Un|8920,

where v,, is the projection of the vector field v onto the unit outward-pointing
normal n.

To obtain the extension result we need to solve the following problem posed on
the manifold 9:

(1.4) (curlv)[,, = uf,q,

where u|aQ is a given vector field defined on 9. Since (curlv can be easily

Moo

expressed in terms of v| 50 and (Ov/on we can understand (1.4) as an equation

)}BQ’
for the unknowns V|aQ and (0v/0n) |aQ' We can rewrite (1.4) as an equation on the
manifold 02 in an invariant form using exterior differential forms. With the help
of this curl problem, it is very convenient for us to transform the trace problem for
solenoidal vector fields to the analogous problem for exterior differential forms. To
make this transformation in a simple way, we are compelled to use only a special
kind of local coordinates, the “orthogonal local coordinates.” To solve (1.4), we
may use well-known results on the solvability of the Laplace operator in the classes
of differential forms defined on the manifold 9Q; see [I] and [10].
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Some notations are in order. Throughout,  is a bounded domain in R, 9Q is
the boundary of €, and 912 is a compact and closed C'>° manifold consisting of J
connected components {T';},

J
(1.5) 00 = U Iy and NIy =¢ whenever i # 7.
j=1

Qr = (0,T) x Q denotes a space-time cylinder and X = (0,T) x 0N is its lateral
boundary. n denotes the unit outward-pointing normal vector on 92 or on Y.
2. FORMULATION OF THE TRACE THEOREM

In this section, we first recall some definitions of the function spaces which will
be used in the sequel; then, we formulate the trace theorem.

2.1. Function spaces. We introduce the space
S =SMRY ={u : x*D’u e L*(R?),Va,V 3},

where X = (21, -+ ,24) € R a = (ay, - ,aq) and 3 = (B1,- -+ ,B4) are multi-
indices with nonnegative components, x* = 2" ---z3?, and

DP =8P /(9 - dalit).
For u € S, we define the Fourier transform

(E) = Fu(€) = (2m)~ 42 / =y (x) dx

Rd
where x - & = 21& + - - - + x4&4. Then, the inverse Fourier transform gives
u(x) = Fi(x) = (2m) 42 / e™Eu(g) de .
Rd

Recall that the Schwartz space S’(R?) of slowly growing distributions is defined
as the dual space of S(R?); for details see [6] and [9, Chap. I, 1.2]. The Fourier
transform of u € S’ is defined by the formula

(Fu,¢) = (u,Fg) V¢ e SRY),

where (-, -) is the duality between S’ and S which is generated by the scalar product
in the space L?(R?) of complex-valued functions.
For s € R, the Sobolev space H*(R?) is defined as follows:

H*(RY) = {ue §'(RY) : (1+[¢)**u e L2(RY)}
with the norm defined by

sy = 1+ 1€R) RO de.

On the closure G of a domain G, we introduce the following subspace of H*®(R%):
HERY) = {u € H*RY) : suppu C G},

where supp u is the support of the function u. For a domain €, we denote ' =
R\ Q. For s € R, the Sobolev space H*() of functions defined on (2 is determined
as follows (see [7] and [13)]):

(2.1) H(Q) = H*(RY)/Hpy (RY).
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General definitions of quotient spaces of Banach spaces and (2.1) imply that there
exists an extension operator E : H*(2) — H*(R%) and

(2.2) ||u||H;(Q) = lrElf HE'U'HHS(]Rd) y

where the infimum is taken over all extension operators E.

We suppose that the boundary 0 of a domain Q C R? is a closed manifold of
dimension d — 1. Then, by the definition of a manifold, there exist a finite covering
{U,} of 99 and diffeomorphisms 4, : U; — B = {x € R? : |x| < 1} such that, on
UinU;(#0), 6; 0 (5]71 is a C° map. Let {¢;} be a partition of unity subordinate
to {U;}. Then, the norm || - || = aq) is defined by the formula

(2.3) lull 3 a0y = Z w0 85 I3 a1y
J

and the Sobolev space H®(0f2) is determined as the space of distributions defined
on 9 which possess the finite norm (2.3); for details, see [9].
We will use the space V*(Q) of solenoidal vector fields which is defined as follows:

VHQ) = {v = (v1, - ,va) € [H(Q)? : divv =0}.

The main object of our investigation will be spaces of functions that depend on both
x and the time t. If (¢,x) € R¥T! then the Fourier transform (r, €) is defined as
follows:

U(r, &) = Fu(r, &) = (2r)"@+1/2 / eI ITERE) (¢, x) dx dt .

Rd+1
We introduce the Schwartz space S'(R4*1) and define
HE (R = {u(t,x) € S/ (R - lull3¢co) (rat1y < 00},
where

||U||$1(5>(]Rd+1)

2.4
24 = /RM[O +HIEP)T + (L + |7+ [€%) 2] [a(r, €)[* d€ dr .

On the finite time space-time cylinder Qr, analogously to (2.1)—(2.2), we can define
H(@Qr) = HY R /1) (R
and
[l (@ry = f | Bullpgeo sy -
The space V) (Qr) of solenoidal vector fields is defined as follows:
(2.5) VO (Qr) ={v=(v1, - ,va) € [HP(Qr)]* : divv =0}.

The traces of functions u € V) (Q7) on the lateral surface L1 = (0, T') x 99 will be
sought in certain spaces of the type H*(0,T; H"(92)); their norms are constructed
from the norms of H*(R; H"(9)) by a formula analogous to (2.2). The norm of
H?*(R; H"(09)) is defined as follows:

(2.6) [ ——— / (L 7Y [0, e oy 7
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Here,

G(r,) = (2m)~1/2 / e~iTta(t, ) dt

R

is the Fourier transform of the function u(t, -) defined for ¢ € R with values belong-
ing to the space H"(0R2). If s = 0 or r = 0, we will write

HY(0,T;H"(09)) = L*(0, T; H"(09Q))
and

H*(0,T; H(09)) = H*(0,T; L*(99)) .

Finally, we introduce special logarithmic spaces. Let B(R?) be a space of func-

tions u(t,x’) for (t,x’) € R x R?~! with the norm

Jully ey = [ bl €l € dr e’

R
where b(7,&") > 1 is a weight and (7, ¢’) is the Fourier transform of u. Then, by
Bin(Q), where Q@ = R x R?~! we denote the function space
Bin(Q) = the completion of B(R?) under the norm [jul|p,,(q),

where the norm is defined by

b(r, &)

||u||2Bln(Q) = /]Rdl 9 (1+]7]?)
n 2+ {5 |

u(r, &)? dr de’ .

For example, Hl(s) (R9) has the norm

[u(r,&)? d¢' dr

@7) _ / (L+ € + A+ |7+ €
w2+ 1+ [P)/ A+ P

as H®)(R9) has the norm (2.4). The space Hj (R; H"(R%!)) has the norm

||u||%{fn(R;H"'(Rd*1))
(2.8) B A+ [€) A+
B /]Rd 2+ (14 |7]2)/(1 + [€'?)?]
If B(X) is a function space defined on ¥ = R x 9, then the logarithmic space By, (%)

is constructed from Bj,(R?) in the usual manner just as B(X) is constructed from
B(R%); see above.

u(r, &)? de’ dr .

2.2. Formulation of the trace theorem. As is well known, a trace theorem
consists of two parts: a restriction theorem and an extension theorem. Thus,
below, we formulate the desired trace theorem as two separate assertions.

Let v(x), defined for x € , be a solenoidal vector field of class C*°, and v its
restriction on the boundary 0€2:

= V]on
We can decompose the vector field v into the tangential component ;v and the
normal component (v, v)n:

(2.9) YV =7V + (1pv)n.
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Here, 7y, v is the orthogonal projection of yv onto the normal vector field n, and
~-Vv is the orthogonal projection of yv into the tangent space Tx0f2 to the manifold
O at the point x. We will also use the decomposition (2.9) for the restriction
v to the lateral boundary Xr when v(¢,x) is defined on Qr; the meaning of the
decomposition in this case is evident.

The case d = dim Q2 = 3 is the most important case for applications, and we will
consider only this case in the sequel.

To formulate the restriction and extension theorems in a compact form, we

introduce the space of traces. Specifically we introduce the function spaces on
ZTI

[HE=1/2 (502, s >5/2,
[L2(0,T; H*~'/2(8Q))
<s<
(2.10) G:—(ET) = N H(25*1)/4(07T;L2(89))]2’ 2<s< 5/27

[L*(0, T; H*/2(09))

NH%(0,T; HO- D62 (60))]2,

1/2<s<2,

and

HE/2(80) N L2(0,T; HY(0)), s> 3/2,
L2(0,T; H*~/2(6))

(211)  Gi(Zp) = N HED/40, 7, H-1(69)),
L2(0,T; H*~/2(6))

2523

NH>5(0,T; H* 5 (0Q))

1<5<3/2,

for1/2<s<1,

?

where H*(0Q) = {v € H*(09) : Joqvdx = 0} and, for a < 0, the integral is
understood in the sense of distributions. We set

(2.12) G*(Sr) = G3(Sr) x G3,(Sr).

Theorem 2.1 (The restriction theorem). Let Q C R3. Then, the operator (2.9)
can be extended by continuity into the following continuous operator:

(2.13) v:VE(Qr) — G¥(Br) fors>1/2, s #3/2, s #5/2.
If s = 5/2, then the restriction operator
(2.14) ¥ = () : VO (Qr) — [H (E0)] x HO)(Er)

is continuous. For s = 3/2, the restriction operator v = (Vr,vn) as a mapping
v VER(Qr) — [L2(0,T; HY(0Q)) N H*/*(0,T; H™/3(00))]?
x [L2(0,T; H(0Q)) N HL (0, T; H-1(0Q)) N H*3(0,T; H~/3(8))]
is bounded, where the logarithmic spaces are defined in (2.7) and (2.8).

(2.15)

Theorem 2.2 (The extension theorem). Let Q C R3. Then for s > 1/2 there
exists a continuous extension operator

R:G*(2r) — VP(Qr),

i.e., the operator R is such that vo R = I, where I : G*(Xr) — G*(Xr) is the
identity operator.
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Remark 2.1. Theorems 2.1 and 2.2 imply that the restriction operator (2.13) is
surjective for s > 1/2, s # 3/2 and s # 5/2. If s = 3/2, then G%/%(Xr) C I(v),
where $(7) is the image of the operator (2.15). Analogously, if s = 5/2, then
G®/2(%r) C J(v), where 3(v) is the image of the operator (2.14).

Sections 3, 4, and 5 are devoted to the proofs of Theorems 2.1 and 2.2, which
are the main results of this paper. We also prove some other extension results.

3. TRACE THEOREMS FOR THE SOBOLEV SPACES H(%)(R%*+1)

3.1. Restriction results. For a scalar function u(t,x) € C*® (R4 NHE) (REHD),
we introduce the following restriction operators:

OFu(t,x)
(3.1) (you)(t,x") = u(t,x)|xd:0 and  (yeu)(t,x') = Tx(’j 2’
where k = 1,2,..., x = (21,...,24), and X' = (z1,... ,24-1). Our aim is to

determine the spaces of restrictions yyu (k = 0,1,2,...) when u € H®) (R¥*1). We
will assume that

s—k>1/2.
First of all, we consider the case
(3.2) 1/2<s—k<5/2.

Lemma 3.1. Let k > 0 be an integer and assume that the inequality (3.2) holds.
Then, the operator i defined in (3.1) can be extended by continuity into the con-
tinuous operator

Vi :H(S)(Rd+1) N L2(R;H57k71/2(Rd71))

3.3

> NHETEDAR PR, if 5> 2,
and

3.4 Yot HEO R — L2(R; H5—F-1/2(RI-1Y)

N H(QS_Qk_l)/(QS)(R;H(l_Q/S)(S_k_1/2)(Rd_l)), ZfS c (1/272).

Proof. Let (7, &) denote the Fourier transform of u(¢,x); then

— ’ — oF i ~ ’
r ) = (am) Vo [ et g e
(3.5) d ¢

— (2m) 12 /R (i€a) a(r. € €4) dEa.

a=

Let

(3.6) a€) =1+, b(r) =1+

(37) Au(r€) = a*(§) + feal™* +b(r)a (&) + a7
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Applying the Plancherel theorem and the Cauchy-Schwarz-Bunyakovsky inequality
to (3.5), we obtain, with a function R(r,¢’) > 0,

2

drde’

| Rzt e)P drde
&
[ g € g e

- [ )
2k

C R(r, / ni/d>
< ]Rd((T&-)/]RAs(T7§,’I7)n
[ At gt g g dsadrde

(3.8)

If we could find R(r,¢") such that

2k

(3.9) 0<Cy < ‘R(T, 5’)/R mm‘ <y,

where the constants C; and C3 do not depend on 7 and &', then (3.8) would imply
[ R Fatr ©)F drde’ < Cllulfyco g

so that the function R would define a norm on the space for y,u, u € H®) (R4+L),
Let us determine an R satisfying (3.9). Set

B=a°+ba®?.

Using this last relation and (3.6)—(3.7), we obtain, by making some simple trans-
formations,

2k 0o ok
/ 0 =2 / n i
R AS(Tv gla 77) o a®+ bas—2 + 7725 + b772(sf2)
B 2
= FrETe

3.10 q
. . OO Sl dn/ B (%)
o 1+ (n/BY2))2s 4 (b/32/5)(n/ 1/ (25))2(s—2) Ul
oo 2%k
— 9(a® + ba*~2 (2k+1725)/(2s)/ y .
| : o 14y2s+ #yz(sfz) Y

Thus, we have to estimate the integral

0o y2k
3.11 I = d
(3.11) R e
where

b b
(3.12) r -

= 52/5 - (as +ba572)2/s :
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2k+1

Through the change of variable z = y we obtain, when s — k satisfies (3.2),

I(r) = 1 e dz
(7“ = 2% + 1 0 1+Z23/(2k+1)+T22(s—2)/(2k+1)

< 1 o dz
S 2%t 1), 22(2/@kD) (/2R )

1 ) 2(s —2)\ 7! [ dp(2k+5-29)/(2k+1)
(3.13) T2k +1 ( 2k +1 ) /0 ZA/Ck+T) 1 o

B 1 e dy
= ok15_2s o yA(k+5-2s) 4y

— Op(2k+1-25)/4 * dy/r(2k+5—23)/4
o (y/r(k+5-25)/4)4/(2k+5-25) 4 |

_ CT(2k+1_28)/4 )

On the other hand, analogously to (3.13), we have

> dz
(2k + 1)I(r) > /1 222(-2)/h+1) LA/ R4 D) | 7)
(314) _ CT(2k+1_2s)/4 o0 dy/r(2k+5—23)/4
1 (y/r(k+5-25)/4)4/(2k+5-25) 4 |

> OprPFH1=29)/4 4o 5 .
Relations (3.13)—(3.14) and the evident relation I(r) — constant as r — 0 yield
(3.15) I(r) ~ (r+1)@FF1=29/4 for >

ie., ¢y (r 4 1)FH1=29)/4 < I(r) < cp(r + 1)FF+H1-28)/4 Qubstituting the expression
for r defined in (3.12) into (3.15) and taking into account (3.9) and (3.10), we obtain

2k4+1—2s
2s

R(r,€') ~ (a® +ba*"?)"

b —(2k+1-25)/4
14—
( (as +bas—2)2/s)

_oy_ 2k+1—2s | 2k4+1—2s
~(a® +ba®2) " 2 T

. (a2 + b2/sa2(572)/s + b)7(2k+1728)/4

(3.16)

~ (a2 +b)(28_2k_1)/4, if s Z 2,

where the condition s > 2 was used only in the last step of (3.16). By the def-
inition (3.6) of the functions a(¢’) and b(7) and the definition (2.6) of the space
H*(R; H"(R?71)), we see that R(7,¢) in (3.16) defines a norm for the space

LQ(R;Hsfkfl/Q(Rdfl)) m H(2872k71)/4(R;LQ(Rdfl)), s 2 2 .
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Analogously, when 1/2 < s < 2 we obtain

(25—2k—1)/4
R(T, é-/) ~ (a2 + b2/sa2(s—2)/s + b)

N (a2(s—2>/S(a4/s+b2/s+ba2(2—s>/S)>(2572’“’1)/4

N (az(sfz)/S(azx/s +b2/5)

~ as—k—l/Q + b(s—k—1/2)/sa(s—2)(s—k—1/2)/s ’

>(2572k71)/4

and we see that R(7,¢’) defines a norm for the space
L2(R; H3~F—1/2(RA-1)) q g2s—2k=1)/(2s) (R, [(1-2/)(s—k=1/2) (Rd-1))
for 1/2 < s <2. O
Next we consider the case
(3.17) s—k=5/2.

Lemma 3.2. Let k > 0 be an integer and assume (3.17) holds. Then, the operator
i defined in (3.1) can be extended by continuity into the continuous operator

(3.18) it HOD (R 1D (R .

Proof. As in the previous lemma, we have to estimate the integral I(r) from (3.11)
when s — k satisfies (3.17). By the first equality in (3.13), we have

1 0
dz dz
(Zk + 1)I(T) = / 2k45 + / 2k45
0 1 14z

1+ 22041 + 12 2R+ 412

Through a change of variables, we have

/1 dz </1 dz _1/’“ dy  In(l+7)
0 142581 472 Jo L+rz 7)o 14y T

/1 dz >/1 dz _1/’“ dy In(2+7)—In2
0 1+z%ﬁ+m’— 0o 2471z T Jo 24y r .

On the other hand,

and

> dz > dz
2k+5 < 2k+5 1_2k+5
1 1+ 22641 41z 1 z2k+1 (1+’I“Z 2k+1)

_<1_2k+5)1/°° dz =4/ (k1) _2k+1/1 dy
2k +1 1 14 e/ kD) 4 Jo 1+ry
2k+1In(1+7)

4 r ’

If r > 1, then

/°° dz < /°° dz
IR NI == ST zgllzﬁ(l—l—%zl_%)
_2k+1/1 dy  2k+1In(l+2r)
4 o 1+2ry 4 2r
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Also, as r — 0, we have
e dz
/ 2k15 ~1.
0 14 2%+ 41z

In(r 4 2)
1+7
With the help of (3.19), and denoting 3 = (a*+5/2 4 ba*+1/2)4/(2k+5) (analogously
to (3.16)), we may deduce

R(r.€) ~ﬁ(1+%)/1n(2+%) ~(B+0)/In(2+ %)
~ (a2 | A/ (2hF5) (2(2k41) /(2k+5) +b>/

| 2(a? + b4/ (2+5) g2(2k+1)/(2k+45)) 4 p
u a2 + b3/ (2k15) g2(2k+1)/(2k+5)

These relations imply

(3.19) I(r) for 7 € (0,00) .

) a?+b
~ (a —+ b)/ln <a2(2k+1)/(2k+5) (ag/(2k+5) + b4/(2k+5))>
a2 +b - a2 +b
In (2250) PHF/CRE (1 + )

~

This relation and (3.8) yield (3.18). O
Finally, we consider the case
(3.20) s—k>5/2.

Lemma 3.3. Let k > 0 be an integer and assume that (3.20) holds. Then, the op-
erator i, defined in (3.1) can be extended by continuity into the continuous operator

(3.21) i HE (R — H k=12 (R
Proof. We have to estimate I(r) from (3.11) under condition (3.20), which is equiv-

alent to the inequality 2(s — 2)/(2k + 1) > 1. Using the first equality from (3.13),
we obtain

@k + 1)1 < [ dz
+1)I(r) < 14262/
(3.22) 2k+1 dzr%

_ 2k+41
=Cr 26-2 .

(o)
= r*m/
0 1+ (2122 )2s=2)/(2k+1)

Since 225/(2k+1) « 4.52(s=2)/(2k+1) when 2 < r(ZF+1D/4 we have

F(2k+1)/4 d
z
>
2k+1)I(r) > ; P ey TRy
(3.23) 0 1+ 2(37«%)2(3—2)/(2“1)
P (2k+1)/4+(2k+1)/2(s—2)
— 7'7% / dy
2(s—2)
0 1 4 2y 2r+1

_ 2k41
>Cr =2 asr —oo.
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The first equality in (3.13) yields that
I(r) ~ constant asr — 0.
Hence, by (3.22)—(3.23), we obtain
_ 2k41
I(r)~(147r) =2 forr>0.
Using this relation we obtain, similarly to (3.16),

R(1,&") ~ (a® + ba872)

2k+1
. 1 L b 2(s—2)
(as + ba5*2)2/5

o ] 2k+1_ 2k+41
~ (as + ba’® 2)1 2s S5(s—2)

_ 2k41-2s
2s

(3.24)

. (a2 + b2/sa2(s—2)/s + b)%
-~ a(572)(17%)(a2 + b) ~ asfk75/2(a2 + b) .

Taking into account (3.6) and (2.4), we see that R(7,¢’) in (3.24) defines a norm
of the space H(~F~1/2)(R?). O

Consider now the finite time case Qr = (0,7) x 2 and X7 = (0,T") x 9. For a
scalar function u(t,x) € C=(Qr) NH*)(Qr), define the restriction operator ; by
the formula

oFu  OFu
(3.25) 70u=u|ZT, 'yku:'yWEW‘ZT, k=1,2,...,

where % is the k-th normal derivative. Lemmas 3.1, 3.2, and 3.3 imply the
following restriction result for functions defined on Q7.

Theorem 3.1. Let k > 0 be an integer and let s > 0. Assume s —k > 1/2. Then,
the restriction operator 7y defined in (3.25) can be extended by continuity into the
bounded operators

(3.26) i HE(Qr) — HEFY2D(2r)  for s —k >5/2,

Yt H(Qr) — L*(0, T H* " 1/2(0Q))

3.27
(3.27) N HZ=2=D/40, 7, L2(8Q)) for1/2<s—k<5/2,s>2,

e H(Qr) — L2(0,T; H*+"1/%(0Q))
(3.28) N H@s=26=1)/(2s) (7, [1(1-2/5)(s=k=1/2) (9Qy))
for1/2<s—k<5/2,1/2<s<2,
and

(3.29) e : HO2(Qr) = HP (1) for s —k =5/2,

In

where Hl(?(ZT) is constructed in the usual manner from the space Hl(?(Rd) defined
through (2.7).

Theorem 3.1 can be deduced from Lemmas 3.1-3.3 by standard methods that
involve the extension of u € H®)(Qr) to u € H®)(R¥+1), the introduction of a
partition of unity in a neighborhood of ¥, and the rectification of .
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3.2. Extension results. We begin with the construction of the extension opera-
tors which correspond to the restriction operator (3.21).

Lemma 3.4. Let k > 0 be an integer and s € R. Then, there exists a continuous
operator

(330) 61@ . H(sfkfl/Q) (Rd) BN H(s) (RdJrl)
such that v 0 Bru = u and v 0 Bu = 0,5 # k, for each u € HE—F=1/2)(RY), where
i is the operator (3.21).
Proof. Let ¢y (t) € C(R) with supp ¢ C [~1,1] and ¢y (t) = t¥/k! for |t| < 1/2.
For u(t,x) € H®)(R¥1) we denote by

ﬁ(T, 5,7 $d> = a(Ta 517 e afd—h $d>

the Fourier transform with respect to the variables (¢,x') = (t,z1, - ,T4-1),
i.e., we use u(7,&’,14) to denote the partial Fourier transform (to distinguish it
from the total Fourier transform @ with respect to all variables). Let v(¢,x') €
HE—F=1/2)(RY), and let T(7, &) be the Fourier transform of v. We define the oper-
ator O by the formula

(3.31) (Beo)(1,€,2a) = ¢r.(a?(&)za)u(r, € )a "2 (€)),

where the function a(¢") was defined in (3.6). Taking the Fourier transform with
respect to x4 in (3.31), we obtain the complete Fourier transform of gjv:

(3.32) Bl ) = e vl €).

Taking into account the definition (2.4) of the norm of the space H()(R%*!) and
(3.32), we obtain

||6kv||§-[(b')(]gd+1)
= / ([a(é’) + &2+ b()[a(€') + 53]3—2)

a(r, &)
a(l+k) (5/)

= /(a +ay®) D |(a + ay?)? + b]

~ N2
g o) dr e’ dy

|k (Eaa™ 2 (€)))|? dr d€’ deq

< [a S 4 )1+ )4 g (0 4 1)
[a(r, €)1 6n(y) [ dy dr d€’
<a / (a* 712 4 ba* ) fa(r, &) dr dE'

These equalities imply (3.30). The equalities v, o B = I and 7, 0 B = 0,5 # k,
follow from the definitions (3.1) and (3.31) for vx and S, respectively. O

Remark 3.1. Note that for 1/2 < s — k < 5/2, we have

2s—2k—1

C
H(S*k*l/Q)(Rd) 7é LQ(R;Hsfkfl/Q(Rdfl)) NH Y (R,L2(Rd71))
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and

H(S*k*l/Q) (Rd) ; LQ(R;Hsfkfl/Q(Rdfl))

25s—2k—1

NH =2 — (]R, H(1—2/s)(s—k—1/2) (]Rd_l))

(in other words, the space of restrictions obtained in Lemma 3.1 is wider than the
domain of the extension operator in Lemma 3.4). Indeed, the proof of the first
inclusion amounts to that of the inequality

as—k—l/Q +b(2$—2k—1)/4 < C[as—k—l/Q +bas—k—5/2]
which, upon absorbing the term a®*~*~1/2 on the left side by that on the right side,
can be rewritten as
[bas—k—5/2](23—2k—1)/4a(5/2—s+k)(23—2k—1)/4 < C[as—k—l/Q + bask5]

Since (2s—2k—1)/4 < 1, the last inequality is valid by virtue of Young’s inequality.
Similarly, the proof of the second inclusion amounts to that of the inequality

as—k—l/Q + b(s—k—1/2)/sa(1—2/s)(s—k—1/2) < C[as—k—l/Q + bas—k—5/2] )
Upon absorbing the term a®*~%~1/2 on the left side by that on the right side and then
dividing the inequality by a*~#75/2, we see that the last inequality is equivalent to

b(s—k—1/2)/sa(2k+1)/s < C[a2 + b] 7
which again is valid by virtue of Young’s inequality.

Let a(¢') and b(7) be defined as in (3.6) and let u(7,&’) denote the Fourier
transform of u(¢,x’). We introduce the following function spaces:

B*(RY) = {u(t,x'), (t,x) e R x R ¢ ||uf

Bs(R4) < OO} ,

where
lullfe ey = / (@*(€) +b(r) (. € drde’
and
BYF(RY) = {u(t,x') € L*(R x R ¢ [[uf gk ey < 00}
where

2s—2k—1
4

2(s—2)

e = [ (a€)+ 03 (1)a™ )

Lemma 3.5. Let k > 0 be an integer and s € R. Assume s—k < 5/2. Then, there
exists a continuous operator

[u(r, &)|? dr d¢’.

(3.33) B : BSFU2(RY) - HEORIY) i s> 2
and
(3.34) By : BYRF(RY) — HEORITY)  if 1/2<s5<2

such that v o Bru = w and 7v; o Byu = 0, j # k, where 7y, is the operator (3.1).
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Proof. Let s > 2. We define the operator ) by formulae similar to (3.31)—(3.32):

(335) B;‘L(Ta £I7 xd) = (a’2 + b)ik/4¢k((a’2 + b)1/4xd)a(7—v 61)
and
(3.36) Bru(r,€) = (a® + )" *HD/A%(r, ) ((a® + )7/ 4ea).

By the definition (2.4) of the norm of H(*)(R%*1) and by (3.36),
||ﬁku||§{(s)(md+1) = /]Rd A(Ta 5,)(612 + b)_(k+1)/2|a(7a €I)|2 deél )
where
(3.37) A(r,€) = / [(a+ &) +bla+£3) 2| dr((a® + b) /1€q)[* déa.
R

Making the change of variable y = (a? +b)~/4¢; in (3.37) and taking into account
the fact that, for an arbitrary N > 0,

|6 (y)|* < Cn(1+y)7V,
we obtain

a+ (a2 1/2,2)5-2( ;2 a2 4
A(77€I)<C(a2+b)1/4/R( a7 +b) y(1)+y(2)N+b+( o)

< C(a® + b))/ /0 v +a/(a® + )21+ ") /(1 +y°)N dy

< C(a2 4 b)(23+1)/4 )

dy

This inequality proves the continuity of the operator (3.33).
Consider now the case 1/2 < s < 2. We define the operator 5 as follows:

Beu(r, € xq) = M~/ ¢ (Azq)i(r, &)

and

Bru(r,€) = M~MAA~ g (A~ ea)t(r, ),
where

M = a2(¢' b2/s 2(s—2)/s (¢!
(3.30) a”(&) +07*(7)a &),

A= a(sf2)/(2s)(€')[a2(£/) + b(,r)]l/(2s).

Then we obtain, as above,
(3.40) Bl sy = /R A M &) i g
with

Ar.) = [ ((@+ &) +bla+ €)7) A e P des

R
= [ (@ 237+ ba+ 222 2) A (o) dy
R
_ 2s-1( @ | 92\° 2s-5( @ | o\]\% 2
f/R[A (A2+y) + bA (A2+y)}|¢k(y)l dy

~ A2571 4 bA2575 .
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Substituting (3.39) into the last relation, we obtain

A(r, &) ~ P (a® + b)*5 + ba B (a® + b)¥
~ as—% + b1_2_15a(s_2)(1_2_15) + b(as + ba3_2)252_«:5.
This last result obviously will lead us to the desired relation
25-1
(3.41) AT, &) ~ a*"2 + b gD (5) (a2 + b%a(s_Q)%> !

if we can show that
(3.42) b(a® + ba*"2) "5 < C(as—% + bl—ia<s—2><1—2—z>>.
The estimate (3.42) is equivalent to the inequality

b S C(as*% + blfia(sfﬂ(l*i)) (agfs + b%a(5_2)2(5_25) )
(3.43)
= C(a2 + b?/2a*=2)/5 4 two other nonnegative terms).

Using Young’s inequality, we have ba?(?=%)/¢ < C(a*/* +b%/%), which, upon dividing
by a?(?=%)/% on both sides, implies (3.43), or equivalently, (3.42).
From relations (3.40), (3.41), and (3.39), we deduce (3.34). O

Remark 3.2. For 1/2 < s—k < 5/2 the spaces of restrictions in (3.3)—(3.4) coincide
with the spaces in (3.33)—(3.34) on which the extension operators 3, are defined.
Note that the spaces in (3.33)—(3.34) and the extension operators () are also well
defined for s — k < 1/2.

With the help of standard partition of unity techniques, we obtain from Lemmas
3.4 and 3.5 extension results for functions defined on ¥ = R x 9 (extension into
functions defined on @ = R x Q).

The spaces B*(X) and B**(X) are defined from B*(R%) and B**(R%), respec-
tively, with the help of standard partition of unity techniques.

Theorem 3.2. Let k > 0 be an integer and s € R. Then, there exist continuous
extension operators

(3.44) By, : HETFA(8) - HO(Q)

and

(3.45) B: BSFA(D) = HON(Q),  if s>2,
and

(3.46) By : B¥*(2) — HY(Q), if 3/2<s<2,

such that vy, o Brv = v,v; 0 Brv = 0,5 # k, where vy is the restriction operator
which maps a function u(t,x) defined for (t,x) € R x Q to the function yyu =
0% u(t,x)

ank _
xEX=R X0
outward normal on 0.

; here 8—2 is the derivative of order k with respect to the unit
on

Theorem 3.2 can be proved from Lemmas 3.4 and 3.5 by standard partition of
unity techniques.



1096 A. FURSIKOV, M. GUNZBURGER, AND L. HOU

4. RESTRICTION RESULTS FOR SOLENOIDAL VECTOR FIELDS

4.1. Some results concerning a curl elliptic problem. Our aim is to obtain
restriction results for vector fields u € V(*)(Qr) (see the definition in (2.5)) on the
lateral surface X1 of the cylinder Q7. Roughly speaking, we do the following: we
make the decomposition u = u,; 4+ u,n in a neighborhood of ¥, where n is the unit
outward-pointing normal vector field to X7 and u. is the tangential component of
u. We recall that
curt - (22 _ 2ta Oz _ Dug Oz _ Oy
83?3 83327 8])3 8332’ 83?3 8])2 '
To obtain restriction results for u,, we simply apply the results of Section 3 above.
To obtain precise restriction results for wu,,, we first apply to u the operator curl ~*
(which has to be defined) and obtain the vector field curl ~'u € H+)(Qr). Then,
using results from Section 3, we can characterize the restriction ~y, (curl ~*u), where
v is the composition of the restriction operator and the tangential projection.
Then, we apply the operator d, which in local coordinates (¢,21,x2) on Xr can
be written as d;v = Qvy/0x1 — Ovy /0o, where v = (v1(t, 21, T2),v2(t, 21, 22)) is a
tangential vector field to ¥7. One can see that, for smooth u, d,v,curl ~'u = 7, u,
where 7, is the composition of the restriction operator and the projection onto the
vector field of outer normals to X7. This construction gives the precise restriction
results.
The operator (curl)™! is not defined on the whole space

(4.1) ViHQ) ={uec[H Q)] : divu=0}.

First, we study the restriction problem for a certain subspace of V*(Q); the general
case will be considered later in Subsection 4.4.

It is well known (see, for example, [12]) that for any u € V*(Q2), s > 0, the trace
Ynt (see the definition of 7, in (2.9)) is well defined and v,u € H*~1/2(9Q). We
set for s > 0

(4.2) VS(Q):{ueVS(Q) : /Fr.'ynudx':O, j:1,...,J}.

Let us consider the boundary value problem

(4.3) curlv =u, x €,
(4.4) divv =0, x €0,
and

(4.5) v =0, x € 0.

We consider (4.2) as spaces for the right-hand side of problem (4.3)—(4.5). We need
to introduce the space for solutions of problem (4.3)-(4.5). Define

H{(Q) = closure of C§° under the H*(Q2) norm, s> 0,
and
Vo(Q) ={ve Vi Q) : v =0}
We have the following well-known Weyl decomposition (see, e.g., [8] and [12]):
L2() = VA(©Q) & VH'(®),
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where VH1(Q) = {Vp : p € H'(Q)}. Evidently, VH!(Q) C kercurl. Note that,
generally speaking, VJ(Q2) N kercurl # {0}. Indeed, the following orthogonal
decomposition in L?(Q2) holds (see [3] and [IZ} Appendix 1, pp. 458-471]):

(4.6) Vi(Q) =W'Q) e H,.,

where H, = VJ Nkercurl is a finite-dimensional subspace of H!(Q2). H, consists
of vector fields Vp(x), where p(x) are multi-valued functions satisfying Ap = 0 and
(é)p/an)|89 = 0; for details see [12, Appendix 1]). We have the following relations
for the div and curl operators.

Lemma 4.1. The following relations hold:

a) curl H'(Q) = V°(Q)

H™(Q) = {uecL*Q) : curluec H" }(Q),
b) divu e H"1(Q),y,u e H"2(0Q)} vYm>1
(m is an integer).
Proof. See [3] and [T2] Appendix 1]. O

Using the space WY defined in (4.6), we introduce the following spaces:
) We(Q) =W°(Q) N H*(Q)
for s > 0 equipped with the H*(2) norm

and the following subspaces of H™*(Q):

W 5(Q2) = the closure of W°(Q) under the H=*(£2) norm,

u, v
lulls = sup V)

for 0 <s<1/2,
veH;(Q) HV||H5(Q)

where the duality pairing (-, -) is generated by the scalar product in L2(2).
Finally, for s € (0,3/2) we define
\Af_S(Q) = the closure of V° (©2) under the H=%(2) norm.
Lemma 4.2. The following inclusion is true:
curl H(Q) = {u : u=curlv, ve H}(Q)} C V}(Q).

Lemma 4.3. Assume that u € W(Q) and curlu € W9(Q). Then there exists a
p € H?(Q) such that u — Vp € H}(Q).

These lemmas will be proved later, in Subsection 4.2.
We now prove the existence and uniqueness of solutions for problem (4.3)—(4.5).

Theorem 4.1. Let s > —3/2 and s # —1/2. Then, the operator
(4.8) curl : WoH(Q) — V*(Q)

is an isomorphism. Moreover, the operator

(4.9) curl : VST1(Q) — V*(Q)

18 surjective.
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Proof. Assertion a) of Lemma 4.1 and the definition (4.6)—(4.7) of the spaces W?*
imply that the operator curl : W1(Q) — V9(Q) is surjective and kercurl N
WL(Q) = {0}. Hence, by the Banach theorem, the inverse operator curl ! :
VO(Q) — W(Q) is defined and is continuous. Therefore, the operator curl :
wWl(Q) — VO(Q) is an isomorphism. Assertion b) of Lemma 4.1 implies that if a
right-hand side u € V() for problem (4.3)-(4.5) belongs to H™1(€2), then the
solution v.€ W1(Q) belongs to H™(). Thus, the restriction to W™(Q) of the
operator curl : W(Q) — VO(Q) yields the operator curl : W™(€) — V™=1((Q),
which is an isomorphism. Applying the interpolation theorems from [J] to the
operators curl : W1(Q) — VO(Q) and curl : W™ () — V™= 1(1), we see that
the operator (4.8) is an isomorphism for every s > 0.

Next, we prove that H}(2) N H. = {0}, where H. is the space defined in (4.6).
If Vg € H}(Q) N H,, then Aq = 0 and (Vq)|spo = 0. By the theorem on the
uniqueness of solutions of the Cauchy problem for the Laplacian operator (i.e., the
problem Ag = 0 in €, q|1,7 = const.; for j = 1,---,J, and g—g‘aﬂ = 0), we see

that ¢ = constant for x € Q. Hence Vq = 0. Note that, for any v € H}(Q2) and
Vq € H, (recalling that H. ¢ H(12)),

/curlv-qux:/v-cuerqu:O.
Q Q

Therefore, taking into account (4.6) and Lemma 4.2, we deduce that curl H(Q2) C
WO(Q). By virtue of (4.8) with s = 0 we have that for each v.€ W°(Q) c V°(Q)
there exists a u € W!(Q) such that curlu = v. By Lemma 4.3 there exists a
p € H%(Q) such that u — Vp € H}(Q). Since curl (u — Vp) = v, we have proved
the equality curl H}(Q) = W%(Q).

Consider the operator
(4.10) curl : H}(Q) — L2(Q)
and its adjoint operator

(4.11) curl* : L*(Q) - H ().
Note that, using integration by parts, we see that
/(curlv)~wdx:/v'(curlw)dx Vv, w € H}(Q),
Q Q

i.e., the operator curl is formally self-adjoint. Thus we define curl as an operator
from L2(Q) to H™!(Q) by curl = curl*, where curl* is the operator (4.11). Let
us prove that

(4.12) curl* L*(Q) = curl L2(Q) = V- 1(Q).

For each u € L?(Q) there exists a sequence {u;} C H}(Q) which converges to u in
L2(Q) as k — oo. Then curluy — curlu in H=1(Q). Since {curlu,} ¢ W°(Q) C
VO(Q), we deduce from the definition of V~1(Q) that curlu € V-1(Q). Thus
(4.13) curl L2(Q) c V-1(Q).

Since H} () NH.(Q) = {0} (see above), ker curl in the space H}(9) equals {Vp :
p € L*(Q),Vp € HY(Q)}. If Vp|6Q = 0, then on each component I'; of 9 the
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equality p|F‘ = C; holds, where each Cj; is a constant. Thus,
kerg ) curl = {Vp:pe HQ(Q),aan,)Q = O’p‘m =C;}.

Let Vp € kergg)curl and u € \A/'_l(Q). Note that {71(9) is dense in \AfO(Q).
To see this, for a given u € VO(1), we first use Lemma 4.1a) to solve problem
(4.3)-(4.5) to obtain a solution v € H*(2). Then, we choose a sequence {w,} C
H2(Q) that converges to v in H (). Clearly, {curlw, } C V}(Q) and {curlw,}
converges to u in L2(Q2). By the definition of V=1() and the density of V()
in \AfO(Q), there exists a sequence {ux} C Vi Q) C \AfO(Q) such that uy — u in
H71(Q) as k — oo. Integration by parts yields

(u, Vp) = lim u - Vpdx
k—oo 9]

= — lim deivukdx+zi:k1L%AjCjuk-nds:O.

k—o0

Hence, \Af’l(Q) L kerg (gycurl. This relation, together with the well-known fact
curl L2(Q) = [kerH(l)(Q)curl]L and (4.13), implies (4.12).

Equalities (4.12) and (4.6) and Weyl’s decomposition yield the assertion of The-
orem 4.1 for the case s = —1. We obtain the same assertion for s € (—=1,—1/2) U
(—=1/2,0) with the help of the interpolation theorem.

For s € (1,3/2), the operator curl : H§(Q2) — H*~1(2) has the adjoint curl* =
curl : H'75(Q) — H~%(Q) thanks to the well-known fact H*~1(Q) = H5 (Q2) for
s € (1,3/2). Since H§(Q) = H{(Q) NH3(Q) for 1 < s < 3/2,

curl Hj(Q) = curl [H}(Q) NH(Q)] = W*1(Q) = W(Q)nH*1(Q),

and therefore, curl H3(€2) is closed in H*~1(Q). Hence by a well-known theorem,
curl H'=#(Q) = [kerHS(Q)curl]L. Then, analogously to the proof for the case of
s = 1, we complete the proof. O

To prove an analog of Theorem 4.1 in the case of s = —1/2 we need to introduce

new function spaces involving HééQ (Q). Let p(x) € C*°(Q) be such that p(x) > 0
for all x € Q and p(x) = dist(x, 9Q) for x sufficiently close to 09, where dist(x, J2)
is the Euclidean distance from x to 02. We recall from [9] that

Hyy*() = {ue HYX(Q) : p~/?u € L2(9)}

with the norm defined by

—1/2

Full2 2 = Il20/200) + 07 20l

and H(;OI/Q (Q) is the dual space of HééQ(Q), i.e., it is the completion of L?(2) under
the norm

inf 7@’ 9) )
1/2

ull =172y =
Hoo (D) o e mil? (@) 161l 272 0

We denote by H(l)(/)Q(Q) and HEOI/Q(Q) the vector counterparts of HééQ(Q) and
H&)l/ %(9), respectively. Now, we define

{7501/2(9) = the closure of V°() under the Haol/Q (©) norm.
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G-1/2 /00 : ~1/2 . . —1/2
Clearly V,/7(2) is a subspace of Hy,’“(€2) equipped with the Hy,’“(€2) norm.

Proposition 4.1. The operator curl : W/2(Q) — {\70_01/2(9) is an isomorphism.

Moreover, the operator curl : V/2(Q) — \7601/2((2) is surjective.

Proof. As is well known, H(i)l/ ?(Q) is the intermediate space of order 1/2 between
H71(Q) and L?(Q): i.e., HO_Ol/Q(Q) = [H (), L*(Q)]12. (For a proof of this
fact and for the definition of intermediate spaces, see [0 Ch.1, §2.1, §12.2].) This

implies that V501/2 (Q) =[V71(Q),V(Q)]1/2. Thus, the desired results follow from
interpolation theorems (see [0 Ch.1, §5.1]) and the assertions of Theorem 4.1 for
the cases s =0 and s = —1. |

We introduce the spaces
(4.14) VE(Qr) = {u e L*0,T; V¥(Q)) : due L*(0,T; V°2(Q))}
and
(4.15) W (Qr) = {u € L2(0,T; W*(Q)) : du € L*(0,T; W 2(Q)}.

Theorem 4.2. Let s > 1/2. Then, for an arbitrary u € ]A)(S)(QT), there exists a
unique solution v.€ WD (Qr) for the problem (4.3)—(4.5) (where t is a parame-

ter), and the following estimate holds:
HV||17V\(5+1)(QT) < CH“HTJ(s)(QT) )
where C does not depend on u.

Proof. If s — 2 # —1/2, then the desired assertion follows easily from Theorem
4.1 and the definitions (4.14)—(4.15). If s — 2 = —1/2, then since HééQ(Q) C
HY?(Q) c L*(Q) c HY?(Q) H&)l/Q(Q), where all embeddings are continuous,

we deduce that \A/'_l/Q(Q) C \7601/2 (©) with a continuous embedding. Using the

last embedding, Proposition 4.1, and (4.14)—(4.15), we again obtain the desired
assertion. O

4.2. Special local coordinates. Let I' = T'; be a connected component of 9€);
see (1.5). We consider the bounded domain

(4.16) ©=0, ={xeQ:dist(x,I') < 0} (C'=Ty),

where § > 0 is small enough. We introduce in © special local coordinates.
Lemma 4.4. Define

(4.17) ys3(x) = dist(x,T'), x€0.

There exists a finite covering {U;} of © such that in each U; there exists a local
coordinate system (y1(x), y2(x), y3(x)), ys being defined by (4.17), which is oriented
as (x1,22,x3) and satisfies the condition

(4.18) Vy;(x) - Vyr(x) = 0k, Jk=1,2,3,

where 01, is the Kronecker symbol.



TRACE THEOREMS FOR SOLENOIDAL FIELDS 1101

Proof. We choose ¢ in (4.16) so small that ©;NT'; = () for ¢ # j, the function (4.17)
is infinitely differentiable for x € ©;, and for any x € © the distance from x to
I' =T is achieved at a unique point xg € I' =T';. Let xg € T, and let (e1,e2,e3)
be the orthonormal basis with the origin at xg, which is oriented the same way as
the orthogonal basis corresponding to initial global coordinates (x1,z2,x3) in £;
e; € Ty, I', j = 1,2, are vectors tangent to I' and e3 is orthogonal to I' directed
towards the interior of 2. Shifting the initial origin to the point x¢ and rotating the
basis corresponding to the global coordinates, we can suppose that (x1,z2,x3) are
the coordinates associated with the basis (e1,ez,e3). It is sufficient to construct
the local coordinates y1(x) and y2(x) in a small neighborhood of the interval {ces :
¢c>0}NO ={ce3:0<c<d}.

Let (f*k be the geodesic on the manifold I" going out from xq in the directions
er and —eg, k = 1,2. There exists a unique C*k, k = 1,2, which is defined in a
neighborhood of x¢ and satisfies this condition. Let C3(t,z) be a curve going out
from a point z € I' which is the solution of the problem

8t03(t, Z) = vy3(C3 (t, Z)), 03(0, Z) =Z.

This solution is well defined for C3 € ©. Moreover, the curve t — C3(t,z) coincides
with the normal to I' going out from z € I". Denote

Ers = {x €0 : there exist ¢t € (0,0) and
z € Cy such that x = Cs(t,z)}, k=1,2.

The surface Z;3 divides © into two parts: Oz (e2 € O24) and O (—ey € O2_).
Analogously, Za3 divides © into O14 (e; € O14) and ©;_ (—e; € O7_). For
X € Og4 close to the set {ceg: ¢ > 0} NO, we define y2(x) as the geodesic distance
on the manifold

(4.19) L) =12 €0 :y3(z) = y3(x)}

from x to the surface Z;3. (The metric on Iy, (x) is generated by the metric of the
enveloping Euclidean space.) In other words, among all geodesics on the manifold
(4.19) starting from x and terminating on Z13 we choose the geodesic Cy(x) having
the minimum length. This minimum length is y2(x), by definition. If x € O4_,
then y2(x) is the same geodesic distance with the minus sign. Note that the vector
Vya(x) is tangent to the curve C(x) C I'y,(x), and therefore

(4.20) Vys(x) L Via(x).
Define the curve
(4.21) C1(%) = Tyy) N {2 € O : 9o(2) = 12(x)} .

Let C) (x) denote the part of C; (x) which goes out of x and ends on Zy3. We define
y1(x) as the length of C}(x) if x € ©14 and as the negative of the length of C;(x)
if x € ©1_. Evidently, Vy;(x) is tangent to C1(x). Thus, by (4.21),

(4.22) Vi (x) L Vya(x) and Vi (x) L Vys(x).
By the definition of y;(x), i = 1,2,3 (these were all defined by means of some
distance functions), the following equalities hold:

[Vy:(x)|=1, 1=1,2,3.
These equalities, together with (4.20) and (4.22), yield (4.18). Thus, we have that
(y1(x), y2(x), y3(x)) is the desired local coordinate system defined in a neighborhood



1102 A. FURSIKOV, M. GUNZBURGER, AND L. HOU

Uy, of the curve C5(t,xp). Using the closedness of the set I' = I';, we may choose
a finite covering satisfying the desired properties. [l

Let us calculate the metric tensor g;;(y) in the local coordinates y(x) constructed
in Lemma 4.4. Relation (4.18) implies that the map y(x) = (y1(x), y2(x), y3(x))

has the inverse x(y) and % = gTy,i' Since g (y) can be found from the relation

ds? = ide _ 0w Oy
- P i 8yk 8yl Yrayi ,

we have

dx; Dz
(4.23) gr(y) = S 2% _ Gy (x) - Vigi(x) = O -

- Oyr Oy

Proof of Lemma 4.2. As is well known (see, e.g., [IT} Ch. VI, §4]), the operator
curl : H}(Q2) — L%(Q) depends on the Euclidean structure and orientation. Hence,
in the local coordinates (y1 (x), y2(x), y3(x)) constructed in Lemma 4.4, the operator
curl on any U; has the usual form:

curlw(y) = (202 _ Qws dws  Owy wy  Ows
V= \Oys 0y 0y Oys 0y o )

where w(y) is the expression in local coordinates y(x) of a vector field u(x) €
H{(Q). Evidently, w(y) € [H (2N U;)]?,

(4.25) w(y)|p =w(y)|,,_, =0,

and (y1,y2,0) are the local coordinates on I' = T';. Hence, (4.25) yields

(4.24)

811)1 8’(1}2

= O 5
0ya o

y3=0

which implies that
(4.26) (curlw, n)|F =0,

where we recall that n = eg is the orthogonal vector field to I'. Since div curlu = 0,
(4.26) implies that curlu € V§(Q). O

Proof of Lemma 4.3. As above, we consider u(x) in local coordinates (y1(x), y2(x),
y3(x)) constructed in the proof of Lemma 4.4 on an element U; of a finite covering
{U;} for a component I'; of Q. We denote by w(y) the expression of u(x) in the
local coordinates. Since u € W(Q) and curlu € W°(Q), by virtue of (4.24) we
have

(427) ’U)3(y1,y2, y3)‘y3:0 =0
and
(4.28) (3w1(y17y2,y3) B 3w2(y1,y2,y3)) 0
ayQ ayl y3=0
Set
(y1,92)
pO(ylay2):/ wl(Zl,ZQ,O)dzl+w2(21,2270) dz2,
(¥9-99)

where (y9.99) is a fixed point on I'; and the integration is taken over a curve con-
necting the points (y{.y9) and (y1.y2) — thanks to (4.28) the integral is independent
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of the choice of the connecting curve. Evidently, the definition of pg can be ex-
tended onto all of T';. Since w € W1(Q) ¢ H'(Q), we have py € H3/?(T;). Let
p(y1,Y2,y3) be a function defined on the set ©; as defined in (4.16) that satisfies

=0.

€ H*(© = d —| =
p (©), plp=po an By Ir

We choose a ¢(y3) € C>(0, ) satisfying ¢(y3) =1 for 0 < y3 < §/3 and ¢(y3) =0
for 26/3 < y3 < 0. We define p;(y) = ¢(y3)p(y) (with j being the index of I';
We extend p; from O; into Q with p;(x) = 0 for x € Q\ ©;. Set P(x) = >oipi(x
Evidently, v(x) = u(x) — Vp(x) € H}(). O

).
).

4.3. Restriction theorems. Recall that ~,~v,,~, are the restriction operators
defined in (2.9) and above.

Theorem 4.3. Let QQ C R3. Then, the operator
Y= () VO @Qr) = G1(Sr) x G3(Sr)
fors>1/2,s#3/2,s#5/2

is continuous, where G2(X1), G5 (S1), and V*(Qr) are the spaces defined in (2.10)—
(2.11) and (4.14).

(4.29)

Proof. The trace operator yu = (y-u,v,u) in the local coordinates introduced in
the proof of Lemma 4.4 can be rewritten as follows:

Yu = (Wifys=0, Walys=0, W3y;=0), L€, Yru= (w1, w2)[y,—0-
To estimate the component «,u of the trace operator we note that
w; € HO((0,T) x ©,),  i=1,2.

We can extend w; up to functions belonging to H(*)(R%*1). Then, we apply Lemmas
3.1 and 3.3 to deduce the continuity of the «; component of the operator (4.29).

To estimate the v, component of (4.29), we return to the original global coordi-
nates. We define by curl ~lu = v the solution v € WE+)(Qr) C [HEHD(Qr))?
of the problem (4.3)—(4.5), with u being the right-hand side. The tangential com-
ponent of v on X7 in the local coordinates introduced in the proof of Lemma 4.4
can be written as v, v = (v1(y1,¥2,0),v2(y1,y2,0)). Applying the operator d,, we
have d,v = dyv1(y1, y2,0) — O1v2(y1,¥2,0)). Simple transformations yield

u=u s ,0 =7 curl o curl 1u
( 3 ) Tn 3(?;/1 Y2 ) n
*821)1(2/17:’/2;0) 81U2(y17y2a0)'

Let us consider the case 1 < s < 3/2 (other cases can be treated similarly). Apply-
ing to (4.30) Definition (2.11), assertion (3.27), and Theorem 4.2, we obtain

lrmulles ey = 110201 — 81U2)‘2THLQ(O,T;HS—1/2(BQ))HH254+1 (0,T;H-1(89))
< .
<Clv ET|‘L2(0,T;Hs+1/2(aﬂ))mH%(o,T;L2(aQ))

< ClVIle@r = CIVImen@m < Clallpe o -
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Theorem 4.4. Let Q C R3. Then, the following restriction operators are bounded:
(431) 7= () : VED(Qr) — M) (5r)) x HP) (Sr)

In

and

Y= () : VD (@Qr)
(4.32)  — [L2(0,T; HY(0Q)) N H*3(0,T; H~Y/3(60))]?

x [L2(0,T; H'(09)) N HL (0, T; H-(09)) N H*3(0,T; H~'/3(09))]
where the logarithmic spaces in (4.31)—(4.32) were defined in (2.7)—(2.8).

Proof. We begin from (4.31). Since V®/2(Qp) c [H®/2(Qr)]3, by Theorem 3.1
(see (3.29)) we have
(433) =) VOP(@Qr) € Q)P — M) (S0

On the other hand, as in Theorem 4.3, we reduce the study of 7, to the investigation
of the operator

(w1, ws) — (% _ %)
dy2 Oy

_ (92, - 9 |
ys=0  \Oy2 Hya=0 " Gy 2lya=0

defined on [H"/?)(Q7)]?. By Theorem 3.1 (see (3.26)) this operator acts continu-
ously from [H("/2(Qr)]? to H® (Zr). This last result and (4.33) yield (4.31).
To prove (4.32), we note that by (3.28) the operator

7= (v ) : VD (Qr) € [HED(Qr)]?
— [L*(0,T; H'(09)) N H*3(0, T; H~'/3(00)))?

is bounded. Moreover, as above, the operator v, can be represented as the following
composition: v, =d,ovyo curl™'. That is why, by Theorem 4.2 and (3.29), the
operator

o s VO (Qp) 2L WO (Qr) € HE/D(Qr)?
20 1P (Sp) s [L2(0,T; HY(09)) ] N HL(0,T; H1(99))
is continuous. This and (4.34) imply (4.32). O

(4.34)

4.4. The proof of Theorem 2.1.

Proof of Theorem 2.1. Let v € V) (Qr), s > 1/2. Denote

/ v-nds=gq;(t), j=1,---,J,
r

J

where T'; is a connected component of 92 (see (1.5)). Since divv = 0,

(4.35) Z ai(t)=0.

At each t € [0,T], we consider the Neumann problem
9p
on r,

By virtue of (4.35) the problem (4.36) has a solution p(t,x), and Vp(t, x) is defined
unambiguously. By the regularity theorem for solutions of problem (4.36), Vp €

(4.36) —Ap(t,x) =0,
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HY0,T;[C>*(Q)]*) ¢ H®)(Q). Since divVp = Ap = 0, we have that Vp €
VE)(Q), so that

v—Vpe VO (Q).

To obtain the restriction result for v — Vp, we can apply Theorems 4.3 and 4.4.
Thus, we only need to obtain estimates for Vp|r, = ¢;(t). Since g¢;(t) is constant
with respect to x’ € T';, we have that for any s; # so,

llgi(t, ey < Cillailt, My < @il e

where C1 = |[1{| =1 (0,)/||1]| zrs2 (r,) does not depend on ¢;. Therefore, Theorems 4.3
and 4.4 and relations (4.31)—(4.32) yield the assertion of Theorem 2.1. O

5. EXTENSION RESULTS FOR SOLENOIDAL VECTOR FIELDS

The plan for the proof of the extension theorem will be as follows. In the first
step, for a given trace u € G*(Xr) (see (2.16)—(2.17)), we solve the system of
equations

(5.1) (curlw u

)‘SQ =
and as a result we obtain the trace data W‘BQ for the vector field w. Then, in the

second step, using the extension results from Section 3, we construct w and define
the desired extension v for u satisfying v = curlw.

5.1. On a certain system of equations defined on 9f). To simplify notations,
we assume in this subsection that the manifold 0f) is connected. In the case when
0f) is not connected, all arguments of this subsection should be applied to each
connected component I'; of 9Q = |JT';. Below, we will use, on the manifold 92, the
local coordinates (y1,y2) which are the restriction to y3 = 0 of the local coordinates
(y1,Y2,ys3) constructed in Lemma 4.4. By virtue of (4.22), Vyi(x) L Vya(x) for
x = (21, x2,x3) € 0N NU;. Thus, by (4.23), the metric tensor on 92 generated by
the Euclidean metric of the enveloping space R? has the form

gkl(Y):(sklv kvl:]-a27

where §; is the Kronecker symbol. In the bounded subdomain © of the domain
) as defined in (4.16), we will use the local coordinates (y1,y2,ys) constructed in
Lemma 4.4.

Let

i

3
(5.2) u= Zm% = (ur,u,) € GE(Er) x G5 (Z7) = G*(Z7)

be a given vector field defined on 0f2, where u, = u1% + UQ% and u, = w,%.
By virtue of (4.23), applying to (5.2) the operation of lowering indices (see [2, p.
170]) and then applying the operation * (see [2, p. 175]), we can express the vector
field (5.2) in the exterior differential form:

(5.3) u = usdy; A dys — usdyy A dys + urdys A dys .

By the operation of lowering indices we express w defined in (5.1) as a differential
form w on © which in local coordinates (y1,y2,y3) takes the form

W = w1 (y1, Y2, y3)dy1 + w2 (y1, y2, y3)dy2 + ws(y1, Y2, y3)dys .
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We also introduce a differential form w on 92 depending on ys as a parameter
which in local coordinates (y1,y2) takes the form

(5.4) W = w1 (Y1, Y2, ¥3)dy1 + wa(y1, Y2, ¥3)dys -

Of course, the forms w and W are related. We rewrite equation (5.1) for vector
fields as the equation dw = u for differential forms, which in local coordinates
(y1, Y2, y3) is written as follows:

(5.5) (Oy, wa — Oy, w1 )dy1 A dya = ugdys Adys for ys =0,
(5.6) (Oyowz — Oyswa)dyz A dys = uidys Adys for y3 =0,
and

(5.7) (Oy, w3 — Oyywr)dyr A dys = —uadyr Adys for ys =0.

Our first goal is to find the restrictions wi| 1 =1,2,3, from (5.5)—(5.7). To

this end, we set

(5.8) ws|

y3=0’

y3=0 =
Equations (5.6)—(5.8) imply
(5.9) —Oyswe =u1  and Oy, w1 = ug for y3 = 0.
Thus, to find the traces for w; and wy at y3 = 0, we have to solve (5.5) defined on
the manifold 92. This equation can be rewritten in the following invariant form:
(5.10) dw =1,
where u € A%2(99Q) is the given differential form, which in local coordinates has the
expression

u = uzdy; A dys

and w € A1(9Q) is an unknown differential form of the first order, which in local
coordinates can be written as follows:

(5.11) w = widy) +wady, = W| .

The operator d : A1(92) — A2(09) in (5.10) is the usual operator of taking differ-

entials (see [1] and [10]). Equation (5.10) has a large kernel. For this reason, we
supplement (5.10) with the following equation:

(5.12) dxw=0,

where x : A1(0Q) — A1(99Q) is the conjugation operator, which in local coordinates
can be written as follows (see [I] and [10]):

*w = —wody) + widys for w = widy; + wadys .
In local coordinates, (5.12) takes the form
(Oyy w1 + Oy,wa)dys Ady2 =0.
Note that (5.9) can be written in the following invariant form:

(5.13) (x0ys W)| =1, where G = u1dy; + u2dy2

y3=0
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and W is the exterior form defined in (5.4). Recall (see [I] and [I0]) that the
conjugate operators

* 1 A2(09) — A°(0Q) and %1 AY(09) — A?(09)

in local coordinates are defined as follows:

« f = fdy1 Ndyo if f € A°(09),

« (fdyy Ndyz) = fif fdys A dya € A*(09).
Then, the Laplace operator

A A(O9) — AH0Q), i=0,1,2,
is defined as follows (see [I] and [I0]):
(5.14) Af =—xdxdf —dxdxf for f€A'(0Q), i=0,1,2.
By L?(A%), i = 0,1,2, we denote the set of w € A*(9Q) with the finite norm

||w||2L2(A7:) :/ WA *w.
o9
(Note that the scalar product in L?*(A?) is defined by (w1,w2) = [y, w1 A *ws.) In
L?(A') we introduce the following subspaces (see [10]):
E = E(0Q) = the closure of {df : f € C*(0Q)} in L*(A"),

E* = E*(09) = the closure of {xdf : f € C'(09)} in L?(A"),
and
H=H(0Q) = {we L*(A') : w = df, where f € A°(0Q) and Af =0} .
These spaces have the following relations (see [10, pp. 196-200]):

Lemma 5.1. a) The spaces E, E* and H are mutually orthogonal, and L?*(A') =
EeoFE*®H.
b) dw =0 iff w € (E*)*, and dxw =0 iff w € EX, where EX (or (E*)*) is
the orthogonal complement of E (or E*) in L?>(AY).
¢)dw=0andd*w=0iff we H.

We now solve the system formed by (5.10) and (5.12).

Lemma 5.2. a) There ezists a solution w € H & E* of (5.10) and (5.12) if and
only if the right side u € L*(A?) satisfies the condition

(5.15) / i=0.
o0
b) Any solution w of (5.10) and (5.12) admits the representation
(5.16) w=h+xdg,

where h is an arbitrary element of H and g € L*(A°) is the unique solution of the
equation

in the class g € L*(A°) satisfying

(5.18) /89 *g=0.
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Proof. Let

D(d) = {w € L*(A") : dw € L*(A?)}
be the domain of the operator d : L?(A') — L2?(A?). The Stokes formula implies
that each u € dD(d) satisfies (5.15). Let ¢ € (D(d))* = {¢ € A%2(0Q) : [dwAxp =
0 Vw € D(d)}. Then, for any w = pidy; + pady2 € L?(A!) with C§°-coefficients
concentrated in a parametric circle U;, we have

0= / do A% = / (Bysp2 — Byupn ) bily A dy
o0 o0
= /asz [0y, (D20) — Oy, (P10)]dy1 A dya — /em (p20y, & — P10y, )dy1 A dya

= /BQ(anyﬁi) - p18y2¢)dy1 A dy2 )

where in the last equality we used the following formula, which is a consequence of
the Stokes theorem and the assumption that pk|8U- =0,k=1,2:

[ 1001 (926) = 00u 1)) Ay = [ pri + paoiye = 0.

Ui au,
Hence, 0y, ¢ = 0 and 0,,¢ = 0 in any parametric circle, and thus *¢ = constant.
Let u € dD(d) be given. Then, by definition there exists w € L2(Al) such that

(5.19) dw=1.
By virtue of Lemma 5.1 we can decompose w as follows:
(5.20) w=h+xdg+dg,

where h € H, *dg € E*, and dg1 € E. Substituting (5.20) into (5.19) and taking
into account that ddg; = 0 and dh = 0 (see Lemma 5.1 ¢)), we have

(5.21) dsdg="1u.
By virtue of (5.14) we have that if f € A°(99), then Af = —xdx*df. Hence, (5.21)
yields (5.17).

Multiplying the corresponding sides of (5.21) and (5.17), we see that in any
parametric circle U;,

/ |Ag|2dys A dys = / [a|?dy1 A dys .
U; U;

Using this last equation, one can deduce the closedness of the set dD(d) in L*(A?)
as follows. As is well known, to establish this closedness we need the following
inequality in addition to the equality above:

9l 2oy < CrllxdgllL2(ary < Colltl| 2 (a2).-
The first of these inequalities is the well-known Poincaré inequality, which is valid
because of (5.18). To prove the second inequality we multiply (5.21) by ¢ and
perform integration by parts. Then, by applying the Cauchy-Schwarz and Poincaré
inequalities, we obtain

g2 ) = /8 1= [l lollaony < Calld]agan gl

Since dD(d) is closed in L?(A?) and its orthogonal complement in L?(A?) equals
*C, where *C is the *-image of all constant functions, we have that [dD(d)] ®«C =
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L?(A?). This implies the solvability of (5.19) for each @ satisfying (5.15). The
equalities ddg; = 0 and (5.20) yield that there exists a solution w of (5.19) in the
form of (5.16), where h € H and xdg € E*. Since w = h + xdg € H ® E* = E+,
we conclude from Lemma 5.1 b) that w satisfies (5.12). It was shown earlier that
(5.21) implies (5.17).

Suppose that g; € L2(A°) satisfies Ag; = — 4. Then, gy = g — g1 satisfies the
equation

Ago =0.

By virtue of (5.14)

02/ QOA*AQO:/ go N d *dgo
B o9

— [ dlgoxdgo) = [ dgn s = = ldgolEca
Fle) oQ
Hence, dgo = 0 or go = constant. But, as a result of (5.18), we see that go =0. O

5.2. Solvability of system (5.10) and (5.12) in H"(0,T; H*(A')). Recall that
the definition of Sobolev spaces H*(9S2) = H*(A") of functions determined on 95
was given in Section 2. The Sobolev space H®(AZ%) is the set of exterior forms
u € A?(0Q) such that *u € H*(A?). The Sobolev space H*(Al) is the set of
exterior forms u € A1(92) which in each parametric circle U; have the form u =
p1(y)dyr + p2(y)dyz, where the coefficients p;(y), j = 1,2, belong to the Sobolev
space H*(U;).

Lemma 5.3. Lets € R, and assume that u € H*(A?) satisfies the condition (5.15),
which is understood in the sense of distributions if s < 0. Then, there exists a
solution w € H5Y1(AY) for (5.10) and (5.12) satisfying the estimate

(5.22) ||wHHs+1(A1) < CHm‘HS(A?) .
Proof. As is well known, for u € H*(A?) satisfying (5.15), there exists a unique
solution g € H*T2(A%) of (5.17), and the following estimate holds:

(5.23) g/l mrs+2(a0) < Clla]] g (az) -

Set w = *dg. Then, as in the proof of Lemma 5.2, one can establish that the exterior
form w € H¥T1(A!) and satisfies (5.10) and (5.12). Inequality (5.22) follows from
(5.23). O

Lemma 5.3 yields the following assertion.

Lemma 5.4. Let r > 0 and s € R. Assume that © € H"(0,T; H*(A?)) satisfies
(5.15) for almost every t € [0,T]. Then, there exists an element

we H™(0,T; HTH(AY)
which satisfies (5.10) and (5.12) for almost every t € [0,T].
Proof. By the definition of H"(0,T; H*(A?)), we can suppose that @ is extended
into u € H"(R; H*(A?%)) (we still denote the extended exterior form by ). Let

u(r,-) denote the Fourier transform of w with respect to t. The assumption u €
H"(R; H*(A?)) implies the inequality

(5.24) / (1 [72)7 (7, Yo ey dr < 0.
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Then, we substitute u(7, ) into the right hand side of (5.10) and apply Lemma 5.3
to the system (5.10) and (5.12) to obtain the solution &(,-) of this system. Let
w(t, ) be the inverse Fourier transform of (7, -):

w(t,") = (FL,0)( ).

By virtue of (5.22) and (5.24), w € H"(R; H*72(A')), and we simply need to restrict
this function to the interval (0,T") to complete the proof. O

5.3. Final extension result. We introduce a new function space. We set
G*(Sr) = G3(Sr) x G3(2r).
Here, G2 (X7) is the space (2.10), and

~

G2 (Sr) = {un(t,x) € G (Sy)

/ up(t,x’)dz’ =0ae t€0,T],j= 1,...,J},
Ly

where G (Xr) is the space (2.11), and the I';’s are the connected components of
08 see (1.5).

Theorem 5.1. Let Q C R®. Then for s > 1/2 there exists a continuous extension
operator

R:G*(2r) = VO (Qr),

i.e., the operator R is such that v o R = I, where I : G*(Sp) — G*(Sp) is the
identity operator.

Proof. Let u be the trace data (5.2). We consider the system of equations (5.5)—
(5.7) for the corresponding exterior differential forms. This system can be reduced
to the system (5.5), (5.8), and (5.9). Finding a solution w of (5.5) is reduced to
solving the system (5.10) and (5.12) written in their invariant form. Lemma 5.4
implies that there exists a solution w of system (5.10) and (5.12), and

[L2(0, 5 H=+/2(AY))
NHY(0,T; H*~*/2(A1)]”
[L2(0,T5 H**'/2(A1))
NHE V0, T; LA(AY))]?
[L2(0, T5 H**/2(A1))

2541
S+2

NH:z

for s > 3/2,

(5.25) w e for 1 <s<3/2,

for 1/2<s<1.

s—1)(2s+1)

(0. H 2055 (A1) 2

By virtue of (5.13),
[L2(0, T3 H712(A1)

NH'(0.T: H (A, $2 0/
oo IO, T HTV2(AY) 5
(526) uc N H(2871)/4(0,T;L2(A1))]2, 2<s< 2
L2 0 T.Hsfl/Q Al
(120, 7; (M) Lcacn

NEE O, T HO D D),

Now we want to solve the problem of extending a differential form given on ¥ =
(0,T) x 09 into a differential form defined in a neighborhood [0,7T] x © of X1 (see
(4.16)). Let {U,} be a finite covering of 90 that was introduced previously, and
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suppose that {¢;} is a partition of unity subordinate to {U;}. By means of the
exterior forms (5.25)—(5.26), we construct the following exterior forms:

w =¢w  and  a® =gu.
Evidently,

Zw(i) =w and Zﬁ(i) =1.
i i

In the local coordinates (y1,y2) which we constructed in U;, we consider the fol-
lowing extension problem:

W (Y], = iws(tyrye), G=1.2,
(5.27) 8@;3“111) (t.3)],,—0 = Prua(t,yn, p2),
Oy (1)
where ¢widy; + diwadys = w® = ¢;w and
piurdys + diuadys = 0D = g

Note that the spaces (5.25) are included into the corresponding domains of the
operators [y from (3.44), (3.45), (3,46) in which s is replaced by s + 1. Also,
the domain of the operator 3; from (3.44), (3.45), (3.46) with s changed to s+ 1
contains the corresponding spaces from (5.26). All these assertions are proved by
straightforward verifications except for the space in (5.26) when 1/2 < s < 2. In
the case of 1/2 < s < 2, we must prove the inclusion

L2(0,T; H*~V2(0Q)) N H % (0, T; HI-2/96-1/2)(9)) ¢ BT (%),

om0 = —P21(t,91,92)

which reduces to the proof of the following estimate for the weights defining the
indicated spaces:

(a2 &)+ bt (T)a% (5’)) N
< C(as—l/Q(g’) b5 (r)a 12/ (-1/2) (5')) ’

where 1/2 < s < 2. This inequality is equivalent to the following:

2(s—2)

a2 + b7 g T <Cla®+bia" 7).

But the last inequality is true thanks to an estimate by Holder’s inequality:
batt az(irl1> = (bsil az(«::f) ) (aﬁ) < C(bs az(bs 2 +a )
By Theorem 3.2, there exist v;(t,y) € HETD((0,T) x U), j = 1,2, satisfying
(5.27). Let ¢; € C§°(U;) be functions satisfying
(5.28) vigi=¢;, 1=1,--- K,

X(y3) € C*(0,0), X(y3) = 1 for y belonging to a neighborhood of 0, and X(y3) = 0
for y belonging to a neighborhood of §, where ¢ is the magnitude found in (4.16).
Equalities (5.27)—(5.28) yield

(529) le (7/)( )‘y3=0 = ¢iwj(t7y1a y2)7 ] = ]-7 2;
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lea 3’(1) ( y) —0 ¢iu2(t7y1ay2)v
(5.30) ! la=o

szaygw (t }’)‘y —0 —piur(t,y1,y2) .
Evidently, the extension problem ws (¢, y)‘%:O = 0 has the solution

(5.31) w(7,y) = X(ys)1b:0 = 0 € HEED((0,T) x U3) .

From the left-hand sides of (5.29), (5.30), and (5.31), we construct the differential
form

W) = waz (t, y)dy; +w (¢, y)dys

that is written in local coordinates defined in [0,7] x U; x (0,d). But it can be
extended into the whole cylinder Q7 by zero outside that local region. Define
the differential form 6 = Zfil dw(? . This form is defined on Q7 with coefficients

belonging to H ) (Qr). Moreover, previous constructions yield that Q}ZT =u,
where 1 is the external form (5.3). This proves Theorem 5.1 a). O

We are now in a position to prove the main extension result.

Proof of Theorem 2.2. Let u € G*(Xr) be given, which we decompose into u =
ur + upn with u; € G2(Xr) and u,, € G5, (X7). On each connected component T';
of 99 (see (1.5)), we set

(5.32) q;(t) E/ up(t,x')dx', j=1,---,J.
r

U, € G5 (Xr) implies that ¢;(t) € H7(0,T) for each j, where
1, s> 3/2;
o=1(2s+1)/4, 1<5<3/2;
(2s+1)/(25+2), 1/2<s<1.
According to (2.1)-(2.2) the space H?(0,T) is defined as
H7(0,T) = H?(R)/H{, 1y (R)
with the norm
gl 7 o,1) ZiYElfHEQHHa(R) Vqe H?(0,T).
Thus for each g € H?(0,T) there exists an extension E such that

(5.33) llall o 0.1y < 1Eqllme)y < Cllall a1y »
where C' > 0 does not depend on ¢ and

| Eqll 5o ) = /R(l + |[712)° | Eq(7)|? dr

(E\q is the Fourier transform of Eqg). For ¢; defined in (5.32) we denote by Ej;q;
the extension of ¢; satisfying (5.33). From the definition (2.11) of G%(X7) and the

inclusion u,, € G%(X7) we have Ej:l g;(t) = 0 for every ¢t € (0,7"). Without loss
of generality we may suppose that E;’ 1 E;q;(t) = 0 for every t € R, for otherwise
we can define Ejyq;(t) = — E ]q]( ), and evidently (5.33) is still true for this
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newly defined E; with C replaced by (J — 1)C. For each t € R, we consider the
Neumann problem

(5.34) Ap(t,x) =0, x€Q,
and
0 .
(5.35) | =B, =10

Since 23.7:1 E;q;(t) = 0 for every t € R, problem (5.34)—(5.35) has a solution p(t, x)
such that Vp(t, x) is defined unambiguously and the following inequality holds:
J

(5.36) VPt o) < Cs D 1Big; () Vs €R.

j=1
Let @(7) be the Fourier transform of E;q;(¢) and p(7, x) be the Fourier transform
in t of p(¢,x). Evidently, p(7,x) and E;q;(r) satisfy (5.34)(5.35) for every 7 € R.
Thus, analogously to (5.36), we have

J
(5.37) VB M) < Cs Y |Bjas(r)]? Vs eR.
j=1
Inequalities (5.33) and (5.37) imply
J
(5.38) Vp(r, ')”?’-I"(O,T;HS(Q)) < CZ HQJ'H%(U(O,T) .
j=1

Evidently the vector field Vp(t,x) is solenoidal. Let us consider the restriction of
Vp(t,x) on X

Vp(t,x)|s = (Vp)r + (Vp)nn,

where (Vp), = g—ﬂz = {g;} is the normal component of Vp on ¥ and (Vp), =
(Vp)|s —¢;n is the tangential component of Vp on ¥. Inequalities (5.36) and (5.38)
imply that for each v € R

(5.39) (Vp)r € HY(0,T;H"(0Q)) and (Vp), € H'(0,T : H(9%)).
We define the extension operator R for (Vp)|s by the formula
(5.40) R((Vp)ls)) = Vp(t,x).

If u € G*(X7), then by (5.39) we have (u — Vp)|z € G*(Xr). Moreover, taking
into account (5.32) and (5.35), we see that (u — Vp)|s € @S(ET). Therefore, the
extension operator for (u— Vp)|s can be defined by Theorem 5.1. This and (5.40)
prove the theorem. [l

6. INHOMOGENEOUS BOUNDARY VALUE PROBLEM
FOR THE 3D STOKES AND NAVIER-STOKES EQUATIONS

Let ©Q C R? be a bounded domain with C*°-boundary 9. On the cylinder Q7,
we consider the nonhomogeneous boundary value problem for the Stokes equations:

(6.1) Ov—Av+Vp=1£f divv=0, onQr,

(6.2) vy =g,
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and
(6.3) v|t:0 = vy,

where v is the velocity vector field of a fluid flow, Vp is the pressure gradient, f is a
given vector field (the body force per unit volume), v is a given initial vector, and
g is a given Dirichlet boundary condition. Because of the divergence free condition
we require that

(6.4) /ag ut,x') -nx)dx' =0 ae. te|0,T].

We assume that div vy = 0 and that the following compatibility condition holds for
the boundary condition g and initial condition v:

(6.5) (vo - n)|aQ =(g- n)‘t:0 )
We suppose that
66) fe L*0,T; VS 2(Q)), voe VH(Q),
g € G°(Xr) for some s> 1.
(Recall that the spaces V*(Q) and G*(Xr) were introduced in Section 2.) As is
well known (see [12]),
(6.7) if vo € V5=1(Q) for s > 1, then (vq -n)|aQ € H573/2(09).
On the other hand, the following assertion holds:
Lemma 6.1. Let v = (b‘t:O for ¢ € G&(Xr). Then, for s > 1/2 the operator
(6.8) %0 : G(Sr) — HY3(09)
is well defined and continuous.

One can prove Lemma 6.1 by the techniques of Section 3. We omit the details.
By (6.7)—(6.8), the relation (6.5) is well defined for data satisfying (6.6).
For s > 3/2, we impose the additional compatibility condition

(6.9) Volpa = 8o
This equality is well defined because
if vo € V371(Q) for s > 3/2, then vo|,, € H*%/2(99)
and because the following assertion is valid:
Lemma 6.2. Let yo¢p = ¢‘t=0 for ¢ € G°(Xr). Then, for s > 3/2, the operator
Yo : G*(Sr) — H**/2(9Q)
is well defined and continuous.

Again, this lemma can be proved by the techniques of Section 3, and we omit
the details.

Theorem 6.1. Let s € [1,2], s # 3/2, and assume that the data f, vo, and g
satisfy (6.4)—(6.6) and that if s > 3/2, (6.9) also holds. Then, there exists a unique
solution (v,Vp) € V) (Qr) x L*(0, T; H*=2(Q)) for the problem (6.1)-(6.3).
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Proof. By virtue of Theorem 2.2, for a given Dirichlet boundary condition g €
G*(¥r), one can construct its extension v; € V) (Qr) defined on Q7 with its
support in a neighborhood of ¥r. We seek a solution v for (6.1)—(6.3) of the form

(6.10) V=v]+W.
By substituting (6.10) into (6.1)—(6.3), we see that w satisfies the problem

ow — Aw + Vp = 1y, divw = 0, on Qr,
(6.11)

wls, =0, Wi = Vo= vifi_

where f; = f — 9,vi + Avy € L?(0,T;H*"%(Q)). As is well known (see [], [8],
and [12]), the problem (6.11) with a homogeneous boundary condition has a unique
solution (w, Vp) € V) (Qr) x L0, T; H*~2(Q)). O

Let us consider now the inhomogeneous Dirichlet boundary value problem for
the Navier-Stokes equations:

(6.12) ov—Av+ (v,V)v+Vp=H{, divv =0, on Qr,

Vo.

(6.13) V|2T =g, and Vi, =

Theorem 6.2. Let s € (3/2,2] and assume that the data f, vo, and g satisfy (6.4)—
(6.6) and (6.9). Suppose also that ||f||r20,r;m—2()) + [[Vollve-10) + I8l =m)

is sufficiently small. Then, there exists a unique solution (v,Vp) € V) (Qr) x
L?(0, T;H*=%(Q)) for the problem (6.12)—(6.13).

Proof. As in the proof of Theorem 6.1, we construct an extension v; € V) (Qr)
for the boundary data g. Then, we look for a solution v in the form of (6.10). We
easily see that the proof of this theorem is reduced to the proof of the existence and

uniqueness of the solution (w, Vp) € V&) (Qr) x L?(0,T; H*~2(Q)) to the problem
6.14 Ow — Aw + [(vi +w) - VIw+ (w-V)vy — Vp=1s,
(6.14) divw = 0, on Qr,

(615) W|ET =0, w‘tz() = Vo — v“|t=0’

where f; = f — 9;vy + Avy — (vi - V)vy € L2(0,T;H*2(Q)). The proof of the
existence of a unique solution (w, Vp) € V) (Qr) x L2(0,T; H*~2(Q2)) for (6.14)-
(6.15) can be realized as in [4], [8], and [12]. O

Remark 6.1. Theorems 6.1 and 6.2 for s > 2 are also true under suitable compati-
bility conditions.
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